content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def stemmer(stemmed_sent):
"""
Removes stop words from a tokenized sentence
"""
porter = PorterStemmer()
stemmed_sentence = []
for word in literal_eval(stemmed_sent):
stemmed_word = porter.stem(word)
stemmed_sentence.append(stemmed_word)
return stemmed_sentence | 96337684deb7846f56acf302d1e0d8c8ab9743dd | 3,657,500 |
def _queue_number_priority(v):
"""Returns the task's priority.
There's an overflow of 1 bit, as part of the timestamp overflows on the laster
part of the year, so the result is between 0 and 330. See _gen_queue_number()
for the details.
"""
return int(_queue_number_order_priority(v) >> 22) | e61d6e1d04551ce55a533bfe7805f3358bb8d0ca | 3,657,501 |
def test_generator_aovs(path):
"""Generate a function testing given `path`.
:param path: gproject path to test
:return: function
"""
def test_func(self):
"""test render pass render layer and AOV particularities
"""
assert path in g_parsed
p = g_parsed[path]
aov = grl_util.aov_node(p, 'RenderPass', 'Layer', 'Beauty')
self.assertIsInstance(aov, guerilla_parser.GuerillaNode)
self.assertEqual(aov.path, "|RenderPass|Layer|Input1")
rp_iter = (n for n in p.nodes if n.type == 'RenderPass')
for rp in rp_iter:
rl_iter = (n for n in rp.children if n.type == 'RenderLayer')
for rl in rl_iter:
for aov in rl.children:
self.assertEqual(aov.type, "LayerOut")
aov_2 = grl_util.aov_node(p, rp.name, rl.name,
aov.display_name)
self.assertIs(aov, aov_2)
return test_func | a67b8f741a19f4d3733ab35699ef11a713e283b5 | 3,657,502 |
from typing import Union
def delimited_list(
expr: Union[str, ParserElement],
delim: Union[str, ParserElement] = ",",
combine: bool = False,
min: OptionalType[int] = None,
max: OptionalType[int] = None,
*,
allow_trailing_delim: bool = False,
) -> ParserElement:
"""Helper to define a delimited list of expressions - the delimiter
defaults to ','. By default, the list elements and delimiters can
have intervening whitespace, and comments, but this can be
overridden by passing ``combine=True`` in the constructor. If
``combine`` is set to ``True``, the matching tokens are
returned as a single token string, with the delimiters included;
otherwise, the matching tokens are returned as a list of tokens,
with the delimiters suppressed.
If ``allow_trailing_delim`` is set to True, then the list may end with
a delimiter.
Example::
delimited_list(Word(alphas)).parse_string("aa,bb,cc") # -> ['aa', 'bb', 'cc']
delimited_list(Word(hexnums), delim=':', combine=True).parse_string("AA:BB:CC:DD:EE") # -> ['AA:BB:CC:DD:EE']
"""
if isinstance(expr, str_type):
expr = ParserElement._literalStringClass(expr)
dlName = "{expr} [{delim} {expr}]...{end}".format(
expr=str(expr.copy().streamline()),
delim=str(delim),
end=" [{}]".format(str(delim)) if allow_trailing_delim else "",
)
if not combine:
delim = Suppress(delim)
if min is not None:
if min < 1:
raise ValueError("min must be greater than 0")
min -= 1
if max is not None:
if min is not None and max <= min:
raise ValueError("max must be greater than, or equal to min")
max -= 1
delimited_list_expr = expr + (delim + expr)[min, max]
if allow_trailing_delim:
delimited_list_expr += Opt(delim)
if combine:
return Combine(delimited_list_expr).set_name(dlName)
else:
return delimited_list_expr.set_name(dlName) | d1ac80f138a21ee21ecf76f918f1c7878863f80c | 3,657,503 |
def get_minion_node_ips(k8s_conf):
"""
Returns a list IP addresses to all configured minion hosts
:param k8s_conf: the configuration dict
:return: a list IPs
"""
out = list()
node_tuple_3 = get_minion_nodes_ip_name_type(k8s_conf)
for hostname, ip, node_type in node_tuple_3:
out.append(ip)
return out | 9a93ddcd025e605805a9693dd14d58c92f53dc42 | 3,657,504 |
def calculate_ri(column):
"""
Function that calculates radiant intensity
"""
return float(sc.h * sc.c / 1e-9 * np.sum(column)) | eac136f520ebbad0ea11f506c742e75fc524c4bb | 3,657,505 |
def find_kw_in_lines(kw, lines, addon_str=' = '):
"""
Returns the index of a list of strings that had a kw in it
Args:
kw: Keyword to find in a line
lines: List of strings to search for the keyword
addon_str: String to append to your key word to help filter
Return:
i: Integer of the index of a line containing a kw. -1 otherwise
"""
str_temp = '{}' + addon_str
for i, line in enumerate(lines):
s = str_temp.format(kw)
uncommented = line.strip('#')
if s in uncommented:
if s[0] == uncommented[0]:
break
# No match
if i == len(lines) - 1:
i = -1
return i | 4b50c4eaecc55958fca6b134cc748d672c78d014 | 3,657,506 |
def delete_group(current_session, groupname):
"""
Deletes a group
"""
projects_to_purge = gp.get_group_projects(current_session, groupname)
remove_projects_from_group(current_session, groupname, projects_to_purge)
gp.clear_users_in_group(current_session, groupname)
gp.clear_projects_in_group(current_session, groupname)
gp.delete_group(current_session, groupname)
return {"result": "success"} | 1a27cec1c3273bb56564587823ad04565867277f | 3,657,507 |
def label_smoothed_nll_loss(lprobs, target, epsilon: float = 1e-8, ignore_index=None):
"""Adapted from fairseq
Parameters
----------
lprobs
Log probabilities of amino acids per position
target
Target amino acids encoded as integer indices
epsilon
Smoothing factor between 0 and 1, by default 1e-8
ignore_index, optional
Amino acid (encoded as integer) to ignore, by default None
Returns
-------
Negative log-likelihood loss
"""
nll_loss = -lprobs.gather(dim=-1, index=target)
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
eps_i = epsilon / lprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss | eb09b7dd5c800b01b723f33cd0f7a84ae93b3489 | 3,657,508 |
def ParseFieldDefRequest(post_data, config):
"""Parse the user's HTML form data to update a field definition."""
field_name = post_data.get('name', '')
field_type_str = post_data.get('field_type')
# TODO(jrobbins): once a min or max is set, it cannot be completely removed.
min_value_str = post_data.get('min_value')
try:
min_value = int(min_value_str)
except (ValueError, TypeError):
min_value = None
max_value_str = post_data.get('max_value')
try:
max_value = int(max_value_str)
except (ValueError, TypeError):
max_value = None
regex = post_data.get('regex')
needs_member = 'needs_member' in post_data
needs_perm = post_data.get('needs_perm', '').strip()
grants_perm = post_data.get('grants_perm', '').strip()
notify_on_str = post_data.get('notify_on')
if notify_on_str in config_svc.NOTIFY_ON_ENUM:
notify_on = config_svc.NOTIFY_ON_ENUM.index(notify_on_str)
else:
notify_on = 0
is_required = 'is_required' in post_data
is_multivalued = 'is_multivalued' in post_data
field_docstring = post_data.get('docstring', '')
choices_text = post_data.get('choices', '')
applicable_type = post_data.get('applicable_type', '')
applicable_predicate = '' # TODO(jrobbins): placeholder for future feature
revised_labels = _ParseChoicesIntoWellKnownLabels(
choices_text, field_name, config)
return ParsedFieldDef(
field_name, field_type_str, min_value, max_value, regex,
needs_member, needs_perm, grants_perm, notify_on, is_required,
is_multivalued, field_docstring, choices_text, applicable_type,
applicable_predicate, revised_labels) | 73030f1757ebccf0f9d7710d24b11bf82c8b46c8 | 3,657,509 |
import os
import time
async def get_museum_session_key() -> str:
"""
Retrieve a session key for the MuseumPlus service, generating a new
one if necessary.
:returns: Session key
"""
# We might have an active session key stored locally.
key_path = get_session_key_file_path()
try:
session_time = key_path.stat().st_mtime
session_key = key_path.read_text()
except FileNotFoundError:
# Create the parent directories and/or file if they don't exist
os.makedirs(key_path.parent, exist_ok=True)
session_time = time.time()
session_key = await generate_museum_session_key(previous_key=None)
# Regenerate a session key if it *could* have expired.
# This is done because the alternative is to test the session key for
# validity each time a session is created, and this would create
# more useless requests than regenerating a session key after the worker
# has stayed dormant for a while; a far more unlikely scenario.
maybe_expired = time.time() - SESSION_KEY_REGENERATE_TIMEOUT > session_time
if maybe_expired:
session_key = await generate_museum_session_key(
previous_key=session_key
)
return session_key | 02890e4e67150cc3ce859861f28db1cbe1657837 | 3,657,510 |
import re
def parse_date(regexen, date_str):
"""
Parse a messy string into a granular date
`regexen` is of the form [ (regex, (granularity, groups -> datetime)) ]
"""
if date_str:
for reg, (gran, dater) in regexen:
m = re.match(reg, date_str)
if m:
try:
return gran, dater(m.groups())
except ValueError:
return 0, None
return 0, None | a141cad6762556115699ca0327b801537bab1c7e | 3,657,511 |
def PreNotebook(*args, **kwargs):
"""PreNotebook() -> Notebook"""
val = _controls_.new_PreNotebook(*args, **kwargs)
return val | 1974d3ed08a6811a871f7e069c4b74b97cb32e35 | 3,657,512 |
def user_voted(message_id: int, user_id: int) -> bool:
"""
CHECK IF A USER VOTED TO A DETECTION REPORT
"""
return bool(
c.execute(
"""
SELECT *
FROM reports
WHERE message_id=? AND user_id=?
""",
(message_id, user_id),
).fetchone()
) | baddfb69470699d611c050b6732d553f4f415212 | 3,657,513 |
import io
def get_values(wsdl_url, site_code, variable_code, start=None, end=None,
suds_cache=("default",), timeout=None, user_cache=False):
"""
Retrieves site values from a WaterOneFlow service using a GetValues request.
Parameters
----------
wsdl_url : str
URL of a service's web service definition language (WSDL) description.
All WaterOneFlow services publish a WSDL description and this url is the
entry point to the service.
site_code : str
Site code of the site you'd like to get values for. Site codes MUST
contain the network and be of the form <network>:<site_code>, as is
required by WaterOneFlow.
variable_code : str
Variable code of the variable you'd like to get values for. Variable
codes MUST contain the network and be of the form
<vocabulary>:<variable_code>, as is required by WaterOneFlow.
start : ``None`` or datetime (see :ref:`dates-and-times`)
Start of the query datetime range. If omitted, data from the start of
the time series to the ``end`` timestamp will be returned (but see caveat,
in note below).
end : ``None`` or datetime (see :ref:`dates-and-times`)
End of the query datetime range. If omitted, data from the ``start``
timestamp to end of the time series will be returned (but see caveat,
in note below).
suds_cache : ``None`` or tuple
SOAP local cache duration for WSDL description and client object.
Pass a cache duration tuple like ('days', 3) to set a custom duration.
Duration may be in months, weeks, days, hours, or seconds.
If unspecified, the default duration (1 day) will be used.
Use ``None`` to turn off caching.
timeout : int or float
suds SOAP URL open timeout (seconds).
If unspecified, the suds default (90 seconds) will be used.
user_cache : bool
If False (default), use the system temp location to store cache WSDL and
other files. Use the default user ulmo directory if True.
Returns
-------
site_values : dict
a python dict containing values
Notes
-----
If both ``start`` and ``end`` parameters are omitted, the entire time series
available will typically be returned. However, some service providers will return
an error if either start or end are omitted; this is specially true for services
hosted or redirected by CUAHSI via the CUAHSI HydroPortal, which have a 'WSDL' url
using the domain http://hydroportal.cuahsi.org. For HydroPortal, a start datetime
of '1753-01-01' has been known to return valid results while catching the oldest
start times, though the response may be broken up into chunks ('paged').
"""
suds_client = _get_client(wsdl_url, suds_cache, timeout, user_cache)
# Note from Emilio:
# Not clear if WOF servers really do handle time zones (time offsets or
# "Z" in the iso8601 datetime strings. In the past, I (Emilio) have
# passed naive strings to GetValues(). if a datetime object is passed to
# this ulmo function, the isodate code above will include it in the
# resulting iso8601 string; if not, no. Test effect of dt_isostr having
# a timezone code or offset, vs not having it (the latter, naive dt
# strings, is what I've been using all along)
# the interpretation of start and end time zone is server-dependent
start_dt_isostr = None
end_dt_isostr = None
if start is not None:
start_datetime = util.convert_datetime(start)
start_dt_isostr = isodate.datetime_isoformat(start_datetime)
if end is not None:
end_datetime = util.convert_datetime(end)
end_dt_isostr = isodate.datetime_isoformat(end_datetime)
waterml_version = _waterml_version(suds_client)
response = suds_client.service.GetValues(
site_code, variable_code, startDate=start_dt_isostr,
endDate=end_dt_isostr)
response_buffer = io.BytesIO(util.to_bytes(response))
if waterml_version == '1.0':
values = waterml.v1_0.parse_site_values(response_buffer)
elif waterml_version == '1.1':
values = waterml.v1_1.parse_site_values(response_buffer)
if not variable_code is None:
return list(values.values())[0]
else:
return values | 57b9cbfbf713f5ac858a8d7a36464aae2a657757 | 3,657,514 |
def GetDot1xInterfaces():
"""Retrieves attributes of all dot1x compatible interfaces.
Returns:
Array of dict or empty array
"""
interfaces = []
for interface in GetNetworkInterfaces():
if interface['type'] == 'IEEE80211' or interface['type'] == 'Ethernet':
if (interface['builtin'] and
'AppleThunderboltIPPort' not in interface['bus']):
interfaces.append(interface)
return interfaces | 829cc1badf5917cc6302847311e5c8ef6aeebc11 | 3,657,515 |
def get_v_l(mol, at_name, r_ea):
"""
Returns list of the l's, and a nconf x nl array, v_l values for each l: l= 0,1,2,...,-1
"""
vl = generate_ecp_functors(mol._ecp[at_name][1])
v_l = np.zeros([r_ea.shape[0], len(vl)])
for l, func in vl.items(): # -1,0,1,...
v_l[:, l] = func(r_ea)
return vl.keys(), v_l | d987e5ceb28169d73ec23aaac2f7ab30a5e881c7 | 3,657,516 |
def search_transitions_in_freq_range(freq_min, freq_max, atomic_number,
atomic_mass, n_min=1, n_max=1000,
dn_min=1, dn_max=10, z=0.0,
screening=False, extendsearch=None):
"""
---------------------------------------------------------------------------
Search for electronic transitions of recombination lines at a specified
redshift that lie within the specified frequency range
Inputs:
freq_min [scalar] Minimum in the frequency range (Hz)
freq_max [scalar] Maximum in the frequency range (Hz)
atomic_number [integer] Atomic number of the atom. It is equal to the
number of protons in the nucleus. Must be positive and
greater than or equal to unity.
atomic_mass [integer] Atomic mass of the atom. It is equal to the sum
of the number of protons and neutrons in the nucleus. Must
be positive and greater than or equal to unity.
n_min [scalar] Minimum in the range of principal quantum numbers
of lower electron orbit to search for transitions.
Must be positive and greater than or equal to unity unity.
n_max [scalar] Maximum in the range of principal quantum numbers
of lower electron orbit to search for transitions.
Must be positive and greater than or equal to unity unity.
dn_min [scalar] Minimum in the range of difference in principal
quantum numbers search for transitions. Must be positive
and greater than or equal to unity unity.
dn_max [scalar] Maximum in the range of difference in principal
quantum numbers search for transitions. Must be positive
and greater than or equal to unity unity.
z [scalar or numpy array] The redshift (when positive) or
blueshift (when negative) by which the recombination lines
are shifted. Default=0
screening [boolean] If set to False (default), assume the effective
charge is equal to the number of protons. If set to True,
assume the charges from the nucleus are screened and the
effecctive nuclear charge is equal to unity.
extendsearch [None or dictionary] Specifies if the search should be
extended beyond the ranges for n and dn by calling this
function recursively. If set to None (default), the search
will not be extended. Otherwise, search will extend along n
and/or dn if in-range frequencies are found at the
specified boundaries of n and dn. This parameter must be
specified as a dictionary with the following keys and
values:
'n' [None or list] If set to None, do not extend search
for more values of n. Otherwise it must be a list
containing one or both of the strings 'up' and
'down'. If 'up' is present, extend search for
higher values of n from the previous iteration. If
'down' is present in the list, extend search for
values of n lower than specified in the range in
previous iteration.
'dn' [None or list] If set to None, do not extend search
for more values of dn. Otherwise it must be a list
containing one or both of the strings 'up' and
'down'. If 'up' is present, extend search for
higher values of dn from the previous iteration. If
'down' is present in the list, extend search for
values of dn lower than specified in the range in
previous iteration.
Output:
Tuple of (n, dn, freq) where each of the elements in the tuple is an array
such that the transitions of combinations of n and dn produces
recombination lines for a given redshift in the specified frequency range.
freq will be returned as an instance of class astropy.units.Quantity
---------------------------------------------------------------------------
"""
try:
freq_min, freq_max, atomic_number, atomic_mass
except NameError:
raise NameError('Inputs freq_min, freq_max, atomic_number, atomic_mass must be specified')
if not isinstance(n_min, int):
raise TypeError('Input n_min must be an integer')
if n_min < 1:
raise ValueError('Input n_min must be greater than 1')
if not isinstance(n_max, int):
raise TypeError('Input n_max must be an integer')
if n_max < n_min:
raise ValueError('Input n_max must be greater than n_min')
if not isinstance(dn_min, int):
raise TypeError('Input dn_min must be an integer')
if dn_min < 1:
raise ValueError('Input dn_min must be greater than 1')
if not isinstance(dn_max, int):
raise TypeError('Input dn_max must be an integer')
if dn_max < dn_min:
raise ValueError('Input dn_max must be greater than dn_min')
if not isinstance(z, (int,float)):
if isinstance(z, NP.ndarray):
if z.size != 1:
raise TypeError('Input z must be a scalar')
else:
raise TypeError('Input z must be a scalar')
if not isinstance(freq_min, (int,float,units.Quantity)):
raise TypeError('Input freq_min must be a scalar')
if not isinstance(freq_min, units.Quantity):
freq_min = freq_min * units.Hertz
if freq_min <= 0.0 * units.Hertz:
raise ValueError('Input freq_min must be positive')
if not isinstance(freq_max, (int,float,units.Quantity)):
raise TypeError('Input freq_max must be a scalar')
if not isinstance(freq_max, units.Quantity):
freq_max = freq_max * units.Hertz
if freq_max <= freq_min:
raise ValueError('Input freq_max must be greater than freq_min')
if extendsearch is not None:
if not isinstance(extendsearch, dict):
raise TypeError('Input extendsearch must be a dictionary')
for key in extendsearch:
if extendsearch[key] is not None:
if not isinstance(extendsearch[key], list):
raise TypeError('Value under key {0} of input dictionary extendsearch must be a list'.format(key))
nvect = NP.arange(n_min, n_max+1)
dnvect = NP.arange(dn_min, dn_max+1)
ngrid, dngrid = NP.meshgrid(nvect, dnvect, indexing='ij')
nu = redshifted_freq_recomb(atomic_number, atomic_mass, ngrid.reshape(-1), dngrid.reshape(-1), z=z, screening=screening)
nu = nu.reshape(nvect.size, dnvect.size, -1)
ind_select = NP.where(NP.logical_and(nu >= freq_min, nu <= freq_max))
nu_select = nu[ind_select]
n_select = ngrid[:,:,NP.newaxis][ind_select]
dn_select = dngrid[:,:,NP.newaxis][ind_select]
nu_in_range = None
n_in_range = None
dn_in_range = None
if nu_select.size > 0:
if nu_in_range is not None:
nu_in_range = units.Quantity(NP.concatenate((nu_in_range.value, nu_select.value)), nu_select.unit)
n_in_range = NP.concatenate((n_in_range, n_select))
dn_in_range = NP.concatenate((dn_in_range, dn_select))
else:
nu_in_range = nu_select.copy()
n_in_range = NP.copy(n_select)
dn_in_range = NP.copy(dn_select)
if extendsearch is not None:
new_extendsearch = None
for key in extendsearch:
if extendsearch[key] is not None:
if key == 'n':
if n_select.max() == n_max:
if 'up' in extendsearch[key]:
new_n_min = n_max + 1
new_n_max = 2 * n_max + 1 - n_min
if new_extendsearch is None:
new_extendsearch = {key: ['up']}
elif key not in new_extendsearch:
new_extendsearch[key] = ['up']
else:
new_extendsearch[key] += ['up']
new_n_select, new_dn_select, new_nu_select = search_transitions_in_freq_range(freq_min, freq_max, atomic_number, atomic_mass, n_min=new_n_min, n_max=new_n_max, dn_min=dn_min, dn_max=dn_max, z=z, screening=screening, extendsearch=new_extendsearch)
if new_nu_select.size > 0:
if nu_in_range is not None:
nu_in_range = units.Quantity(NP.concatenate((nu_in_range.value, new_nu_select.value)), new_nu_select.unit)
n_in_range = NP.concatenate((n_in_range, new_n_select))
dn_in_range = NP.concatenate((dn_in_range, new_dn_select))
else:
nu_in_range = new_nu_select.copy()
n_in_range = NP.copy(new_n_select)
dn_in_range = NP.copy(new_dn_select)
if n_select.min() == n_min:
if 'down' in extendsearch[key]:
if n_min > 1:
new_n_min = max([1, 2*n_min - n_max - 1])
new_n_max = n_max - 1
if new_extendsearch is None:
new_extendsearch = {key: ['down']}
elif key not in new_extendsearch:
new_extendsearch[key] = ['down']
else:
new_extendsearch[key] += ['down']
new_n_select, new_dn_select, new_nu_select = search_transitions_in_freq_range(freq_min, freq_max, atomic_number, atomic_mass, n_min=new_n_min, n_max=new_n_max, dn_min=dn_min, dn_max=dn_max, z=z, screening=screening, extendsearch=new_extendsearch)
if new_nu_select.size > 0:
if nu_in_range is not None:
nu_in_range = units.Quantity(NP.concatenate((new_nu_select.value, nu_in_range.value)), new_nu_select.unit)
n_in_range = NP.concatenate((new_n_select, n_in_range))
dn_in_range = NP.concatenate((new_dn_select, dn_in_range))
else:
nu_in_range = new_nu_select.copy()
n_in_range = NP.copy(new_n_select)
dn_in_range = NP.copy(new_dn_select)
if key == 'dn':
if dn_select.max() == dn_max:
if 'up' in extendsearch[key]:
new_dn_min = dn_max + 1
new_dn_max = 2 * dn_max + 1 - dn_min
if new_extendsearch is None:
new_extendsearch = {key: ['up']}
elif key not in new_extendsearch:
new_extendsearch[key] = ['up']
else:
new_extendsearch[key] += ['up']
new_n_select, new_dn_select, new_nu_select = search_transitions_in_freq_range(freq_min, freq_max, atomic_number, atomic_mass, n_min=n_min, n_max=n_max, dn_min=new_dn_min, dn_max=new_dn_max, z=z, screening=screening, extendsearch=new_extendsearch)
if new_nu_select.size > 0:
if nu_in_range is not None:
nu_in_range = units.Quantity(NP.concatenate((nu_in_range.value, new_nu_select.value)), new_nu_select.unit)
n_in_range = NP.concatenate((n_in_range, new_n_select))
dn_in_range = NP.concatenate((dn_in_range, new_dn_select))
else:
nu_in_range = new_nu_select.copy()
n_in_range = NP.copy(new_n_select)
dn_in_range = NP.copy(new_dn_select)
if dn_select.min() == dn_min:
if 'down' in extendsearch[key]:
if dn_min > 1:
new_dn_min = max([1, 2*dn_min - dn_max - 1])
new_dn_max = dn_max - 1
if new_extendsearch is None:
new_extendsearch = {key: ['down']}
elif key not in new_extendsearch:
new_extendsearch[key] = ['down']
else:
new_extendsearch[key] += ['down']
new_n_select, new_dn_select, new_nu_select = search_transitions_in_freq_range(freq_min, freq_max, atomic_number, atomic_mass, n_min=n_min, n_max=n_max, dn_min=new_dn_min, dn_max=new_dn_max, z=z, screening=screening, extendsearch=new_extendsearch)
if new_nu_select.size > 0:
if nu_in_range is not None:
nu_in_range = units.Quantity(NP.concatenate((new_nu_select.value, nu_in_range.value)), new_nu_select.unit)
n_in_range = NP.concatenate((new_n_select, n_in_range))
dn_in_range = NP.concatenate((new_dn_select, dn_in_range))
else:
nu_in_range = new_nu_select.copy()
n_in_range = NP.copy(new_n_select)
dn_in_range = NP.copy(new_dn_select)
return (n_in_range, dn_in_range, nu_in_range) | bd5fc3873909ce3937b6e94db9f04edb94dab326 | 3,657,517 |
async def test_async__rollback():
"""Should rollback basic async actions"""
state = {"counter": 0}
async def incr():
state["counter"] += 1
return state["counter"]
async def decr():
state["counter"] -= 1
async def fail():
raise ValueError("oops")
try:
with Saga() as saga:
counter = await saga.action(incr, decr)
assert counter == 1
counter = await saga.action(incr, decr)
assert counter == 2
await saga.action(fail, noop)
except SagaFailed as e:
assert state["counter"] == 0
assert e.transaction.name == "3"
assert e.__cause__.args == ("oops",) | 54cc780b01190bfd2ea2aacc70e62e8f0b3dfa64 | 3,657,518 |
import time
import json
def _solve_checkpoint_challenge(_bot):
"""Solve the annoying checkpoint_challenge"""
# --- Start challenge
time.sleep(3)
challenge_url = _bot.last_json['challenge']['api_path'][1:]
try:
_bot.send_request(
challenge_url, None, login=True, with_signature=False)
except Exception as e:
_bot.logger.error(e)
return False
# --- Choose and send back the choice
# TODO: Sometimes ask to confirm phone or email.
# TODO: TESTS NEEDED
time.sleep(3)
choices = _get_challenge_choices(_bot.last_json)
for choice in choices:
print(choice)
code = input('Insert choice:\n')
data = json.dumps({'choice': code})
try:
_bot.send_request(challenge_url, data, login=True)
except Exception as e:
_bot.logger.error(e)
return False
# Print output for testing
_print_bot_last_state(_bot)
# --- Wait for the code, insert the code
time.sleep(3)
print("A code has been sent to the method selected, please check.")
code = input('Insert code:\n')
data = json.dumps({'security_code': code})
try:
_bot.send_request(challenge_url, data, login=True)
except Exception as e:
_bot.logger.error(e)
return False
# Print output for testing
_print_bot_last_state(_bot)
# --- If user logged in, save cookie, otherwise PASS
worked = (
('logged_in_user' in _bot.last_json)
and (_bot.last_json.get('action', '') == 'close')
and (_bot.last_json.get('status', '') == 'ok'))
if worked:
# IMPORTANT, save the cookie at this step!
_bot.save_cookie(COOKIE_FNAME)
return True
else:
_bot.logger.error('Not possible to log in. Reset and try again')
return False | 5114ac1c49eecf174a994f4b487e1d8a30d4f907 | 3,657,519 |
import requests
def is_referenced(url, id, catalog_info):
"""Given the url of a resource from the catalog, this function returns True
if the resource is referenced by data.gouv.fr
False otherwise
:param :url: url of a resource in the catalog
:type :url: string"""
dgf_page = catalog_info['url_dgf']
headers = requests.head(url).headers
downloadable = 'attachment' in headers.get('Content-Disposition', '')
if not downloadable:
raise Exception(f'This id is associated to a dataset not referenced by data.gouv.fr. \n '
f'Please download the dataset from here: {dgf_page}\n'
f'Then manually upload it in the corresponding folder and name it: {id}.csv')
return downloadable | 15cfa64979f2765d29d7c4bb60a7a017feb27d43 | 3,657,520 |
import glob
import functools
def create_sema3d_datasets(args, test_seed_offset=0):
""" Gets training and test datasets. """
train_names = ['bildstein_station1', 'bildstein_station5', 'domfountain_station1', 'domfountain_station3', 'neugasse_station1', 'sg27_station1', 'sg27_station2', 'sg27_station5', 'sg27_station9', 'sg28_station4', 'untermaederbrunnen_station1']
valid_names = ['bildstein_station3', 'domfountain_station2', 'sg27_station4', 'untermaederbrunnen_station3']
#train_names = ['bildstein_station1', 'domfountain_station1', 'untermaederbrunnen_station1']
#valid_names = ['domfountain_station2', 'untermaederbrunnen_station3']
path = '{}/features_supervision/'.format(args.ROOT_PATH)
if args.db_train_name == 'train':
trainlist = [path + 'train/' + f + '.h5' for f in train_names]
elif args.db_train_name == 'trainval':
trainlist = [path + 'train/' + f + '.h5' for f in train_names + valid_names]
testlist = []
if 'train' in args.db_test_name:
testlist += [path + 'train/' + f + '.h5' for f in train_names]
if 'val' in args.db_test_name:
testlist += [path + 'train/' + f + '.h5' for f in valid_names]
if 'testred' in args.db_test_name:
testlist += [f for f in glob.glob(path + 'test_reduced/*.h5')]
if 'testfull' in args.db_test_name:
testlist += [f for f in glob.glob(path + 'test_full/*.h5')]
return tnt.dataset.ListDataset(trainlist,
functools.partial(graph_loader, train=True, args=args, db_path=args.ROOT_PATH)), \
tnt.dataset.ListDataset(testlist,
functools.partial(graph_loader, train=False, args=args, db_path=args.ROOT_PATH, full_cpu = True)) | 8642c5a10a5256fb9541be86676073c993b2faf8 | 3,657,521 |
def adjust_learning_rate(optimizer, step, args):
"""
Sets the learning rate to the initial LR decayed by gamma
at every specified step/epoch
Adapted from PyTorch Imagenet example:
https://github.com/pytorch/examples/blob/master/imagenet/main.py
step could also be epoch
"""
schedule_list = np.array(args.schedule)
decay = args.gamma ** (sum(step >= schedule_list))
lr = args.lr * decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr | 359e2c5e0deb1abd156b7a954ecfae1b23511db2 | 3,657,522 |
def sigmoid(z):
"""sigmoid函数
"""
return 1.0/(1.0+np.exp(-z)) | 80187d3711d18602a33d38edcc48eaad5c51818f | 3,657,523 |
def beamformerFreq(steerVecType, boolRemovedDiagOfCSM, normFactor, inputTupleSteer, inputTupleCsm):
""" Conventional beamformer in frequency domain. Use either a predefined
steering vector formulation (see Sarradj 2012) or pass your own
steering vector.
Parameters
----------
steerVecType : (one of the following strings: 'classic' (I), 'inverse' (II), 'true level' (III), 'true location' (IV), 'custom')
Either build the steering vector via the predefined formulations
I - IV (see :ref:`Sarradj, 2012<Sarradj2012>`) or pass it directly.
boolRemovedDiagOfCSM : bool
Should the diagonal of the csm be removed?
normFactor : float
In here both the signalenergy loss factor (due to removal of the csm diagonal) as well as
beamforming algorithm (music, capon, ...) dependent normalization factors are handled.
inputTupleSteer : contains the information needed to create the steering vector. Is dependent of steerVecType. There are 2 cases:
steerVecType != 'custom' :
inputTupleSteer = (distGridToArrayCenter, distGridToAllMics, waveNumber) , with
distGridToArrayCenter : float64[nGridpoints]
Distance of all gridpoints to the center of sensor array
distGridToAllMics : float64[nGridpoints, nMics]
Distance of all gridpoints to all sensors of array
waveNumber : float64
The wave number
steerVecType == 'custom' :
inputTupleSteer = steeringVector , with
steeringVector : complex128[nGridPoints, nMics]
The steering vector of each gridpoint for the same frequency as the CSM
inputTupleCsm : contains the data of measurement as a tuple. There are 2 cases:
perform standard CSM-beamformer:
inputTupleCsm = csm
csm : complex128[ nMics, nMics]
The cross spectral matrix for one frequency
perform beamformer on eigenvalue decomposition of csm:
inputTupleCsm = (eigValues, eigVectors) , with
eigValues : float64[nEV]
nEV is the number of eigenvalues which should be taken into account.
All passed eigenvalues will be evaluated.
eigVectors : complex128[nMics, nEV]
Eigen vectors corresponding to eigValues. All passed eigenvector slices will be evaluated.
Returns
-------
*Autopower spectrum beamforming map [nGridPoints]
*steer normalization factor [nGridPoints]... contains the values the autopower needs to be multiplied with, in order to
fullfill 'steer^H * steer = 1' as needed for functional beamforming.
Some Notes on the optimization of all subroutines
-------------------------------------------------
Reducing beamforming equation:
Let the csm be C and the steering vector be h, than, using Linear Albegra, the conventional beamformer can be written as
.. math:: B = h^H \\cdot C \\cdot h,
with ^H meaning the complex conjugated transpose.
When using that C is a hermitian matrix one can reduce the equation to
.. math:: B = h^H \\cdot C_D \\cdot h + 2 \\cdot Real(h^H \\cdot C_U \\cdot h),
where C_D and C_U are the diagonal part and upper part of C respectively.
Steering vector:
Theoretically the steering vector always includes the term "exp(distMicsGrid - distArrayCenterGrid)",
but as the steering vector gets multplied with its complex conjugation in all beamformer routines,
the constant "distArrayCenterGrid" cancels out --> In order to save operations, it is not implemented.
Spectral decomposition of the CSM:
In Linear Algebra the spectral decomposition of the CSM matrix would be:
.. math:: CSM = \\sum_{i=1}^{nEigenvalues} \\lambda_i (v_i \\cdot v_i^H) ,
where lambda_i is the i-th eigenvalue and
v_i is the eigenvector[nEigVal,1] belonging to lambda_i and ^H denotes the complex conjug transpose.
Using this, one must not build the whole CSM (which would be time consuming), but can drag the
steering vector into the sum of the spectral decomp. This saves a lot of operations.
Squares:
Seemingly "a * a" is slightly faster than "a**2" in numba
Square of abs():
Even though "a.real**2 + a.imag**2" would have fewer operations, modern processors seem to be optimized
for "a * a.conj" and are slightly faster the latter way. Both Versions are much faster than "abs(a)**2".
Using Cascading Sums:
When using the Spectral-Decomposition-Beamformer one could use numpys cascading sums for the scalar product
"eigenVec.conj * steeringVector". BUT (at the moment) this only brings benefits in comp-time for a very
small range of nMics (approx 250) --> Therefor it is not implemented here.
"""
boolIsEigValProb = isinstance(inputTupleCsm, tuple)# len(inputTupleCsm) > 1
# get the beamformer type (key-tuple = (isEigValProblem, formulationOfSteeringVector, RemovalOfCSMDiag))
beamformerDict = {(False, 'classic', False) : _freqBeamformer_Formulation1AkaClassic_FullCSM,
(False, 'classic', True) : _freqBeamformer_Formulation1AkaClassic_CsmRemovedDiag,
(False, 'inverse', False) : _freqBeamformer_Formulation2AkaInverse_FullCSM,
(False, 'inverse', True) : _freqBeamformer_Formulation2AkaInverse_CsmRemovedDiag,
(False, 'true level', False) : _freqBeamformer_Formulation3AkaTrueLevel_FullCSM,
(False, 'true level', True) : _freqBeamformer_Formulation3AkaTrueLevel_CsmRemovedDiag,
(False, 'true location', False) : _freqBeamformer_Formulation4AkaTrueLocation_FullCSM,
(False, 'true location', True) : _freqBeamformer_Formulation4AkaTrueLocation_CsmRemovedDiag,
(False, 'custom', False) : _freqBeamformer_SpecificSteerVec_FullCSM,
(False, 'custom', True) : _freqBeamformer_SpecificSteerVec_CsmRemovedDiag,
(True, 'classic', False) : _freqBeamformer_EigValProb_Formulation1AkaClassic_FullCSM,
(True, 'classic', True) : _freqBeamformer_EigValProb_Formulation1AkaClassic_CsmRemovedDiag,
(True, 'inverse', False) : _freqBeamformer_EigValProb_Formulation2AkaInverse_FullCSM,
(True, 'inverse', True) : _freqBeamformer_EigValProb_Formulation2AkaInverse_CsmRemovedDiag,
(True, 'true level', False) : _freqBeamformer_EigValProb_Formulation3AkaTrueLevel_FullCSM,
(True, 'true level', True) : _freqBeamformer_EigValProb_Formulation3AkaTrueLevel_CsmRemovedDiag,
(True, 'true location', False) : _freqBeamformer_EigValProb_Formulation4AkaTrueLocation_FullCSM,
(True, 'true location', True) : _freqBeamformer_EigValProb_Formulation4AkaTrueLocation_CsmRemovedDiag,
(True, 'custom', False) : _freqBeamformer_EigValProb_SpecificSteerVec_FullCSM,
(True, 'custom', True) : _freqBeamformer_EigValProb_SpecificSteerVec_CsmRemovedDiag}
coreFunc = beamformerDict[(boolIsEigValProb, steerVecType, boolRemovedDiagOfCSM)]
# prepare Input
if steerVecType == 'custom': # beamformer with custom steering vector
steerVec = inputTupleSteer
#nFreqs, nGridPoints = steerVec.shape[0], steerVec.shape[1]
nGridPoints = steerVec.shape[0]
else: # predefined beamformers (Formulation I - IV)
distGridToArrayCenter, distGridToAllMics, waveNumber = inputTupleSteer#[0], inputTupleSteer[1], inputTupleSteer[2]
if not isinstance(waveNumber, np.ndarray): waveNumber = np.array([waveNumber])
#nFreqs, nGridPoints = waveNumber.shape[0], distGridToAllMics.shape[0]
nGridPoints = distGridToAllMics.shape[0]
if boolIsEigValProb:
eigVal, eigVec = inputTupleCsm#[0], inputTupleCsm[1]
else:
csm = inputTupleCsm
# beamformer routine: parallelized over Gridpoints
beamformOutput = np.zeros(nGridPoints, np.float64)
steerNormalizeOutput = np.zeros_like(beamformOutput)
result = np.zeros(nGridPoints, np.float64)
normalHelp = np.zeros_like(result)
if steerVecType == 'custom': # beamformer with custom steering vector
if boolIsEigValProb:
coreFunc(eigVal, eigVec, steerVec, normFactor, result, normalHelp)
else:
coreFunc(csm, steerVec, normFactor, result, normalHelp)
else: # predefined beamformers (Formulation I - IV)
if boolIsEigValProb:
coreFunc(eigVal, eigVec, distGridToArrayCenter, distGridToAllMics, waveNumber, normFactor, result, normalHelp)
else:
coreFunc(csm, distGridToArrayCenter, distGridToAllMics, waveNumber, normFactor, result, normalHelp)
beamformOutput = result
steerNormalizeOutput = normalHelp
return beamformOutput, steerNormalizeOutput | f747122b0dff9a7b966813062b93a1cab8a91f3f | 3,657,524 |
from typing import IO
def createNewPY():
"""trans normal pinyin to TTS pinyin"""
py_trans = {}
input_pinyin_list = IO.readList(r'docs/transTTSPinyin.txt')
for line in input_pinyin_list:
line_array = line.split(',')
py_trans[line_array[0]] = line_array[1]
return py_trans | e2bd5007cc217f72e3ffbeafd0ff75e18f8ec213 | 3,657,525 |
import re
def search_wheelmap (lat, lng, interval, name, n):
"""Searches for a place which matches the given name in the
given coordinates range. Returns false if nothing found"""
# Calculate the bbox for the API call
from_lat = lat - interval
to_lat = lat + interval
from_lng = lng - interval
to_lng = lng + interval
# Remove parentheses (better for search, generally)
name = re.sub(r'\([^)]*\)', '', name)
wheelmap_client = wheelmap.Wheelmap(env['WHEELMAP_API_KEY'])
bbox= (from_lng, from_lat, to_lng, to_lat)
nodes = wheelmap_client.nodes_collection(bbox=bbox, per_page=n)
# max_node and max_name_match are holding the
# best match through the SequenceMatcher after the loop
max_name_match = 0.0
for node in nodes:
if node.name and name:
name_match = SequenceMatcher(None, node.name, name).ratio()
if name_match > max_name_match:
max_node = node
max_name_match = name_match
# Is the best match better than 60% ?
# If yes, let's take it. Otherwise nothing was found.
if max_name_match > 0.6:
return max_node
else:
return False | 88dfbf973fbd4891a4d8bf955335177ca3654016 | 3,657,526 |
from typing import Dict
def get_entity_contents(entity: Dict) -> Dict:
"""
:param entity: Entity is a dictionary
:return: A dict representation of the contents of entity
"""
return {
'ID': entity.get('id'),
'Name': entity.get('name'),
'EmailAddress': entity.get('email_address'),
'Organization': entity.get('organization'),
'Tags': entity.get('labels'),
'StrictNameMatching': entity.get('strict_name_matching'),
'PolicyID': entity.get('policy_id'),
'Profile': entity.get('profile'),
'EntityGroupID': entity.get('entity_group', {}).get('id') if entity.get('entity_group') else None,
'EntityGroupName': entity.get('entity_group', {}).get('name') if entity.get('entity_group') else None,
'TypeID': entity.get('type', {}).get('id') if entity.get('type') else None,
'TypeName': entity.get('type', {}).get('name') if entity.get('type') else None
} | 3c9e133bf80bc4d59c6f663503b5083401acc4e0 | 3,657,527 |
def t68tot90(t68):
"""Convert from IPTS-68 to ITS-90 temperature scales,
as specified in the CF Standard Name information for
sea_water_temperature
http://cfconventions.org/Data/cf-standard-names/27/build/cf-standard-name-table.html
temperatures are in degrees C"""
t90 = 0.99976 * t68
return t90 | 87ff55a196f01b8f1afd78381e7d012eafa079fa | 3,657,528 |
def get_sort_accuracy_together(fake_ys, y):
"""
Args:
fake_ys (np.ndarray): with shape (n_results, n_sample,).
y (np.ndarray): with sample (n_sample,).
Returns:
corr (np.ndarray): with shape (n_result,)
"""
y_sort = np.sort(y)
y_sort2 = np.sort(y)[::-1]
fake_ys = np.nan_to_num(fake_ys, nan=np.nan, posinf=np.nan, neginf=np.nan)
mark = np.any(np.isnan(fake_ys), axis=1)
fake_ys = np.nan_to_num(fake_ys, nan=-1, posinf=-1, neginf=-1)
index = np.argsort(fake_ys, axis=1)
y_pre_sort = y[index]
acc1 = 1 - np.mean(np.abs(y_pre_sort - y_sort), axis=1)
acc2 = 1 - np.mean(np.abs(y_pre_sort - y_sort2), axis=1)
score = np.max(np.concatenate((acc1.reshape(1, -1), acc2.reshape(1, -1)), axis=0), axis=0)
score[mark] = 0.0
return score | 4ba4810057bb936fdb5a94669796b0a260eeee49 | 3,657,529 |
def random_account_number():
"""
Generate random encoded account number for testing
"""
_, account_number = create_account()
return encode_verify_key(verify_key=account_number) | d662dc0acdc78f86baf2de998ab6ab920cc80ca0 | 3,657,530 |
def get_recommendation_summary_of_projects(project_ids, state, credentials):
"""Returns the summary of recommendations on all the given projects.
Args:
project_ids: List(str) project to which recommendation is needed.
state: state of recommendations
credentials: client credentials.
"""
recommender = build("recommender",
"v1",
credentials=credentials,
cache_discovery=False)
def get_metric(project_id):
recommendation_metric = common.get_recommendations(
project_id,
recommender=recommender,
state=state,
credentials=credentials)
return accounts_can_made_safe(project_id, state, recommendation_metric)
recommendation_stats = common.rate_limit_execution(get_metric, RATE_LIMIT,
project_ids)
recommendation_stats_sorted = sorted(
recommendation_stats, key=lambda metric: -sum(metric["stats"].values()))
return recommendation_stats_sorted | 68cd42e4465bbdc85d88b82cb345b64a4ec1fec8 | 3,657,531 |
def selection_filter(file_path):
"""
获得经过filter方法获得的特征子集
f_classif, chi2, mutual_info_classif
"""
df = pd.read_csv(file_path)
delete_list = ['id']
df.drop(delete_list, axis=1, inplace=True)
feature_attr = [i for i in df.columns if i not in ['label']]
df.fillna(0, inplace=True)
# 特征预处理
obj_attrs = []
for attr in feature_attr:
if df.dtypes[attr] == np.dtype(object): # 添加离散数据列
obj_attrs.append(attr)
if len(obj_attrs) > 0:
df = pd.get_dummies(df, columns=obj_attrs) # 转为哑变量
y = df.label
X = df.drop('label', axis=1)
model = SelectKBest(f_classif, k=108)
X_new = model.fit_transform(X, y)
df_X_new = pd.DataFrame(X_new)
list = []
for i in X.columns:
for j in df_X_new.columns:
if np.sum(np.abs(X[i].values - df_X_new[j].values)) == 0:
list.append(i)
break
useful_list = sorted(set(X.columns.to_list()) - set(list), key = X.columns.to_list().index)
print(useful_list)
list.append('label')
return list | d6f6848c499f2d4899828e1e1bd0fb0ffe930186 | 3,657,532 |
def _process_voucher_data_for_order(cart):
"""Fetch, process and return voucher/discount data from cart."""
vouchers = Voucher.objects.active(date=date.today()).select_for_update()
voucher = get_voucher_for_cart(cart, vouchers)
if cart.voucher_code and not voucher:
msg = pgettext(
'Voucher not applicable',
'Voucher expired in meantime. Task placement aborted.')
raise NotApplicable(msg)
if not voucher:
return {}
increase_voucher_usage(voucher)
return {
'voucher': voucher,
'discount_amount': cart.discount_amount,
'discount_name': cart.discount_name,
'translated_discount_name': cart.translated_discount_name} | ec15f13607cee7e4bdd2e16f9a44904638964d36 | 3,657,533 |
def is_insertion(ref, alt):
"""Is alt an insertion w.r.t. ref?
Args:
ref: A string of the reference allele.
alt: A string of the alternative allele.
Returns:
True if alt is an insertion w.r.t. ref.
"""
return len(ref) < len(alt) | 17d7d6b8dfdf387e6dd491a6f782e8c9bde22aff | 3,657,534 |
from typing import Optional
def identify_fast_board(switches: int, drivers: int) -> Optional[FastIOBoard]:
"""Instantiate and return a FAST board capable of accommodating the given number of switches and drivers."""
if switches > 32 or drivers > 16:
return None
if switches > 16:
return None if drivers > 8 else FastIO3208()
if drivers <= 4:
return FastIO0804()
if switches <= 8:
return FastIO1616()
return None | 27c0dca3e0421c9b74976a947eda5d6437598c01 | 3,657,535 |
import struct
def encode_hop_data(
short_channel_id: bytes, amt_to_forward: int, outgoing_cltv_value: int
) -> bytes:
"""Encode a legacy 'hop_data' payload to bytes
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#legacy-hop_data-payload-format
:param short_channel_id: the short channel id this hop relates to
:param amt_to_forward: the amount to forward on this hop
:param outgoing_cltv_value: the outgoing cltv value to use for this hop
:return: the hop_data payload
"""
# Bolt #7: The hop_data format is identified by a single 0x00-byte length, for
# backward compatibility.
hop_data = struct.pack(config.be_u8, 0x00)
hop_data += short_channel_id
hop_data += struct.pack(config.be_u64, amt_to_forward)
hop_data += struct.pack(config.be_u32, outgoing_cltv_value)
# [12*byte:padding]
hop_data += b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
return hop_data | 51fda780036fdcbb8ff1d5cd77b422aaf92eb4fd | 3,657,536 |
def extract_all_patterns(game_state, action, mask, span):
""" Extracting the local forward model pattern for each cell of the grid's game-state and returning a numpy array
:param prev_game_state: game-state at time t
:param action: players action at time t
:param game_state: resulting game-state at time t+1
:param mask: square pattern mask (boolean array to mark which tiles should be included.
:param span: The span of the mask.
:return: np.ndarray of observed patterns
"""
data_set = np.zeros((game_state.shape[0]*game_state.shape[1], np.sum(mask)+1))
# only iterate over positions that were affected by the game state's changes
positions = [(x, y) for x in range(game_state.shape[0]) for y in range(game_state.shape[1])]
ext_game_state_grid = np.pad(game_state, span, "constant", constant_values=1)
for i, (x, y) in enumerate(positions):
el = ext_game_state_grid[span + x - span: span + x + span + 1, span + y - span: span + y + span + 1][mask].tolist()
el.append(action)
data_set[i, :] = el
return data_set | 06e44c871a14b7685ca5dd165285cfe2c7076b85 | 3,657,537 |
import os
def wrapper_subcavities(final_cavities, cav_of_interest, grid_min, grid_shape, cavities, code, out, sourcedir, list_ligands,
seeds_mindist = 3, merge_subcavs = True, minsize_subcavs = 50, min_contacts = 0.667, v = False,
printv = False, print_pphores_subcavs = False, export_subcavs = False, gridspace = 1.0, frame = None):
"""
Wraps transform_cav2im3d, find_subcav_watershed, map_subcav_in_cav
merge_small_enclosed_subcavs, print_subcavs_pphores and export_pdb_subcavities
as one function
"""
# Convert to a 3D image for skimage
im3d = transform_cav2im3d(final_cavities[cav_of_interest], grid_min,
grid_shape) #filtered_pharma[order][cav_of_interest])
# Perform the watershed algorithm, including entropy of pharmacophores
labels = find_subcav_watershed(im3d, seeds_mindist)
# Map results of watershed to grid points of cavity
#subcavs = map_subcav_in_cav(cavities, cav_of_interest, labels, args.code, grid_min, grid_shape)
subcavs = map_subcav_in_cav(labels, grid_min)
if merge_subcavs == True:
subcavs = merge_small_enclosed_subcavs(subcavs, minsize_subcavs = minsize_subcavs,
min_contacts = min_contacts, v = v)
subcavs_table = print_subcavs_pphores(cavities, subcavs, cav_of_interest, code, grid_min, grid_shape, frame)
# Export
if export_subcavs:
try:
os.mkdir(out)
except:
pass
if frame:
export_pdb_subcavities(subcavs, code[:-4]+"_"+str(frame), grid_min, grid_shape,
cavid = cav_of_interest, gridspace = gridspace, outdir = out,
listlig = list_ligands, oridir = sourcedir)
else:
export_pdb_subcavities(subcavs, code[:-4], grid_min, grid_shape,
cavid = cav_of_interest, gridspace = gridspace, outdir = out,
listlig = list_ligands, oridir = sourcedir)
return subcavs_table | 94751b892b473d818f27f431420aa7de726c91d3 | 3,657,538 |
import os
def generate_datafile(lists_of_systems, output_dir, filename):
"""
take in a list of lists which contains systems
generate one input data file per list
"""
result = []
for index, list_of_sys in enumerate(lists_of_systems):
output_filename = filename + "_" + str(index) + ".xml"
output_file = os.path.join(output_dir, output_filename)
fd = file_Utils.open_file(output_file, "w+")
if fd is not None:
root = xml_Utils.create_element("root")
for system in list_of_sys:
root.append(system)
fd.write(xml_Utils.convert_element_to_string(root))
result.append(output_file)
return result | 70024dc2c1420b9fbff312856b8bb48ee645e772 | 3,657,539 |
def cond(*args, **kwargs):
"""Conditional computation to run on accelerators."""
return backend()['cond'](*args, **kwargs) | 969307c62bd4a2eef6b16dffff953910524cc3c1 | 3,657,540 |
import os
def get_testfile_paths():
"""
return the necessary paths for the testfile tests
Returns
-------
str
absolute file path to the test file
str
absolute folder path to the expected output folder
"""
testfile = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'test_data', '0009_20170523_181119_FA2806.all')
expected_output = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'test_data', 'converted')
return testfile, expected_output | f1cb8d29c70c686fbca43175637f44b7c5342180 | 3,657,541 |
def singleton(cls):
"""Decorator that provides singleton functionality.
>>> @singleton
... class Foo(object):
... pass
...
>>> a = Foo()
>>> b = Foo()
>>> a is b
True
"""
_inst = [None]
def decorated(*args, **kwargs):
if _inst[0] is None:
_inst[0] = cls(*args, **kwargs)
return _inst[0]
return decorated | 4ae64aeaaba1b838232e4d7700d692dcc109be6d | 3,657,542 |
import inspect
def _with_factory(make_makers):
"""Return a decorator for test methods or classes.
Args:
make_makers (callable): Return an iterable over (name, maker) pairs,
where maker (callable): Return a fixture (arbitrary object) given
Factory as single argument
"""
def wrap(test_func):
def wrapper(self, *args, **kwargs):
factory = make_factory(
self.addCleanup, test=self, root=None, makers=make_makers())
return test_func(self, factory, *args, **kwargs)
return wrapper
def deco(test_func_or_class):
if inspect.isclass(test_func_or_class):
class_ = test_func_or_class
for name, method in inspect.getmembers(class_, is_test_method):
wrapped_method = wrap(method)
setattr(class_, name, wrapped_method)
return class_
else:
method = test_func_or_class
return wrap(method)
return deco | 5841e80129b212bba2c6d0b1f89966fa0d5ce152 | 3,657,543 |
import time
def timeItDeco(func):
""" Decorator which times the given function. """
def timing(*args, **kwargs):
""" This function will replace the original function. """
# Start the clock
t1 = time.clock()
# Run the original function and collect results
result = func(*args, **kwargs)
# Print out the execution time
print('Execution time', time.clock() - t1)
return result
# Return the funtion that was modified
return timing | 9c59a512a9cf9eac190af4a88dbf8ccab2069f55 | 3,657,544 |
def apply_haste(self: Player, target: Player, rules: dict, left: bool) -> EffectReturn:
"""
Apply the effects of haste to the target:
attack beats attack
"""
# "attack": {"beats": ["disrupt", "area", "attack"], "loses": ["block", "dodge"]}
if left:
# Remove attack from the attack: loses dict
if "attack" in rules["attack"]["loses"]:
rules["attack"]["loses"].remove("attack")
# Add attack to the attack: beats dict
if "attack" not in rules["attack"]["beats"]:
rules["attack"]["beats"].append("attack")
# "attack": {"beats": ["disrupt", "area"], "loses": ["block", "dodge", "attack"]}
else:
# Remove attack from the attack: beats dict
if "attack" in rules["attack"]["beats"]:
rules["attack"]["beats"].remove("attack")
# Add attack to the attack: loses dict
if "attack" not in rules["attack"]["loses"]:
rules["attack"]["loses"].append("attack")
return self, target, rules | 0186fe8553cb89c73d9a3cfae35048cd465b9859 | 3,657,545 |
def get_mean_cube(datasets):
"""Get mean cube of a list of datasets.
Parameters
----------
datasets : list of dict
List of datasets (given as metadata :obj:`dict`).
Returns
-------
iris.cube.Cube
Mean cube.
"""
cubes = iris.cube.CubeList()
for dataset in datasets:
path = dataset['filename']
cube = iris.load_cube(path)
prepare_cube_for_merging(cube, path)
cubes.append(cube)
mean_cube = cubes.merge_cube()
if len(cubes) > 1:
mean_cube = mean_cube.collapsed(['cube_label'], iris.analysis.MEAN)
mean_cube.remove_coord('cube_label')
return mean_cube | 492b5df11252beb691c62c58005ce2c3c1dcb3b8 | 3,657,546 |
async def gen_unique_chk_sum(phone, message, first_dial):
"""Generates a checksum in order to identify every single call"""
return blake2b(
bytes(phone, encoding="utf-8")
+ bytes(message, encoding="utf-8")
+ bytes(str(first_dial), encoding="utf-8"),
digest_size=4,
).hexdigest() | c85076f4fd1e2814116ece59390bebb9f398a4f6 | 3,657,547 |
def getQtipResults(version, installer):
"""
Get QTIP results
"""
period = get_config('qtip.period')
url_base = get_config('testapi.url')
url = ("http://" + url_base + "?project=qtip" +
"&installer=" + installer +
"&version=" + version + "&period=" + str(period))
request = Request(url)
try:
response = urlopen(request)
k = response.read()
response.close()
results = json.loads(k)['results']
except URLError as err:
print 'Got an error code: {}'.format(err)
result_dict = {}
if results:
for r in results:
key = '{}/{}'.format(r['pod_name'], r['scenario'])
if key not in result_dict.keys():
result_dict[key] = []
result_dict[key].append(r['details']['score'])
# return scenario_results
return result_dict | 4ae01b33a2eed23a8d3ad7b7dd1d5a3bcc8d5ab8 | 3,657,548 |
def scaled_softplus(x, alpha, name=None):
"""Returns `alpha * ln(1 + exp(x / alpha))`, for scalar `alpha > 0`.
This can be seen as a softplus applied to the scaled input, with the output
appropriately scaled. As `alpha` tends to 0, `scaled_softplus(x, alpha)` tends
to `relu(x)`.
Note: the gradient for this operation is defined to depend on the backprop
inputs as well as the outputs of this operation.
Args:
x: A `Tensor` of inputs.
alpha: A scalar `Tensor`, indicating the amount of smoothness. The caller
must ensure that `alpha > 0`.
name: A name for the scope of the operations (optional).
Returns:
A tensor of same size and type as `x`.
"""
with ops.name_scope(name, 'scaled_softplus', [x, alpha]):
x = ops.convert_to_tensor(x, name='x')
dtype = x.dtype
alpha = ops.convert_to_tensor(alpha, dtype=dtype, name='alpha')
# Verify that alpha is a scalar.
alpha.get_shape().assert_has_rank(0)
def _grad(op, g):
"""Backprop for scaled softplus."""
y = op.outputs[0]
alpha = op.inputs[1]
# Prevent the expensive computations from happening before g is available.
with ops.control_dependencies([g]):
y /= alpha
emy = math_ops.exp(-y)
dy_dx = 1. - emy
# The eps below avoids log(0). Note that t*log(t) -> 0 as t->0.
eps = 1e-8
dy_dalpha = y * emy - dy_dx * math_ops.log(dy_dx + eps)
return g * dy_dx, math_ops.reduce_sum(g * dy_dalpha)
@function.Defun(dtype, dtype,
func_name='ScaledSoftplus_%s' % dtype.name,
shape_func=lambda op: [op.inputs[0].get_shape()],
python_grad_func=_grad)
def _forward(x, alpha):
"""Forward computation of scaled softplus."""
return alpha * nn.softplus(x / alpha)
return _forward(x, alpha) | 526c5169b1ac938e3f645e96dc7e65bb4acf64b5 | 3,657,549 |
def get_choice(options):
"""Devuelve como entero la opcion seleccionada para el input con mensaje message"""
print(options)
try:
return int(input("Por favor, escoja una opción: "))
except ValueError:
return 0 | 32e95e0113650d0b94449e5e31e7d8156ae85981 | 3,657,550 |
def _listminus(list1, list2):
"""
"""
return [a for a in list1 if a not in list2] | 3f05d8bfd4169d92bb51c4617536b54779b387c9 | 3,657,551 |
import pytesseract
from pdf2image import convert_from_bytes
def pdf_to_hocr(path, lang="fra+deu+ita+eng", config="--psm 4"):
"""Loads and transform a pdf into an hOCR file.
Parameters
----------
path : str, required
The pdf's path
lang: str, optional (default="fra+deu+ita+eng")
Supporter Language of Pytesseract.
config: str, optional (default = "--psm 4")
Custom configuration flag used by Tesseract
"""
try:
except ImportError:
logger.error(
"pytesseract and pdf2image have to be installed to use this function\n run `pip install -U pytesseract pdf2image`"
)
return
with open(path, "rb") as f:
images = convert_from_bytes(f.read(), dpi=300)
return images_to_hocr(images) | 9619d45dc418f07634fd161f1dff50b4cf334e21 | 3,657,552 |
import httpx
async def fetch_cart_response(cart_id: str) -> httpx.Response:
"""Fetches cart response."""
headers = await get_headers()
async with httpx.AsyncClient(base_url=CART_BASE_URL) as client:
response = await client.get(
url=f'/{cart_id}',
headers=headers,
)
try:
response.raise_for_status()
except httpx.HTTPStatusError:
raise MoltinError(response.json()) # type: ignore
return response | 2d2da772b257b43beda78f3b08c42c914c01f00d | 3,657,553 |
from sys import stdout
import logging
from typing import Protocol
def checkHardware(binary, silent=False, transaction=None):
"""
probe caffe continuously for incrementing until missing id
structure:
[
{ "id": 0,
"name": "..",
"log": ["..", "..", "..", ... ]
},
{ "id": 1,
"name": "..",
"log": ["..", "..", "..", ... ]
},
...
]
"""
gid = 0
hw = []
if not silent:
stdout.write("Checking Hardware...\n")
logging.info("Checking Hardware...")
cpu = _getCPU()
name = _getCPUName(cpu)
hw.append({"name": name, "log": cpu})
if not silent:
stdout.write("CPU found: " + name + "\n")
logging.info("CPU found: %s", name)
if transaction:
msg = {"key": Protocol.SCANHARDWARE, "finished": False, "name": name}
transaction.send(msg)
while True:
log = _getId(gid, binary)
if not _isValid(log) or _isCpuOnly(log):
if not silent and gid is 0:
stdout.write("No GPU found, CPU mode\n")
logging.info("No GPU found, CPU mode")
break
name = _getName(log)
if not silent:
stdout.write("GPU " + str(gid) + " found: " + name + "\n")
if transaction:
msg = {"key": Protocol.SCANHARDWARE, "finished": False, "name": name, "id": gid}
transaction.send(msg)
hw.append({"id": gid, "name": name, "log": _parseLog(log)})
gid += 1
return hw | be13049d6d790410430de8a507ceefc61f276eec | 3,657,554 |
def is_namespace_mutable(context, namespace):
"""Return True if the namespace is mutable in this context."""
if context.is_admin:
return True
if context.owner is None:
return False
return namespace.owner == context.owner | f5303e75b975a1ba51aa39c608ec5af339917446 | 3,657,555 |
def get_schularten_by_veranst_iq_id(veranst_iq_id):
""" liefert die Liste der zu der Veranstaltung veranst_iq_id passenden Schularten """
query = session.query(Veranstaltung).add_entity(Schulart).join('rel_schulart')
query = query.reset_joinpoint()
query = query.filter_by(veranst_iq_id=veranst_iq_id)
return query.all() | 4c18b2fe73b17752ee2838815fa9fde8426a7ccb | 3,657,556 |
def get_station_freqs(df, method='median'):
"""
apply to df after applying group_by_days and group_by_station
"""
#df['DATE'] = df.index.get_level_values('DATE')
df['DAY'] = [d.dayofweek for d in df.index.get_level_values('DATE')]
df['DAYNAME'] = [d.day_name() for d in df.index.get_level_values('DATE')]
return df.groupby(['STATION', 'DAY','DAYNAME']).agg({'INS':method, 'OUTS':method}) | aebc1a2486c48ff2d829fc70f1f2c4b38bd3017b | 3,657,557 |
def faster_symbol_array(genome, symbol):
"""A faster calculation method for counting a symbol in genome.
Args:
genome (str): a DNA string as the search space.
symbol (str): the single base to query in the search space.
Returns:
Dictionary, a dictionary, position-counts pairs of symbol in each genome sliding window.
Examples:
The symbol array for genome equal to "AAAAGGGG" and symbol equal to "A".
>>> genome = 'AAAAGGGG'
>>> symbol = 'A'
>>> position_symbolcount_dict = symbol_array(genome, symbol)
>>> position_symbolcount_dict
{0: 4, 1: 3, 2: 2, 3: 1, 4: 0, 5: 1, 6: 2, 7: 3}
"""
array = {}
n = len(genome)
extended_genome = genome + genome[0:n//2]
# look at the first half of Genome to compute first array value
array[0] = pattern_count(symbol, genome[0:n//2])
for i in range(1, n):
# start by setting the current array value equal to the previous array value
array[i] = array[i-1]
# the current array value can differ from the previous array value by at most 1
if extended_genome[i-1] == symbol:
array[i] = array[i]-1
if extended_genome[i+(n//2)-1] == symbol:
array[i] = array[i]+1
return array | a1bbf70a211adcee14573534b62b4a4af5abdebd | 3,657,558 |
def crosswalk_patient_id(user):
""" Get patient/id from Crosswalk for user """
logger.debug("\ncrosswalk_patient_id User:%s" % user)
try:
patient = Crosswalk.objects.get(user=user)
if patient.fhir_id:
return patient.fhir_id
except Crosswalk.DoesNotExist:
pass
return None | 1424d5fdc3917d76bd0e8905b44e261068fad4f5 | 3,657,559 |
def makeArg(segID: int, N, CA, C, O, geo: ArgGeo) -> Residue:
"""Creates an Arginie residue"""
##R-Group
CA_CB_length = geo.CA_CB_length
C_CA_CB_angle = geo.C_CA_CB_angle
N_C_CA_CB_diangle = geo.N_C_CA_CB_diangle
CB_CG_length = geo.CB_CG_length
CA_CB_CG_angle = geo.CA_CB_CG_angle
N_CA_CB_CG_diangle = geo.N_CA_CB_CG_diangle
CG_CD_length = geo.CG_CD_length
CB_CG_CD_angle = geo.CB_CG_CD_angle
CA_CB_CG_CD_diangle = geo.CA_CB_CG_CD_diangle
CD_NE_length = geo.CD_NE_length
CG_CD_NE_angle = geo.CG_CD_NE_angle
CB_CG_CD_NE_diangle = geo.CB_CG_CD_NE_diangle
NE_CZ_length = geo.NE_CZ_length
CD_NE_CZ_angle = geo.CD_NE_CZ_angle
CG_CD_NE_CZ_diangle = geo.CG_CD_NE_CZ_diangle
CZ_NH1_length = geo.CZ_NH1_length
NE_CZ_NH1_angle = geo.NE_CZ_NH1_angle
CD_NE_CZ_NH1_diangle = geo.CD_NE_CZ_NH1_diangle
CZ_NH2_length = geo.CZ_NH2_length
NE_CZ_NH2_angle = geo.NE_CZ_NH2_angle
CD_NE_CZ_NH2_diangle = geo.CD_NE_CZ_NH2_diangle
carbon_b = calculateCoordinates(
N, C, CA, CA_CB_length, C_CA_CB_angle, N_C_CA_CB_diangle
)
CB = Atom("CB", carbon_b, 0.0, 1.0, " ", " CB", 0, "C")
carbon_g = calculateCoordinates(
N, CA, CB, CB_CG_length, CA_CB_CG_angle, N_CA_CB_CG_diangle
)
CG = Atom("CG", carbon_g, 0.0, 1.0, " ", " CG", 0, "C")
carbon_d = calculateCoordinates(
CA, CB, CG, CG_CD_length, CB_CG_CD_angle, CA_CB_CG_CD_diangle
)
CD = Atom("CD", carbon_d, 0.0, 1.0, " ", " CD", 0, "C")
nitrogen_e = calculateCoordinates(
CB, CG, CD, CD_NE_length, CG_CD_NE_angle, CB_CG_CD_NE_diangle
)
NE = Atom("NE", nitrogen_e, 0.0, 1.0, " ", " NE", 0, "N")
carbon_z = calculateCoordinates(
CG, CD, NE, NE_CZ_length, CD_NE_CZ_angle, CG_CD_NE_CZ_diangle
)
CZ = Atom("CZ", carbon_z, 0.0, 1.0, " ", " CZ", 0, "C")
nitrogen_h1 = calculateCoordinates(
CD, NE, CZ, CZ_NH1_length, NE_CZ_NH1_angle, CD_NE_CZ_NH1_diangle
)
NH1 = Atom("NH1", nitrogen_h1, 0.0, 1.0, " ", " NH1", 0, "N")
nitrogen_h2 = calculateCoordinates(
CD, NE, CZ, CZ_NH2_length, NE_CZ_NH2_angle, CD_NE_CZ_NH2_diangle
)
NH2 = Atom("NH2", nitrogen_h2, 0.0, 1.0, " ", " NH2", 0, "N")
res = Residue((" ", segID, " "), "ARG", " ")
res.add(N)
res.add(CA)
res.add(C)
res.add(O)
res.add(CB)
res.add(CG)
res.add(CD)
res.add(NE)
res.add(CZ)
res.add(NH1)
res.add(NH2)
return res | 4539d48e37e7bacd637300136799b8f7b3dc635d | 3,657,560 |
import json
import traceback
import tempfile
import os
import sys
def uploadAssignment(req, courseId, assignmentId, archiveFile):
""" Saves a temp file of the uploaded archive and calls
vmchecker.submit.submit method to put the homework in
the testing queue"""
websutil.sanityCheckAssignmentId(assignmentId)
websutil.sanityCheckCourseId(courseId)
# Check permission
req.content_type = 'text/html'
s = Session.Session(req)
if s.is_new():
s.invalidate()
return json.dumps({'errorType':websutil.ERR_AUTH,
'errorMessage':"",
'errorTrace':""})
strout = websutil.OutputString()
try:
s.load()
username = s['username']
except:
traceback.print_exc(file = strout)
return json.dumps({'errorType':websutil.ERR_EXCEPTION,
'errorMessage':"",
'errorTrace':strout.get()})
# Reset the timeout
s.save()
if not hasattr(archiveFile, "filename") or \
archiveFile.filename == None:
return json.dumps({'errorType':websutil.ERR_OTHER,
'errorMessage':"File not uploaded.",
'errorTrace':""})
# Save file in a temp
(fd, tmpname) = tempfile.mkstemp('.zip')
f = open(tmpname, 'wb', 10000)
## Read the file in chunks
for chunk in websutil.fbuffer(archiveFile.file):
f.write(chunk)
f.close()
os.close(fd)
# Call submit.py
## Redirect stdout to catch logging messages from submit
strout = websutil.OutputString()
sys.stdout = strout
try:
submit.submit(tmpname, assignmentId, username, courseId)
update_db.update_grades(courseId, user=username, assignment=assignmentId)
except submit.SubmittedTooSoonError:
traceback.print_exc(file = strout)
return json.dumps({'errorType':websutil.ERR_EXCEPTION,
'errorMessage':"The assignment was submitted too soon",
'errorTrace':strout.get()})
except submit.SubmittedTooLateError:
traceback.print_exc(file = strout)
return json.dumps({'errorType':websutil.ERR_EXCEPTION,
'errorMessage':"The assignment was submitted too late",
'errorTrace':strout.get()})
except:
traceback.print_exc(file = strout)
return json.dumps({'errorType':websutil.ERR_EXCEPTION,
'errorMessage':"",
'errorTrace':strout.get()})
return json.dumps({'status':True,
'dumpLog':strout.get(),
'file': tmpname}) | 03ae93e3d65a84b11115a520555b6b87bc3ec443 | 3,657,561 |
def shows_monthly_aggregate_score_heatmap():
"""Monthly Aggregate Score Heatmap Graph"""
database_connection.reconnect()
all_scores = show_scores.retrieve_monthly_aggregate_scores(database_connection)
if not all_scores:
return render_template("shows/monthly-aggregate-score-heatmap/graph.html",
years=None,
scores=None)
scores_list = []
years = list(all_scores.keys())
for year in all_scores:
scores_list.append(list(all_scores[year].values()))
return render_template("shows/monthly-aggregate-score-heatmap/graph.html",
years=years,
scores=scores_list) | 4bf26e21c7d76be96395fce43228ee0a80930e4e | 3,657,562 |
import requests
def run(string, entities):
"""Call a url to create a api in github"""
# db = utils.db()['db']
# query = utils.db()['query']
# operations = utils.db()['operations']
# apikey = utils.config('api_key')
# playlistid = utils.config('playlist_id')
# https://developers.google.com/youtube/v3/docs/playlistItems/list
# url = 'https://www.googleapis.com/youtube/v3/playlistItems?part=snippet&maxResults=50&playlistId=' + playlistid + '&key=' + apikey
nombreapi = ''
nombredata = ''
result = ''
for item in entities:
if item['entity'] == 'elapi':
nombreapi = item['sourceText'].lower()
for item in entities:
if item['entity'] == 'eldata':
nombretema = item['sourceText'].lower()
url = 'https://youtochipizarron.herokuapp.com/' + nombreapi + '_' + nombredata
utils.output('inter', 'checking', utils.translate('checking',{
'website_name': url
}))
# call the url to create a github api branch/repository
try:
r = utils.http('GET', url)
# In case there is a problem like wrong settings
#if 'error' in r.json():
# error = r.json()['error']['errors'][0]
# return utils.output('settings_error', 'settings_error', utils.translate('settings_errors', {
# 'reason': error['reason'],
# 'message': error['message']
# }))
# items = r.json()['rooms']
result += utils.translate('list_element', {
'repository_url': url,
'repository_name': nombreapi + '_' + nombredata
}
)
except requests.exceptions.RequestException as e:
return utils.output('request_error', 'request_error', utils.translate('request_errors'))
# Will synchronize the content (because "end" type) if synchronization enabled
return utils.output('end', 'success', utils.translate('success', {
'nuevoapi': nombreapi,
'nuevodata': nombredata,
'result': result
})) | 6a3a9899e8081c655e9a7eabc3e96f103a77a6bd | 3,657,563 |
def gamma(surface_potential, temperature):
"""Calculate term from Gouy-Chapmann theory.
Arguments:
surface_potential: Electrostatic potential at the metal/solution boundary in Volts, e.g. 0.05 [V]
temperature: Temperature of the solution in Kelvin, e.g. 300 [K]
Returns:
float
"""
product = sc.elementary_charge * surface_potential / (4 * sc.Stefan_Boltzmann * temperature)
return np.tanh(product) | b8996f01bb221a5cd2f6c222d166a61f1759845f | 3,657,564 |
def calculate_mask(maskimage, masks):
"""Extracts watershed seeds from data."""
dims = list(maskimage.slices2shape())
maskdata = np.ones(dims, dtype='bool')
if masks:
dataslices = utils.slices2dataslices(maskimage.slices)
maskdata = utils.string_masks(masks, maskdata, dataslices)
maskimage.write(data=maskdata, slices=maskimage.slices)
return maskdata | 4935cacb3689b844ab119ec3b24b9e59b7db7ec3 | 3,657,565 |
def Range(lo, hi, ctx = None):
"""Create the range regular expression over two sequences of length 1
>>> range = Range("a","z")
>>> print(simplify(InRe("b", range)))
True
>>> print(simplify(InRe("bb", range)))
False
"""
lo = _coerce_seq(lo, ctx)
hi = _coerce_seq(hi, ctx)
return ReRef(Z3_mk_re_range(lo.ctx_ref(), lo.ast, hi.ast), lo.ctx) | cb9cf3a334ba8509a54226c86c555257092a0951 | 3,657,566 |
import numpy
def quantile(data, num_breaks):
"""
Calculate quantile breaks.
Arguments:
data -- Array of values to classify.
num_breaks -- Number of breaks to perform.
"""
def scipy_mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=()):
""" function copied from scipy 0.13.3::scipy.stats.mstats.mquantiles """
def _quantiles1D(data,m,p):
x = numpy.sort(data.compressed())
n = len(x)
if n == 0:
return numpy.ma.array(numpy.empty(len(p), dtype=float), mask=True)
elif n == 1:
return numpy.ma.array(numpy.resize(x, p.shape), mask=numpy.ma.nomask)
aleph = (n*p + m)
k = numpy.floor(aleph.clip(1, n-1)).astype(int)
gamma = (aleph-k).clip(0,1)
return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]
# Initialization & checks ---------
data = numpy.ma.array(a, copy=False)
if data.ndim > 2:
raise TypeError("Array should be 2D at most !")
#
if limit:
condition = (limit[0] < data) & (data < limit[1])
data[~condition.filled(True)] = numpy.ma.masked
#
p = numpy.array(prob, copy=False, ndmin=1)
m = alphap + p*(1.-alphap-betap)
# Computes quantiles along axis (or globally)
if (axis is None):
return _quantiles1D(data, m, p)
return numpy.ma.apply_along_axis(_quantiles1D, axis, data, m, p)
return scipy_mquantiles(data, numpy.linspace(1.0 / num_breaks, 1, num_breaks)) | 24486e39fcefb9e6cf969067836d1793b9f4a7c8 | 3,657,567 |
def extract_conformers_from_rdkit_mol_object(mol_obj, conf_ids):
"""
Generate xyz lists for all the conformers in conf_ids
:param mol_obj: Molecule object
:param conf_ids: (list) list of conformer ids to convert to xyz
:return: (list(list(cgbind.atoms.Atom)))
"""
conformers = []
for i in range(len(conf_ids)):
mol_block_lines = Chem.MolToMolBlock(mol_obj, confId=conf_ids[i]).split('\n')
atoms = []
for line in mol_block_lines:
split_line = line.split()
if len(split_line) == 16:
atom_label, x, y, z = split_line[3], split_line[0], split_line[1], split_line[2]
atoms.append(Atom(atom_label, float(x), float(y), float(z)))
conformer = BaseStruct()
conformer.set_atoms(atoms)
conformers.append(conformer)
if len(conformers) == 0:
raise CgbindCritical('Length of conformer xyz list was 0. RDKit failed')
return conformers | 821977c0be57441b5146c9d5ef02a19320cf5b91 | 3,657,568 |
def create_embedding(name: str, env_spec: EnvSpec, *args, **kwargs) -> Embedding:
"""
Create an embedding to use with sbi.
:param name: identifier of the embedding
:param env_spec: environment specification
:param args: positional arguments forwarded to the embedding's constructor
:param kwargs: keyword arguments forwarded to the embedding's constructor
:return: embedding instance
"""
if name == LastStepEmbedding.name:
embedding = LastStepEmbedding(env_spec, RolloutSamplerForSBI.get_dim_data(env_spec), *args, **kwargs)
elif name == DeltaStepsEmbedding.name:
embedding = DeltaStepsEmbedding(env_spec, RolloutSamplerForSBI.get_dim_data(env_spec), *args, **kwargs)
elif name == BayesSimEmbedding.name:
embedding = BayesSimEmbedding(env_spec, RolloutSamplerForSBI.get_dim_data(env_spec), *args, **kwargs)
elif name == DynamicTimeWarpingEmbedding.name:
embedding = DynamicTimeWarpingEmbedding(env_spec, RolloutSamplerForSBI.get_dim_data(env_spec), *args, **kwargs)
elif name == RNNEmbedding.name:
embedding = RNNEmbedding(env_spec, RolloutSamplerForSBI.get_dim_data(env_spec), *args, **kwargs)
elif name == AllStepsEmbedding.name:
embedding = AllStepsEmbedding(env_spec, RolloutSamplerForSBI.get_dim_data(env_spec), *args, **kwargs)
else:
raise pyrado.ValueErr(
given_name=name,
eq_constraint=f"{LastStepEmbedding.name}, {DeltaStepsEmbedding.name}, {BayesSimEmbedding.name}, "
f"{DynamicTimeWarpingEmbedding.name}, or {RNNEmbedding.name}",
)
return embedding | 70f4651f5815f008670de08805249d0b9dfc39e9 | 3,657,569 |
def _init_allreduce_operators(length, split_indices):
""" initialize allreduce communication operators"""
indices = split_indices[0]
fusion = split_indices[1]
op_list = ()
j = 0
for i in range(length):
if j <= len(indices)-1:
temp = indices[j]
else:
temp = length
if i >= temp:
j = j + 1
fusion = fusion + 1
op = AllReduce('sum', GlobalComm.WORLD_COMM_GROUP)
op.add_prim_attr('fusion', fusion)
op_list = op_list + (op,)
return op_list | 91f752e049394b27340553830dce70074ef7ed81 | 3,657,570 |
def get_valid_fields(val: int, cs: dict) -> set:
"""
A value is valid if there's at least one field's interval which contains it.
"""
return {
field
for field, intervals in cs.items()
if any(map(lambda i: i[0] <= val <= i[1], intervals))
} | 3016e78637374eadf7d0e2029d060538fea86377 | 3,657,571 |
import glob
import re
def load_data_multiview(_path_features, _path_lables, coords, joints, cycles=3, test_size=0.1):
"""Generate multi-view train/test data from gait cycles.
Args:
_path_features (str): Path to gait sequence file
_path_lables (str): Path to labels of corresponding gait sequence
coords (int): Number of co-ordinates representing each joint in gait cycle
joints (int)): Number of joints in the gait sequence
cycles (int, optional): Time duration of gait cycle. Defaults to 3.
test_size (float, optional): Ratio of test data. Defaults to 0.1.
Returns:
[list]: train and test data
"""
feature_files = glob.glob(_path_features)
label_files = glob.glob(_path_lables)
print(f'---> Number of files = {len(feature_files)}')
# sorting files so that features and labels files match
feature_files.sort()
label_files.sort()
angle_regex = re.compile('(\d*).h5')
folder_regex = re.compile('(\w*)\/')
all_data_train = []
all_data_test = []
all_labels_train = []
all_labels_test = []
all_angles_train = []
all_angles_test = []
for feature_file, label_file in zip(feature_files, label_files):
ff = h5py.File(feature_file, 'r')
fl = h5py.File(label_file, 'r')
angle = int(angle_regex.search(feature_file).group(1))
folder = folder_regex.findall(feature_file)[-1]
print(f"--->> processing - {folder} - {angle}")
data_list = []
num_samples = len(ff.keys())
time_steps = 0
labels = np.empty(num_samples)
for si in range(num_samples):
ff_group_key = list(ff.keys())[si]
data_list.append(list(ff[ff_group_key])) # Get the data
time_steps_curr = len(ff[ff_group_key])
if time_steps_curr > time_steps:
time_steps = time_steps_curr
labels[si] = fl[list(fl.keys())[si]][()]
data = np.empty((num_samples, time_steps*cycles, joints*coords))
for si in range(num_samples):
data_list_curr = np.tile(
data_list[si], (int(np.ceil(time_steps / len(data_list[si]))), 1))
for ci in range(cycles):
data[si, time_steps * ci:time_steps *
(ci + 1), :] = data_list_curr[0:time_steps]
data_train, data_test, labels_train, labels_test = train_test_split(data,
labels,
test_size=test_size)
all_data_train.extend(data_train)
all_data_test.extend(data_test)
all_labels_train.extend(labels_train)
all_labels_test.extend(labels_test)
all_angles_train.extend([angle]*len(labels_train))
all_angles_test.extend([angle]*len(labels_test))
return data, labels, \
all_data_train, all_labels_train, \
all_data_test, all_labels_test, \
all_angles_train, all_angles_test | 574ca69bf6a6637b4ca53de05f8e792844e134bb | 3,657,572 |
def T_ncdm(omega_ncdm, m_ncdm):
# RELICS ONLY?
"""Returns T_ncdm as a function of omega_ncdm, m_ncdm.
omega_ncdm : relative relic abundance. Unitless.
m_ncdm : relic mass in units [eV].
T_ncdm : relic temperature in units [K]
"""
T_ncdm = (np.power( cf.NEUTRINO_SCALE_FACTOR * omega_ncdm / m_ncdm, 1./3.)
* cf.RELIC_TEMP_SCALE)
return T_ncdm | c3db4e4d2ac226f12afca3077bbc3436bd7a0459 | 3,657,573 |
import logging
from datetime import datetime
import subprocess
def main(config: Config, dry_run: bool = False) -> int:
"""
Main entrypoint into the program. Takes specified snapshots if they don't exist and deletes old entrys as specified.
:param config: The backup manager configuration.
:param dry_run: Flag to indicate that no commands should be run
:return: 0 on success, non-zero on failure
"""
zfs_path = which("zfs")
if zfs_path is None:
logging.critical("zfs command cannot be found")
return 2
try:
dataset_configs = get_dataset_configs(config)
except RuntimeError as exc:
logging.critical(exc)
return 3
logging.debug(
"Parsed dataset configs: \n\t%s", "\n\t".join((dumps(config) for config in dataset_configs)),
)
today = datetime.now().date()
for dataset_config in dataset_configs:
if not (
dataset_config["keep_days"] > 0
or (dataset_config["keep_weeks"] > 0 and today.isoweekday() == dataset_config["dow"])
or (dataset_config["keep_months"] > 0 and today.day == dataset_config["dom"])
):
logging.debug("No snapshot scheduled for dataset %s", dataset_config["name"])
continue
today_snapshot_name = "{}@{}{}".format(
dataset_config["name"], config.get("snapshot_prefix", ""), today.strftime("%Y%m%d")
)
if today in get_sorted_snapshots(config)[dataset_config["name"]]:
logging.warning("Snapshot %s already exists", today_snapshot_name)
continue
cmd = ["zfs", "snapshot", today_snapshot_name]
if dataset_config["recursive"]:
cmd.insert(2, "-r")
logging.info("Creating snapshot %s", today_snapshot_name)
logging.debug("Running command: %s", cmd)
if not dry_run:
try:
subprocess.check_output(cmd, stderr=subprocess.PIPE, encoding="utf-8")
except subprocess.CalledProcessError as exc:
logging.error("zfs command failed with error: %s", exc.stderr)
# Cleanup snapshots
dataset_snapshots = get_sorted_snapshots(config)[dataset_config["name"]]
keep_daily_set = set(dataset_snapshots[: dataset_config["keep_days"]])
keep_weekly_set = set(
[snapshot for snapshot in dataset_snapshots if snapshot.isoweekday() == dataset_config["dow"]][
: dataset_config["keep_weeks"]
]
)
keep_monthly_set = set(
[snapshot for snapshot in dataset_snapshots if snapshot.day == dataset_config["dom"]][
: dataset_config["keep_months"]
]
)
keep_set = keep_daily_set | keep_weekly_set | keep_monthly_set
for snapshot in set(dataset_snapshots) - keep_set:
delete_snapshot_name = "{}@{}{}".format(
dataset_config["name"], config.get("snapshot_prefix", ""), snapshot.strftime("%Y%m%d")
)
cmd = [
"zfs",
"destroy",
delete_snapshot_name,
]
if dataset_config["recursive"]:
cmd.insert(2, "-r")
logging.info("Destroying snapshot %s", delete_snapshot_name)
logging.debug("Running command: %s", cmd)
if not dry_run:
try:
subprocess.check_output(cmd, stderr=subprocess.PIPE, encoding="utf-8")
except subprocess.CalledProcessError as exc:
logging.error("zfs command failed with error: %s", exc.stderr)
return 0 | f3cf6967458c082f78cd47a4d5793a1fa8e130a2 | 3,657,574 |
import binascii
def generate_initialisation_vector():
"""Generates an initialisation vector for encryption."""
initialisation_vector = Random.new().read(AES.block_size)
return (initialisation_vector, int(binascii.hexlify(initialisation_vector), 16)) | 4c05067d86cbf32de7f07b5d7483811c46307b64 | 3,657,575 |
def assign_score(relevant_set):
"""Assign score to each relevant element in descending order and return the score list."""
section = len(relevance[0])//3
score = []
s = 3
for i in range(3):
if s == 1:
num = len(relevance[0]) - len(score)
score.extend([s]*num)
else:
score.extend([s]*section)
s -= 1
return score | 76a43780e1d1f37f7e0220ff0a0ca2ec484dd036 | 3,657,576 |
def visualize_img(img,
cam,
kp_pred,
vert,
renderer,
kp_gt=None,
text={},
rotated_view=False,
mesh_color='blue',
pad_vals=None,
no_text=False):
"""
Visualizes the image with the ground truth keypoints and
predicted keypoints on left and image with mesh on right.
Keypoints should be in normalized coordinates, not image coordinates.
Args:
img: Image.
cam (3x1): Camera parameters.
kp_gt: Ground truth keypoints.
kp_pred: Predicted keypoints.
vert: Vertices.
renderer: SMPL renderer.
text (dict): Optional information to include in the image.
rotated_view (bool): If True, also visualizes mesh from another angle.
if pad_vals (2,) is not None, removes those values from the image
(undo img pad to make square)
Returns:
Combined image.
"""
img_size = img.shape[0]
text.update({'sc': cam[0], 'tx': cam[1], 'ty': cam[2]})
if kp_gt is not None:
gt_vis = kp_gt[:, 2].astype(bool)
loss = np.sum((kp_gt[gt_vis, :2] - kp_pred[gt_vis])**2)
text['kpl'] = loss
# Undo pre-processing.
# Make sure img is [0-255]
input_img = ((img + 1) * 0.5) * 255.
rend_img = renderer(vert, cam=cam, img=input_img, color_name=mesh_color)
if not no_text:
rend_img = vis_util.draw_text(rend_img, text)
# Draw skeletons
pred_joint = ((kp_pred + 1) * 0.5) * img_size
skel_img = vis_util.draw_skeleton(input_img, pred_joint)
if kp_gt is not None:
gt_joint = ((kp_gt[:, :2] + 1) * 0.5) * img_size
skel_img = vis_util.draw_skeleton(
skel_img, gt_joint, draw_edges=False, vis=gt_vis)
if pad_vals is not None:
skel_img = remove_pads(skel_img, pad_vals)
rend_img = remove_pads(rend_img, pad_vals)
if rotated_view:
rot_img = renderer.rotated(
vert, 90, cam=cam, alpha=False, color_name=mesh_color)
if pad_vals is not None:
rot_img = remove_pads(rot_img, pad_vals)
return skel_img / 255, rend_img / 255, rot_img / 255
else:
return skel_img / 255, rend_img / 255 | eb182cdd4042595abfba3c399c20fd5bba0ca352 | 3,657,577 |
import os
def _check_file_type_specific_bad_pattern(filepath, content):
"""Check the file content based on the file's extension.
Args:
filepath: str. Path of the file.
content: str. Contents of the file.
Returns:
failed: bool. True if there is bad pattern else false.
total_error_count: int. The number of errors.
"""
_, extension = os.path.splitext(filepath)
pattern = BAD_PATTERNS_MAP.get(extension)
failed = False
total_error_count = 0
if pattern:
for regexp in pattern:
if _check_bad_pattern_in_file(filepath, content, regexp):
failed = True
total_error_count += 1
return failed, total_error_count | fe8817f77f5596d8c51173ab3dc48ef8c02f8bcb | 3,657,578 |
import socket
import requests
from sys import version
def _update(__version__, __code_name__, language, socks_proxy):
"""
update the framework
Args:
__version__: version number
__code_name__: code name
language: language
socks_proxy: socks proxy
Returns:
True if success otherwise None
"""
try:
if socks_proxy is not None:
socks_version = socks.SOCKS5 if socks_proxy.startswith(
'socks5://') else socks.SOCKS4
socks_proxy = socks_proxy.rsplit('://')[1]
socks.set_default_proxy(socks_version, str(
socks_proxy.rsplit(':')[0]), int(socks_proxy.rsplit(':')[1]))
socket.socket = socks.socksocket
socket.getaddrinfo = getaddrinfo
data = requests.get(
url, headers={"User-Agent": "OWASP Nettacker"}).content
if version() is 3:
data = data.decode("utf-8")
if __version__ + ' ' + __code_name__ == data.rsplit('\n')[0]:
info(messages(language, "last_version"))
else:
warn(messages(language, "not_last_version"))
warn(messages(language, "feature_unavailable"))
except:
warn(messages(language, "cannot_update"))
return True | a35b9115e4c123aa771de238cac576a1df8532c1 | 3,657,579 |
import scipy
def conv_noncart_to_cart(points, values, xrange, yrange, zrange):
"""
:param points: Data point locations (non-cartesian system)
:param vals: Values corresponding to each data point
:param xrange: Range of x values to include on output cartesian grid
:param yrange: y
:param zrange: z
:return: 3d array with sides (xrange, yrange, zrange) of values
"""
# Get all points on cartesian grid specified
xv, yv, zv = np.meshgrid(xrange, yrange, zrange)
print(xv)
print(yv)
print(zv)
# Determine interpolated values of points on the cartesian grid
valarray = scipy.interpolate.griddata(points=points, values=values, xi=(xv, yv, zv), method="linear")
# Returns 3D array of vals on cartesian grid
return(valarray) | cba013444ecdbd4abec14008dc6894e306244087 | 3,657,580 |
import urllib
import json
def createColumnsFromJson(json_file, defaultMaximumSize=250):
"""Create a list of Synapse Table Columns from a Synapse annotations JSON file.
This creates a list of columns; if the column is a 'STRING' and
defaultMaximumSize is specified, change the default maximum size for that
column.
"""
f = urllib.urlopen(path2url(json_file))
data = json.load(f)
cols = []
for d in data:
d['enumValues'] = [a['value'] for a in d['enumValues']]
if d['columnType'] == 'STRING' and defaultMaximumSize:
d['maximumSize'] = defaultMaximumSize
cols.append(synapseclient.Column(**d))
return cols | 9eba1d44a9fec8e92b6b95036821d48d68cd991b | 3,657,581 |
from typing import Callable
from re import T
from typing import Optional
import warnings
def record(
fn: Callable[..., T], error_handler: Optional[ErrorHandler] = None
) -> Callable[..., T]:
"""
Syntactic sugar to record errors/exceptions that happened in the decorated
function using the provided ``error_handler``.
Using this decorator is equivalent to:
::
error_handler = get_error_handler()
error_handler.initialize()
try:
foobar()
except ChildFailedError as e:
_, failure = e.get_first_failure()
error_handler.dump_error_file(failure.error_file, failure.exitcode)
raise
except Exception as e:
error_handler.record(e)
raise
.. important:: use this decorator once per process at the top level method,
typically this is the main method.
Example
::
@record
def main():
pass
if __name__=="__main__":
main()
"""
if not error_handler:
error_handler = get_error_handler()
def wrap(f):
@wraps(f)
def wrapper(*args, **kwargs):
assert error_handler is not None # assertion for mypy type checker
error_handler.initialize()
try:
return f(*args, **kwargs)
except ChildFailedError as e:
rank, failure = e.get_first_failure()
if failure.error_file != _NOT_AVAILABLE:
error_handler.dump_error_file(failure.error_file, failure.exitcode)
else:
warnings.warn(_no_error_file_warning_msg(rank, failure))
raise
except Exception as e:
error_handler.record_exception(e)
raise
return wrapper
return wrap(fn) | e538c51aeb4234aa85d90d9978d228bf0f505aac | 3,657,582 |
import torch
def bbox_overlaps_2D(boxes1, boxes2):
"""Computes IoU overlaps between two sets of boxes.
boxes1, boxes2: [N, (y1, x1, y2, x2)].
"""
# 1. Tile boxes2 and repeate boxes1. This allows us to compare
# every boxes1 against every boxes2 without loops.
# TF doesn't have an equivalent to np.repeate() so simulate it
# using tf.tile() and tf.reshape.
boxes1_repeat = boxes2.size()[0]
boxes2_repeat = boxes1.size()[0]
boxes1 = boxes1.repeat(1,boxes1_repeat).view(-1,4)
boxes2 = boxes2.repeat(boxes2_repeat,1)
# 2. Compute intersections
b1_y1, b1_x1, b1_y2, b1_x2 = boxes1.chunk(4, dim=1)
b2_y1, b2_x1, b2_y2, b2_x2 = boxes2.chunk(4, dim=1)
y1 = torch.max(b1_y1, b2_y1)[:, 0]
x1 = torch.max(b1_x1, b2_x1)[:, 0]
y2 = torch.min(b1_y2, b2_y2)[:, 0]
x2 = torch.min(b1_x2, b2_x2)[:, 0]
zeros = Variable(torch.zeros(y1.size()[0]), requires_grad=False)
if y1.is_cuda:
zeros = zeros.cuda()
intersection = torch.max(x2 - x1, zeros) * torch.max(y2 - y1, zeros)
# 3. Compute unions
b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1)
b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1)
union = b1_area[:,0] + b2_area[:,0] - intersection
# 4. Compute IoU and reshape to [boxes1, boxes2]
iou = intersection / union
overlaps = iou.view(boxes2_repeat, boxes1_repeat)
return overlaps | 86920dac357285b3681629474ed5aaad471ed7f8 | 3,657,583 |
def decoder(data):
"""
This generator processes a sequence of bytes in Modified UTF-8 encoding
and produces a sequence of unicode string characters.
It takes bits from the byte until it matches one of the known encoding
sequences.
It uses ``DecodeMap`` to mask, compare and generate values.
:param data: a string of bytes in Modified UTF-8 encoding.
:return: a generator producing a string of unicode characters
:raises UnicodeDecodeError: unrecognised byte in sequence encountered.
"""
def next_byte(_it, start, count):
try:
return next(_it)[1]
except StopIteration:
raise UnicodeDecodeError(
NAME, data, start, start + count, "incomplete byte sequence"
)
it = iter(enumerate(data))
for i, d in it:
if d == 0x00: # 00000000
raise UnicodeDecodeError(
NAME, data, i, i + 1, "embedded zero-byte not allowed"
)
if d & 0x80: # 1xxxxxxx
if d & 0x40: # 11xxxxxx
if d & 0x20: # 111xxxxx
if d & 0x10: # 1111xxxx
raise UnicodeDecodeError(
NAME, data, i, i + 1, "invalid encoding character"
)
if d == 0xED:
value = 0
for i1, dm in enumerate(DECODE_MAP[6]):
d1 = next_byte(it, i, i1 + 1)
value = dm.apply(d1, value, data, i, i1 + 1)
else: # 1110xxxx
value = d & 0x0F
for i1, dm in enumerate(DECODE_MAP[3]):
d1 = next_byte(it, i, i1 + 1)
value = dm.apply(d1, value, data, i, i1 + 1)
else: # 110xxxxx
value = d & 0x1F
for i1, dm in enumerate(DECODE_MAP[2]):
d1 = next_byte(it, i, i1 + 1)
value = dm.apply(d1, value, data, i, i1 + 1)
else: # 10xxxxxx
raise UnicodeDecodeError(
NAME, data, i, i + 1, "misplaced continuation character"
)
else: # 0xxxxxxx
value = d
# noinspection PyCompatibility
yield mutf8_unichr(value) | 217f52081a476ef1c48d2d34d020ec6c7c9e1989 | 3,657,584 |
def calculate_exvolume_redfactor():
"""
Calculates DEER background reduction factor alpha(d)
See
Kattnig et al
J.Phys. Chem. B, 117, 16542 (2013)
https://doi.org/10.1021/jp408338q
The background reduction factor alpha(d) is defined in Eq.(18)
For large d, one can use the limiting expression
alpha = (3/2/pi)*(2*pi/3-sqrt(3)./d)
as an excellent approximation (error at d
"""
def KK(d):
q = np.sqrt(6*d/pi)
S,C = scp.special.fresnel(q)
y = 1 - (np.cos(d)*C+np.sin(d)*S)/q
y[y==0] = 0
return y
def h(d):
d = np.atleast_1d(d)
y = np.zeros(np.shape(d))
for k in range(len(d)):
y[k],_ = scp.integrate.quad(lambda x:(1-x**2)*Si((1-x**2)*d[k]),0,np.sqrt(3))
return y
def Si(t):
t = np.atleast_1d(t)
y = np.zeros(np.shape(t))
for k in range(len(t)):
y[k],_ = scp.integrate.quad(lambda x:np.sin(x)/(x+np.finfo(float).eps),0,t[k],limit=1000)
y[y==0] = 0
return y
# Set up dR range
#-------------------------------------------------------------------------------
# dR = A*t/R^3, where t is time, R is excluded-volume radius, and A is the
# dipolar constant (in units compatible with t and R)
dRlin = np.arange(0,20,0.05)
dRlog = 10**(np.arange(1,3,0.05))
dRlog = np.delete(dRlog, np.where(dRlog < max(dRlin)))
dR = np.concatenate((dRlin, dRlog))
# Evaluate reduction factor alpha as a function of dR
#-------------------------------------------------------------------------------
h_ = h(dR)
K_ = KK(dR)
alpha = (3/2/pi)*(h_ - np.sqrt(3)/dR*K_)
alpha[dR==0] = 0
return alpha | 3583e1526f1636feaa86a77c7f5ba51d816abe26 | 3,657,585 |
def get_successors(graph):
"""Returns a dict of all successors of each node."""
d = {}
for e in graph.get_edge_list():
src = e.get_source()
dst = e.get_destination()
if src in d.keys():
d[src].add(dst)
else:
d[src] = set([dst])
return d | 1ec7b0ab8772dc738758bb14fe4abd5dd4b9074e | 3,657,586 |
def readDataTable2o2(request):
"""Vuetify練習"""
form1Textarea1 = request.POST["textarea1"]
template = loader.get_template(
'webapp1/practice/vuetify-data-table2.html')
# -----------------------------------------
# 1
# 1. host1/webapp1/templates/webapp1/practice/vuetify-data-table2.html を取ってきます。
# -----------------------------------------
context = {
'dessertsJson': form1Textarea1
}
return HttpResponse(template.render(context, request)) | 01688c20fa5057829338bbd76520a7b0510923ad | 3,657,587 |
from .sigma import decode_cf_sigma
from .grid import decode_cf_dz2depth
def get_depth(da, errors="raise"):
"""Get or compute the depth coordinate
If a depth variable cannot be found, it tries to compute either
from sigma-like coordinates or from layer thinknesses.
Parameters
----------
{errors}
Return
------
xarray.DataArray or None
See also
--------
get_lon
get_lat
get_time
get_altitude
get_level
get_vertical
xoa.cf.CFSpecs.search_coord
xoa.sigma.decode_cf_sigma
xoa.grid.decode_cf_dz2depth
"""
cfspecs = xcf.get_cf_specs(da)
errors = misc.ERRORS[errors]
ztype = cfspecs["vertical"]["type"]
# From variable
depth = cfspecs.search(da, 'depth', errors="ignore")
if depth is not None:
return depth
if ztype == "z" or not hasattr(da, "data_vars"): # explicitly
msg = "No depth coordinate found"
if errors == "raise":
raise XoaError(msg)
xoa_warn(msg)
return
# Decode the dataset
if ztype == "sigma" or ztype is None:
err = "ignore" if ztype is None else errors
da = decode_cf_sigma(da, errors=err)
if "depth" in da:
return da.depth
if ztype == "dz2depth" or ztype is None:
err = "ignore" if ztype is None else errors
da = decode_cf_dz2depth(da, errors=err)
if "depth" in da:
return da.depth
msg = "Can't infer depth coordinate from dataset"
if errors == "raise":
raise XoaError(msg)
xoa_warn(msg) | 048208629eef6e5ecf238212e7a865e5fbaea993 | 3,657,588 |
def route53_scan(assets, record_value, record):
"""
Scan Route53
"""
for i, asset in enumerate(assets):
asset_type = asset.get_type()
if asset_type == 'EC2' and record_value in (asset.public_ip, asset.private_ip):
assets[i].dns_record = record['Name'].replace('\\052', '*')
elif asset_type == 'ELBV2' and record_value == f'{asset.name}.':
assets[i].dns_record = record['Name'].replace('\\052', '*')
return assets | eccbb2d716ef7b5dd713e7fbbd210c246c97347d | 3,657,589 |
import requests
def process_language(text):
"""
Fetch from language processing API (cloud function)
:param text:
:return:
"""
# The language processing seems to fail without acsii decoding, ie remove emoji and chinese characters
request = {
"text": text.encode("ascii", errors="ignore").decode()
}
response = requests.post(LANGUAGE_PROCESSOR_API, json=request)
if response.status_code == 500:
print(f"Language processing error {response}")
return {}
else:
return response.json() | d5b164cf0722093988f7cbb3f93ef62bc7c98758 | 3,657,590 |
def to_int(text):
"""Text to integer."""
try:
return int(text)
except ValueError:
return '' | d870ee05c3117111adcf85c91038b19beaf9585b | 3,657,591 |
import os
import json
import tokenize
def parse_commonsense_reasoning_test(test_data_name):
"""Read JSON test data."""
with tf.gfile.Open(os.path.join(
FLAGS.data_dir, 'commonsense_test',
'{}.json'.format(test_data_name)), 'r') as f:
data = json.load(f)
question_ids = [d['question_id'] for d in data]
sentences = [tokenize(d['substitution']) for d in data]
labels = [d['correctness'] for d in data]
return question_ids, sentences, labels | b3d83a93ecece3813a558dfc7c5eb7757e153974 | 3,657,592 |
def flooding(loss, b):
"""flooding loss
"""
return (loss - b).abs() + b | c34eedf0421b60e27bd813381ff7dfe96a3912eb | 3,657,593 |
def CreateConditions(p,avec,bvec,indexgenerator=CreateLyndonIndices):
"""This creates the set of equations using by default the Lyndon Basis elements.
Parameters
----------
p : the considered order
avec: The set of symbols to use for the first operator.
bvec: The set of symbols to use for the second operator.
indexgenerator: (optional) by default we use indexgenerator for the Lyndon indices. Using CreateMuVectors
the indices from the overcomplete Hall-Basis can be used.
Returns
-------
array : An array of Equations that have to be satisfied to fulfill the requested order p.
"""
cvec=[*accumulate(avec)]
cvec[-1]=1
retval = [Eq(sum(avec),1)]
for k in range(1,p+1):
vecs=indexgenerator(p,k)
for mu in vecs:
retval.append(Eq(CreateEquation(mu,bvec,cvec),0))
return retval | 61ed4373d18a730838110865c8d4334176427bc4 | 3,657,594 |
def with_conf_blddir(conf, name, body, func):
"""'Context manager' to execute a series of tasks into code-specific build
directory.
func must be a callable taking no arguments
"""
old_root, new_root = create_conf_blddir(conf, name, body)
try:
conf.bld_root = new_root
conf.bld_root.ctx.bldnode = new_root
return func()
finally:
conf.bld_root = old_root
conf.bld_root.ctx.bldnode = old_root | b01af0d8a44ad432020cc800f334f4de50b5036d | 3,657,595 |
def many_to_one(clsname, **kw):
"""Use an event to build a many-to-one relationship on a class.
This makes use of the :meth:`.References._reference_table` method
to generate a full foreign key relationship to the remote table.
"""
@declared_attr
def m2o(cls):
cls._references((cls.__name__, clsname))
return relationship(clsname, **kw)
return m2o | 528f6391535a437383750346318ac65acaa8dfdc | 3,657,596 |
import sqlite3
def get_cnx(dbname=None, write=False):
"""Return a new connection to the database by the given name.
If 'dbname' is None, return a connection to the system database.
If the database file does not exist, it will be created.
The OS-level file permissions are set in DbSaver.
"""
if dbname is None:
dbname = constants.SYSTEM
dbpath = get_dbpath(dbname)
if write:
cnx = sqlite3.connect(dbpath)
else:
path = f"file:{dbpath}?mode=ro"
cnx = sqlite3.connect(dbpath, uri=True)
cnx.row_factory = sqlite3.Row
return cnx | f2e3cc300fa4cb122a9fe4705d41878332929702 | 3,657,597 |
def nir_mean(msarr,nir_band=7):
"""
Calculate the mean of the (unmasked) values of the NIR (near infrared) band
of an image array. The default `nir_band` value of 7 selects the NIR2 band
in WorldView-2 imagery. If you're working with a different type of imagery,
you will need figure out the appropriate value to use instead.
Parameters
----------
msarr : numpy array (RxCxBands shape)
The multispectral image array. See `OpticalRS.RasterDS` for more info.
nir_band : int (Default value = 7)
The default `nir_band` value of 7 selects the NIR2 band in WorldView-2
imagery. If you're working with a different type of imagery, you will
need figure out the appropriate value to use instead. This is a zero
indexed number (the first band is 0, not 1).
Returns
-------
float
The mean radiance in the NIR band.
"""
return msarr[...,nir_band].mean() | 7ba6ea8b7d51b8942a0597f2f89a05ecbee9f46e | 3,657,598 |
def decode(invoice) -> LightningInvoice:
"""
@invoice: is a str, bolt11.
"""
client = CreateLightningClient()
try:
decode_response = client.call("decode", invoice)
assert decode_response.get("error") is None
result = decode_response["result"]
assert result["valid"], "decode is invalid"
invoice = LightningInvoice()
invoice.msatoshi = result["msatoshi"]
invoice.description: str = result["description"]
return invoice
finally:
client.close() | c713ec8708214312b84103bceb64e0876d23bc29 | 3,657,599 |
Subsets and Splits