content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def percentiles(a, pcts, axis=None): """Like scoreatpercentile but can take and return array of percentiles. Parameters ---------- a : array data pcts : sequence of percentile values percentile or percentiles to find score at axis : int or None if not None, computes scores over this axis Returns ------- scores: array array of scores at requested percentiles first dimension is length of object passed to ``pcts`` """ scores = [] try: n = len(pcts) except TypeError: pcts = [pcts] n = 0 for i, p in enumerate(pcts): if axis is None: score = stats.scoreatpercentile(a.ravel(), p) else: score = np.apply_along_axis(stats.scoreatpercentile, axis, a, p) scores.append(score) scores = np.asarray(scores) if not n: scores = scores.squeeze() return scores
0e7217ec3e36a361a6747729543cd694912a2874
3,657,400
import json def single_request(gh,kname='CVE exploit',page=1,per_page=50): """ 解析单页仓库数据,获取CVE和exp标记 :return cve_list:list, cve id in each page by searching github.com """ cve=dict() url="https://api.github.com/search/repositories?q={key_name}&sort=updated&order=desc&page={page}&per_page={per_page}".format(key_name=kname,page=page,per_page=per_page) r=gh.call_to_the_api(url) if r: content=r.text js=json.loads(content) items=js['items'] total_count=js['total_count'] cve_add=single_parser(gh,items) if cve_add: cve={**cve,**cve_add} return total_count,cve else: return False,False
5fdd3fe28f0e973fb9d854e20b8ce77ed109d3c6
3,657,401
def ownerOf(tokenId: bytes) -> UInt160: """ Get the owner of the specified token. The parameter tokenId SHOULD be a valid NFT. If not, this method SHOULD throw an exception. :param tokenId: the token for which to check the ownership :type tokenId: ByteString :return: the owner of the specified token. :raise AssertionError: raised if `tokenId` is not a valid NFT. """ owner = get_owner_of(tokenId) debug(['ownerOf: ', owner]) return owner
68f164a377f59614f6c1287b97a53ca14937800f
3,657,402
def stuff_context(sites, rup, dists): """ Function to fill a rupture context with the contents of all of the other contexts. Args: sites (SiteCollection): A SiteCollection object. rup (RuptureContext): A RuptureContext object. dists (DistanceContext): A DistanceContext object. Returns: RuptureContext: A new RuptureContext whose attributes are all of the elements of the three inputs. """ ctx = RuptureContext() for name in [name for name in vars(sites) if not name.startswith("__")]: setattr(ctx, name, getattr(sites, name)) for name in [name for name in vars(rup) if not name.startswith("__")]: setattr(ctx, name, getattr(rup, name)) for name in [name for name in vars(dists) if not name.startswith("__")]: setattr(ctx, name, getattr(dists, name)) return ctx
9c197a41414a875942a6df22c03899c3e936967f
3,657,403
def number_to_float(value): """The INDI spec allows a number of different number formats, given any, this returns a float :param value: A number string of a float, integer or sexagesimal :type value: String :return: The number as a float :rtype: Float """ # negative is True, if the value is negative negative = value.startswith("-") if negative: value = value.lstrip("-") # Is the number provided in sexagesimal form? if value == "": parts = [0, 0, 0] elif " " in value: parts = value.split(" ") elif ":" in value: parts = value.split(":") elif ";" in value: parts = value.split(";") else: # not sexagesimal parts = [value, "0", "0"] # Any missing parts should have zero if len(parts) == 2: # assume seconds are missing, set to zero parts.append("0") assert len(parts) == 3 number_strings = list(x if x else "0" for x in parts) # convert strings to integers or floats number_list = [] for part in number_strings: try: num = int(part) except ValueError: num = float(part) number_list.append(num) floatvalue = number_list[0] + (number_list[1]/60) + (number_list[2]/360) if negative: floatvalue = -1 * floatvalue return floatvalue
8b754a32848b3e697e0f82dbee4a1c35c560f1be
3,657,404
def spg_line_search_step_length(current_step_length, delta, f_old, f_new, sigma_one=0.1, sigma_two=0.9): """Return next step length for line search.""" step_length_tmp = (-0.5 * current_step_length ** 2 * delta / (f_new - f_old - current_step_length * delta)) next_step_length = 0 if sigma_one <= step_length_tmp <= sigma_two * current_step_length: next_step_length = step_length_tmp else: next_step_length = 0.5 * current_step_length return next_step_length
844cccdfe1ec3f9c2c287384284ceb2ac3530e8e
3,657,405
def group_by_iter(metrics_dict): """ Restructure our metrics dictionary to have the last list store all the trials' values \ for a given iteration, instead of all the iterations' values for a given trial. :param metrics_dict: data for an experiment (output of parse_party_data) :type metrics_dict: `dict[list[list[np.array]]]` :return: A new, reorganized dict :rtype: `dict[list[list[np.array]]]` """ # TODO: more pythonic, pandas-thonic, or numpy-thonic way of doing this? metrics_gbi = {} # look into the metrics... for (metric_key, metric_llist) in metrics_dict.items(): metrics_gbi[metric_key] = [] # ... for each party... for (party_idx, metric_for_party) in enumerate(metric_llist): metrics_gbi[metric_key] += [[]] # ... for each trial... for metric_for_trial in metric_for_party: # ... and finally for each iter. for (iter_idx, iter_val) in enumerate(metric_for_trial): if len(metrics_gbi[metric_key][party_idx]) <= iter_idx: metrics_gbi[metric_key][party_idx] += [[]] metrics_gbi[metric_key][party_idx][iter_idx] += [iter_val] return metrics_gbi
469fb0df4d7acb63a982c0aab629031dbb345be6
3,657,406
def calc_pv_invest(area, kw_to_area=0.125, method='EuPD'): """ Calculate PV investment cost in Euro Parameters ---------- area : float Photovoltaic area kw_to_area : float , optional Ratio of peak power to area (default: 0.125) For instance, 0.125 means 0.125 kWp / m2 area (http://www.solaranlagen-portal.com/photovoltaik/leistung) method : str, optional Method to calculate cost (default: 'EuPD') Options: - 'sap': Based on: Solaranlagenportal http://www.solaranlagen-portal.com/photovoltaik/kosten - 'EuPD': Based on: EuPD Research, Photovoltaik-Preismonitor Deutschland: German PV ModulePriceMonitor. Returns ------- pv_invest : float Investcost into PV system in Euro """ assert method in ['sap', 'EuPD'], 'Unknown method' assert area > 0, 'Area has to be larger than zero.' assert kw_to_area > 0, 'kWp / area ratio has to be larger than zero.' if method == 'sap': kw_peak = area * kw_to_area # kW peak load # kw_peak * (spec_price + spec_install_cost) + inverter cost pv_invest = kw_peak * (1100 + 120) + 2000 if method == 'EuPD': kw_peak = area * kw_to_area # kW peak load # kw_peak * (spec_cost) + inverter cost pv_invest = kw_peak * 1400 + 2000 return pv_invest
2de9ee05580bc9d41522272a06cd97aaf3f5bc55
3,657,407
def procrustes_2d(x, y, n_restart=10, scale=True): """Align two sets of coordinates using an affine transformation. Attempts to find the affine transformation (composed of a rotation matrix `r` and a transformation vector `t`) for `y` such that `y_affine` closely matches `x`. Closeness is measures using MSE. y_affine = np.matmul(y, r) + t This algorithm only works with 2D coordinates (i.e., n_dim=2). Arguments: x: The first set of points. shape = (n_point, n_dim) y: The second set of points. shape = (n_point, n_dim) n_restart (optional): A scalar indicating the number of restarts for the optimization routine. scale (optional): Boolean indicating if scaling is permitted in the affine transformation. Returns: r: A rotation matrix. shape=(n_dim, n_dim) t: A transformation vector. shape=(1, n_dim) """ n_dim = 2 def assemble_r_t(params): # Assemble valid rotation matrix. s = params[3] * np.eye(n_dim) r = rotation_matrix(params[2]) r = np.matmul(s, r) f = np.array([[np.sign(params[4]), 0], [0, np.sign(params[5])]]) r = np.matmul(f, r) # Assemble translation vector. t = np.array([params[0], params[1]]) t = np.expand_dims(t, axis=0) return r, t # In order to avoid impossible rotation matrices, perform optimization # on rotation components separately (theta, scaling, mirror). def objective_fn(params, x, y): r, t = assemble_r_t(params) # Apply affine transformation. y_affine = np.matmul(y, r) + t # loss = np.mean(np.sum((x - y_affine)**2, axis=1)) TODO # Loss is defined as MAE, since MSE chases outliers and can result # in rediculous solutions. loss = np.mean(np.sum(np.abs(x - y_affine), axis=1)) return loss # t_0, t_1, theta, scaling, flip params_best = np.array((0., 0., 0., 1.)) loss_best = np.inf for _ in range(n_restart): (x0, y0) = np.random.rand(2) - .5 theta0 = 2 * np.pi * np.random.rand(1) if scale: s0 = np.random.rand(1) + .5 s_bnds = (0., None) else: s0 = 1 s_bnds = (1., 1.) # Perform a flip on some restarts. if np.random.rand(1) < .5: fx0 = -.1 else: fx0 = .1 if np.random.rand(1) < .5: fy0 = -.1 else: fy0 = .1 params0 = np.array((x0, y0, theta0, s0, fx0, fy0)) bnds = ( (None, None), (None, None), (0., 2*np.pi), s_bnds, (-.1, .1), (-.1, .1) ) res = minimize(objective_fn, params0, args=(x, y), bounds=bnds) params_candidate = res.x loss_candidate = res.fun if loss_candidate < loss_best: loss_best = loss_candidate params_best = params_candidate r, t = assemble_r_t(params_best) return r, t
f315f475af58419ac95896e8ce25f68f7197294d
3,657,408
def samps2ms(samples: float, sr: int) -> float: """samples to milliseconds given a sampling rate""" return (samples / sr) * 1000.0
49e07ee02984bf0e9a0a54715ef6b6e5a3c87798
3,657,409
def nice_year(dt, lang=None, bc=False): """Format a datetime to a pronounceable year. For example, generate 'nineteen-hundred and eighty-four' for year 1984 Args: dt (datetime): date to format (assumes already in local timezone) lang (string): the language to use, use Mycroft default language if not provided bc (bool) pust B.C. after the year (python does not support dates B.C. in datetime) Returns: (str): The formatted year string """ return lingua_franca.format.nice_year(dt, lang, bc)
641195195023ecca030f6cd8d12ff9a3fc9c989c
3,657,410
def get_results(job_id): """ Get the result of the job based on its id """ try: job = Job.fetch(job_id, connection=conn) if job.is_finished: return jsonify({ "status": "finished", "data": job.result }), 200 elif job.is_failed: return jsonify({ "status": "failed" }), 200 else: return jsonify({ "status": "in-progress" }), 200 except NoSuchJobError: return jsonify({ "msg": "job id does not exist" }), 404
ada9042cd4d7961415ec274a68631f6e9af81fad
3,657,411
def get_clean_dict(obj: HikaruBase) -> dict: """ Turns an instance of a HikaruBase into a dict without values of None This function returns a Python dict object that represents the hierarchy of objects starting at ``obj`` and recusing into any nested objects. The returned dict **does not** include any key/value pairs where the value of the key is None or empty. If you wish to instead have a dict with all key/value pairs even when there is no useful value then you should use the dataclasses module's ``asdict()`` function on obj. :param obj: some api_version_group of subclass of HikaruBase :return: a dict representation of the obj instance, but if any value in the dict was originally None, that key:value is removed from the returned dict, hence it is a minimal representation :raises TypeError: if the supplied obj is not a HikaruBase (dataclass), or if obj is not an instance of a HikaruBase subclass """ if not isinstance(obj, HikaruBase): raise TypeError("obj must be a kind of HikaruBase") initial_dict = asdict(obj) clean_dict = _clean_dict(initial_dict) return clean_dict
3daca47b6d8c42fca8856221f39b635791eb0fce
3,657,412
def generate_html_frieze(type, value): """ Gets the data to be able to generate the frieze. Calls the function to actually generate HTML. Input: - Type (session or dataset) of the second input - A SQLAlchemy DB session or a dataset (list of mappings) Output: - The HTML to be displayed """ if type == "session": session = value mappings = list(get_all_mappings(session)) elif type == "dataset": mappings = value holes_raw = calc_all_holes("dataset", mappings) holes = [] for hole in holes_raw: holes.append( { "devices_id": -1000, "id": -1000, "iova": None, "phys_addr": hole[0], "size": hole[1], } ) for hole in holes: hole["devices_id"] = -1 try: mappings = add_device_info(mappings, session) except: session = create_session() mappings = add_device_info(mappings, session) mappings_as_dict = [] for m in mappings: mappings_as_dict.append(m.__dict__) memory_state = sorted( mappings_as_dict + holes, key=lambda mapping: mapping["phys_addr"] ) memory_state = unify_common_space(memory_state) html_frieze = create_html_from_memory_state(memory_state, session) return html_frieze
ddf914d9d710e60af48a6dc687a9e3961ab0cf94
3,657,413
import os def get_folder_name(path, prefix=''): """ Look at the current path and change the name of the experiment if it is repeated Args: path (string): folder path prefix (string): prefix to add Returns: string: unique path to save the experiment """ if prefix == '': prefix = path.split('/')[-1] path = '/'.join(path.split('/')[:-1]) folders = [f for f in os.listdir(path) if os.path.isdir(os.path.join(path, f))] if prefix not in folders: path = os.path.join(path, prefix) elif not os.path.isdir(os.path.join(path, '{}_0'.format(prefix))): path = os.path.join(path, '{}_0'.format(prefix)) else: n = sorted([int(f.split('_')[-1]) for f in folders if '_' in f[-2:]])[-1] path = os.path.join(path, '{}_{}'.format(prefix, n+1)) return path
126648fbe460581272eedafc8599a3af1ded07e4
3,657,414
from typing import Optional import re def instantiate_model(model_to_train: str, dataset_directory: str, performance_directory: str, gpu: Optional[bool] = None): """ A function to create the instance of the imported Class, Classifier. Args: model_to_train (str): name of the pretrained model to train dataset directory (str): Directory containing the data performance directory (str): The directory where the generated text, checkpoints model_stats will be saved. gpu (bool): Boolean indicating availability of a GPU Returns: None. """ file = get_latest_exp(performance_directory) if file is not None: filename = re.findall('\\\\([^\\\\]+)\.txt', file) exp_no = int((re.findall('_([0-9]+)', filename[0]))[0]) exp_no += 1 else: exp_no = 1 Model = Classifier(exp_no, model_to_train, dataset_directory, performance_directory, gpu=gpu) return Model
8053053b5e77f1c74404826e7335b05bece8b99f
3,657,415
def generate_hmac_key(): """ Generates a key for use in the :func:`~securitylib.advanced_crypto.hmac` function. :returns: :class:`str` -- The generated key, in byte string. """ return generate_secret_key(HMAC_KEY_MINIMUM_LENGTH)
877cf9fbe56b6715f1744839ce83ac1abf9d7da8
3,657,416
import argparse def get_args(): """! Command line parser for Utterance level classification Leave one speaker out schema pipeline -- Find Best Models""" parser = argparse.ArgumentParser( description='Utterance level classification Leave one ' 'speaker out schema pipeline -- Find Best Models' ) parser.add_argument('-i', '--input_features_paths', nargs='+', help='File paths of the features you want to ' 'concatenate and the classify') args = parser.parse_args() return args
4a349da4fe3b570dae359937ed80494075bf26ea
3,657,417
def uscensus(location, **kwargs): """US Census Provider Params ------ :param location: Your search location you want geocoded. :param benchmark: (default=4) Use the following: > Public_AR_Current or 4 > Public_AR_ACSYYYY or 8 > Public_AR_Census2010 or 9 :param vintage: (default=4) Use the following: > Current_Current or 4 > Census2010_Current or 410 > ACS2013_Current or 413 > ACS2014_Current or 414 > ACS2015_Current or 415 > Current_ACS2015 or 8 > Census2010_ACS2015 or 810 > ACS2013_ACS2015 or 813 > ACS2014_ACS2015 or 814 > ACS2015_ACS2015 or 815 > Census2010_Census2010 or 910 > Census2000_Census2010 or 900 :param method: (default=geocode) Use the following: > geocode > reverse API Reference ------------- https://geocoding.geo.census.gov/geocoder/Geocoding_Services_API.pdf """ return get(location, provider='uscensus', **kwargs)
bd73acb87f27e3f14d0b1e22ebd06b91fcec9d85
3,657,418
def getAllItemsWithName(name, cataloglist): """Searches the catalogs in a list for all items matching a given name. Returns: list of pkginfo items; sorted with newest version first. No precedence is given to catalog order. """ def compare_item_versions(a, b): """Internal comparison function for use with sorting""" return cmp(munkicommon.MunkiLooseVersion(b['version']), munkicommon.MunkiLooseVersion(a['version'])) itemlist = [] # we'll throw away any included version info name = nameAndVersion(name)[0] munkicommon.display_debug1('Looking for all items matching: %s...' % name) for catalogname in cataloglist: if not catalogname in CATALOG.keys(): # in case catalogname refers to a non-existent catalog... continue # is name in the catalog name table? if name in CATALOG[catalogname]['named']: versionsmatchingname = CATALOG[catalogname]['named'][name] for vers in versionsmatchingname.keys(): if vers != 'latest': indexlist = CATALOG[catalogname]['named'][name][vers] for index in indexlist: thisitem = CATALOG[catalogname]['items'][index] if not thisitem in itemlist: munkicommon.display_debug1( 'Adding item %s, version %s from catalog %s...' % (name, thisitem['version'], catalogname)) itemlist.append(thisitem) if itemlist: # sort so latest version is first itemlist.sort(compare_item_versions) return itemlist
0babcd8363918d15d835fb67a37600b960adb942
3,657,419
def reco_source_position_sky(cog_x, cog_y, disp_dx, disp_dy, focal_length, pointing_alt, pointing_az): """ Compute the reconstructed source position in the sky Parameters ---------- cog_x: `astropy.units.Quantity` cog_y: `astropy.units.Quantity` disp: DispContainer focal_length: `astropy.units.Quantity` pointing_alt: `astropy.units.Quantity` pointing_az: `astropy.units.Quantity` Returns ------- """ src_x, src_y = disp_to_pos(disp_dx, disp_dy, cog_x, cog_y) return camera_to_sky(src_x, src_y, focal_length, pointing_alt, pointing_az)
14b7fee325bc8a571a13d257f046cd0e7bf838db
3,657,420
def segment_annotations(table, num, length, step=None): """ Generate a segmented annotation table by stepping across the audio files, using a fixed step size (step) and fixed selection window size (length). Args: table: pandas DataFrame Annotation table. num: int Number of segments length: float Selection length in seconds. step: float Selection step size in seconds. If None, the step size is set equal to the selection length. Returns: df: pandas DataFrame Annotations table """ if step is None: step = length segs = [] for n in range(num): # select annotations that overlap with segment t1 = n * step t2 = t1 + length a = table[(table.start < t2) & (table.end > t1)].copy() if len(a) > 0: # shift and crop annotations a['start'] = a['start'].apply(lambda x: max(0, x - t1)) a['end'] = a['end'].apply(lambda x: min(length, x - t1)) a['sel_id'] = n #map to segment segs.append(a) df = pd.concat(segs) df.set_index(keys=['sel_id'], inplace=True, append=True) df = df.swaplevel() df = df.sort_index() return df
4b1bb8298113b43716fcd5f7d2a27b244f63829c
3,657,421
def get_vdw_style(vdw_styles, cut_styles, cutoffs): """Get the VDW_Style section of the input file Parameters ---------- vdw_styles : list list of vdw_style for each box, one entry per box cut_styles : list list of cutoff_style for each box, one entry per box. For a box with vdw_style == 'none', the cutoff style is None cutoffs : list list with cutoffs for each box, one entry per box For a box with vdw_style == 'none', the cutoff is None """ assert len(vdw_styles) == len(cut_styles) assert len(vdw_styles) == len(cutoffs) valid_vdw_styles = ["lj", "none"] valid_cut_styles = {vstyle: [] for vstyle in valid_vdw_styles} valid_cut_styles["lj"].append("cut") valid_cut_styles["lj"].append("cut_tail") valid_cut_styles["lj"].append("cut_switch") valid_cut_styles["lj"].append("cut_shift") valid_cut_styles["none"].append(None) for vdw_style in vdw_styles: if vdw_style not in valid_vdw_styles: raise ValueError( "Unsupported vdw_style: {}. Supported options " "include {}".format(vdw_style, vdw_styles) ) for cut_style, vdw_style in zip(cut_styles, vdw_styles): if cut_style not in valid_cut_styles[vdw_style]: raise ValueError( "Unsupported cutoff style: {}. Supported " "options for the selected vdw_style ({}) include " "{}".format(cut_style, vdw_style, valid_cut_styles[vdw_style]) ) for cut_style, cutoff in zip(cut_styles, cutoffs): if cut_style == "cut_switch": if not isinstance(cutoff, np.ndarray) or len(cutoff) != 2: raise ValueError( 'Style "cut_switch" requires an inner ' "and outer cutoff. Use the " "cutoffs=[inner_cut,outer_cut] " "kwargs option." ) inp_data = """ # VDW_Style""" for vdw_style, cut_style, cutoff in zip(vdw_styles, cut_styles, cutoffs): if vdw_style == "none": inp_data += """ {vdw_style}""".format( vdw_style=vdw_style ) else: if cut_style == "cut_switch": inner_cutoff = cutoff[0] outer_cutoff = cutoff[1] inp_data += """ {vdw_style} {cut_style} {inner_cutoff} {outer_cutoff}""".format( vdw_style=vdw_style, cut_style=cut_style, inner_cutoff=inner_cutoff, outer_cutoff=outer_cutoff, ) else: inp_data += """ {vdw_style} {cut_style} {cutoff}""".format( vdw_style=vdw_style, cut_style=cut_style, cutoff=cutoff ) inp_data += """ !------------------------------------------------------------------------------ """ return inp_data
5cd0825d73e11c4fcb8ecce0526493414842697c
3,657,422
import subprocess def load_yaml_file(file): """ Loads a yaml file from file system. @param file Path to file to be loaded. """ try: with open(file, 'r') as yaml: kwargs=ruamel.yaml.round_trip_load(yaml, preserve_quotes=True) return kwargs except subprocess.CalledProcessError as e: print("error") return(e.output.decode("utf-8"))
7fe74fefcb5dd7068bc0040528670c68e926eaf5
3,657,423
def freduce(x, axis=None): """ Reduces a spectrum to positive frequencies only Works on the last dimension (contiguous in c-stored array) :param x: numpy.ndarray :param axis: axis along which to perform reduction (last axis by default) :return: numpy.ndarray """ if axis is None: axis = x.ndim - 1 siz = list(x.shape) siz[axis] = int(np.floor(siz[axis] / 2 + 1)) return np.take(x, np.arange(0, siz[axis]), axis=axis)
8d13e66a18ef950422af49a68012605cf0d03947
3,657,424
import os def init_pretraining_params(exe, pretraining_params_path, main_program): """load params of pretrained model, NOT including moment, learning_rate""" assert os.path.exists(pretraining_params_path ), "[%s] cann't be found." % pretraining_params_path def _existed_params(var): if not isinstance(var, fluid.framework.Parameter): return False return os.path.exists(os.path.join(pretraining_params_path, var.name)) fluid.io.load_vars( exe, pretraining_params_path, main_program=main_program, predicate=_existed_params) print("Load pretraining parameters from {}.".format( pretraining_params_path))
16d9a3fc2c73613047348f5b6234f5150ca9ef6c
3,657,425
import json def sort_shipping_methods(request): """Sorts shipping methods after drag 'n drop. """ shipping_methods = request.POST.get("objs", "").split('&') assert (isinstance(shipping_methods, list)) if len(shipping_methods) > 0: priority = 10 for sm_str in shipping_methods: sm_id = sm_str.split('=')[1] sm_obj = ShippingMethod.objects.get(pk=sm_id) sm_obj.priority = priority sm_obj.save() priority = priority + 10 result = json.dumps({ "message": _(u"The shipping methods have been sorted."), }, cls=LazyEncoder) return HttpResponse(result, content_type='application/json')
307ecef020ac296982a7006ce1392cb807461546
3,657,426
def appendRecordData(record_df, record): """ Args: record_df (pd.DataFrame): record (vcf.model._Record): Returns: (pd.DataFrame): record_df with an additional row of record (SNP) data. """ # Alternate allele bases if len(record.ALT) == 0: alt0, alt1 = np.nan, np.nan elif len(record.ALT) == 1: alt0, alt1 = record.ALT[0], np.nan varIdentifier = pd.Series(record.ID, name="varIdentifier") df = pd.DataFrame( data = {"refBase": record.REF, "altAllele0": alt0, "altAllele1": alt1}, index = varIdentifier) record_df = record_df.append(df, ignore_index=False) return record_df
0904b317e1925743ed9449e1fcb53aaafa2ffc81
3,657,427
def get_removed_channels_from_file(fn): """ Load a list of removed channels from a file. Raises ------ * NotImplementedError if the file format isn't supported. Parameters ---------- fn : str Filename Returns ------- to_remove : list of str List of channels to remove. """ assert isinstance(fn, str) if fn.endswith('.mat'): # try: data = loadmat(fn) # except: for old .mat files in hdf5 format... assert('CHANNAMES' in data), f"{fn} must contain CHANNAMES!" assert('CHANACTIVE' in data), f"{fn} must contain CHANACTIVE!" channel_active = data['CHANACTIVE'].flatten() channel_names = np.array( [str(i[0]) for i in data['CHANNAMES'].flatten()], ) idx = np.argwhere(channel_active == 0).flatten() return channel_names[idx].tolist() else: raise NotImplementedError(f"Cannot load file: {fn}")
ac3cbeb83c7f1305adf343ce26be3f70f8ae48e8
3,657,428
def invertHomogeneous(M, range_space_homogeneous=False, A_property=None): """ Return the inverse transformation of a homogeneous matrix. A homogenous matrix :math:`M` represents the transformation :math:`y = A x + b` in homogeneous coordinates. More precisely, ..math: M \tilde{x} = \left[ \begin{matrix} A & b \\ \end{matrix} \right] \left[ \begin{matrix} x \\ 1 \end{matrix} \right] Its inverse is the homogeneous matrix that represents the transformation :math:`x = A^{-1} ( y - b )`. Parameters ---------- M : numpy array of float, shape (num_dims, num_dims + 1) or (num_dims + 1, num_dims + 1) Matrix representing an affine transformation in homogeneous coordinates. if ``M.shape == (num_dims + 1, num_dims + 1)``, its last row is :math:`[0 1]` so that its output is also in homogeneous coordinates. range_space_homogeneous : bool, optional If True, the output has an extra row :math:`[ 0 1 ]` appended to the bottom so that its range space is also expressed in homogeneous coordinates. A_property : {'diag', 'ortho'}, optional Special property of the submatrix `A` that could make inversion easier. If no argument is given, this function just calls `m.np.linalg.pinv`. Returns ------- M_inverse : numpy array of float, shape (num_dims, num_dims + 1) or (num_dims + 1, num_dims + 1) Inverse transformation corresponding to input `M`. """ if A_property is None: invert = m.np.pinv elif A_property == 'diag': def invert(x): return m.np.diag(1 / m.np.diag(A)) elif A_property == 'ortho': invert = m.np.transpose else: err_str = f"Can't parse keyword argument 'A_property={A_property}'" raise ValueError(err_str) A, b = fromHomogeneous(M) A_inverse = invert(A) b_inverse = -A_inverse @ b M_inverse = homogeneousMatrix( A_inverse, b_inverse, range_space_homogeneous=range_space_homogeneous ) return M_inverse
ea9039c935c82686291145652f762eb79404e417
3,657,429
import string import os def rename(level_folder: str) -> int: """Rename a custom level folder to the correct name.""" prefix = load_info(level_folder)[PREFIX].strip() suffix = load_info(level_folder)[SUFFIX].strip() prefix = prefix.translate(str.maketrans('', '', string.punctuation)) suffix = suffix.translate(str.maketrans('', '', string.punctuation)) new_name = f'{prefix} {CONNECT} {suffix}'.strip() if new_name != level_folder or FORCED: os.rename(MAIN_FOLDER + f'/{level_folder}', MAIN_FOLDER + f'/{new_name}') print(f"'{level_folder}' is renamed to '{new_name}'.") return 1 return 0
0a35edefd9e27fdbdf1d758142d3cfe8b8907bd4
3,657,430
import requests def show_department(department_id): """ Returns rendered template to show department with its employees. :param department_id: department id :return: rendered template to show department with its employees """ url = f'{HOST}api/department/{department_id}' department = requests.get(url).json() return render_template('department.html', department=department)
170318ea40a4f7355fab77f2aeaaad682b9fab2f
3,657,431
def archive_scan(): """ Returns converted to a dictionary of functions to apply to parameters of archive_scan.py """ # Dictionary of default values setter, type converters and other applied functions d_applied_functions = { 'favor': [bool_converter, favor_default], 'cnn': [bool_converter], 'gpd': [bool_converter], 'model-name': [apply_default_model_name], 'weights': [apply_default_weights], 'features-number': [int_converter], 'waveform-duration': [float_converter], 'start': [utc_datetime_converter, start_date_default], 'end': [utc_datetime_converter, end_date_default], 'database': [database_filler], 'threshold': [threshold_converter], 'batch-size': [int_converter], 'frequency': [float_converter], 'trace-size': [float_converter, trace_size_converter], 'shift': [int_converter], 'generate-s-files': [string_trimmer], 'detections-for-event': [int_converter], 'generate-waveforms': [string_trimmer], 'register-events': [string_trimmer], 'no-filter': [bool_converter], 'no-detrend': [bool_converter], 'trace-normalization': [bool_converter], 'wavetool-waveforms': [bool_converter], 'detection-stations': [bool_converter], 'plot-positives': [bool_converter], 'silence-wavetool': [bool_converter], 'plot-positives-original': [bool_converter], 'print-scores': [bool_converter], 'print-precision': [int_converter], 'combine-events-range': [float_converter], 'time': [bool_converter], 'cpu': [bool_converter], 'print-files': [bool_converter], 'channel-order': [channel_order_converter], 'print-params': [bool_converter], } return d_applied_functions
71aa3d2c17e880a152529de09b0614dfd619e7da
3,657,432
def esOperador(o): """"retorna true si 'o' es un operador""" return o == "+" or o == "-" or o == "/" or o == "*"
7e1088b641dee7cad2594159c4a34cf979362458
3,657,433
def valid_identity(identity): """Determines whether or not the provided identity is a valid value.""" valid = (identity == "homer") or (identity == "sherlock") return valid
9865d19802b596d1d5fdce6ff8d236678da29ee6
3,657,434
def is_align_flow(*args): """ is_align_flow(ea) -> bool """ return _ida_nalt.is_align_flow(*args)
40aa1fb7d86083bc3ace94c6913eb9b4b5ab200e
3,657,435
import time def avro_rdd(ctx, sqlContext, hdir, date=None, verbose=None): """ Parse avro-snappy files on HDFS :returns: a Spark RDD object """ if date == None: date = time.strftime("year=%Y/month=%-m/day=%-d", time.gmtime(time.time()-60*60*24)) path = '%s/%s' % (hdir, date) elif len(str(date)) == 8: # YYYYMMDD ddd = dt.strptime(str(date), "%Y%m%d") date = time.strftime("year=%Y/month=%-m/day=%-d", ddd.utctimetuple()) path = '%s/%s' % (hdir, date) else: path = hdir if date: path = '%s/%s' % (hdir, date) print("### hdir", path, type(path)) if isinstance(path, list): afiles = path else: # get avro files from HDFS afiles = avro_files(path, verbose=verbose) print("### avro_files", afiles) # define newAPIHadoopFile parameters, java classes aformat="org.apache.avro.mapreduce.AvroKeyInputFormat" akey="org.apache.avro.mapred.AvroKey" awrite="org.apache.hadoop.io.NullWritable" aconv="org.apache.spark.examples.pythonconverters.AvroWrapperToJavaConverter" rdd = [] # load data from HDFS if len(afiles) == 0: rdd = ctx.emptyRDD() else: rdd = ctx.union([ctx.newAPIHadoopFile(f, aformat, akey, awrite, aconv) for f in afiles]) # the records are stored as [(dict, None), (dict, None)], therefore we take first element # and assign them to new rdd avro_rdd = rdd.map(lambda x: x[0]) records = avro_rdd.take(1) # take function will return list of records if verbose: print("### avro records", records, type(records)) return avro_rdd
caa923e4b6186e106a59764cbb61f908858acd70
3,657,436
import random def generate_gesture_trace(position): """ 生成手势验证码轨迹 :param position: :return: """ x = [] y = [] for i in position: x.append(int(i.split(',')[0])) y.append(int(i.split(',')[1])) trace_x = [] trace_y = [] for _ in range(0, 2): tepx = [x[_], x[_ + 1], x[_ + 2]] tepy = [y[_], y[_ + 1], y[_ + 2]] [a, b, c] = get_func(tepx, tepy) if _ == 0: for i in range(x[0], x[1]): trace_x.append(i) trace_y.append(a * i * i + b * i + c) for i in range(x[1], x[2]): trace_x.append(i) if random.randint(1, 5) == 1: trace_y.append((((float)(y[2] - y[1])) / (x[2] - x[1])) * (i - x[1]) + y[1] + random.randint(-1, 1)) else: trace_y.append((((float)(y[2] - y[1])) / (x[2] - x[1])) * (i - x[1]) + y[1]) else: for i in range(x[2], x[3]): trace_x.append(i) trace_y.append(a * i * i + b * i + c) trace_x = [int(i) for i in trace_x] trace_y = [int(i) for i in trace_y] last_trace_x = [] last_trace_y = [] plot_line(trace_x, trace_y, [0, 280], [0, 158]) xx = 0 while xx < len(trace_x) - 1: last_trace_x.append(trace_x[xx]) last_trace_y.append(trace_y[xx]) xx += random.randint(1, 4) last_trace_x.append(trace_x[-1]) last_trace_y.append(trace_y[-1]) timestamp_list = [] timestamp = random.randint(180, 220) for i in range(len(last_trace_x)): t = random.randint(5, 10) timestamp += t timestamp_list.append(timestamp) i += 1 trace = [{ 'p': ','.join([str(last_trace_x[0]), str(last_trace_y[0])]), 't': 1 }] for i in range(len(last_trace_x)): trace.append({ 'p': ','.join([str(last_trace_x[i]), str(last_trace_y[i])]), 't': timestamp_list[i] }) trace.append({ 'p': ','.join([str(last_trace_x[-1]), str(last_trace_y[-1])]), 't': timestamp_list[-1] + random.randint(50, 100) }) return x[3] - x[0], trace
3281cf9e99175190e2855ac98593f67473703c77
3,657,437
import argparse def parse_arguments(): """parse_arguments""" parser = argparse.ArgumentParser(description="MindSpore Tensorflow weight transfer") parser.add_argument("--pretrained", default=None, type=str) parser.add_argument("--name", default="imagenet22k", choices=["imagenet22k",]) args = parser.parse_args() return args
08b57fffe7f95a96f19e35839ca137f9382573ba
3,657,438
def mad_daub_noise_est(x, c=0.6744): """ Estimate the statistical dispersion of the noise with Median Absolute Deviation on the first order detail coefficients of the 1d-Daubechies wavelets transform. """ try: _, cD = pywt.wavedec(x, pywt.Wavelet('db3'), level=1) except ValueError: cD = pywt.wavedec(x, pywt.Wavelet('db3'), level=0) return mad(cD, c=c)
3811d490e344cd4029e5b7f018823ad02c27e3dd
3,657,439
import unicodedata import re def slugify(value, allow_unicode=False): """ Convert to ASCII if 'allow_unicode' is False. Convert spaces to hyphens. Remove characters that aren't alphanumerics, underscores, or hyphens. Convert to lowercase. Also strip leading and trailing whitespace. From Django's "django/template/defaultfilters.py". Copied from: https://github.com/django/django/blob/a6b3938afc0204093b5356ade2be30b461a698c5/django/utils/text.py#L394 """ value = str(value) if allow_unicode: value = unicodedata.normalize('NFKC', value) else: value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii') value = re.sub(r'[^\w\s-]', '', value.lower()).strip() return re.sub(r'[-\s]+', '-', value)
3fc85ffec7faa3b4df2d1556dfd7b1d7c3e9920e
3,657,440
import json def get_categories() -> dict: """ :return: dictionary with a hirachy of all categories """ with open("../src/categories.json", "r", encoding="utf-8") as f: return json.load(f)
90a442840550f3251137b2f9ff8fb5581d8d49e5
3,657,441
import os def check_file_integrity(indir, outdir): """ Parse file in dir and check integrity """ dic_files={} dic_param={} dic_integ={} for f in os.listdir(indir): path= os.path.join(indir, f) #if os.path.isdir(path)==True: # print (str(f) + "is a dir" ) #elif os.path.isfile(path): if os.path.isfile(path): #dic_param['size']=Path(path).stat().st_size dic_param['size']=os.path.getsize(path) md5hasher = FileHash('md5') dic_param['md5']= md5hasher.hash_file(path) dic_files[f]=dic_param #print( f + " : It is a normal file") #Reinitialize dict dic_param={} #else: # print(f + "It is a special file (socket, FIFO, device file)" ) #print (dic_files) return dic_files
48a8bf3d506925b1b41408c3305002365b38413d
3,657,442
def get_ax(rows=1, cols=1, size=16): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Adjust the size attribute to control how big to render images """ _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows)) return ax ### LOAD VALIDATION SET
97acc81878076c030287840a0bbacccbde0e50a8
3,657,443
import argparse def build_arg_parser(): """ Builds an argparse object to handle command-line arguments passed in. """ parser = argparse.ArgumentParser(description="Loads an ontology file in " + "OBO file format into a Neo4j graph database.") parser.add_argument('-i', '--input_obo_file', required=True, help="The input OBO file") parser.add_argument('-s', '--neo4j_server_address', required=True, help="The address to the Neo4j server. Must include port number") parser.add_argument('-t', '--typedefs', default="is_a", help="Typedefs that" + "that are present in this ontology. These will be used to define " + "the types of relationships supported in the input ontology") parser.add_argument('-r', '--root_node', required=True, action="append", default=[], help='DOID\'s for any root nodes in this ontology') args = parser.parse_args() return args
8b9da4a060138b5487f346452c9e3ca85e55b801
3,657,444
def createSynthModel(): """Return the modeling mesh, the porosity distribution and the parametric mesh for inversion. """ # Create the synthetic model world = mt.createCircle(boundaryMarker=-1, segments=64) tri = mt.createPolygon([[-0.8, -0], [-0.5, -0.7], [0.7, 0.5]], isClosed=True, area=0.0015) c1 = mt.createCircle(radius=0.2, pos=[-0.2, 0.5], segments=32, area=0.0025, marker=3) c2 = mt.createCircle(radius=0.2, pos=[0.32, -0.3], segments=32, area=0.0025, marker=3) poly = mt.mergePLC([world, tri, c1, c2]) poly.addRegionMarker([0.0, 0, 0], 1, area=0.0015) poly.addRegionMarker([-0.9, 0, 0], 2, area=0.0015) c = mt.createCircle(radius=0.99, segments=16, start=np.pi, end=np.pi*3) [poly.createNode(p.pos(), -99) for p in c.nodes()] mesh = pg.meshtools.createMesh(poly, q=34.4, smooth=[1, 10]) mesh.scale(1.0/5.0) mesh.rotate([0., 0., 3.1415/3]) mesh.rotate([0., 0., 3.1415]) petro = pg.solver.parseArgToArray([[1, 0.9], [2, 0.6], [3, 0.3]], mesh.cellCount(), mesh) # Create the parametric mesh that only reflect the domain geometry world = mt.createCircle(boundaryMarker=-1, segments=32, area=0.0051) paraMesh = pg.meshtools.createMesh(world, q=34.0, smooth=[1, 10]) paraMesh.scale(1.0/5.0) return mesh, paraMesh, petro
aa63ce6c8b633530efb17add4d902da30c62689c
3,657,445
def edits_dir(): """ Return the directory for the editable files (used by the website). """ return _mkifnotexists("")
eb882c04e3269496a610103908453a73e4a7ae5f
3,657,446
def get_expected(stage, test_block_config, sessions): """Get expected responses for each type of request Though only 1 request can be made, it can cause multiple responses. Because we need to subcribe to MQTT topics, which might be formatted from keys from included files, the 'expected'/'response' needs to be formatted BEFORE running the request. Args: stage (dict): test stage sessions (dict): all available sessions Returns: dict: mapping of request type: expected response dict """ plugins = load_plugins(test_block_config) expected = {} for p in plugins: if p.plugin.response_block_name in stage: logger.debug("Getting expected response for %s", p.name) plugin_expected = p.plugin.get_expected_from_request(stage, test_block_config, sessions[p.name]) expected[p.name] = plugin_expected return expected
67c6704b8a70f7eac1301ebcd3caa2bb60e69dba
3,657,447
def convolve_hrf(X, onsets, durations, n_vol, tr, ops=100): """ Convolve each X's column iteratively with HRF and align with the timeline of BOLD signal parameters: ---------- X[array]: [n_event, n_sample] onsets[array_like]: in sec. size = n_event durations[array_like]: in sec. size = n_event n_vol[int]: the number of volumes of BOLD signal tr[float]: repeat time in second ops[int]: oversampling number per second Returns: --------- X_hrfed[array]: the result after convolution and alignment """ assert np.ndim(X) == 2, 'X must be a 2D array' assert X.shape[0] == len(onsets) and X.shape[0] == len(durations), \ 'The length of onsets and durations should be matched with the number of events.' assert ops in (10, 100, 1000), 'Oversampling rate must be one of the (10, 100, 1000)!' # unify the precision decimals = int(np.log10(ops)) onsets = np.round(np.asarray(onsets), decimals=decimals) durations = np.round(np.asarray(durations), decimals=decimals) tr = np.round(tr, decimals=decimals) n_clipped = 0 # the number of clipped time points earlier than the start point of response onset_min = onsets.min() if onset_min > 0: # The earliest event's onset is later than the start point of response. # We supplement it with zero-value event to align with the response. X = np.insert(X, 0, np.zeros(X.shape[1]), 0) onsets = np.insert(onsets, 0, 0, 0) durations = np.insert(durations, 0, onset_min, 0) onset_min = 0 elif onset_min < 0: print("The earliest event's onset is earlier than the start point of response.\n" "We clip the earlier time points after hrf_convolution to align with the response.") n_clipped = int(-onset_min * ops) # do convolution in batches for trade-off between speed and memory batch_size = int(100000 / ops) bat_indices = np.arange(0, X.shape[-1], batch_size) bat_indices = np.r_[bat_indices, X.shape[-1]] vol_t = (np.arange(n_vol) * tr * ops).astype(int) # compute volume acquisition timing n_time_point = int(((onsets + durations).max()-onset_min) * ops) X_hrfed = np.zeros([n_vol, 0]) for idx, bat_idx in enumerate(bat_indices[:-1]): X_bat = X[:, bat_idx:bat_indices[idx+1]] # generate X raw time course X_tc = np.zeros((n_time_point, X_bat.shape[-1]), dtype=np.float32) for i, onset in enumerate(onsets): onset_start = int(onset * ops) onset_end = int(onset_start + durations[i] * ops) X_tc[onset_start:onset_end, :] = X_bat[i, :] # generate hrf kernel hrf = spm_hrf(tr, oversampling=tr*ops) hrf = hrf[:, np.newaxis] # convolve X raw time course with hrf kernal X_tc_hrfed = convolve(X_tc, hrf, method='fft') X_tc_hrfed = X_tc_hrfed[n_clipped:, :] # downsample to volume timing X_hrfed = np.c_[X_hrfed, X_tc_hrfed[vol_t, :]] print('hrf convolution: sample {0} to {1} finished'.format(bat_idx+1, bat_indices[idx+1])) return X_hrfed
d035b47ffafe0ac3d7e1446d4d36dc2f707363bd
3,657,448
def flatten(x, params): """ Plain ol' 2D flatten :param x: input tensor :param params: {dict} hyperparams (sub-selection) :return: output tensor """ return layers.Flatten()(x)
6db829641681ab48f75b23894f9a4a3250250cec
3,657,449
def xml_unescape(text): """ Do the inverse of `xml_escape`. Parameters ---------- text: str The text to be escaped. Returns ------- escaped_text: str """ return unescape(text, xml_unescape_table)
2e53d8bc617ad70fd22bb5dd82cd34db366b80a4
3,657,450
def tseb_pt(T_air, T_rad, u, p, z, Rs_1, Rs24, vza, zs, aleafv, aleafn, aleafl, adeadv, adeadn, adeadl, albedo, ndvi, lai, clump, hc, time, t_rise, t_end, leaf_width, a_PT_in=1.32, iterations=35): """Priestley-Taylor TSEB Calculates the Priestley Taylor TSEB fluxes using a single observation of composite radiometric temperature and using resistances in series. Parameters ---------- T_air : ee.Image Air temperature (Kelvin). T_rad : ee.Image Radiometric composite temperature (Kelvin). u : ee.Image Wind speed above the canopy (m s-1). p : ee.Image Atmospheric pressure (kPa) z : ee.Image Elevation (m) Rs_1 : ee.Image Overpass insolation (w m-2) Rs24 : ee.Image Daily insolation (w m-2) vza : float View Zenith Angle (radians). zs : ee.Image Solar Zenith Angle (radians). aleafv : ee.Image aleafn : ee.Image aleafl : ee.Image adeadv : ee.Image adeadn : ee.Image adeadl : ee.Image albedo : ee.Image ndvi : ee.Image Normalized Difference Vegetation Index lai : ee.Image Effective Leaf Area Index (m2 m-2). clump : ee.Image hc : ee.Image Canopy height (m). time t_rise : ee.Image t_end : ee.Image leaf_width : ee.Image Average/effective leaf width (m) a_PT_in : float, optional Priestley Taylor coefficient for canopy potential transpiration (the default is 1.32). iterations: int, optional Number of iterations of main calculation (the default is 35) Returns ------- ET : ee.Image Evapotranspiration (mm). References ---------- .. [Norman1995] J.M. Norman, W.P. Kustas, & K.S. Humes (1995), Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agricultural and Forest Meteorology, Volume 77, Issues 3-4, Pages 263-293, http://dx.doi.org/10.1016/0168-1923(95)02265-Y. .. [Kustas1999] W.P. Kustas, & J.M. Norman (1999), Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agricultural and Forest Meteorology, Volume 94, Issue 1, Pages 13-29, http://dx.doi.org/10.1016/S0168-1923(99)00005-2. """ # print('\nINPUTS') # print('T_rad: {:20.14f}'.format(float(utils.image_value(T_rad).values()[0]))) # print('T_air: {:20.14f}'.format(float(utils.image_value(T_air).values()[0]))) # print('u: {:20.14f}'.format(float(utils.image_value(u).values()[0]))) # print('Rs_1: {:20.14f}'.format(float(utils.image_value(Rs_1).values()[0]))) # print('Rs24: {:20.14f}'.format(float(utils.image_value(Rs24).values()[0]))) # # print('vza: {:20.14f}'.format(float(utils.image_value(vza).values()[0]))) # print('zs: {:20.14f}'.format(float(utils.image_value(zs).values()[0]))) # print('albedo: {:20.14f}'.format(float(utils.image_value(albedo).values()[0]))) # print('ndvi: {:20.14f}'.format(float(utils.image_value(ndvi).values()[0]))) # print('lai: {:20.14f}'.format(float(utils.image_value(lai).values()[0]))) # print('clump: {:20.14f}'.format(float(utils.image_value(clump).values()[0]))) # print('hc: {:20.14f}'.format(float(utils.image_value(hc).values()[0]))) # print('time: {:20.14f}'.format(float(utils.image_value(time).values()[0]))) # print('t_rise: {:20.14f}'.format(float(utils.image_value(t_rise).values()[0]))) # print('t_end: {:20.14f}'.format(float(utils.image_value(t_end).values()[0]))) # ************************************************************************ # Correct Clumping Factor f_green = 1. # LAI for leaf spherical distribution F = lai.expression('lai * clump', {'lai': lai, 'clump': clump}) # Fraction cover at nadir (view=0) fc = F.expression('1.0 - exp(-0.5 * F)', {'F': F}) \ .clamp(0.01, 0.9) # LAI relative to canopy projection only lai_c = lai.expression('lai / fc', {'lai': lai, 'fc': fc}) # Houborg modification (according to Anderson et al. 2005) fc_q = lai \ .expression('1 - (exp(-0.5 * F / cos(vza)))', {'F': F, 'vza': vza}) \ .clamp(0.05, 0.90) # Brutsaert (1982) z0m = hc.expression('hc * 0.123', {'hc': hc}) # CGM - add(0) is to mimic numpy copy, check if needed z0h = z0m.add(0) d_0 = hc.expression('hc * (2.0 / 3.0)', {'hc': hc}) # Correction of roughness parameters for bare soils (F < 0.1) d_0 = d_0.where(F.lte(0.1), 0.00001) z0m = z0m.where(F.lte(0.1), 0.01) z0h = z0h.where(F.lte(0.1), 0.0001) # Correction of roughness parameters for water bodies # (NDVI < 0 and albedo < 0.05) water_mask = ndvi.lte(0).And(albedo.lte(0.05)) d_0 = d_0.where(water_mask, 0.00001) z0m = z0m.where(water_mask, 0.00035) z0h = z0h.where(water_mask, 0.00035) # Check to avoid division by 0 in the next computations z0h = z0h.where(z0h.eq(0), 0.001) z0m = z0m.where(z0m.eq(0), 0.01) # DEADBEEF # z_u = ee.Number(50.0) # z_t = ee.Number(50.0) z_u = ee.Image.constant(50.0) z_t = ee.Image.constant(50.0) # z_u = lai.multiply(0).add(50) # z_t = lai.multiply(0).add(50) # Parameters for In-Canopy Wind Speed Extinction leaf = lai.expression( '(0.28 * (F ** (0.66667)) * (hc ** (0.33333)) * ' '(leaf_width ** (-0.33333)))', {'F': F, 'hc': hc, 'leaf_width': leaf_width}) leaf_c = lai.expression( '(0.28 * (lai_c ** (0.66667)) * (hc ** (0.33333)) * ' '(leaf_width ** (-0.33333)))', {'lai_c': lai_c, 'hc': hc, 'leaf_width': leaf_width}) leaf_s = lai.expression( '(0.28 * (0.1 ** (0.66667)) * (hc ** (0.33333)) * ' '(leaf_width ** (-0.33333)))', {'hc': hc, 'leaf_width': leaf_width}) # ************************************************************************ # Atmospheric Parameters # Saturation vapour pressure [kPa] (FAO56 3-8) e_s = T_air.expression( '0.6108 * exp((17.27 * (T_air - 273.16)) / ((T_air - 273.16) + 237.3))', {'T_air': T_air}) # Slope of the saturation vapor pressure [kPa] (FAO56 3-9) Ss = T_air.expression( '4098. * e_s / (((T_air - 273.16) + 237.3) ** 2)', {'e_s': e_s, 'T_air': T_air}) # Latent heat of vaporization (~2.45 at 20 C) [MJ kg-1] (FAO56 3-1) lambda1 = T_air.expression( '(2.501 - (2.361e-3 * (T_air - 273.16)))', {'T_air': T_air}) # Psychrometric constant [kPa C-1] (FAO56 3-10) g = p.expression('1.615E-3 * p / lambda1', {'p': p, 'lambda1': lambda1}) # ************************************************************************ # Initialization of a_PT = albedo.multiply(0).add(a_PT_in) # a_PT = ee.Image.constant(a_PT_in) # a_PT = mask.multiply(a_PT) # CGM - This was also being computed inside albedo_separation function below # Commented out from here for now. # e_atm = T_air.expression( # '1.0 - (0.2811 * (exp(-0.0003523 * ((T_air - 273.16) ** 2))))', # {'T_air': T_air}) Rs_c, Rs_s, albedo_c, albedo_s = tseb_utils.albedo_separation( albedo, Rs_1, F, fc, aleafv, aleafn, aleafl, adeadv, adeadn, adeadl, zs) # CGM - Moved emissivity calculation to separate function. # I removed the Rs0 check. e_atm = tseb_utils.emissivity(T_air) # p = T_air.expression( # '101.3 * (((T_air - (0.0065 * z)) / T_air) ** 5.26)', # {'T_air': T_air, 'z': z}) # Density of air? (kg m-3) r_air = T_air.expression( '101.3 * (((T_air - (0.0065 * z)) / T_air) ** 5.26) / 1.01 / T_air / 0.287', {'T_air': T_air, 'z': z}) cp = ee.Number(1004.16) # cp = ee.Image.constant(1004.16) # Assume neutral conditions on first iteration (use T_air for Ts and Tc) # CGM - Using lai for F to match Python code u_attr = tseb_utils.compute_u_attr( u=u, d0=d_0, z0m=z0m, z_u=z_u, fm=0) r_ah = tseb_utils.compute_r_ah( u_attr=u_attr, d0=d_0, z0h=z0h, z_t=z_t, fh=0) # CGM - Why is this function is passing "lai" to "F"? r_s = tseb_utils.compute_r_s( u_attr=u_attr, T_s=T_air, T_c=T_air, hc=hc, F=lai, d0=d_0, z0m=z0m, leaf=leaf, leaf_s=leaf_s, fm_h=0) r_x = tseb_utils.compute_r_x( u_attr=u_attr, hc=hc, F=lai, d0=d_0, z0m=z0m, xl=leaf_width, leaf_c=leaf_c, fm_h=0) # r_ah, r_s, r_x, u_attr = tseb_utils.compute_resistance( # u, T_air, T_air, hc, lai, d_0, z0m, z0h, z_u, z_t, leaf_width, leaf, # leaf_s, leaf_c, 0, 0, 0) T_c = T_air # DEADBEEF - In IDL, this calculation is in C, not K? T_s = lai.expression( '((T_rad - 273.16) - (fc_q * (T_c - 273.16))) / (1 - fc_q) + 273.16', {'T_rad': T_rad, 'T_c': T_c, 'fc_q': fc_q}) # T_s = lai.expression( # '(T_rad - (fc_q * T_c)) / (1 - fc_q)', # {'T_rad': T_rad, 'T_c': T_c, 'fc_q': fc_q}) # CGM - Initialize to match T_air shape # This doesn't seem to do anything, commenting out for now # H_iter = T_air.multiply(0).add(200.16) EF_s = T_air.multiply(0) # print('\nF: {:20.14f}'.format(float(utils.image_value(F).values()[0]))) # print('fc: {:20.14f}'.format(float(utils.image_value(fc).values()[0]))) # print('lai_c: {:20.14f}'.format(float(utils.image_value(lai_c).values()[0]))) # print('fc_q: {:20.14f}'.format(float(utils.image_value(fc_q).values()[0]))) # print('z0h: {:20.14f}'.format(float(utils.image_value(z0h).values()[0]))) # print('z0m: {:20.14f}'.format(float(utils.image_value(z0m).values()[0]))) # print('leaf: {:20.14f}'.format(float(utils.image_value(leaf).values()[0]))) # print('leaf_c: {:20.14f}'.format(float(utils.image_value(leaf_c).values()[0]))) # print('leaf_s: {:20.14f}'.format(float(utils.image_value(leaf_s).values()[0]))) # print('e_s: {:20.14f}'.format(float(utils.image_value(e_s).values()[0]))) # print('Ss: {:20.14f}'.format(float(utils.image_value(Ss).values()[0]))) # print('lambda1: {:20.14f}'.format(float(utils.image_value(lambda1).values()[0]))) # print('p: {:20.14f}'.format(float(utils.image_value(p).values()[0]))) # print('z: {:20.14f}'.format(float(utils.image_value(z).values()[0]))) # print('g: {:20.14f}'.format(float(utils.image_value(g).values()[0]))) # print('a_PT: {:20.14f}'.format(float(utils.image_value(a_PT).values()[0]))) # print('Rs_c: {:20.14f}'.format(float(utils.image_value(Rs_c).values()[0]))) # print('Rs_s: {:20.14f}'.format(float(utils.image_value(Rs_s).values()[0]))) # print('albedo_c: {:20.14f}'.format(float(utils.image_value(albedo_c).values()[0]))) # print('albedo_s: {:20.14f}'.format(float(utils.image_value(albedo_s).values()[0]))) # print('e_atm: {:20.14f}'.format(float(utils.image_value(e_atm).values()[0]))) # print('r_air: {:20.14f}'.format(float(utils.image_value(r_air).values()[0]))) # print('cp: {:20.14f}'.format(float(cp.getInfo()))) # print('d_0: {:20.14f}'.format(float(utils.image_value(d_0).values()[0]))) # print('z0m: {:20.14f}'.format(float(utils.image_value(z0m).values()[0]))) # print('z0h: {:20.14f}'.format(float(utils.image_value(z0h).values()[0]))) # print('u_attr: {:20.14f}'.format(float(utils.image_value(u_attr).values()[0]))) # print('r_ah: {:20.14f}'.format(float(utils.image_value(r_ah).values()[0]))) # print('r_s: {:20.14f}'.format(float(utils.image_value(r_s).values()[0]))) # print('r_x: {:20.14f}'.format(float(utils.image_value(r_x).values()[0]))) # print('T_c: {:20.14f}'.format(float(utils.image_value(T_c).values()[0]))) # print('T_s: {:20.14f}'.format(float(utils.image_value(T_s).values()[0]))) # print('EF_s: {:20.14f}'.format(float(utils.image_value(EF_s).values()[0]))) # print('Iterations: {}'.format(iterations)) # ************************************************************************ # Start Loop for Stability Correction and Water Stress def iter_func(n, prev): # Extract inputs from previous iteration a_PT_iter = ee.Image(ee.Dictionary(prev).get('a_PT')) EF_s_iter = ee.Image(ee.Dictionary(prev).get('EF_s')) r_ah_iter = ee.Image(ee.Dictionary(prev).get('r_ah')) r_s_iter = ee.Image(ee.Dictionary(prev).get('r_s')) r_x_iter = ee.Image(ee.Dictionary(prev).get('r_x')) T_c_iter = ee.Image(ee.Dictionary(prev).get('T_c')) T_s_iter = ee.Image(ee.Dictionary(prev).get('T_s')) u_attr_iter = ee.Image(ee.Dictionary(prev).get('u_attr')) Rn_c = tseb_utils.compute_Rn_c( albedo_c, T_air, T_c_iter, T_s_iter, e_atm, Rs_c, F) Rn_s = tseb_utils.compute_Rn_s( albedo_s, T_air, T_c_iter, T_s_iter, e_atm, Rs_s, F) Rn = Rn_c.add(Rn_s) # Rn_s, Rn_c, Rn = tseb_utils.compute_Rn( # albedo_c, albedo_s, T_air, T_c_iter, T_s_iter, e_atm, Rs_c, Rs_s, F) G = tseb_utils.compute_G0( Rn, Rn_s, albedo, ndvi, t_rise, t_end, time, EF_s_iter) LE_c = albedo \ .expression( 'f_green * (a_PT * Ss / (Ss + g)) * Rn_c', {'f_green': f_green, 'a_PT': a_PT_iter, 'Ss': Ss, 'g': g, 'Rn_c': Rn_c}) \ .max(0) H_c = albedo.expression( 'Rn_c - LE_c', {'Rn_c': Rn_c, 'LE_c': LE_c}) T_c_iter = tseb_utils.temp_separation_tc( H_c, fc_q, T_air, T_rad, r_ah_iter, r_s_iter, r_x_iter, r_air, cp) T_s_iter = tseb_utils.temp_separation_ts(T_c_iter, fc_q, T_air, T_rad) T_ac = tseb_utils.temp_separation_tac( T_c_iter, T_s_iter, fc_q, T_air, r_ah_iter, r_s_iter, r_x_iter) # T_c_iter, T_s_iter, T_ac = tseb_utils.temp_separation( # H_c, fc_q, T_air, T_rad, r_ah_iter, r_s_iter, r_x_iter, r_air, cp) H_s = albedo.expression( 'r_air * cp * (T_s - T_ac) / r_s', {'r_air': r_air, 'cp': cp, 'T_s': T_s_iter, 'T_ac': T_ac, 'r_s': r_s_iter}) H_c = albedo.expression( 'r_air * cp * (T_c - T_ac) / r_x', {'r_air': r_air, 'cp': cp, 'T_c': T_c_iter, 'T_ac': T_ac, 'r_x': r_x_iter}) H = albedo.expression('H_s + H_c', {'H_s': H_s, 'H_c': H_c}) LE_s = albedo.expression( 'Rn_s - G - H_s', {'Rn_s': Rn_s, 'G': G, 'H_s': H_s}) LE_c = albedo.expression('Rn_c - H_c', {'Rn_c': Rn_c, 'H_c': H_c}) # CGM - Is there a reason this isn't up with the H calculation? H = H.where(H.eq(0), 10.0) # CGM - This wont doing anything at this position in the code. # Commenting out for now. # r_ah_iter = r_ah_iter.where(r_ah_iter.eq(0), 10.0) # CGM - This doesn't seem to do anything, commenting out for now # mask_iter = H_iter.divide(H).lte(1.05).And(H_iter.divide(H).gte(0.95)) # chk_iter = np.sum(mask_iter) / np.size(mask_iter) fh = tseb_utils.compute_stability_fh( H, T_rad, u_attr_iter, r_air, z_t, d_0, cp) fm = tseb_utils.compute_stability_fm( H, T_rad, u_attr_iter, r_air, z_u, d_0, z0m, cp) fm_h = tseb_utils.compute_stability_fm_h( H, T_rad, u_attr_iter, r_air, hc, d_0, z0m, cp) # CGM - z0h is not used in this function, should it be? # fm, fh, fm_h = tseb_utils.compute_stability( # H, T_rad, r_air, cp, u_attr, z_u, z_t, hc, d_0, z0m, z0h) u_attr_iter = tseb_utils.compute_u_attr( u=u, d0=d_0, z0m=z0m, z_u=z_u, fm=fm) r_ah_iter = tseb_utils.compute_r_ah( u_attr=u_attr_iter, d0=d_0, z0h=z0h, z_t=z_t, fh=fh) r_s_iter = tseb_utils.compute_r_s( u_attr=u_attr_iter, T_s=T_s_iter, T_c=T_c_iter, hc=hc, F=lai, d0=d_0, z0m=z0m, leaf=leaf, leaf_s=leaf_s, fm_h=fm_h) # CGM - Why is this function is passing "lai" to "F"? r_x_iter = tseb_utils.compute_r_x( u_attr=u_attr_iter, hc=hc, F=lai, d0=d_0, z0m=z0m, xl=leaf_width, leaf_c=leaf_c, fm_h=fm_h) # r_ah_iter, r_s_iter, r_x_iter, u_attr_iter = tseb_utils.compute_resistance( # u, T_s_iter, T_c_iter, hc, lai, d_0, z0m, z0h, z_u, z_t, # leaf_width, leaf, leaf_s, leaf_c, fm, fh, fm_h) a_PT_iter = a_PT_iter \ .where(LE_s.lte(0), a_PT_iter.subtract(0.05)) \ .where(a_PT_iter.lte(0), 0.01) den_s = albedo.expression('Rn_s - G', {'Rn_s': Rn_s, 'G': G}) den_s = den_s.updateMask(den_s.neq(0)) # den_s[den_s == 0.] = np.nan EF_s_iter = albedo.expression( 'LE_s / den_s', {'LE_s': LE_s, 'den_s': den_s}) return ee.Dictionary({ 'a_PT': a_PT_iter, 'EF_s': EF_s_iter, 'G': G, 'H_c': H_c, 'H_s': H_s, 'LE_c': LE_c, 'LE_s': LE_s, 'Rn_c': Rn_c, 'Rn_s': Rn_s, 'r_ah': r_ah_iter, 'r_s': r_s_iter, 'r_x': r_x_iter, 'T_ac': T_ac, 'T_c': T_c_iter, 'T_s': T_s_iter, 'u_attr': u_attr_iter}) # Iterate the function n times # CGM - Iteration count is an input to the function input_images = ee.Dictionary({ 'a_PT': a_PT, 'EF_s': EF_s, 'G': ee.Image(0), 'H_c': ee.Image(0), 'H_s': ee.Image(0), 'LE_c': ee.Image(0), 'LE_s': ee.Image(0), 'Rn_c': ee.Image(0), 'Rn_s': ee.Image(0), 'r_ah': r_ah, 'r_s': r_s, 'r_x': r_x, 'T_ac': ee.Image(0), 'T_c': T_c, 'T_s': T_s, 'u_attr': u_attr }) iter_output = ee.Dictionary( ee.List.sequence(1, iterations).iterate(iter_func, input_images)) # Unpack the iteration output a_PT = ee.Image(iter_output.get('a_PT')) Rn_c = ee.Image(iter_output.get('Rn_c')) Rn_s = ee.Image(iter_output.get('Rn_s')) G = ee.Image(iter_output.get('G')) H_c = ee.Image(iter_output.get('H_c')) H_s = ee.Image(iter_output.get('H_s')) LE_c = ee.Image(iter_output.get('LE_c')) LE_s = ee.Image(iter_output.get('LE_s')) # T_ac = ee.Image(iter_output.get('T_ac')) # T_c = ee.Image(iter_output.get('T_c')) # T_s = ee.Image(iter_output.get('T_s')) # r_ah = ee.Image(iter_output.get('r_ah')) # r_s = ee.Image(iter_output.get('r_s')) # r_x = ee.Image(iter_output.get('r_x')) # print('\na_PT: {:20.14f}'.format(utils.image_value(a_PT).values()[0])) # print('Rn_c: {:20.14f}'.format(utils.image_value(Rn_c).values()[0])) # print('Rn_s: {:20.14f}'.format(utils.image_value(Rn_s).values()[0])) # print('G: {:20.14f}'.format(utils.image_value(G).values()[0])) # print('H_c: {:20.14f}'.format(utils.image_value(H_c).values()[0])) # print('H_s: {:20.14f}'.format(utils.image_value(H_s).values()[0])) # print('LE_c: {:20.14f}'.format(utils.image_value(LE_c).values()[0])) # print('LE_s: {:20.14f}'.format(utils.image_value(LE_s).values()[0])) # print('r_ah: {:20.14f}'.format(utils.image_value(r_ah).values()[0])) # print('r_s: {:20.14f}'.format(utils.image_value(r_s).values()[0])) # print('r_x: {:20.14f}'.format(utils.image_value(r_x).values()[0])) # print('T_ac: {:20.14f}'.format(utils.image_value(T_ac).values()[0])) # print('T_c: {:20.14f}'.format(utils.image_value(T_c).values()[0])) # print('T_s: {:20.14f}'.format(utils.image_value(T_s).values()[0])) # ************************************************************************ # Check Energy Balance Closure ind = a_PT.lte(0.01) LE_s = LE_s.where(ind, 1.0) LE_c = LE_c.where(ind, 1.0) G = G.where(ind, Rn_s.subtract(H_s)) ind = LE_s.gt(Rn_s) LE_s = LE_s.where(ind, Rn_s) H_s = H_s.where(ind, Rn_s.subtract(G).subtract(LE_s)) # CGM - Check order of operations ind = LE_c.gt(Rn_c.add(100)) # CGM - Not used below since LE_c is recomputed LE_c = LE_c.where(ind, Rn_c.add(100)) H_c = H_c.where(ind, -100) LE_s = albedo.expression( 'Rn_s - G - H_s', {'Rn_s': Rn_s, 'G': G, 'H_s': H_s}) LE_c = albedo.expression('Rn_c - H_c', {'Rn_c': Rn_c, 'H_c': H_c}) # The latent heat of vaporization is 2.45 MJ kg-1 # Assume Rs24 is still in W m-2 day-1 and convert to MJ kg-1 # CGM - Leaving out scaling value for now ET = albedo \ .expression( '((LE_c + LE_s) / Rs_1) * (Rs24 / 2.45) * scaling', {'LE_c': LE_c, 'LE_s': LE_s, 'Rs_1': Rs_1, 'Rs24': Rs24.multiply(0.0864 / 24.0), 'scaling': 1}) \ .max(0.01) # print('\nRn_c: {:20.14f}'.format(utils.image_value(Rn_c).values()[0])) # print('Rn_s: {:20.14f}'.format(utils.image_value(Rn_s).values()[0])) # print('G: {:20.14f}'.format(utils.image_value(G).values()[0])) # print('H_c: {:20.14f}'.format(utils.image_value(H_c).values()[0])) # print('H_s: {:20.14f}'.format(utils.image_value(H_s).values()[0])) # print('LE_c: {:20.14f}'.format(utils.image_value(LE_c).values()[0])) # print('LE_s: {:20.14f}'.format(utils.image_value(LE_s).values()[0])) # print('\nET: {:20.14f}'.format(utils.image_value(ET).values()[0])) return ET
6851b00f27b1819e79ce7ed625074c37ac35298f
3,657,451
def GetPrivateIpv6GoogleAccessTypeMapper(messages, hidden=False): """Returns a mapper from text options to the PrivateIpv6GoogleAccess enum. Args: messages: The message module. hidden: Whether the flag should be hidden in the choice_arg """ help_text = """ Sets the type of private access to Google services over IPv6. PRIVATE_IPV6_GOOGLE_ACCESS_TYPE must be one of: bidirectional Allows Google services to initiate connections to GKE pods in this cluster. This is not intended for common use, and requires previous integration with Google services. disabled Default value. Disables private access to Google services over IPv6. outbound-only Allows GKE pods to make fast, secure requests to Google services over IPv6. This is the most common use of private IPv6 access. $ gcloud alpha container clusters create \ --private-ipv6-google-access-type=disabled $ gcloud alpha container clusters create \ --private-ipv6-google-access-type=outbound-only $ gcloud alpha container clusters create \ --private-ipv6-google-access-type=bidirectional """ return arg_utils.ChoiceEnumMapper( '--private-ipv6-google-access-type', messages.NetworkConfig.PrivateIpv6GoogleAccessValueValuesEnum, _GetPrivateIPv6CustomMappings(), hidden=hidden, help_str=help_text)
9aa87977be9d0888d572c70d07535c9ec0b9d8f4
3,657,452
def calc_director(moi): """ Calculate the director from a moment of inertia. The director is the dominant eigenvector of the MOI tensor Parameters: ----------- moi : list 3x3 array; MOItensor Returns: -------- director : list 3 element list of director vector """ w, v = np.linalg.eig(moi) director = v[:, np.argmin(w)] return director
28f8b3446f83759704d426653dc8f7812e71e900
3,657,453
def _solve_upper_triangular(A, b): """ Solves Ax=b when A is upper triangular. """ return solve_triangular(A, b, lower=False)
5c33d5d10922172a133a478bdfdcb8cf7cd83120
3,657,454
def check_create_account_key(key): """ Returns the user_id if the reset key is valid (matches a user_id and that user does not already have an account). Otherwise returns None. """ query = sqlalchemy.text(""" SELECT user_id FROM members WHERE create_account_key = :k AND user_id NOT IN (SELECT user_id FROM users) """) result = flask.g.db.execute(query, k=key).first() if result is not None: return result['user_id'] else: return None
b02a710d443410b5b60c31a030d056f3282a5747
3,657,455
import os def find_gaia_files_hp(nside, pixlist, neighbors=True): """Find full paths to Gaia healpix files in a set of HEALPixels. Parameters ---------- nside : :class:`int` (NESTED) HEALPixel nside. pixlist : :class:`list` or `int` A set of HEALPixels at `nside`. neighbors : :class:`bool`, optional, defaults to ``True`` Also return files corresponding to all neighbors that touch the pixels in `pixlist` to prevent edge effects (e.g. a Gaia source is 1 arcsec outside of `pixlist` and so in an adjacent pixel). Returns ------- :class:`list` A list of all Gaia files that need to be read in to account for objects in the passed list of pixels. Notes ----- - The environment variable $GAIA_DIR must be set. """ # ADM the resolution at which the healpix files are stored. filenside = _get_gaia_nside() # ADM check that the GAIA_DIR is set and retrieve it. gaiadir = _get_gaia_dir() hpxdir = os.path.join(gaiadir, 'healpix') # ADM work with pixlist as an array. pixlist = np.atleast_1d(pixlist) # ADM determine the pixels that touch the passed pixlist. pixnum = nside2nside(nside, filenside, pixlist) # ADM if neighbors was sent, then retrieve all pixels that touch each # ADM pixel covered by the provided locations, to prevent edge effects... if neighbors: pixnum = add_hp_neighbors(filenside, pixnum) # ADM reformat in the Gaia healpix format used by desitarget. gaiafiles = [os.path.join(hpxdir, 'healpix-{:05d}.fits'.format(pn)) for pn in pixnum] return gaiafiles
fec2bc3b73df17617802ef88d586a6b895d2af32
3,657,456
def _crc16(data, start = _CRC16_START) : """Compute CRC16 for bytes/bytearray/memoryview data""" crc = start for b in data : crc ^= b << 8 for _ in range(8) : crc = ((crc << 1) & 0xFFFF) ^ _CRC16_POLY if crc & 0x8000 else (crc << 1) return crc
e6e33471601d3126ac7873b61e23f843349e8e90
3,657,457
import json def load_json(): """Load the translation dictionary.""" try: with open(JSON_FILENAME, "r", encoding="utf8") as file: known_names = json.load(file) if "version" in known_names: if known_names.get("version") < JSON_VERSION: print("Unkown version: {}, current version: {}".format( known_names.get("version"), JSON_VERSION)) raise Exception( "Version mismatch. Backup the file and recreate.") else: print("No version number found") known_names = {} except FileNotFoundError: known_names = {} return known_names
d263411d0c0aae7bba30f92c5af22dd7ff596542
3,657,458
def get_username() -> str: """ Prompts the user to enter a username and then returns it :return: The username entered by the user """ while True: print("Please enter your username (without spaces)") username = input().strip() if ' ' not in username: return username
1a18a229908b86c32a0822c068b5b9081cc9fdc3
3,657,459
def condition(f): """ Decorator for conditions """ @wraps(f) def try_execute(*args, **kwargs): try: res, m = f(*args, **kwargs) m.conditions_results.append(res) return m except Exception as e: raise ConditionError(e) return try_execute
fb05645861c7aa234f894cc8eee3689e1f1293c9
3,657,460
def get_spatial_anomalies( coarse_obs_path, fine_obs_rechunked_path, variable, connection_string ) -> xr.Dataset: """Calculate the seasonal cycle (12 timesteps) spatial anomaly associated with aggregating the fine_obs to a given coarsened scale and then reinterpolating it back to the original spatial resolution. The outputs of this function are dependent on three parameters: * a grid (as opposed to a specific GCM since some GCMs run on the same grid) * the time period which fine_obs (and by construct coarse_obs) cover * the variable Parameters ---------- coarse_obs : xr.Dataset Coarsened to a GCM resolution. Chunked along time. fine_obs_rechunked_path : xr.Dataset Original observation spatial resolution. Chunked along time. variable: str The variable included in the dataset. Returns ------- seasonal_cycle_spatial_anomalies : xr.Dataset Spatial anomaly for each month (i.e. of shape (nlat, nlon, 12)) """ # interpolate coarse_obs back to the original scale [coarse_obs, fine_obs_rechunked] = load_paths([coarse_obs_path, fine_obs_rechunked_path]) obs_interpolated, _ = regrid_dataset( ds=coarse_obs, ds_path=coarse_obs_path, target_grid_ds=fine_obs_rechunked.isel(time=0), variable=variable, connection_string=connection_string, ) # use rechunked fine_obs from coarsening step above because that is in map chunks so it # will play nice with the interpolated obs schema_maps_chunks.validate(fine_obs_rechunked[variable]) # calculate difference between interpolated obs and the original obs spatial_anomalies = obs_interpolated - fine_obs_rechunked # calculate seasonal cycle (12 time points) seasonal_cycle_spatial_anomalies = spatial_anomalies.groupby("time.month").mean() return seasonal_cycle_spatial_anomalies
54dc830e9eb6b7440abf5857141ab369d8d45358
3,657,461
def get_pip_package_name(provider_package_id: str) -> str: """ Returns PIP package name for the package id. :param provider_package_id: id of the package :return: the name of pip package """ return "apache-airflow-providers-" + provider_package_id.replace(".", "-")
e7aafbdfb0e296e60fedfcf7e4970d750e4f3ffa
3,657,462
import numpy def func_asymmetry_f_b(z, flag_z: bool = False): """Function F_b(z) for asymmetry factor. """ f_a , dder_f_a = func_asymmetry_f_a(z, flag_z=flag_z) res = 2*(2*numpy.square(z)-3)*f_a dder = {} if flag_z: dder["z"] = 8 * z * f_a + 2*(2*numpy.square(z)-3)*dder_f_a["z"] return res, dder
5fc157856c379267c12137551f0eb5e6c4ddd3aa
3,657,463
def parse_args(): """Command-line argument parser for generating scenes.""" # New parser parser = ArgumentParser(description='Monte Carlo rendering generator') # Rendering parameters parser.add_argument('-t', '--tungsten', help='tungsten renderer full path', default='tungsten', type=str) parser.add_argument('-d', '--scene-path', help='scene root path', type=str) parser.add_argument('-r', '--resolution', help='image resolution (w, h)', nargs='+', type=int) parser.add_argument('-s', '--spp', help='sample per pixel', default=16, type=int) parser.add_argument('-n', '--nb-renders', help='number of renders', default=10, type=int) parser.add_argument('--hdr-buffers', help='save buffers as hdr images', action='store_true') parser.add_argument('--hdr-targets', help='save targets as hdr images', action='store_true') parser.add_argument('-o', '--output-dir', help='output directory', default='../../data/renders', type=str) return parser.parse_args()
4fad89d60f5446f9dbd66f4624a43b9436ee97a5
3,657,464
def unique_id(token_id): """Return a unique ID for a token. The returned value is useful as the primary key of a database table, memcache store, or other lookup table. :returns: Given a PKI token, returns it's hashed value. Otherwise, returns the passed-in value (such as a UUID token ID or an existing hash). """ return cms.cms_hash_token(token_id)
9526e483f617728b4a9307bd10097c78ec361ad0
3,657,465
def encode_aval_types(df_param: pd.DataFrame, df_ret: pd.DataFrame, df_var: pd.DataFrame, df_aval_types: pd.DataFrame): """ It encodes the type of parameters and return according to visible type hints """ types = df_aval_types['Types'].tolist() def trans_aval_type(x): for i, t in enumerate(types): if x in t: return i return len(types) - 1 # If the arg type doesn't exist in top_n available types, we insert n + 1 into the vector as it represents the other type. df_param['param_aval_enc'] = df_param['arg_type'].progress_apply(trans_aval_type) df_ret['ret_aval_enc'] = df_ret['return_type'].progress_apply(trans_aval_type) df_var['var_aval_enc'] = df_var['var_type'].progress_apply(trans_aval_type) return df_param, df_ret
a68ff812f69c264534daf16935d88f528ba35464
3,657,466
def first(iterable, default=None): """ Returns the first item or a default value >>> first(x for x in [1, 2, 3] if x % 2 == 0) 2 >>> first((x for x in [1, 2, 3] if x > 42), -1) -1 """ return next(iter(iterable), default)
6907e63934967c332eea9cedb5e0ee767a88fe8f
3,657,467
def generate_uuid_from_wf_data(wf_data: np.ndarray, decimals: int = 12) -> str: """ Creates a unique identifier from the waveform data, using a hash. Identical arrays yield identical strings within the same process. Parameters ---------- wf_data: The data to generate the unique id for. decimals: The number of decimal places to consider. Returns ------- : A unique identifier. """ waveform_hash = hash(wf_data.round(decimals=decimals).tobytes()) return str(waveform_hash)
e12a6a8807d68181f0e04bf7446cf5e381cab3f9
3,657,468
def aggregate(table, key, aggregation=None, value=None, presorted=False, buffersize=None, tempdir=None, cache=True): """Group rows under the given key then apply aggregation functions. E.g.:: >>> import petl as etl >>> >>> table1 = [['foo', 'bar', 'baz'], ... ['a', 3, True], ... ['a', 7, False], ... ['b', 2, True], ... ['b', 2, False], ... ['b', 9, False], ... ['c', 4, True]] >>> # aggregate whole rows ... table2 = etl.aggregate(table1, 'foo', len) >>> table2 +-----+-------+ | foo | value | +=====+=======+ | 'a' | 2 | +-----+-------+ | 'b' | 3 | +-----+-------+ | 'c' | 1 | +-----+-------+ >>> # aggregate single field ... table3 = etl.aggregate(table1, 'foo', sum, 'bar') >>> table3 +-----+-------+ | foo | value | +=====+=======+ | 'a' | 10 | +-----+-------+ | 'b' | 13 | +-----+-------+ | 'c' | 4 | +-----+-------+ >>> # alternative signature using keyword args ... table4 = etl.aggregate(table1, key=('foo', 'bar'), ... aggregation=list, value=('bar', 'baz')) >>> table4 +-----+-----+-------------------------+ | foo | bar | value | +=====+=====+=========================+ | 'a' | 3 | [(3, True)] | +-----+-----+-------------------------+ | 'a' | 7 | [(7, False)] | +-----+-----+-------------------------+ | 'b' | 2 | [(2, True), (2, False)] | +-----+-----+-------------------------+ | 'b' | 9 | [(9, False)] | +-----+-----+-------------------------+ | 'c' | 4 | [(4, True)] | +-----+-----+-------------------------+ >>> # aggregate multiple fields ... from collections import OrderedDict >>> import petl as etl >>> >>> aggregation = OrderedDict() >>> aggregation['count'] = len >>> aggregation['minbar'] = 'bar', min >>> aggregation['maxbar'] = 'bar', max >>> aggregation['sumbar'] = 'bar', sum >>> # default aggregation function is list ... aggregation['listbar'] = 'bar' >>> aggregation['listbarbaz'] = ('bar', 'baz'), list >>> aggregation['bars'] = 'bar', etl.strjoin(', ') >>> table5 = etl.aggregate(table1, 'foo', aggregation) >>> table5 +-----+-------+--------+--------+--------+-----------+-------------------------------------+-----------+ | foo | count | minbar | maxbar | sumbar | listbar | listbarbaz | bars | +=====+=======+========+========+========+===========+=====================================+===========+ | 'a' | 2 | 3 | 7 | 10 | [3, 7] | [(3, True), (7, False)] | '3, 7' | +-----+-------+--------+--------+--------+-----------+-------------------------------------+-----------+ | 'b' | 3 | 2 | 9 | 13 | [2, 2, 9] | [(2, True), (2, False), (9, False)] | '2, 2, 9' | +-----+-------+--------+--------+--------+-----------+-------------------------------------+-----------+ | 'c' | 1 | 4 | 4 | 4 | [4] | [(4, True)] | '4' | +-----+-------+--------+--------+--------+-----------+-------------------------------------+-----------+ If `presorted` is True, it is assumed that the data are already sorted by the given key, and the `buffersize`, `tempdir` and `cache` arguments are ignored. Otherwise, the data are sorted, see also the discussion of the `buffersize`, `tempdir` and `cache` arguments under the :func:`petl.transform.sorts.sort` function. """ if callable(aggregation): return SimpleAggregateView(table, key, aggregation=aggregation, value=value, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) elif aggregation is None or isinstance(aggregation, (list, tuple, dict)): # ignore value arg return MultiAggregateView(table, key, aggregation=aggregation, presorted=presorted, buffersize=buffersize, tempdir=tempdir, cache=cache) else: raise ArgumentError('expected aggregation is callable, list, tuple, dict ' 'or None')
22d857001d0dcadaed82a197101125e5ca922e07
3,657,469
def show_mpls_bypass_lsp_name_extensive_rpc(self, show_lsp_input_info=None, api_timeout=''): """ This is an auto-generated method for the PySwitchLib. **Supported Versions**: * SLXOS: 17r.1.01a, 17r.2.00, 17s.1.02 **Child Instance Keyword Argument Tuple(s)**: :type show_lsp_input_info: lsp, lsp_wide, lsp_detail, lsp_extensive, lsp_debug, lsp_name, lsp_name_extensive, lsp_name_debug, bypass_lsp, bypass_lsp_wide, bypass_lsp_detail, bypass_lsp_extensive, bypass_lsp_debug, bypass_lsp_name, bypass_lsp_name_extensive, bypass_lsp_name_debug, bypass_lsp_static, bypass_lsp_static_wide, bypass_lsp_static_detail, bypass_lsp_static_extensive, bypass_lsp_static_debug, bypass_lsp_static_name, bypass_lsp_static_name_extensive, bypass_lsp_static_name_debug, bypass_lsp_dynamic, bypass_lsp_dynamic_wide, bypass_lsp_dynamic_detail, bypass_lsp_dynamic_extensive, bypass_lsp_dynamic_debug, bypass_lsp_dynamic_name, bypass_lsp_dynamic_name_extensive, bypass_lsp_dynamic_name_debug, lsp_input_lsp_name, lsp_input_bypass, lsp_input_dynamic, lsp_input_brief, lsp_input_wide, lsp_input_detail, lsp_input_extensive, lsp_input_debug, lsp_input_one, lsp_input_all, lsp_input_more :param show_lsp_input_info: Keyword argument tuple. :type lsp: unicode :param lsp: **show_lsp_input_info** tuple argument. :type lsp_wide: YANGBool :param lsp_wide: **show_lsp_input_info** tuple argument. :type lsp_detail: YANGBool :param lsp_detail: **show_lsp_input_info** tuple argument. :type lsp_extensive: YANGBool :param lsp_extensive: **show_lsp_input_info** tuple argument. :type lsp_debug: YANGBool :param lsp_debug: **show_lsp_input_info** tuple argument. :type lsp_name: unicode :param lsp_name: **show_lsp_input_info** tuple argument. :type lsp_name_extensive: YANGBool :param lsp_name_extensive: **show_lsp_input_info** tuple argument. :type lsp_name_debug: YANGBool :param lsp_name_debug: **show_lsp_input_info** tuple argument. :type bypass_lsp: unicode :param bypass_lsp: **show_lsp_input_info** tuple argument. :type bypass_lsp_wide: YANGBool :param bypass_lsp_wide: **show_lsp_input_info** tuple argument. :type bypass_lsp_detail: YANGBool :param bypass_lsp_detail: **show_lsp_input_info** tuple argument. :type bypass_lsp_extensive: YANGBool :param bypass_lsp_extensive: **show_lsp_input_info** tuple argument. :type bypass_lsp_debug: YANGBool :param bypass_lsp_debug: **show_lsp_input_info** tuple argument. :type bypass_lsp_name: unicode :param bypass_lsp_name: **show_lsp_input_info** tuple argument. :type bypass_lsp_name_extensive: YANGBool :param bypass_lsp_name_extensive: **show_lsp_input_info** tuple argument. :type bypass_lsp_name_debug: YANGBool :param bypass_lsp_name_debug: **show_lsp_input_info** tuple argument. :type bypass_lsp_static: unicode :param bypass_lsp_static: **show_lsp_input_info** tuple argument. :type bypass_lsp_static_wide: YANGBool :param bypass_lsp_static_wide: **show_lsp_input_info** tuple argument. :type bypass_lsp_static_detail: YANGBool :param bypass_lsp_static_detail: **show_lsp_input_info** tuple argument. :type bypass_lsp_static_extensive: YANGBool :param bypass_lsp_static_extensive: **show_lsp_input_info** tuple argument. :type bypass_lsp_static_debug: YANGBool :param bypass_lsp_static_debug: **show_lsp_input_info** tuple argument. :type bypass_lsp_static_name: unicode :param bypass_lsp_static_name: **show_lsp_input_info** tuple argument. :type bypass_lsp_static_name_extensive: YANGBool :param bypass_lsp_static_name_extensive: **show_lsp_input_info** tuple argument. :type bypass_lsp_static_name_debug: YANGBool :param bypass_lsp_static_name_debug: **show_lsp_input_info** tuple argument. :type bypass_lsp_dynamic: unicode :param bypass_lsp_dynamic: **show_lsp_input_info** tuple argument. :type bypass_lsp_dynamic_wide: YANGBool :param bypass_lsp_dynamic_wide: **show_lsp_input_info** tuple argument. :type bypass_lsp_dynamic_detail: YANGBool :param bypass_lsp_dynamic_detail: **show_lsp_input_info** tuple argument. :type bypass_lsp_dynamic_extensive: YANGBool :param bypass_lsp_dynamic_extensive: **show_lsp_input_info** tuple argument. :type bypass_lsp_dynamic_debug: YANGBool :param bypass_lsp_dynamic_debug: **show_lsp_input_info** tuple argument. :type bypass_lsp_dynamic_name: unicode :param bypass_lsp_dynamic_name: **show_lsp_input_info** tuple argument. :type bypass_lsp_dynamic_name_extensive: YANGBool :param bypass_lsp_dynamic_name_extensive: **show_lsp_input_info** tuple argument. :type bypass_lsp_dynamic_name_debug: YANGBool :param bypass_lsp_dynamic_name_debug: **show_lsp_input_info** tuple argument. :type lsp_input_lsp_name: unicode :param lsp_input_lsp_name: **show_lsp_input_info** tuple argument. :type lsp_input_bypass: YANGBool :param lsp_input_bypass: **show_lsp_input_info** tuple argument. :type lsp_input_dynamic: YANGBool :param lsp_input_dynamic: **show_lsp_input_info** tuple argument. :type lsp_input_brief: YANGBool :param lsp_input_brief: **show_lsp_input_info** tuple argument. :type lsp_input_wide: YANGBool :param lsp_input_wide: **show_lsp_input_info** tuple argument. :type lsp_input_detail: YANGBool :param lsp_input_detail: **show_lsp_input_info** tuple argument. :type lsp_input_extensive: YANGBool :param lsp_input_extensive: **show_lsp_input_info** tuple argument. :type lsp_input_debug: YANGBool :param lsp_input_debug: **show_lsp_input_info** tuple argument. :type lsp_input_one: YANGBool :param lsp_input_one: **show_lsp_input_info** tuple argument. :type lsp_input_all: YANGBool :param lsp_input_all: **show_lsp_input_info** tuple argument. :type lsp_input_more: YANGBool :param lsp_input_more: **show_lsp_input_info** tuple argument. :type api_timeout: long or tuple(long, long) :param api_timeout: Timeout for connection and response in seconds. If a tuple is specified, then the first value is for the connection timeout and the second value is for the response timeout. :rtype: (*bool, list*) :returns: Returns a tuple. #. **api_success** (*bool*) - The success or failure of the API. #. **details** (*list*) - List of REST request/response dictionaries, keyed by the asset's ip address. :raises ConnectionError: If requests module connection or response timeout occurs. :raises UnsupportedOSError: If firmware version installed on asset is not supported. :raises RestInterfaceError: If requests module does not get a successful response from the rest URI. :raises ValueError: If the argument value does not meet type requirements or value restrictions. """ operation_type = 'rpc' compositions_list = [] bindings_list = [('pybind.slxos.v17r_1_01a.brocade_mpls_rpc.show_mpls_bypass_lsp_name_extensive.input', 'pybind.slxos.v17r_1_01a.brocade_mpls_rpc.brocade_mpls', 'pybind.slxos.v17r_1_01a.brocade_mpls_rpc'), ('pybind.slxos.v17r_2_00.brocade_mpls_rpc.show_mpls_bypass_lsp_name_extensive.input', 'pybind.slxos.v17r_2_00.brocade_mpls_rpc.brocade_mpls', 'pybind.slxos.v17r_2_00.brocade_mpls_rpc'), ('pybind.slxos.v17s_1_02.brocade_mpls_rpc.show_mpls_bypass_lsp_name_extensive.input', 'pybind.slxos.v17s_1_02.brocade_mpls_rpc.brocade_mpls', 'pybind.slxos.v17s_1_02.brocade_mpls_rpc')] composed_child_list = [('pybind.slxos.v17s_1_02.brocade_mpls_rpc.show_mpls_bypass_lsp_name_extensive.input', u'show_lsp_input_info'), ('pybind.slxos.v17r_1_01a.brocade_mpls_rpc.show_mpls_bypass_lsp_name_extensive.input', u'show_lsp_input_info'), ('pybind.slxos.v17r_2_00.brocade_mpls_rpc.show_mpls_bypass_lsp_name_extensive.input', u'show_lsp_input_info')] compositions_keyval_list = [] bindings_keyval = {'kwargs_key_name': '', 'keyval': '', 'extra_keyval': ''} composed_child_leafval_list = [{'leafval': 'lsp, lsp_wide, lsp_detail, lsp_extensive, lsp_debug, lsp_name, lsp_name_extensive, lsp_name_debug, bypass_lsp, bypass_lsp_wide, bypass_lsp_detail, bypass_lsp_extensive, bypass_lsp_debug, bypass_lsp_name, bypass_lsp_name_extensive, bypass_lsp_name_debug, bypass_lsp_static, bypass_lsp_static_wide, bypass_lsp_static_detail, bypass_lsp_static_extensive, bypass_lsp_static_debug, bypass_lsp_static_name, bypass_lsp_static_name_extensive, bypass_lsp_static_name_debug, bypass_lsp_dynamic, bypass_lsp_dynamic_wide, bypass_lsp_dynamic_detail, bypass_lsp_dynamic_extensive, bypass_lsp_dynamic_debug, bypass_lsp_dynamic_name, bypass_lsp_dynamic_name_extensive, bypass_lsp_dynamic_name_debug, lsp_input_lsp_name, lsp_input_bypass, lsp_input_dynamic, lsp_input_brief, lsp_input_wide, lsp_input_detail, lsp_input_extensive, lsp_input_debug, lsp_input_one, lsp_input_all, lsp_input_more'}, {'leafval': 'lsp, lsp_wide, lsp_detail, lsp_extensive, lsp_debug, lsp_name, lsp_name_extensive, lsp_name_debug, bypass_lsp, bypass_lsp_wide, bypass_lsp_detail, bypass_lsp_extensive, bypass_lsp_debug, bypass_lsp_name, bypass_lsp_name_extensive, bypass_lsp_name_debug, bypass_lsp_static, bypass_lsp_static_wide, bypass_lsp_static_detail, bypass_lsp_static_extensive, bypass_lsp_static_debug, bypass_lsp_static_name, bypass_lsp_static_name_extensive, bypass_lsp_static_name_debug, bypass_lsp_dynamic, bypass_lsp_dynamic_wide, bypass_lsp_dynamic_detail, bypass_lsp_dynamic_extensive, bypass_lsp_dynamic_debug, bypass_lsp_dynamic_name, bypass_lsp_dynamic_name_extensive, bypass_lsp_dynamic_name_debug, lsp_input_lsp_name, lsp_input_bypass, lsp_input_dynamic, lsp_input_brief, lsp_input_wide, lsp_input_detail, lsp_input_extensive, lsp_input_debug, lsp_input_one, lsp_input_all, lsp_input_more'}, {'leafval': 'lsp, lsp_wide, lsp_detail, lsp_extensive, lsp_debug, lsp_name, lsp_name_extensive, lsp_name_debug, bypass_lsp, bypass_lsp_wide, bypass_lsp_detail, bypass_lsp_extensive, bypass_lsp_debug, bypass_lsp_name, bypass_lsp_name_extensive, bypass_lsp_name_debug, bypass_lsp_static, bypass_lsp_static_wide, bypass_lsp_static_detail, bypass_lsp_static_extensive, bypass_lsp_static_debug, bypass_lsp_static_name, bypass_lsp_static_name_extensive, bypass_lsp_static_name_debug, bypass_lsp_dynamic, bypass_lsp_dynamic_wide, bypass_lsp_dynamic_detail, bypass_lsp_dynamic_extensive, bypass_lsp_dynamic_debug, bypass_lsp_dynamic_name, bypass_lsp_dynamic_name_extensive, bypass_lsp_dynamic_name_debug, lsp_input_lsp_name, lsp_input_bypass, lsp_input_dynamic, lsp_input_brief, lsp_input_wide, lsp_input_detail, lsp_input_extensive, lsp_input_debug, lsp_input_one, lsp_input_all, lsp_input_more'}] leafval_map = {} rest_leaf_name = '' choices_kwargs_map = {} leaf_os_support_map = {} self._api_validation(choices_kwargs_map=choices_kwargs_map, leaf_os_support_map=leaf_os_support_map, show_lsp_input_info=show_lsp_input_info) pybind_object = self._get_pybind_object(operation_type=operation_type, compositions_list=compositions_list, bindings_list=bindings_list, composed_child_list=composed_child_list, compositions_keyval_list=compositions_keyval_list, bindings_keyval=bindings_keyval, composed_child_leafval_list=composed_child_leafval_list, leafval_map=leafval_map, show_lsp_input_info=show_lsp_input_info) return self._rpc_worker(operation_type=operation_type, pybind_object=pybind_object, resource_depth=1, timeout=api_timeout)
4819c0f1f9cdd4eb46440cd51656cce5a93b3005
3,657,470
def most_similar(sen, voting_dict): """ Input: the last name of a senator, and a dictionary mapping senator names to lists representing their voting records. Output: the last name of the senator whose political mindset is most like the input senator (excluding, of course, the input senator him/herself). Resolve ties arbitrarily. Example: >>> vd = {'Klein': [1,1,1], 'Fox-Epstein': [1,-1,0], 'Ravella': [-1,0,0]} >>> most_similar('Klein', vd) 'Fox-Epstein' Note that you can (and are encouraged to) re-use you policy_compare procedure. """ most_sim = -1000 most_sim_senator = "" for key, val in voting_dict.items(): if key != sen: cmp = policy_compare(sen, key, voting_dict) if most_sim < cmp: most_sim = cmp most_sim_senator = key return most_sim_senator
6889d08af21d4007fa01dbe4946748aef0d9e3e6
3,657,471
def fixed_ro_bci_edge(ascentlat, lat_fixed_ro_ann, zero_bounds_guess_range=np.arange(0.1, 90, 5)): """Numerically solve fixed-Ro, 2-layer BCI model of HC edge.""" def _solver(lat_a, lat_h): # Reasonable to start guess at the average of the two given latitudes. init_guess = 0.5 * (lat_a + lat_h) return brentq_solver_sweep_param( _fixed_ro_bci_edge, lat_a, init_guess, zero_bounds_guess_range, funcargs=(lat_h,), ) return xr.apply_ufunc(_solver, ascentlat, lat_fixed_ro_ann, vectorize=True, dask="parallelized")
544c1747450cac52d161aa267a6332d4902798d1
3,657,472
def fresh_jwt_required(fn): """ A decorator to protect a Flask endpoint. If you decorate an endpoint with this, it will ensure that the requester has a valid and fresh access token before allowing the endpoint to be called. See also: :func:`~flask_jwt_extended.jwt_required` """ @wraps(fn) def wrapper(*args, **kwargs): jwt_data = _decode_jwt_from_request(request_type='access') ctx_stack.top.jwt = jwt_data if not jwt_data['fresh']: raise FreshTokenRequired('Fresh token required') if not verify_token_claims(jwt_data[config.user_claims_key]): raise UserClaimsVerificationError('User claims verification failed') _load_user(jwt_data[config.identity_claim_key]) return fn(*args, **kwargs) return wrapper
e5f30192c68018a419bb086522217ce86b27e6f6
3,657,473
import random def random_small_number(): """ 随机生成一个小数 :return: 返回小数 """ return random.random()
45143c2c78dc72e21cbbe0a9c10babd00100be77
3,657,474
def get_sample(df, col_name, n=100, seed=42): """Get a sample from a column of a dataframe. It drops any numpy.nan entries before sampling. The sampling is performed without replacement. Example of numpydoc for those who haven't seen yet. Parameters ---------- df : pandas.DataFrame Source dataframe. col_name : str Name of the column to be sampled. n : int Sample size. Default is 100. seed : int Random seed. Default is 42. Returns ------- pandas.Series Sample of size n from dataframe's column. """ np.random.seed(seed) random_idx = np.random.choice(df[col_name].dropna().index, size=n, replace=False) return df.loc[random_idx, col_name]
a4fb8e1bbc7c11026b54b2ec341b85310596de13
3,657,475
def gen_mail_content(content, addr_from): """ 根据邮件体生成添加了dkim的新邮件 @param content: string 邮件体内容 @return str_mail: 加上dkim的新邮件 """ try: domain = addr_from.split('@')[-1] dkim_info = get_dkim_info(domain) if dkim_info: content = repalce_mail(content, addr_from) selector, private = dkim_info private = private.replace('\r\n', '\n') dkim_sig = dkim.sign(content, selector, domain, private, include_headers=['From', 'To', 'Subject', 'Date']) dk_sig = domainkeys(dkim_sig + content, selector, domain, private, include_heads=['From', 'To', 'Subject']) return dk_sig + dkim_sig + content else: return content except Exception, e: print >>sys.stderr, e print >>sys.stderr, traceback.format_exc() return content
90ad569f8f69b7fa39edab799b41522fddc3ce97
3,657,476
import warnings def autocov(ary, axis=-1): """Compute autocovariance estimates for every lag for the input array. Parameters ---------- ary : Numpy array An array containing MCMC samples Returns ------- acov: Numpy array same size as the input array """ axis = axis if axis > 0 else len(ary.shape) + axis n = ary.shape[axis] m = next_fast_len(2 * n) ary = ary - ary.mean(axis, keepdims=True) # added to silence tuple warning for a submodule with warnings.catch_warnings(): warnings.simplefilter("ignore") ifft_ary = np.fft.rfft(ary, n=m, axis=axis) ifft_ary *= np.conjugate(ifft_ary) shape = tuple( slice(None) if dim_len != axis else slice(0, n) for dim_len, _ in enumerate(ary.shape) ) cov = np.fft.irfft(ifft_ary, n=m, axis=axis)[shape] cov /= n return cov
e17dcfcbdee37022a5ab98561287f891acfefaf6
3,657,477
import argparse def get_args(argv=None): """Parses given arguments and returns argparse.Namespace object.""" prsr = argparse.ArgumentParser( description="Perform a conformational search on given molecules." ) group = prsr.add_mutually_exclusive_group(required=True) group.add_argument( '-m', '--molecules', nargs='+', help='One or more files with molecule specification.' ) group.add_argument( '-d', '--directory', help='Directory with .mol files.' ) prsr.add_argument( '-o', '--output_dir', default='.\\confsearch', help='Output directory.' ) prsr.add_argument( '-n', '--num_confs', type=int, default=10, help='Number of cnformers to generate.' ) prsr.add_argument( '-r', '--rms_tresh', type=float, default=1, help='Maximum RMSD of conformers.' ) prsr.add_argument( '-e', '--energy_window', type=float, default=5, help='Maximum energy difference from lowest-energy conformer ' 'in kcal/mol.' ) prsr.add_argument( '-c', '--max_cycles', type=int, default=10, help='Maximum number of energy minimization cycles.' ) prsr.add_argument( '-f', '--fixed', type=int, nargs='+', default=(), help='Indices (starting at 1) of atoms fixed during molecule embedding.' ) prsr.add_argument( '-x', '--constraints', help='File with constraints specified in format ' '"kind a [b [c [d]] rel min] max [const]", one for line. `kind` ' 'should be one of: P (position), D (distance), A (angle), T ' '(torsion). Number of required atoms indices depends on `kind` ' 'given and should be 1, 2, 3 or 4 respectively. Atoms indices ' 'start at 1. `rel` should be 0 or 1 and specifies if `min` and ' '`max` values should be treated as absolute values or relative ' 'to current value. `min` and `max` should be floats, representing ' 'minimum and maximum value of constrained property in relevant ' 'units (angstroms or degrees). `rel` and `min` should be omitted ' 'if `kind` is P. `const` is force constant for given constraint, ' 'should be integer or float, defaults to 1e5.' ) prsr.add_argument( '-V', '--verbose', action='store_true', help='Sets logging level to INFO.' ) prsr.add_argument( '-D', '--debug', action='store_true', help='Sets logging level to DEBUG.' ) return prsr.parse_args(argv)
424ac2f714a30e31bce79a31b950e4ade06c8eab
3,657,478
def _optimize_rule_mip( set_opt_model_func, profile, committeesize, resolute, max_num_of_committees, solver_id, name="None", committeescorefct=None, ): """Compute rules, which are given in the form of an optimization problem, using Python MIP. Parameters ---------- set_opt_model_func : callable sets constraints and objective and adds additional variables, see examples below for its signature profile : abcvoting.preferences.Profile approval sets of voters committeesize : int number of chosen alternatives resolute : bool max_num_of_committees : int maximum number of committees this method returns, value can be None solver_id : str name : str name of the model, used for error messages committeescorefct : callable a function used to compute the score of a committee Returns ------- committees : list of sets a list of winning committees, each of them represented as set of integers from `0` to `num_cand` """ maxscore = None committees = [] if solver_id not in ["gurobi", "cbc"]: raise ValueError(f"Solver {solver_id} not known in Python MIP.") while True: model = mip.Model(solver_name=solver_id) # note: verbose = 1 causes issues with unittests, seems as if output is printed too late # and anyway the output does not seem to be very helpful model.verbose = 0 # `in_committee` is a binary variable indicating whether `cand` is in the committee in_committee = [ model.add_var(var_type=mip.BINARY, name=f"cand{cand}_in_committee") for cand in profile.candidates ] set_opt_model_func( model, profile, in_committee, committeesize, ) # find a new committee that has not been found yet by excluding previously found committees for committee in committees: model += mip.xsum(in_committee[cand] for cand in committee) <= committeesize - 1 # emphasis is optimality: # activates procedures that produce improved lower bounds, focusing in pruning the search # tree even if the production of the first feasible solutions is delayed. model.emphasis = 2 model.opt_tol = ACCURACY model.max_mip_gap = ACCURACY model.integer_tol = ACCURACY status = model.optimize() if status not in [mip.OptimizationStatus.OPTIMAL, mip.OptimizationStatus.INFEASIBLE]: raise RuntimeError( f"Python MIP returned an unexpected status code: {status}" f"Warning: solutions may be incomplete or not optimal (model {name})." ) elif status == mip.OptimizationStatus.INFEASIBLE: if len(committees) == 0: # we are in the first round of searching for committees # and Gurobi didn't find any raise RuntimeError("Python MIP found no solution (INFEASIBLE) (model {name})") break committee = set( cand for cand in profile.candidates if in_committee[cand].x >= 0.9 # this should be >= 1 - ACCURACY, but apparently it is not necessarily the case that # integers are only ACCURACY apart from either 0 or 1 ) if len(committee) != committeesize: raise RuntimeError( "_optimize_rule_mip produced a committee with " "fewer than `committeesize` members (model {name})." ) if committeescorefct is None: objective_value = model.objective_value # numeric value from MIP else: objective_value = committeescorefct(profile, committee) # exact value if maxscore is None: maxscore = objective_value elif (committeescorefct is not None and objective_value > maxscore) or ( committeescorefct is None and objective_value > maxscore + CMP_ACCURACY ): raise RuntimeError( "Python MIP found a solution better than a previous optimum. This " f"should not happen (previous optimal score: {maxscore}, " f"new optimal score: {objective_value}, model {name})." ) elif (committeescorefct is not None and objective_value < maxscore) or ( committeescorefct is None and objective_value < maxscore - CMP_ACCURACY ): # no longer optimal break committees.append(committee) if resolute: break if max_num_of_committees is not None and len(committees) >= max_num_of_committees: return committees return committees
41c3ace270be4dcb4321e4eeedb23d125e6766c3
3,657,479
import itertools def Zuo_fig_3_18(verbose=True): """ Input for Figure 3.18 in Zuo and Spence \"Advanced TEM\", 2017 This input acts as an example as well as a reference Returns: dictionary: tags is the dictionary of all input and output paramter needed to reproduce that figure. """ # INPUT # Create Silicon structure (Could be produced with Silicon routine) if verbose: print('Sample Input for Figure 3.18 in Zuo and Spence \"Advanced TEM\", 2017') tags = {'crystal_name': 'Silicon'} if verbose: print('tags[\'crystal\'] = ', tags['crystal_name']) a = 0.514 # nm tags['lattice_parameter_nm'] = a if verbose: print('tags[\'lattice_parameter_nm\'] =', tags['lattice_parameter_nm']) tags['unit_cell'] = [[a, 0, 0], [0, a, 0], [0, 0, a]] if verbose: print('tags[\'unit_cell\'] =', tags['unit_cell']) tags['elements'] = list(itertools.repeat('Si', 8)) if verbose: print('tags[\'elements\'] =', tags['elements']) base = [(0., 0., 0.), (0.5, 0.0, 0.5), (0.5, 0.5, 0.), (0., 0.5, 0.5)] tags['base'] = np.array(base + (np.array(base) + (.25, .25, .25)).tolist()) if verbose: print('tags[\'base\'] =', tags['base']) # Define Experimental Conditions tags['convergence_angle_mrad'] = 7 tags['acceleration_voltage_V'] = 101.6*1000.0 # V if verbose: print('tags[\'acceleration_voltage_V\'] =', tags['acceleration_voltage_V']) tags['convergence_angle_mrad'] = 7.1 # mrad; 0 is parallel illumination if verbose: print('tags[\'convergence_angle_mrad\'] =', tags['convergence_angle_mrad']) tags['zone_hkl'] = np.array([-2, 2, 1]) # incident neares zone axis: defines Laue Zones!!!! if verbose: print('tags[\'zone_hkl\'] =', tags['zone_hkl']) tags['mistilt'] = np.array([0, 0, 0]) # mistilt in degrees if verbose: print('tags[\'mistilt\'] =', tags['mistilt']) # Define Simulation Parameters tags['Sg_max'] = .2 # 1/nm maximum allowed excitation error if verbose: print('tags[\'Sg_max\'] =', tags['Sg_max']) tags['hkl_max'] = 9 # Highest evaluated Miller indices if verbose: print('tags[\'hkl_max\'] =', tags['hkl_max']) print('##################') print('# Output Options #') print('##################') # Output options tags['background'] = 'black' # 'white' 'grey' if verbose: print('tags[\'background\'] =', tags['background'], '# \'white\', \'grey\' ') tags['color map'] = 'plasma' if verbose: print('tags[\'color map\'] =', tags['color map'], '#,\'cubehelix\',\'Greys\',\'jet\' ') tags['plot HOLZ'] = 1 if verbose: print('tags[\'plot HOLZ\'] =', tags['plot HOLZ']) tags['plot HOLZ excess'] = 1 if verbose: print('tags[\'plot HOLZ excess\'] =', tags['plot HOLZ excess']) tags['plot Kikuchi'] = 1 if verbose: print('tags[\'plot Kikuchi\'] =', tags['plot Kikuchi']) tags['plot reflections'] = 1 if verbose: print('tags[\'plot reflections\'] =', tags['plot reflections']) tags['label HOLZ'] = 0 if verbose: print('tags[\'label HOLZ\'] =', tags['label HOLZ']) tags['label Kikuchi'] = 0 if verbose: print('tags[\'label Kikuchi\'] =', tags['label Kikuchi']) tags['label reflections'] = 0 if verbose: print('tags[\'label reflections\'] =', tags['label reflections']) tags['label color'] = 'black' if verbose: print('tags[\'label color\'] =', tags['label color']) tags['label size'] = 10 if verbose: print('tags[\'label size\'] =', tags['label size']) tags['color Laue Zones'] = ['red', 'blue', 'green', 'blue', 'green'] # , 'green', 'red'] #for OLZ give a sequence if verbose: print('tags[\'color Laue Zones\'] =', tags['color Laue Zones'], ' #[\'red\', \'blue\', \'lightblue\']') tags['color Kikuchi'] = 'green' if verbose: print('tags[\'color Kikuchi\'] =', tags['color Kikuchi']) tags['linewidth HOLZ'] = -1 # -1: linewidth according to intensity (structure factor F^2 if verbose: print('tags[\'linewidth HOLZ\'] =', tags['linewidth HOLZ'], '# -1: linewidth according to intensity ' '(structure factor F^2)') tags['linewidth Kikuchi'] = -1 # -1: linewidth according to intensity (structure factor F^2 if verbose: print('tags[\'linewidth Kikuchi\'] =', tags['linewidth Kikuchi'], '# -1: linewidth according to intensity ' '(structure factor F^2)') tags['color reflections'] = 'intensity' # 'Laue Zone' if verbose: print('tags[\'color reflections\'] =', tags['color reflections'], '#\'Laue Zone\' ') tags['color zero'] = 'white' # 'None', 'white', 'blue' if verbose: print('tags[\'color zero\'] =', tags['color zero'], '#\'None\', \'white\', \'blue\' ') tags['color ring zero'] = 'None' # 'Red' #'white' #, 'None' if verbose: print('tags[\'color ring zero\'] =', tags['color ring zero'], '#\'None\', \'white\', \'Red\' ') print('########################') print('# End of Example Input #') print('########################\n\n') return tags
560272c4c28c8e0628403573dd76c0573ae9d937
3,657,480
def subscribe_feed(feed_link: str, title: str, parser: str, conn: Conn) -> str: """Return the feed_id if nothing wrong.""" feed_id = new_feed_id(conn) conn.execute( stmt.Insert_feed, dict( id=feed_id, feed_link=feed_link, website="", title=title, author_name="", updated=arrow.now().format(RFC3339), notes="", parser=parser, ), ) return feed_id
88a49ebaa4f766bfb228dc3ba271e8c98d50da99
3,657,481
import os def run(fname): """ Create a new C file and H file corresponding to the filename "fname", and add them to the corresponding include.am. This function operates on paths relative to the top-level tor directory. """ # Make sure we're in the top-level tor directory, # which contains the src directory if not os.path.isdir("src"): raise RuntimeError("Could not find './src/'. " "Run this script from the top-level tor source " "directory.") # And it looks like a tor/src directory if not os.path.isfile("src/include.am"): raise RuntimeError("Could not find './src/include.am'. " "Run this script from the top-level tor source " "directory.") # Make the file name relative to the top-level tor directory tor_fname = tordir_file(fname) # And check that we're adding files to the "src" directory, # with canonical paths if tor_fname[:4] != "src/": raise ValueError("Requested file path '{}' canonicalized to '{}', " "but the canonical path did not start with 'src/'. " "Please add files to the src directory." .format(fname, tor_fname)) c_tor_fname = makeext(tor_fname, "c") h_tor_fname = makeext(tor_fname, "h") if os.path.exists(c_tor_fname): print("{} already exists".format(c_tor_fname)) return 1 if os.path.exists(h_tor_fname): print("{} already exists".format(h_tor_fname)) return 1 with open(c_tor_fname, 'w') as f: f.write(instantiate_template(C_FILE_TEMPLATE, c_tor_fname)) with open(h_tor_fname, 'w') as f: f.write(instantiate_template(HEADER_TEMPLATE, h_tor_fname)) iam = get_include_am_location(c_tor_fname) if iam is None or not os.path.exists(iam): print("Made files successfully but couldn't identify include.am for {}" .format(c_tor_fname)) return 1 amfile = ParsedAutomake() cur_chunk = AutomakeChunk() with open(iam) as f: for line in f: if cur_chunk.addLine(line): amfile.addChunk(cur_chunk) cur_chunk = AutomakeChunk() amfile.addChunk(cur_chunk) amfile.add_file(c_tor_fname, "sources") amfile.add_file(h_tor_fname, "headers") with open(iam+".tmp", 'w') as f: amfile.dump(f) os.rename(iam+".tmp", iam)
c20130f6f46b4f47996d9a817f93099484b284fd
3,657,482
def process_grid(procstatus, dscfg, radar_list=None): """ Puts the radar data in a regular grid Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : string. Dataset keyword The data type where we want to extract the point measurement gridconfig : dictionary. Dataset keyword Dictionary containing some or all of this keywords: xmin, xmax, ymin, ymax, zmin, zmax : floats minimum and maximum horizontal distance from grid origin [km] and minimum and maximum vertical distance from grid origin [m] Defaults -40, 40, -40, 40, 0., 10000. hres, vres : floats horizontal and vertical grid resolution [m] Defaults 1000., 500. latorig, lonorig, altorig : floats latitude and longitude of grid origin [deg] and altitude of grid origin [m MSL] Defaults the latitude, longitude and altitude of the radar wfunc : str. Dataset keyword the weighting function used to combine the radar gates close to a grid point. Possible values BARNES, BARNES2, CRESSMAN, NEAREST Default NEAREST roif_func : str. Dataset keyword the function used to compute the region of interest. Possible values: dist_beam, constant roi : float. Dataset keyword the (minimum) radius of the region of interest in m. Default half the largest resolution beamwidth : float. Dataset keyword the radar antenna beamwidth [deg]. If None that of the key radar_beam_width_h in attribute instrument_parameters of the radar object will be used. If the key or the attribute are not present a default 1 deg value will be used beam_spacing : float. Dataset keyword the beam spacing, i.e. the ray angle resolution [deg]. If None, that of the attribute ray_angle_res of the radar object will be used. If the attribute is None a default 1 deg value will be used radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the gridded data ind_rad : int radar index """ if procstatus != 1: return None, None field_names_aux = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_names_aux.append(get_fieldname_pyart(datatype)) ind_rad = int(radarnr[5:8])-1 if (radar_list is None) or (radar_list[ind_rad] is None): warn('ERROR: No valid radar') return None, None radar = radar_list[ind_rad] # keep only fields present in radar object field_names = [] nfields_available = 0 for field_name in field_names_aux: if field_name not in radar.fields: warn('Field name '+field_name+' not available in radar object') continue field_names.append(field_name) nfields_available += 1 if nfields_available == 0: warn("Fields not available in radar data") return None, None # default parameters xmin = -40. xmax = 40. ymin = -40. ymax = 40. zmin = 0. zmax = 10000. hres = 1000. vres = 500. lat = float(radar.latitude['data']) lon = float(radar.longitude['data']) alt = float(radar.altitude['data']) if 'gridConfig' in dscfg: if 'xmin' in dscfg['gridConfig']: xmin = dscfg['gridConfig']['xmin'] if 'xmax' in dscfg['gridConfig']: xmax = dscfg['gridConfig']['xmax'] if 'ymin' in dscfg['gridConfig']: ymin = dscfg['gridConfig']['ymin'] if 'ymax' in dscfg['gridConfig']: ymax = dscfg['gridConfig']['ymax'] if 'zmin' in dscfg['gridConfig']: zmin = dscfg['gridConfig']['zmin'] if 'zmax' in dscfg['gridConfig']: zmax = dscfg['gridConfig']['zmax'] if 'hres' in dscfg['gridConfig']: hres = dscfg['gridConfig']['hres'] if 'vres' in dscfg['gridConfig']: vres = dscfg['gridConfig']['vres'] if 'latorig' in dscfg['gridConfig']: lat = dscfg['gridConfig']['latorig'] if 'lonorig' in dscfg['gridConfig']: lon = dscfg['gridConfig']['lonorig'] if 'altorig' in dscfg['gridConfig']: alt = dscfg['gridConfig']['altorig'] wfunc = dscfg.get('wfunc', 'NEAREST') roi_func = dscfg.get('roi_func', 'dist_beam') # number of grid points in cappi nz = int((zmax-zmin)/vres)+1 ny = int((ymax-ymin)*1000./hres)+1 nx = int((xmax-xmin)*1000./hres)+1 min_radius = dscfg.get('roi', np.max([vres, hres])/2.) # parameters to determine the gates to use for each grid point beamwidth = dscfg.get('beamwidth', None) beam_spacing = dscfg.get('beam_spacing', None) if beamwidth is None: if (radar.instrument_parameters is not None and 'radar_beam_width_h' in radar.instrument_parameters): beamwidth = radar.instrument_parameters[ 'radar_beam_width_h']['data'][0] else: warn('Unknown radar beamwidth. Default 1 deg will be used') beamwidth = 1 if beam_spacing is None: if radar.ray_angle_res is not None: beam_spacing = radar.ray_angle_res['data'][0] else: warn('Unknown beam spacing. Default 1 deg will be used') beam_spacing = 1 # cartesian mapping grid = pyart.map.grid_from_radars( (radar,), gridding_algo='map_to_grid', weighting_function=wfunc, roi_func=roi_func, h_factor=1.0, nb=beamwidth, bsp=beam_spacing, min_radius=min_radius, constant_roi=min_radius, grid_shape=(nz, ny, nx), grid_limits=((zmin, zmax), (ymin*1000., ymax*1000.), (xmin*1000., xmax*1000.)), grid_origin=(lat, lon), grid_origin_alt=alt, fields=field_names) new_dataset = {'radar_out': grid} return new_dataset, ind_rad
b414fb327d3658cc6f9ba1296ec1226b5d2a7ff6
3,657,483
def float_to_16(value): """ convert float value into fixed exponent (8) number returns 16 bit integer, as value * 256 """ value = int(round(value*0x100,0)) return value & 0xffff
0a587e4505c9c19b0cbdd2f94c8a964f2a5a3ccd
3,657,484
def create_keras_one_layer_dense_model(*, input_size, output_size, verbose=False, **kwargs ): """ Notes: https://www.tensorflow.org/tutorials/keras/save_and_load """ # ................................................... # Create model model = Sequential() #.. add fully connected layer model.add(Dense( input_dim=input_size, # IE 784 PIXELS, ! units=output_size, activation=kwargs["out_activation"], kernel_regularizer=tf.keras.regularizers.l2(0.001), kernel_initializer=initializers.VarianceScaling(scale=1.0, seed=0) )) # Print network summary if verbose==True: print(model.summary()) else: pass # ................................................... # Define Loss Function and Trianing Operation """ # [option]: Use only default values, model.compile( optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['acc']) """ model.compile( optimizer= kwargs["optimizer"], loss= losses.sparse_categorical_crossentropy, metrics= kwargs["metrics"] # even one arg must be in the list ) return model
d7d34d9981aac318bca5838c42ed7f844c27cfda
3,657,485
def API_encrypt(key, in_text, formatting:str = "Base64", nonce_type:str = "Hybrid"): """ Returns: Input Text 147 Encrypted with Input Key. """ try: # Ensure an Appropriate Encoding Argument is Provided. try: encoding = FORMATS[formatting] except: raise ValueError("Invalid Encoding Argument") # Generate Nonce Integer Based on Input Argument. nonce = gen_nonce(nonce_type) # Encode Text into Specified Encoding and Remove any Padding. encoded_text = convert_input(in_text, "encode", encoding) # Encode Key into Decimal Number (Base10). dec_key = key_convert(key, encoding) # Substitute Down Input Text. shifted_text = substitution(dec_key, nonce, encoded_text, encoding, "encrypt", "normal") # Randomly join Shifted Text and Nonce into one Text. full_text = pair_function(shifted_text, dec_key, encoding, nonce) # Substitute Up Input Text. return substitution(dec_key + 135, 147, full_text, encoding, "encrypt", "reverse") except: raise ValueError(f"Encryption with Key: {key} Failed for Input: {in_text}")
d7336197ba1d32d89c8dc0c098bfbc20c795168d
3,657,486
def convert_log_dict_to_np(logs): """ Take in logs and return params """ # Init params n_samples_after_warmup = len(logs) n_grid = logs[0]['u'].shape[-1] u = np.zeros((n_samples_after_warmup, n_grid)) Y = np.zeros((n_samples_after_warmup, n_grid)) k = np.zeros((n_samples_after_warmup, n_grid)) kl_trunc_errs = np.empty((n_samples_after_warmup,1)) n_stoch_disc = logs[0]['coefs'].shape[-1] # e.g., n_alpha_indices for PCE, or kl_dim for KL-E coefs = np.empty((n_samples_after_warmup, n_grid, n_stoch_disc)) stoch_dim = logs[0]['rand_insts'].shape[-1] rand_insts = np.empty((n_samples_after_warmup, stoch_dim)) # Copy logs into params for n, log in enumerate(logs): k[n,:] = log['rand_param'] Y[n,:] = log['Y'] u[n,:] = log['u'] kl_trunc_errs[n,0] = log['kl_trunc_err'] coefs[n,:,:] = log['coefs'] rand_insts[n,:] = log['rand_insts'] return k, Y, u, kl_trunc_errs, coefs, rand_insts
1962fa563ee5d741f7f1ec6453b7fd5693efeca2
3,657,487
import os def get_parent_dir(): """Returns the root directory of the project.""" return os.path.abspath(os.path.join(os.getcwd(), os.pardir))
f6c0a43cf2a38f507736f09429b7ca7012739559
3,657,488
from pathlib import Path from typing import Callable def map_links_in_markdownfile( filepath: Path, func: Callable[[Link], None] ) -> bool: """Dosyadaki tüm linkler için verilen fonksiyonu uygular Arguments: filepath {Path} -- Dosya yolu objesi func {Callable[[Link], None]} -- Link alan ve değiştiren fonksiyon Returns: bool -- Değişim olduysa True """ content = filesystem.read_file(filepath) content = map_links_in_string(content, func) return filesystem.write_to_file(filepath, content)
4f6aa7ee5ecb7aed1df8551a69161305601d0489
3,657,489
def half_cell_t_2d_triangular_precursor(p, t): """Creates a precursor to horizontal transmissibility for prism grids (see notes). arguments: p (numpy float array of shape (N, 2 or 3)): the xy(&z) locations of cell vertices t (numpy int array of shape (M, 3)): the triangulation of p for which the transmissibility precursor is required returns: a pair of numpy float arrays, each of shape (M, 3) being the normal length and flow length relevant for flow across the face opposite each vertex as defined by t notes: this function acts as a precursor to the equivalent of the half cell transmissibility functions but for prism grids; for a resqpy VerticalPrismGrid, the triangulation can be shared by many layers with this function only needing to be called once; the first of the returned values (normal length) is the length of the triangle edge, in xy, when projected onto the normal of the flow direction; multiplying the normal length by a cell height will yield the area needed for transmissibility calculations; the second of the returned values (flow length) is the distance from the trangle centre to the midpoint of the edge and can be used as the distance term for a half cell transmissibilty; this function does not account for dip, it only handles the geometric aspects of half cell transmissibility in the xy plane """ assert p.ndim == 2 and p.shape[1] in [2, 3] assert t.ndim == 2 and t.shape[1] == 3 # centre points of triangles, in xy centres = np.mean(p[t], axis = 1)[:, :2] # midpoints of edges of triangles, in xy edge_midpoints = np.empty(tuple(list(t.shape) + [2]), dtype = float) edge_midpoints[:, 0, :] = 0.5 * (p[t[:, 1]] + p[t[:, 2]])[:, :2] edge_midpoints[:, 1, :] = 0.5 * (p[t[:, 2]] + p[t[:, 0]])[:, :2] edge_midpoints[:, 2, :] = 0.5 * (p[t[:, 0]] + p[t[:, 1]])[:, :2] # triangle edge vectors, projected in xy edge_vectors = np.empty(edge_midpoints.shape, dtype = float) edge_vectors[:, 0] = (p[t[:, 2]] - p[t[:, 1]])[:, :2] edge_vectors[:, 1] = (p[t[:, 0]] - p[t[:, 2]])[:, :2] edge_vectors[:, 2] = (p[t[:, 1]] - p[t[:, 0]])[:, :2] # vectors from triangle centres to mid points of edges (3 per triangle), in xy plane cem_vectors = edge_midpoints - centres.reshape((-1, 1, 2)) cem_lengths = vec.naive_lengths(cem_vectors) # unit length vectors normal to cem_vectors, in the xy plane normal_vectors = np.zeros(edge_midpoints.shape) normal_vectors[:, :, 0] = cem_vectors[:, :, 1] normal_vectors[:, :, 1] = -cem_vectors[:, :, 0] normal_vectors = vec.unit_vectors(normal_vectors) # edge lengths projected onto normal vectors (length perpendicular to nominal flow direction) normal_lengths = np.abs(vec.dot_products(edge_vectors, normal_vectors)) # return normal (cross-sectional) lengths and nominal flow direction lengths assert normal_lengths.shape == t.shape and cem_lengths.shape == t.shape return normal_lengths, cem_lengths
555f8b260f7c5b3f2e215378655710533ee344d5
3,657,490
def count_datavolume(sim_dict): """ Extract from the given input the amount of time and the memory you need to process each simulation through the JWST pipeline :param dict sim_dict: Each key represent a set of simulations (a CAR activity for instance) each value is a list of simulation. Each simulation being a dict with detailled info :return: Return (mem, time) where mem and time are dictionnaries with the same keys as the input dict. :rtype: Memory is in GB, Time is in hours """ mem_volume = {} # Total memory required in GB time_volume = {} # Pipeline estimated run time in s for (car, sim_list) in sim_dict.items(): memory = [] times = [] for sim in sim_list: if "detector" in sim.keys(): if sim["detector"] in ["IMAGER", "ALL"]: tmp = { "integrations": sim["ima_integrations"], "frames": sim["ima_frames"], "exposures": sim["exposures"], "subarray": sim["subarray"], "NDither": sim["NDither"], } (ram, time, nb_exps) = get_prediction(tmp) memory.extend([ram] * nb_exps) # For each exposure we have one identical file to analyse times.extend([time] * nb_exps) # For each exposure we have one identical file to analyse if sim["detector"] in ["ALL", "MRS"]: tmp = { "integrations": sim["LW_integrations"], "frames": sim["LW_frames"], "exposures": sim["exposures"], "subarray": "FULL", "NDither": sim["NDither"], } (ram, time, nb_exps) = get_prediction(tmp) memory.extend([ram] * nb_exps) # For each exposure we have one identical file to analyse times.extend([time] * nb_exps) # For each exposure we have one identical file to analyse tmp = { "integrations": sim["SW_integrations"], "frames": sim["SW_frames"], "exposures": sim["exposures"], "subarray": "FULL", "NDither": sim["NDither"], } (ram, time, nb_exps) = get_prediction(tmp) memory.extend([ram] * nb_exps) # For each exposure we have one identical file to analyse times.extend([time] * nb_exps) # For each exposure we have one identical file to analyse else: (ram, time, nb_exps) = get_prediction(sim) memory.extend([ram] * nb_exps) # For each exposure we have one identical file to analyse times.extend([time] * nb_exps) # For each exposure we have one identical file to analyse mem_volume[car] = np.array(memory) time_volume[car] = np.array(times) return mem_volume, time_volume
dabe86d64be0342486d1680ee8e5a1cb72162550
3,657,491
import inspect import sys def get_exception_class_by_code(code): """Gets exception with the corresponding error code, otherwise returns UnknownError :param code: error code :type code: int :return: Return Exception class associated with the specified API error. """ code = int(code) module_classes = inspect.getmembers(sys.modules[__name__], inspect.isclass) exception_classes = (h[1] for h in module_classes if is_valid_error_cls(h[1])) exception_cls = None for e_c in exception_classes: if e_c.error_code == code: exception_cls = e_c break if exception_cls is None: exception_cls = UnknownError return exception_cls
36d42291737a7a18f7ffea07c1d5ffc71a82e8b1
3,657,492
def context(): """Return an instance of the JIRA tool context.""" return dict()
e24e859add22eef279b650f28dce4f6732c346b8
3,657,493
def dist_to_group(idx: int, group_type: str, lst): """ A version of group_count that allows for sorting with solo agents Sometimes entities don't have immediately adjacent neighbors. In that case, the value represents the distance to any neighbor, e.g -1 means that an entity one to the left or right has a neighbor of that type. Args: idx (int):index in the list group_type (str):group type we care about matching lst ([type]): [description] """ my_count = group_count(idx, group_count, lst) if my_count > 0: return my_count adjacent_counts = [] l_neighbor_count = dist_to_group(idx-1, group_type, lst) if idx > 0 else None r_neighbor_count = dist_to_group(idx+1, group_type, lst) if idx < len(lst)-1 else None for neighbor_count in (l_neighbor_count, r_neighbor_count): if neighbor_count != 0: if neighbor_count < 0 and neighbor_count is not None: #The neighbor doesn't have any next directly to it either adjacent_counts.append(neighbor_count - 1) else: #The neighbor does have one next to it! adjacent_counts.append(neighbor_count) return max(adjacent_counts)
74ae510de4145f097fbf9daf406a6156933bae20
3,657,494
from typing import AnyStr from typing import List from typing import Dict def get_nodes_rating(start: AnyStr, end: AnyStr, tenant_id: AnyStr, namespaces: List[AnyStr]) -> List[Dict]: """ Get the rating by node. :start (AnyStr) A timestamp, as a string, to represent the starting time. :end (AnyStr) A timestamp, as a string, to represent the ending time. :tenant_id (AnyStr) A string representing the tenant, only used by decorators. :namespaces (List[AnyStr]) A list of namespaces accessible by the tenant. Return the results of the query as a list of dictionary. """ qry = sa.text(""" SELECT frame_begin, sum(frame_price) as frame_price, node FROM frames WHERE frame_begin >= :start AND frame_end <= :end AND namespace != 'unspecified' AND pod != 'unspecified' AND namespace IN :namespaces GROUP BY frame_begin, node ORDER BY frame_begin, node """).bindparams(bindparam('namespaces', expanding=True)) params = { 'start': start, 'end': end, 'tenant_id': tenant_id, 'namespaces': namespaces } return process_query(qry, params)
b75d35fc195b8317ed8b84ab42ce07339f2f1bf3
3,657,495
def f(OPL,R): """ Restoration function calculated from optical path length (OPL) and from rational function parameter (R). The rational is multiplied along all optical path. """ x = 1 for ii in range(len(OPL)): x = x * (OPL[ii] + R[ii][2]) / (R[ii][0] * OPL[ii] + R[ii][1]) return x
5b64b232646768d2068b114d112a8da749c84706
3,657,496
def _str_conv(number, rounded=False): """ Convenience tool to convert a number, either float or int into a string. If the int or float is None, returns empty string. >>> print(_str_conv(12.3)) 12.3 >>> print(_str_conv(12.34546, rounded=1)) 12.3 >>> print(_str_conv(None)) <BLANKLINE> >>> print(_str_conv(1123040)) 11.2e5 """ if not number: return str(' ') if not rounded and isinstance(number, (float, int)): if number < 100000: string = str(number) else: exponant = int('{0:.2E}'.format(number).split('E+')[-1]) - 1 divisor = 10 ** exponant string = '{0:.1f}'.format(number / divisor) + 'e' + str(exponant) elif rounded == 2 and isinstance(number, (float, int)): if number < 100000: string = '{0:.2f}'.format(number) else: exponant = int('{0:.2E}'.format(number).split('E+')[-1]) - 1 divisor = 10 ** exponant string = '{0:.2f}'.format(number / divisor) + 'e' + str(exponant) elif rounded == 1 and isinstance(number, (float, int)): if number < 100000: string = '{0:.1f}'.format(number) else: exponant = int('{0:.2E}'.format(number).split('E+')[-1]) - 1 divisor = 10 ** exponant string = '{0:.1f}'.format(number / divisor) + 'e' + str(exponant) else: return str(number) return string
d352e8f0956b821a25513bf4a4eecfae5a6a7dcd
3,657,497
def build_eval_graph(input_fn, model_fn, hparams): """Build the evaluation computation graph.""" dataset = input_fn(None) batch = dataset.make_one_shot_iterator().get_next() batch_holder = { "transform": tf.placeholder( tf.float32, [1, 1, hparams.n_parts, hparams.n_dims + 1, hparams.n_dims + 1]), "joint": tf.placeholder(tf.float32, [1, 1, hparams.n_parts, hparams.n_dims]), "point": tf.placeholder(tf.float32, [1, 1, None, hparams.n_dims]), "label": tf.placeholder(tf.float32, [1, 1, None, 1]), } latent_holder, latent, occ = model_fn(batch_holder, None, None, "gen_mesh") # Eval Summary iou_holder = tf.placeholder(tf.float32, []) best_holder = tf.placeholder(tf.float32, []) tf.summary.scalar("IoU", iou_holder) tf.summary.scalar("Best_IoU", best_holder) return { "batch_holder": batch_holder, "latent_holder": latent_holder, "latent": latent, "occ": occ, "batch": batch, "iou_holder": iou_holder, "best_holder": best_holder, "merged_summary": tf.summary.merge_all(), }
3f3d1425d08e964de68e99ea0c6cb4397975427a
3,657,498
def _encodeLength(length): """ Encode length as a hex string. Args: length: write your description """ assert length >= 0 if length < hex160: return chr(length) s = ("%x" % length).encode() if len(s) % 2: s = "0" + s s = BinaryAscii.binaryFromHex(s) lengthLen = len(s) return chr(hex160 | lengthLen) + str(s)
fd85d5faf85da6920e4a0704118e41901f327d9c
3,657,499