content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def custom_leastsq(obj_fn, jac_fn, x0, f_norm2_tol=1e-6, jac_norm_tol=1e-6, rel_ftol=1e-6, rel_xtol=1e-6, max_iter=100, num_fd_iters=0, max_dx_scale=1.0, damping_mode="identity", damping_basis="diagonal_values", damping_clip=None, use_acceleration=False, uphill_step_threshold=0.0, init_munu="auto", oob_check_interval=0, oob_action="reject", oob_check_mode=0, resource_alloc=None, arrays_interface=None, serial_solve_proc_threshold=100, x_limits=None, verbosity=0, profiler=None): """ An implementation of the Levenberg-Marquardt least-squares optimization algorithm customized for use within pyGSTi. This general purpose routine mimic to a large extent the interface used by `scipy.optimize.leastsq`, though it implements a newer (and more robust) version of the algorithm. Parameters ---------- obj_fn : function The objective function. Must accept and return 1D numpy ndarrays of length N and M respectively. Same form as scipy.optimize.leastsq. jac_fn : function The jacobian function (not optional!). Accepts a 1D array of length N and returns an array of shape (M,N). x0 : numpy.ndarray Initial evaluation point. f_norm2_tol : float, optional Tolerace for `F^2` where `F = `norm( sum(obj_fn(x)**2) )` is the least-squares residual. If `F**2 < f_norm2_tol`, then mark converged. jac_norm_tol : float, optional Tolerance for jacobian norm, namely if `infn(dot(J.T,f)) < jac_norm_tol` then mark converged, where `infn` is the infinity-norm and `f = obj_fn(x)`. rel_ftol : float, optional Tolerance on the relative reduction in `F^2`, that is, if `d(F^2)/F^2 < rel_ftol` then mark converged. rel_xtol : float, optional Tolerance on the relative value of `|x|`, so that if `d(|x|)/|x| < rel_xtol` then mark converged. max_iter : int, optional The maximum number of (outer) interations. num_fd_iters : int optional Internally compute the Jacobian using a finite-difference method for the first `num_fd_iters` iterations. This is useful when `x0` lies at a special or singular point where the analytic Jacobian is misleading. max_dx_scale : float, optional If not None, impose a limit on the magnitude of the step, so that `|dx|^2 < max_dx_scale^2 * len(dx)` (so elements of `dx` should be, roughly, less than `max_dx_scale`). damping_mode : {'identity', 'JTJ', 'invJTJ', 'adaptive'} How damping is applied. `'identity'` means that the damping parameter mu multiplies the identity matrix. `'JTJ'` means that mu multiplies the diagonal or singular values (depending on `scaling_mode`) of the JTJ (Fischer information and approx. hessaian) matrix, whereas `'invJTJ'` means mu multiplies the reciprocals of these values instead. The `'adaptive'` mode adaptively chooses a damping strategy. damping_basis : {'diagonal_values', 'singular_values'} Whether the the diagonal or singular values of the JTJ matrix are used during damping. If `'singular_values'` is selected, then a SVD of the Jacobian (J) matrix is performed and damping is performed in the basis of (right) singular vectors. If `'diagonal_values'` is selected, the diagonal values of relevant matrices are used as a proxy for the the singular values (saving the cost of performing a SVD). damping_clip : tuple, optional A 2-tuple giving upper and lower bounds for the values that mu multiplies. If `damping_mode == "identity"` then this argument is ignored, as mu always multiplies a 1.0 on the diagonal if the identity matrix. If None, then no clipping is applied. use_acceleration : bool, optional Whether to include a geodesic acceleration term as suggested in arXiv:1201.5885. This is supposed to increase the rate of convergence with very little overhead. In practice we've seen mixed results. uphill_step_threshold : float, optional Allows uphill steps when taking two consecutive steps in nearly the same direction. The condition for accepting an uphill step is that `(uphill_step_threshold-beta)*new_objective < old_objective`, where `beta` is the cosine of the angle between successive steps. If `uphill_step_threshold == 0` then no uphill steps are allowed, otherwise it should take a value between 1.0 and 2.0, with 1.0 being the most permissive to uphill steps. init_munu : tuple, optional If not None, a (mu, nu) tuple of 2 floats giving the initial values for mu and nu. oob_check_interval : int, optional Every `oob_check_interval` outer iterations, the objective function (`obj_fn`) is called with a second argument 'oob_check', set to True. In this case, `obj_fn` can raise a ValueError exception to indicate that it is Out Of Bounds. If `oob_check_interval` is 0 then this check is never performed; if 1 then it is always performed. oob_action : {"reject","stop"} What to do when the objective function indicates (by raising a ValueError as described above). `"reject"` means the step is rejected but the optimization proceeds; `"stop"` means the optimization stops and returns as converged at the last known-in-bounds point. oob_check_mode : int, optional An advanced option, expert use only. If 0 then the optimization is halted as soon as an *attempt* is made to evaluate the function out of bounds. If 1 then the optimization is halted only when a would-be *accepted* step is out of bounds. resource_alloc : ResourceAllocation, optional When not None, an resource allocation object used for distributing the computation across multiple processors. arrays_interface : ArraysInterface An object that provides an interface for creating and manipulating data arrays. serial_solve_proc_threshold : int optional When there are fewer than this many processors, the optimizer will solve linear systems serially, using SciPy on a single processor, rather than using a parallelized Gaussian Elimination (with partial pivoting) algorithm coded in Python. Since SciPy's implementation is more efficient, it's not worth using the parallel version until there are many processors to spread the work among. x_limits : numpy.ndarray, optional A (num_params, 2)-shaped array, holding on each row the (min, max) values for the corresponding parameter (element of the "x" vector). If `None`, then no limits are imposed. verbosity : int, optional Amount of detail to print to stdout. profiler : Profiler, optional A profiler object used for to track timing and memory usage. Returns ------- x : numpy.ndarray The optimal solution. converged : bool Whether the solution converged. msg : str A message indicating why the solution converged (or didn't). """ resource_alloc = _ResourceAllocation.cast(resource_alloc) comm = resource_alloc.comm printer = _VerbosityPrinter.create_printer(verbosity, comm) ari = arrays_interface # shorthand # MEM from ..baseobjs.profiler import Profiler # MEM debug_prof = Profiler(comm, True) # MEM profiler = debug_prof msg = "" converged = False global_x = x0.copy() f = obj_fn(global_x) # 'E'-type array norm_f = ari.norm2_f(f) # _np.linalg.norm(f)**2 half_max_nu = 2**62 # what should this be?? tau = 1e-3 alpha = 0.5 # for acceleration nu = 2 mu = 1 # just a guess - initialized on 1st iter and only used if rejected #Allocate potentially shared memory used in loop JTJ = ari.allocate_jtj() JTf = ari.allocate_jtf() x = ari.allocate_jtf() #x_for_jac = ari.allocate_x_for_jac() if num_fd_iters > 0: fdJac = ari.allocate_jac() ari.allscatter_x(global_x, x) if x_limits is not None: x_lower_limits = ari.allocate_jtf() x_upper_limits = ari.allocate_jtf() ari.allscatter_x(x_limits[:, 0], x_lower_limits) ari.allscatter_x(x_limits[:, 1], x_upper_limits) if damping_basis == "singular_values": Jac_V = ari.allocate_jtj() if damping_mode == 'adaptive': dx_lst = [ari.allocate_jtf(), ari.allocate_jtf(), ari.allocate_jtf()] new_x_lst = [ari.allocate_jtf(), ari.allocate_jtf(), ari.allocate_jtf()] global_new_x_lst = [global_x.copy() for i in range(3)] else: dx = ari.allocate_jtf() new_x = ari.allocate_jtf() global_new_x = global_x.copy() if use_acceleration: dx1 = ari.allocate_jtf() dx2 = ari.allocate_jtf() df2_x = ari.allocate_jtf() JTdf2 = ari.allocate_jtf() global_accel_x = global_x.copy() # don't let any component change by more than ~max_dx_scale if max_dx_scale: max_norm_dx = (max_dx_scale**2) * len(global_x) else: max_norm_dx = None if not _np.isfinite(norm_f): msg = "Infinite norm of objective function at initial point!" if len(global_x) == 0: # a model with 0 parameters - nothing to optimize msg = "No parameters to optimize"; converged = True # DB: from ..tools import matrixtools as _mt # DB: print("DB F0 (%s)=" % str(f.shape)); _mt.print_mx(f,prec=0,width=4) #num_fd_iters = 1000000 # DEBUG: use finite difference iterations instead # print("DEBUG: setting num_fd_iters == 0!"); num_fd_iters = 0 # DEBUG last_accepted_dx = None min_norm_f = 1e100 # sentinel best_x = ari.allocate_jtf() best_x[:] = x[:] # like x.copy() -the x-value corresponding to min_norm_f ('P'-type) spow = 0.0 # for damping_mode == 'adaptive' if damping_clip is not None: def dclip(ar): return _np.clip(ar, damping_clip[0], damping_clip[1]) else: def dclip(ar): return ar if init_munu != "auto": mu, nu = init_munu best_x_state = (mu, nu, norm_f, f.copy(), spow, None) # need f.copy() b/c f is objfn mem rawJTJ_scratch = None jtj_buf = ari.allocate_jtj_shared_mem_buf() try: for k in range(max_iter): # outer loop # assume global_x, x, f, fnorm hold valid values if len(msg) > 0: break # exit outer loop if an exit-message has been set if norm_f < f_norm2_tol: if oob_check_interval <= 1: msg = "Sum of squares is at most %g" % f_norm2_tol converged = True; break else: printer.log(("** Converged with out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state continue # can't make use of saved JTJ yet - recompute on nxt iter #printer.log("--- Outer Iter %d: norm_f = %g, mu=%g" % (k,norm_f,mu)) if profiler: profiler.memory_check("custom_leastsq: begin outer iter *before de-alloc*") Jac = None if profiler: profiler.memory_check("custom_leastsq: begin outer iter") # unnecessary b/c global_x is already valid: ari.allgather_x(x, global_x) if k >= num_fd_iters: Jac = jac_fn(global_x) # 'EP'-type, but doesn't actually allocate any more mem (!) else: # Note: x holds only number of "fine"-division params - need to use global_x, and # Jac only holds a subset of the derivative and element columns and rows, respectively. f_fixed = f.copy() # a static part of the distributed `f` resturned by obj_fn - MUST copy this. pslice = ari.jac_param_slice(only_if_leader=True) eps = 1e-7 #Don't do this: for ii, i in enumerate(range(pslice.start, pslice.stop)): (must keep procs in sync) for i in range(len(global_x)): x_plus_dx = global_x.copy() x_plus_dx[i] += eps fd = (obj_fn(x_plus_dx) - f_fixed) / eps if pslice.start <= i < pslice.stop: fdJac[:, i - pslice.start] = fd #if comm is not None: comm.barrier() # overkill for shared memory leader host barrier Jac = fdJac #DEBUG: compare with analytic jacobian (need to uncomment num_fd_iters DEBUG line above too) #Jac_analytic = jac_fn(x) #if _np.linalg.norm(Jac_analytic-Jac) > 1e-6: # print("JACDIFF = ",_np.linalg.norm(Jac_analytic-Jac)," per el=", # _np.linalg.norm(Jac_analytic-Jac)/Jac.size," sz=",Jac.size) # DB: from ..tools import matrixtools as _mt # DB: print("DB JAC (%s)=" % str(Jac.shape)); _mt.print_mx(Jac,prec=0,width=4); assert(False) if profiler: profiler.memory_check("custom_leastsq: after jacobian:" + "shape=%s, GB=%.2f" % (str(Jac.shape), Jac.nbytes / (1024.0**3))) Jnorm = _np.sqrt(ari.norm2_jac(Jac)) xnorm = _np.sqrt(ari.norm2_x(x)) printer.log("--- Outer Iter %d: norm_f = %g, mu=%g, |x|=%g, |J|=%g" % (k, norm_f, mu, xnorm, Jnorm)) #assert(_np.isfinite(Jac).all()), "Non-finite Jacobian!" # NaNs tracking #assert(_np.isfinite(_np.linalg.norm(Jac))), "Finite Jacobian has inf norm!" # NaNs tracking tm = _time.time() #OLD MPI-enabled JTJ computation ##if my_mpidot_qtys is None: ## my_mpidot_qtys = _mpit.distribute_for_dot(Jac.T.shape, Jac.shape, resource_alloc) #JTJ, JTJ_shm = _mpit.mpidot(Jac.T, Jac, my_mpidot_qtys[0], my_mpidot_qtys[1], # my_mpidot_qtys[2], resource_alloc, JTJ, JTJ_shm) # _np.dot(Jac.T,Jac) 'PP' ari.fill_jtj(Jac, JTJ, jtj_buf) ari.fill_jtf(Jac, f, JTf) # 'P'-type if profiler: profiler.add_time("custom_leastsq: dotprods", tm) #assert(not _np.isnan(JTJ).any()), "NaN in JTJ!" # NaNs tracking #assert(not _np.isinf(JTJ).any()), "inf in JTJ! norm Jac = %g" % _np.linalg.norm(Jac) # NaNs tracking #assert(_np.isfinite(JTJ).all()), "Non-finite JTJ!" # NaNs tracking #assert(_np.isfinite(JTf).all()), "Non-finite JTf!" # NaNs tracking idiag = ari.jtj_diag_indices(JTJ) norm_JTf = ari.infnorm_x(JTf) norm_x = ari.norm2_x(x) # _np.linalg.norm(x)**2 undamped_JTJ_diag = JTJ[idiag].copy() # 'P'-type #max_JTJ_diag = JTJ.diagonal().copy() JTf *= -1.0; minus_JTf = JTf # use the same memory for -JTf below (shouldn't use JTf anymore) #Maybe just have a minus_JTf variable? # FUTURE TODO: keep tallying allocated memory, i.e. array_types (stopped here) if damping_basis == "singular_values": # Jac = U * s * Vh; J.T * J = conj(V) * s * U.T * U * s * Vh = conj(V) * s^2 * Vh # Jac_U, Jac_s, Jac_Vh = _np.linalg.svd(Jac, full_matrices=False) # Jac_V = _np.conjugate(Jac_Vh.T) global_JTJ = ari.gather_jtj(JTJ) if comm is None or comm.rank == 0: global_Jac_s2, global_Jac_V = _np.linalg.eigh(global_JTJ) ari.scatter_jtj(global_Jac_V, Jac_V) comm.bcast(global_Jac_s2, root=0) else: ari.scatter_jtj(None, Jac_V) global_Jac_s2 = comm.bcast(None, root=0) #print("Rank %d: min s2 = %g" % (comm.rank, min(global_Jac_s2))) #if min(global_Jac_s2) < -1e-4 and (comm is None or comm.rank == 0): # print("WARNING: min Jac s^2 = %g (max = %g)" % (min(global_Jac_s2), max(global_Jac_s2))) assert(min(global_Jac_s2) / abs(max(global_Jac_s2)) > -1e-6), "JTJ should be positive!" global_Jac_s = _np.sqrt(_np.clip(global_Jac_s2, 1e-12, None)) # eigvals of JTJ must be >= 0 global_Jac_VT_mJTf = ari.global_svd_dot(Jac_V, minus_JTf) # = dot(Jac_V.T, minus_JTf) #DEBUG #num_large_svals = _np.count_nonzero(Jac_s > _np.max(Jac_s) / 1e2) #Jac_Uproj = Jac_U[:,0:num_large_svals] #JTJ_evals, JTJ_U = _np.linalg.eig(JTJ) #printer.log("JTJ (dim=%d) eval min/max=%g, %g; %d large svals (of %d)" % ( # JTJ.shape[0], _np.min(_np.abs(JTJ_evals)), _np.max(_np.abs(JTJ_evals)), # num_large_svals, len(Jac_s))) if norm_JTf < jac_norm_tol: if oob_check_interval <= 1: msg = "norm(jacobian) is at most %g" % jac_norm_tol converged = True; break else: printer.log(("** Converged with out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state continue # can't make use of saved JTJ yet - recompute on nxt iter if k == 0: if init_munu == "auto": if damping_mode == 'identity': mu = tau * ari.max_x(undamped_JTJ_diag) # initial damping element #mu = min(mu, MU_TOL1) else: # initial multiplicative damping element #mu = tau # initial damping element - but this seem to low, at least for termgap... mu = min(1.0e5, ari.max_x(undamped_JTJ_diag) / norm_JTf) # Erik's heuristic #tries to avoid making mu so large that dx is tiny and we declare victory prematurely else: mu, nu = init_munu rawJTJ_scratch = JTJ.copy() # allocates the memory for a copy of JTJ so only update mem elsewhere best_x_state = mu, nu, norm_f, f.copy(), spow, rawJTJ_scratch # update mu,nu,JTJ of initial best state else: #on all other iterations, update JTJ of best_x_state if best_x == x, i.e. if we've just evaluated # a previously accepted step that was deemed the best we've seen so far if _np.allclose(x, best_x): rawJTJ_scratch[:, :] = JTJ[:, :] # use pre-allocated memory rawJTJ_scratch[idiag] = undamped_JTJ_diag # no damping; the "raw" JTJ best_x_state = best_x_state[0:5] + (rawJTJ_scratch,) # update mu,nu,JTJ of initial "best state" #determing increment using adaptive damping while True: # inner loop if profiler: profiler.memory_check("custom_leastsq: begin inner iter") #print("DB: Pre-damping JTJ diag = [",_np.min(_np.abs(JTJ[idiag])),_np.max(_np.abs(JTJ[idiag])),"]") if damping_mode == 'identity': assert(damping_clip is None), "damping_clip cannot be used with damping_mode == 'identity'" if damping_basis == "singular_values": reg_Jac_s = global_Jac_s + mu #Notes: #Previously we computed inv_JTJ here and below computed dx: #inv_JTJ = _np.dot(Jac_V, _np.dot(_np.diag(1 / reg_Jac_s**2), Jac_V.T)) # dx = _np.dot(Jac_V, _np.diag(1 / reg_Jac_s**2), global_Jac_VT_mJTf #But now we just compute reg_Jac_s here, and so the rest below. else: # ok if assume fine-param-proc.size == 1 (otherwise need to sync setting local JTJ) JTJ[idiag] = undamped_JTJ_diag + mu # augment normal equations elif damping_mode == 'JTJ': if damping_basis == "singular_values": reg_Jac_s = global_Jac_s + mu * dclip(global_Jac_s) else: add_to_diag = mu * dclip(undamped_JTJ_diag) JTJ[idiag] = undamped_JTJ_diag + add_to_diag # ok if assume fine-param-proc.size == 1 elif damping_mode == 'invJTJ': if damping_basis == "singular_values": reg_Jac_s = global_Jac_s + mu * dclip(1.0 / global_Jac_s) else: add_to_diag = mu * dclip(1.0 / undamped_JTJ_diag) JTJ[idiag] = undamped_JTJ_diag + add_to_diag # ok if assume fine-param-proc.size == 1 elif damping_mode == 'adaptive': if damping_basis == "singular_values": reg_Jac_s_lst = [global_Jac_s + mu * dclip(global_Jac_s**(spow + 0.1)), global_Jac_s + mu * dclip(global_Jac_s**spow), global_Jac_s + mu * dclip(global_Jac_s**(spow - 0.1))] else: add_to_diag_lst = [mu * dclip(undamped_JTJ_diag**(spow + 0.1)), mu * dclip(undamped_JTJ_diag**spow), mu * dclip(undamped_JTJ_diag**(spow - 0.1))] else: raise ValueError("Invalid damping mode: %s" % damping_mode) #assert(_np.isfinite(JTJ).all()), "Non-finite JTJ (inner)!" # NaNs tracking #assert(_np.isfinite(JTf).all()), "Non-finite JTf (inner)!" # NaNs tracking try: if profiler: profiler.memory_check("custom_leastsq: before linsolve") tm = _time.time() success = True if damping_basis == 'diagonal_values': if damping_mode == 'adaptive': for ii, add_to_diag in enumerate(add_to_diag_lst): JTJ[idiag] = undamped_JTJ_diag + add_to_diag # ok if assume fine-param-proc.size == 1 #dx_lst.append(_scipy.linalg.solve(JTJ, -JTf, sym_pos=True)) #dx_lst.append(custom_solve(JTJ, -JTf, resource_alloc)) _custom_solve(JTJ, minus_JTf, dx_lst[ii], ari, resource_alloc, serial_solve_proc_threshold) else: #dx = _scipy.linalg.solve(JTJ, -JTf, sym_pos=True) _custom_solve(JTJ, minus_JTf, dx, ari, resource_alloc, serial_solve_proc_threshold) elif damping_basis == 'singular_values': #Note: above solves JTJ*x = -JTf => x = inv_JTJ * (-JTf) # but: J = U*s*Vh => JTJ = (VhT*s*UT)(U*s*Vh) = VhT*s^2*Vh, and inv_Vh = V b/c V is unitary # so inv_JTJ = inv_Vh * 1/s^2 * inv_VhT = V * 1/s^2 * VT = (N,K)*(K,K)*(K,N) if use psuedoinv if damping_mode == 'adaptive': #dx_lst = [_np.dot(ijtj, minus_JTf) for ijtj in inv_JTJ_lst] # special case for ii, s in enumerate(reg_Jac_s_lst): ari.fill_dx_svd(Jac_V, (1 / s**2) * global_Jac_VT_mJTf, dx_lst[ii]) else: # dx = _np.dot(inv_JTJ, minus_JTf) ari.fill_dx_svd(Jac_V, (1 / reg_Jac_s**2) * global_Jac_VT_mJTf, dx) else: raise ValueError("Invalid damping_basis = '%s'" % damping_basis) if profiler: profiler.add_time("custom_leastsq: linsolve", tm) #except _np.linalg.LinAlgError: except _scipy.linalg.LinAlgError: # DIST TODO - a different kind of exception caught? success = False if success and use_acceleration: # Find acceleration term: assert(damping_mode != 'adaptive'), "Cannot use acceleration in adaptive mode (yet)" assert(damping_basis != 'singular_values'), "Cannot use acceleration w/singular-value basis (yet)" df2_eps = 1.0 try: #df2 = (obj_fn(x + df2_dx) + obj_fn(x - df2_dx) - 2 * f) / \ # df2_eps**2 # 2nd deriv of f along dx direction # Above line expanded to reuse shared memory df2 = -2 * f df2_x[:] = x + df2_eps * dx ari.allgather_x(df2_x, global_accel_x) df2 += obj_fn(global_accel_x) df2_x[:] = x - df2_eps * dx ari.allgather_x(df2_x, global_accel_x) df2 += obj_fn(global_accel_x) df2 /= df2_eps**2 f[:] = df2; df2 = f # use `f` as an appropriate shared-mem object for fill_jtf below ari.fill_jtf(Jac, df2, JTdf2) JTdf2 *= -0.5 # keep using JTdf2 memory in solve call below #dx2 = _scipy.linalg.solve(JTJ, -0.5 * JTdf2, sym_pos=True) # Note: JTJ not init w/'adaptive' _custom_solve(JTJ, JTdf2, dx2, ari, resource_alloc, serial_solve_proc_threshold) dx1[:] = dx[:] dx += dx2 # add acceleration term to dx except _scipy.linalg.LinAlgError: print("WARNING - linear solve failed for acceleration term!") # but ok to continue - just stick with first order term except ValueError: print("WARNING - value error during computation of acceleration term!") reject_msg = "" if profiler: profiler.memory_check("custom_leastsq: after linsolve") if success: # linear solve succeeded #dx = _hack_dx(obj_fn, x, dx, Jac, JTJ, JTf, f, norm_f) if damping_mode != 'adaptive': new_x[:] = x + dx norm_dx = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 #ensure dx isn't too large - don't let any component change by more than ~max_dx_scale if max_norm_dx and norm_dx > max_norm_dx: dx *= _np.sqrt(max_norm_dx / norm_dx) new_x[:] = x + dx norm_dx = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 #apply x limits (bounds) if x_limits is not None: # Approach 1: project x into valid space by simply clipping out-of-bounds values for i, (x_el, lower, upper) in enumerate(zip(x, x_lower_limits, x_upper_limits)): if new_x[i] < lower: new_x[i] = lower dx[i] = lower - x_el elif new_x[i] > upper: new_x[i] = upper dx[i] = upper - x_el norm_dx = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 # Approach 2: by scaling back dx (seems less good, but here in case we want it later) # # minimally reduce dx s.t. new_x = x + dx so that x_lower_limits <= x+dx <= x_upper_limits # # x_lower_limits - x <= dx <= x_upper_limits - x. Note: use potentially updated dx from # # max_norm_dx block above. For 0 <= scale <= 1, # # 1) require x + scale*dx - x_upper_limits <= 0 => scale <= (x_upper_limits - x) / dx # # [Note: above assumes dx > 0 b/c if not it moves x away from bound and scale < 0] # # so if scale >= 0, then scale = min((x_upper_limits - x) / dx, 1.0) # scale = None # new_x[:] = (x_upper_limits - x) / dx # new_x_min = ari.min_x(new_x) # if 0 <= new_x_min < 1.0: # scale = new_x_min # # # 2) require x + scale*dx - x_lower_limits <= 0 => scale <= (x - x_lower_limits) / (-dx) # new_x[:] = (x_lower_limits - x) / dx # new_x_min = ari.min_x(new_x) # if 0 <= new_x_min < 1.0: # scale = new_x_min if (scale is None) else min(new_x_min, scale) # # if scale is not None: # dx *= scale # new_x[:] = x + dx # norm_dx = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 else: for dx, new_x in zip(dx_lst, new_x_lst): new_x[:] = x + dx norm_dx_lst = [ari.norm2_x(dx) for dx in dx_lst] #ensure dx isn't too large - don't let any component change by more than ~max_dx_scale if max_norm_dx: for i, norm_dx in enumerate(norm_dx_lst): if norm_dx > max_norm_dx: dx_lst[i] *= _np.sqrt(max_norm_dx / norm_dx) new_x_lst[i][:] = x + dx_lst[i] norm_dx_lst[i] = ari.norm2_x(dx_lst[i]) #apply x limits (bounds) if x_limits is not None: for i, (dx, new_x) in enumerate(zip(dx_lst, new_x_lst)): # Do same thing as above for each possible dx in dx_lst # Approach 1: for ii, (x_el, lower, upper) in enumerate(zip(x, x_lower_limits, x_upper_limits)): if new_x[ii] < lower: new_x[ii] = lower dx[ii] = lower - x_el elif new_x[ii] > upper: new_x[ii] = upper dx[ii] = upper - x_el norm_dx_lst[i] = ari.norm2_x(dx) # _np.linalg.norm(dx)**2 # Approach 2: # scale = None # new_x[:] = (x_upper_limits - x) / dx # new_x_min = ari.min_x(new_x) # if 0 <= new_x_min < 1.0: # scale = new_x_min # # new_x[:] = (x_lower_limits - x) / dx # new_x_min = ari.min_x(new_x) # if 0 <= new_x_min < 1.0: # scale = new_x_min if (scale is None) else min(new_x_min, scale) # # if scale is not None: # dx *= scale # new_x[:] = x + dx # norm_dx_lst[i] = ari.norm2_x(dx) norm_dx = norm_dx_lst[1] # just use center value for printing & checks below printer.log(" - Inner Loop: mu=%g, norm_dx=%g" % (mu, norm_dx), 2) #MEM if profiler: profiler.memory_check("custom_leastsq: mid inner loop") #print("DB: new_x = ", new_x) if norm_dx < (rel_xtol**2) * norm_x: # and mu < MU_TOL2: if oob_check_interval <= 1: msg = "Relative change, |dx|/|x|, is at most %g" % rel_xtol converged = True; break else: printer.log(("** Converged with out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state break if norm_dx > (norm_x + rel_xtol) / (_MACH_PRECISION**2): msg = "(near-)singular linear system"; break if oob_check_interval > 0 and oob_check_mode == 0: if k % oob_check_interval == 0: #Check to see if objective function is out of bounds in_bounds = [] if damping_mode == 'adaptive': new_f_lst = [] for new_x, global_new_x in zip(new_x_lst, global_new_x_lst): ari.allgather_x(new_x, global_new_x) try: new_f = obj_fn(global_new_x, oob_check=True) except ValueError: # Use this to mean - "not allowed, but don't stop" in_bounds.append(False) new_f_lst.append(None) # marks OOB attempts that shouldn't be considered else: # no exception raised in_bounds.append(True) new_f_lst.append(new_f.copy()) else: #print("DB: Trying |x| = ", _np.linalg.norm(new_x), " |x|^2=", _np.dot(new_x,new_x)) # MEM if profiler: profiler.memory_check("custom_leastsq: before oob_check obj_fn") ari.allgather_x(new_x, global_new_x) try: new_f = obj_fn(global_new_x, oob_check=True) except ValueError: # Use this to mean - "not allowed, but don't stop" in_bounds.append(False) else: in_bounds.append(True) if any(in_bounds): # In adaptive mode, proceed if *any* cases are in-bounds new_x_is_allowed = True new_x_is_known_inbounds = True else: MIN_STOP_ITER = 1 # the minimum iteration where an OOB objective stops the optimization if oob_action == "reject" or k < MIN_STOP_ITER: new_x_is_allowed = False # (and also not in bounds) elif oob_action == "stop": if oob_check_interval == 1: msg = "Objective function out-of-bounds! STOP" converged = True; break else: # reset to last know in-bounds point and not do oob check every step printer.log( ("** Hit out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state # can't make use of saved JTJ yet break # restart next outer loop else: raise ValueError("Invalid `oob_action`: '%s'" % oob_action) else: # don't check this time if damping_mode == 'adaptive': new_f_lst = [] for new_x, global_new_x in zip(new_x_lst, global_new_x_lst): ari.allgather_x(new_x, global_new_x) new_f_lst.append(obj_fn(global_new_x).copy()) else: ari.allgather_x(new_x, global_new_x) new_f = obj_fn(global_new_x, oob_check=False) new_x_is_allowed = True new_x_is_known_inbounds = False else: #Just evaluate objective function normally; never check for in-bounds condition if damping_mode == 'adaptive': new_f_lst = [] for new_x, global_new_x in zip(new_x_lst, global_new_x_lst): ari.allgather_x(new_x, global_new_x) new_f_lst.append(obj_fn(global_new_x).copy()) else: ari.allgather_x(new_x, global_new_x) new_f = obj_fn(global_new_x) new_x_is_allowed = True new_x_is_known_inbounds = bool(oob_check_interval == 0) # consider "in bounds" if not checking if new_x_is_allowed: # MEM if profiler: profiler.memory_check("custom_leastsq: after obj_fn") if damping_mode == 'adaptive': norm_new_f_lst = [ari.norm2_f(new_f) if (new_f is not None) else 1e100 for new_f in new_f_lst] # 1e100 so we don't choose OOB adaptive cases if any([not _np.isfinite(norm_new_f) for norm_new_f in norm_new_f_lst]): # avoid inf loop msg = "Infinite norm of objective function!"; break #iMin = _np.argmin(norm_new_f_lst) # pick lowest (best) objective gain_ratio_lst = [(norm_f - nnf) / ari.dot_x(dx, mu * dx + minus_JTf) for (nnf, dx) in zip(norm_new_f_lst, dx_lst)] iMin = _np.argmax(gain_ratio_lst) # pick highest (best) gain ratio # but expected decrease is |f|^2 = grad(fTf) * dx = (grad(fT)*f + fT*grad(f)) * dx # = (JT*f + fT*J) * dx # <<more explanation>> norm_new_f = norm_new_f_lst[iMin] new_f = new_f_lst[iMin] new_x = new_x_lst[iMin] global_new_x = global_new_x_lst[iMin] dx = dx_lst[iMin] if iMin == 0: spow = min(1.0, spow + 0.1) elif iMin == 2: spow = max(-1.0, spow - 0.1) printer.log("ADAPTIVE damping => i=%d b/c fs=[%s] gains=[%s] => spow=%g" % ( iMin, ", ".join(["%.3g" % v for v in norm_new_f_lst]), ", ".join(["%.3g" % v for v in gain_ratio_lst]), spow)) else: norm_new_f = ari.norm2_f(new_f) # _np.linalg.norm(new_f)**2 if not _np.isfinite(norm_new_f): # avoid infinite loop... msg = "Infinite norm of objective function!"; break # dL = expected decrease in ||F||^2 from linear model dL = ari.dot_x(dx, mu * dx + minus_JTf) dF = norm_f - norm_new_f # actual decrease in ||F||^2 #DEBUG - see if cos_phi < 0.001, say, might work as a convergence criterion #if damping_basis == 'singular_values': # # projection of new_f onto solution tangent plane # new_f_proj = _np.dot(Jac_Uproj, _np.dot(Jac_Uproj.T, new_f)) # # angle between residual vec and tangent plane # cos_phi = _np.sqrt(_np.dot(new_f_proj, new_f_proj) / norm_new_f) # #grad_f_norm = _np.linalg.norm(mu * dx - JTf) #else: # cos_phi = 0 if dF <= 0 and uphill_step_threshold > 0: beta = 0 if last_accepted_dx is None else \ (ari.dot_x(dx, last_accepted_dx) / _np.sqrt(ari.norm2_x(dx) * ari.norm2_x(last_accepted_dx))) uphill_ok = (uphill_step_threshold - beta) * norm_new_f < min(min_norm_f, norm_f) else: uphill_ok = False if use_acceleration: accel_ratio = 2 * _np.sqrt(ari.norm2_x(dx2) / ari.norm2_x(dx1)) printer.log(" (cont): norm_new_f=%g, dL=%g, dF=%g, reldL=%g, reldF=%g aC=%g" % (norm_new_f, dL, dF, dL / norm_f, dF / norm_f, accel_ratio), 2) else: printer.log(" (cont): norm_new_f=%g, dL=%g, dF=%g, reldL=%g, reldF=%g" % (norm_new_f, dL, dF, dL / norm_f, dF / norm_f), 2) accel_ratio = 0.0 if dL / norm_f < rel_ftol and dF >= 0 and dF / norm_f < rel_ftol \ and dF / dL < 2.0 and accel_ratio <= alpha: if oob_check_interval <= 1: # (if 0 then no oob checking is done) msg = "Both actual and predicted relative reductions in the" + \ " sum of squares are at most %g" % rel_ftol converged = True; break else: printer.log(("** Converged with out-of-bounds with check interval=%d, " "reverting to last know in-bounds point and setting " "interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state # can't make use of saved JTJ yet break # MEM if profiler: profiler.memory_check("custom_leastsq: before success") if (dL > 0 and dF > 0 and accel_ratio <= alpha) or uphill_ok: #Check whether an otherwise acceptable solution is in-bounds if oob_check_mode == 1 and oob_check_interval > 0 and k % oob_check_interval == 0: #Check to see if objective function is out of bounds try: #print("DB: Trying |x| = ", _np.linalg.norm(new_x), " |x|^2=", _np.dot(new_x,new_x)) # MEM if profiler: # MEM profiler.memory_check("custom_leastsq: before oob_check obj_fn mode 1") obj_fn(global_new_x, oob_check=True) # don't actually need return val (== new_f) new_f_is_allowed = True new_x_is_known_inbounds = True except ValueError: # Use this to mean - "not allowed, but don't stop" MIN_STOP_ITER = 1 # the minimum iteration where an OOB objective can stops the opt. if oob_action == "reject" or k < MIN_STOP_ITER: new_f_is_allowed = False # (and also not in bounds) elif oob_action == "stop": if oob_check_interval == 1: msg = "Objective function out-of-bounds! STOP" converged = True; break else: # reset to last know in-bounds point and not do oob check every step printer.log( ("** Hit out-of-bounds with check interval=%d, reverting to last " "know in-bounds point and setting interval=1 **") % oob_check_interval, 2) oob_check_interval = 1 x[:] = best_x[:] mu, nu, norm_f, f[:], spow, _ = best_x_state # can't use of saved JTJ yet break # restart next outer loop else: raise ValueError("Invalid `oob_action`: '%s'" % oob_action) else: new_f_is_allowed = True if new_f_is_allowed: # reduction in error: increment accepted! t = 1.0 - (2 * dF / dL - 1.0)**3 # dF/dL == gain ratio # always reduce mu for accepted step when |dx| is small mu_factor = max(t, 1.0 / 3.0) if norm_dx > 1e-8 else 0.3 mu *= mu_factor nu = 2 x[:] = new_x[:]; f[:] = new_f[:]; norm_f = norm_new_f global_x[:] = global_new_x[:] printer.log(" Accepted%s! gain ratio=%g mu * %g => %g" % (" UPHILL" if uphill_ok else "", dF / dL, mu_factor, mu), 2) last_accepted_dx = dx.copy() if new_x_is_known_inbounds and norm_f < min_norm_f: min_norm_f = norm_f best_x[:] = x[:] best_x_state = (mu, nu, norm_f, f.copy(), spow, None) #Note: we use rawJTJ=None above because the current `JTJ` was evaluated # at the *last* x-value -- we need to wait for the next outer loop # to compute the JTJ for this best_x_state #assert(_np.isfinite(x).all()), "Non-finite x!" # NaNs tracking #assert(_np.isfinite(f).all()), "Non-finite f!" # NaNs tracking ##Check to see if we *would* switch to Q-N method in a hybrid algorithm #new_Jac = jac_fn(new_x) #new_JTf = _np.dot(new_Jac.T,new_f) #print(" CHECK: %g < %g ?" % (_np.linalg.norm(new_JTf, # ord=_np.inf),0.02 * _np.linalg.norm(new_f))) break # exit inner loop normally else: reject_msg = " (out-of-bounds)" else: reject_msg = " (out-of-bounds)" else: reject_msg = " (LinSolve Failure)" # if this point is reached, either the linear solve failed # or the error did not reduce. In either case, reject increment. #Increase damping (mu), then increase damping factor to # accelerate further damping increases. mu *= nu if nu > half_max_nu: # watch for nu getting too large (&overflow) msg = "Stopping after nu overflow!"; break nu = 2 * nu printer.log(" Rejected%s! mu => mu*nu = %g, nu => 2*nu = %g" % (reject_msg, mu, nu), 2) #end of inner loop #end of outer loop else: #if no break stmt hit, then we've exceeded max_iter msg = "Maximum iterations (%d) exceeded" % max_iter converged = True # call result "converged" even in this case, but issue warning: printer.warning("Treating result as *converged* after maximum iterations (%d) were exceeded." % max_iter) except KeyboardInterrupt: if comm is not None: # ensure all procs agree on what best_x is (in case the interrupt occurred around x being updated) comm.Bcast(best_x, root=0) printer.log("Rank %d caught keyboard interrupt! Returning the current solution as being *converged*." % comm.Get_rank()) else: printer.log("Caught keyboard interrupt! Returning the current solution as being *converged*.") msg = "Keyboard interrupt!" converged = True if comm is not None: comm.barrier() # Just to be safe, so procs stay synchronized and we don't free anything too soon ari.deallocate_jtj(JTJ) ari.deallocate_jtf(JTf) ari.deallocate_jtf(x) ari.deallocate_jtj_shared_mem_buf(jtj_buf) #ari.deallocate_x_for_jac(x_for_jac) if x_limits is not None: ari.deallocate_jtf(x_lower_limits) ari.deallocate_jtf(x_upper_limits) if damping_basis == "singular_values": ari.deallocate_jtj(Jac_V) if damping_mode == 'adaptive': for xx in dx_lst: ari.deallocate_jtf(xx) for xx in new_x_lst: ari.deallocate_jtf(xx) else: ari.deallocate_jtf(dx) ari.deallocate_jtf(new_x) if use_acceleration: ari.deallocate_jtf(dx1) ari.deallocate_jtf(dx2) ari.deallocate_jtf(df2_x) ari.deallocate_jtf(JTdf2) if num_fd_iters > 0: ari.deallocate_jac(fdJac) ari.allgather_x(best_x, global_x) ari.deallocate_jtf(best_x) #JTJ[idiag] = undampled_JTJ_diag #restore diagonal mu, nu, norm_f, f[:], spow, rawJTJ = best_x_state global_f = _np.empty(ari.global_num_elements(), 'd') ari.allgather_f(f, global_f) return global_x, converged, msg, mu, nu, norm_f, global_f, rawJTJ #solution = _optResult() #solution.x = x; solution.fun = f #solution.success = converged #solution.message = msg #return solution
339c892524442a69b7f84f0b05a1931f5ebddf8a
3,657,300
def degrees(x): """Converts angle x from radians to degrees. :type x: numbers.Real :rtype: float """ return 0.0
87fe22113f8286db6c516e711b9cf0d4efe7e11d
3,657,301
def account_credit(account=None, asset=None, date=None, tp=None, order_by=['tp', 'account', 'asset'], hide_empty=False): """ Get credit operations for the account Args: account: filter by account code asset: filter by asset code date: get balance for specified date/time tp: FIlter by account type sort: field or list of sorting fields hide_empty: don't return zero balances Returns: generator object """ return _account_summary('credit', account=account, asset=asset, date=date, tp=tp, order_by=order_by, hide_empty=hide_empty)
a690d1352344c6f8e3d8172848255adc1fa9e331
3,657,302
import logging def get_logger(log_file=None): """ Initialize logger configuration. Returns: logger. """ formatter = logging.Formatter( '%(asctime)s %(name)s.%(funcName)s +%(lineno)s: ' '%(levelname)-8s [%(process)d] %(message)s' ) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) if log_file: file_handler = handlers.RotatingFileHandler(log_file, backupCount=10) file_handler.setFormatter(formatter) logger.addHandler(file_handler) console_handler = logging.StreamHandler() console_handler.setFormatter(formatter) logger.addHandler(console_handler) return logger
3dad72ee83c25d2c49d6cc357bf89048f7018cb5
3,657,303
import torch def verify(model): """ 测试数据模型检验 :param model: 网络模型以及其参数 :return res: 返回对应的列表 """ device = 'cuda' if torch.cuda.is_available() else 'cpu' model = model.to(device) if device == 'cuda': model = torch.nn.DataParallel(model) cudnn.benchmark = True res = [] for idx, data in enumerate(test_loader): img, label = data img, label = img.to(device), label.to(device) label2 = label.numpy()[0] img = img.view(img.size(0), -1) out = model(img) all_output = [] for i in out.data: all_output.append(i.numpy()) all_output = all_output[0] if max(all_output) == all_output[label2]: correct = True else: correct = False all_output = sorted(all_output, reverse=True) bvsb = all_output[0] - all_output[1] obj = { "label": int(label2), "correct": correct, "bvsb": float(bvsb) } res.append(obj) if idx >= test_num - 1: break return res
9ad2fd6280018aacbb2501f6b5eb862924b361a1
3,657,304
import csv def parse_solution_file(solution_file): """Parse a solution file.""" ids = [] classes = [] with open(solution_file) as file_handle: solution_reader = csv.reader(file_handle) header = next(solution_reader, None) if header != HEADER: raise ValueError( 'Incorrect header found: {}, should be: {}'.format( header, HEADER)) solution = sorted(list(solution_reader), key=lambda x: x[0]) for row in solution: if len(row) < 2: raise ValueError( 'Bad row length: {}, ' 'should be at least {} for row {}'.format( len(row), len(HEADER), row)) row_classes = row[1:] if any(class_ not in POSSIBLE_CLASSES for class_ in row_classes): raise ValueError( 'Unknown class found among: {}'.format(row_classes)) ids.append(row[0]) classes.append(row_classes) return ids, classes
19a553bd9979ca1d85d223b3109f3567a3a84100
3,657,305
def fibonacci_modulo(number, modulo): """ Calculating (n-th Fibonacci number) mod m Args: number: fibonacci number modulo: modulo Returns: (n-th Fibonacci number) mod m Examples: >>> fibonacci_modulo(11527523930876953, 26673) 10552 """ period = _pisano_period_len(modulo) answer = _fib(number - number // period * period) % modulo return answer
5a7692597c17263ba86e81104762e4c7c8c95083
3,657,306
from typing import Union def _str_unusual_grades(df: pd.DataFrame) -> Union[str, None]: """Print the number of unusual grades.""" grades = np.arange(0, 10.5, 0.5).astype(float) catch_grades = [] for item in df["grade"]: try: if float(item) not in grades: catch_grades.append(item) except ValueError: catch_grades.append(item) if catch_grades == []: return None else: return ( f"– Over all grades, {len(catch_grades)} of {len(df)} cards do not receive" f" standard grades. These grades are in {set(catch_grades)}" )
0998b112438685523cadc60eb438bee94f3ad8fd
3,657,307
from typing import Any from typing import Dict def _adjust_estimator_options(estimator: Any, est_options: Dict[str, Any], **kwargs) -> Dict[str, Any]: """ Adds specific required classifier options to the `clf_options` dictionary. Parameters ---------- classifier : Any The classifier object for which the options have to be added clf_options : Dict[str, Any] Dictionary, where the additional classifier options should be added to kwargs : Additional classifier options as keyword arguments Returns ------- Dict[str, Any] The input `clf_options` dictionary containing the additional classifier options """ if estimator.__name__ == 'XGBClassifier': est_options['num_class'] = kwargs['n_categories'] elif estimator.__name__ == 'DNNClassifier': est_options['n_classes'] = kwargs['n_categories'] est_options['n_features'] = kwargs['n_features'] est_options['random_state'] = kwargs['random_seed'] return est_options
4ff98d8a3b3e647e129fb0ffbc9bc549caa60440
3,657,308
def _prettify(elem,indent_level=0): """Return a pretty-printed XML string for the Element. """ indent = " " res = indent_level*indent + '<'+elem.tag.encode('utf-8') for k in elem.keys(): res += " "+k.encode('utf-8')+'="'+_escape_nl(elem.get(k)).encode('utf-8')+'"' children = elem.getchildren() if len(children)==0 and not elem.text: res += ' />' return res res += '>' if elem.text: res += _escape_nl(elem.text).encode('utf-8') for c in children: res += '\n'+_prettify(c,indent_level+1) if len(children)>0: res += '\n'+indent_level*indent res += '</'+elem.tag.encode('utf-8')+'>' return res
8f46637cdbb8daf488fd668a197aee5495b8128a
3,657,309
def predict(text): """ Predict the language of a text. Parameters ---------- text : str Returns ------- language_code : str """ if language_models is None: init_language_models(comp_metric, unicode_cutoff=10**6) x_distribution = get_distribution(text, language_models_chars) return predict_param(language_models, comp_metric, x_distribution, best_only=True)
713d8cd8df040703ee7f138314f5c14f5a89ef26
3,657,310
def kgup(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), organizasyon_eic="", uevcb_eic=""): """ İlgili tarih aralığı için kaynak bazlı kesinleşmiş günlük üretim planı (KGÜP) bilgisini vermektedir. Not: "organizasyon_eic" değeri girildiği, "uevcb_eic" değeri girilmediği taktirde organizasyona ait tüm uevcb'lerin toplamı için kgüp bilgisini vermektedir. Her iki değer de girildiği taktirde ilgili organizasyonun ilgili uevcb'si için kgüp bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) organizasyon_eic : metin formatında organizasyon eic kodu (Varsayılan: "") uevcb_eic : metin formatında metin formatında uevcb eic kodu (Varsayılan: "") Geri Dönüş Değeri ----------------- KGUP (Tarih, Saat, Doğalgaz, Barajlı, Linyit, Akarsu, İthal Kömür, Rüzgar, Fuel Oil, Jeo Termal, Taş Kömür, Biyokütle ,Nafta, Diğer, Toplam) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = __first_part_url + "dpp" + "?startDate=" + baslangic_tarihi + "&endDate=" + bitis_tarihi \ + "&organizationEIC=" + organizasyon_eic + "&uevcbEIC=" + uevcb_eic json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["dppList"]) df["Saat"] = df["tarih"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["tarih"].apply(lambda d: d[:10])) df.rename(index=str, columns={"akarsu": "Akarsu", "barajli": "Barajlı", "biokutle": "Biyokütle", "diger": "Diğer", "dogalgaz": "Doğalgaz", "fuelOil": "Fuel Oil", "ithalKomur": "İthal Kömür", "jeotermal": "Jeo Termal", "linyit": "Linyit", "nafta": "Nafta", "ruzgar": "Rüzgar", "tasKomur": "Taş Kömür", "toplam": "Toplam"}, inplace=True) df = df[["Tarih", "Saat", "Doğalgaz", "Barajlı", "Linyit", "Akarsu", "İthal Kömür", "Rüzgar", "Fuel Oil", "Jeo Termal", "Taş Kömür", "Biyokütle", "Nafta", "Diğer", "Toplam"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df
a1b19ea295bf58db114391e11333e37a9fd6d47d
3,657,311
def distance_loop(x1, x2): """ Returns the Euclidean distance between the 1-d numpy arrays x1 and x2""" return -1
abd35a27cbeb5f5c9fe49a2a076d18f16e2849d9
3,657,312
def get_ps_calls_and_summary(filtered_guide_counts_matrix, f_map): """Calculates protospacer calls per cell and summarizes them Args: filtered_guide_counts_matrix: CountMatrix - obtained by selecting features by CRISPR library type on the feature counts matrix f_map: dict - map of feature ID:feature sequence pairs Returns: First 3 outputs as specified in docstring for get_perturbation_calls ps_calls_summary is a Pandas dataframe summarizing descriptive statistics for each perturbation_call (unique combination of protospacers) found in the dataset, along with some overall summary statistics about the mulitplicty of infection """ if feature_utils.check_if_none_or_empty(filtered_guide_counts_matrix): return (None, None, None, None, None) (ps_calls_table, presence_calls, cells_with_ps, umi_thresholds) = get_perturbation_calls(filtered_guide_counts_matrix, f_map,) ps_calls_table.sort_values(by=['feature_call'], inplace=True, kind='mergesort') ps_calls_summary = get_ps_calls_summary(ps_calls_table, filtered_guide_counts_matrix) return (ps_calls_table, presence_calls, cells_with_ps, ps_calls_summary, umi_thresholds)
18aecb335655fb62459350761aeffd4ddbe231ae
3,657,313
def symbol_by_name(name, aliases={}, imp=None, package=None, sep='.', default=None, **kwargs): """Get symbol by qualified name. The name should be the full dot-separated path to the class:: modulename.ClassName Example:: celery.concurrency.processes.TaskPool ^- class name or using ':' to separate module and symbol:: celery.concurrency.processes:TaskPool If `aliases` is provided, a dict containing short name/long name mappings, the name is looked up in the aliases first. Examples: >>> symbol_by_name("celery.concurrency.processes.TaskPool") <class 'celery.concurrency.processes.TaskPool'> >>> symbol_by_name("default", { ... "default": "celery.concurrency.processes.TaskPool"}) <class 'celery.concurrency.processes.TaskPool'> # Does not try to look up non-string names. >>> from celery.concurrency.processes import TaskPool >>> symbol_by_name(TaskPool) is TaskPool True """ if imp is None: imp = importlib.import_module if not isinstance(name, basestring): return name # already a class name = aliases.get(name) or name sep = ':' if ':' in name else sep module_name, _, cls_name = name.rpartition(sep) if not module_name: cls_name, module_name = None, package if package else cls_name try: try: module = imp(module_name, package=package, **kwargs) except ValueError, exc: raise ValueError, ValueError( "Couldn't import %r: %s" % (name, exc)), sys.exc_info()[2] return getattr(module, cls_name) if cls_name else module except (ImportError, AttributeError): if default is None: raise return default
10921d715abc9c83891b26b884f3c88e86c4a900
3,657,314
from typing import Tuple def coefficients_of_line_from_points( point_a: Tuple[float, float], point_b: Tuple[float, float] ) -> Tuple[float, float]: """Computes the m and c coefficients of the equation (y=mx+c) for a straight line from two points. Args: point_a: point 1 coordinates point_b: point 2 coordinates Returns: m coefficient and c coefficient """ points = [point_a, point_b] x_coords, y_coords = zip(*points) coord_array = np.vstack([x_coords, np.ones(len(x_coords))]).T m, c = np.linalg.lstsq(coord_array, y_coords, rcond=None)[0] return m, c
b4d89f2bb3db48723f321e01658e795f431427e1
3,657,315
import os import subprocess from datetime import datetime def logDirManager(): """ Directory manager for TensorFlow logging """ print('Cleaning and initialising logging directory... \n') # Ensure function is starting from project root.. if os.getcwd() != "/Users/Oliver/AnacondaProjects/SNSS_TF": os.chdir("/Users/Oliver/AnacondaProjects/SNSS_TF") os.chdir("tb_log") # Go to logging folder.. stdout = subprocess.check_output(["ls", "-a"]) # Send ls command to terminal # Decode output from terminal folders = DictReader(stdout.decode('ascii').splitlines(), delimiter=' ', skipinitialspace=True, fieldnames=['name']) # For every folder in ordered dict... for f in folders: path = f.get('name') # Get path if (path != ('.')) & (path != ('..')) & (path != '.DS_Store'): # Ignore parent dirs cDate = datetime.fromtimestamp(os.stat(os.getcwd() + '/' + f.get('name')).st_ctime) delta = datetime.today() - cDate # Get age of folder. if delta.days > 6: # If older than 1 week... rmtree(path) # Delete folder. print('Removed old folder: "' + path + '" \n') # Log deletion to console. # print('Name: ' + str + ' Created on: ' + cDate.isoformat()) # Debugging logDir = "log_dir/" + date.today().isoformat() + "/" +\ datetime.now().time().isoformat(timespec='minutes').replace(':', '') # Create todays folder for logging print('Tensorflow logging to : ~/' + logDir + '\n') os.chdir('..') return logDir
664f5554c5c937ff3a95e68c59fbc41ff4276f85
3,657,316
import tifffile def read_tiff(fname, slc=None): """ Read data from tiff file. Parameters ---------- fname : str String defining the path of file or file name. slc : sequence of tuples, optional Range of values for slicing data in each axis. ((start_1, end_1, step_1), ... , (start_N, end_N, step_N)) defines slicing parameters for each axis of the data matrix. Returns ------- ndarray Output 2D image. """ fname = _check_read(fname) try: arr = tifffile.imread(fname, memmap=True) except IOError: logger.error('No such file or directory: %s', fname) return False arr = _slice_array(arr, slc) _log_imported_data(fname, arr) return arr
39b48229719dd8210059a3a9ed7972e8398728ab
3,657,317
def sorted_non_max_suppression_padded(scores, boxes, max_output_size, iou_threshold): """A wrapper that handles non-maximum suppression. Assumption: * The boxes are sorted by scores unless the box is a dot (all coordinates are zero). * Boxes with higher scores can be used to suppress boxes with lower scores. The overal design of the algorithm is to handle boxes tile-by-tile: boxes = boxes.pad_to_multiply_of(tile_size) num_tiles = len(boxes) // tile_size output_boxes = [] for i in range(num_tiles): box_tile = boxes[i*tile_size : (i+1)*tile_size] for j in range(i - 1): suppressing_tile = boxes[j*tile_size : (j+1)*tile_size] iou = bbox_overlap(box_tile, suppressing_tile) # if the box is suppressed in iou, clear it to a dot box_tile *= _update_boxes(iou) # Iteratively handle the diagnal tile. iou = _box_overlap(box_tile, box_tile) iou_changed = True while iou_changed: # boxes that are not suppressed by anything else suppressing_boxes = _get_suppressing_boxes(iou) # boxes that are suppressed by suppressing_boxes suppressed_boxes = _get_suppressed_boxes(iou, suppressing_boxes) # clear iou to 0 for boxes that are suppressed, as they cannot be used # to suppress other boxes any more new_iou = _clear_iou(iou, suppressed_boxes) iou_changed = (new_iou != iou) iou = new_iou # remaining boxes that can still suppress others, are selected boxes. output_boxes.append(_get_suppressing_boxes(iou)) if len(output_boxes) >= max_output_size: break Args: scores: a tensor with a shape of [batch_size, anchors]. boxes: a tensor with a shape of [batch_size, anchors, 4]. max_output_size: a scalar integer `Tensor` representing the maximum number of boxes to be selected by non max suppression. iou_threshold: a float representing the threshold for deciding whether boxes overlap too much with respect to IOU. Returns: nms_scores: a tensor with a shape of [batch_size, anchors]. It has same dtype as input scores. nms_proposals: a tensor with a shape of [batch_size, anchors, 4]. It has same dtype as input boxes. """ batch_size = tf.shape(boxes)[0] num_boxes = tf.shape(boxes)[1] pad = tf.cast( tf.math.ceil(tf.cast(num_boxes, tf.float32) / NMS_TILE_SIZE), tf.int32) * NMS_TILE_SIZE - num_boxes boxes = tf.pad(tf.cast(boxes, tf.float32), [[0, 0], [0, pad], [0, 0]]) scores = tf.pad( tf.cast(scores, tf.float32), [[0, 0], [0, pad]], constant_values=-1) num_boxes += pad def _loop_cond(unused_boxes, unused_threshold, output_size, idx): return tf.logical_and( tf.reduce_min(output_size) < max_output_size, idx < num_boxes // NMS_TILE_SIZE) selected_boxes, _, output_size, _ = tf.while_loop( _loop_cond, _suppression_loop_body, [ boxes, iou_threshold, tf.zeros([batch_size], tf.int32), tf.constant(0) ]) idx = num_boxes - tf.cast( tf.nn.top_k( tf.cast(tf.reduce_any(selected_boxes > 0, [2]), tf.int32) * tf.expand_dims(tf.range(num_boxes, 0, -1), 0), max_output_size)[0], tf.int32) idx = tf.minimum(idx, num_boxes - 1) idx = tf.reshape( idx + tf.reshape(tf.range(batch_size) * num_boxes, [-1, 1]), [-1]) boxes = tf.reshape( tf.gather(tf.reshape(boxes, [-1, 4]), idx), [batch_size, max_output_size, 4]) boxes = boxes * tf.cast( tf.reshape(tf.range(max_output_size), [1, -1, 1]) < tf.reshape( output_size, [-1, 1, 1]), boxes.dtype) scores = tf.reshape( tf.gather(tf.reshape(scores, [-1, 1]), idx), [batch_size, max_output_size]) scores = scores * tf.cast( tf.reshape(tf.range(max_output_size), [1, -1]) < tf.reshape( output_size, [-1, 1]), scores.dtype) return scores, boxes
5d882acb6b9559eb541d49f6784798e5d342c673
3,657,318
def create_session() -> Session: """ Creates a new session using the aforementioned engine :return: session """ return Session(bind=engine)
8b480ee216c30b2c6b8652a6b6239ab6b83df4d9
3,657,319
import torch def fft_to_complex_matrix(x): """ Create matrix with [a -b; b a] entries for complex numbers. """ x_stacked = torch.stack((x, torch.flip(x, (4,))), dim=5).permute(2, 3, 0, 4, 1, 5) x_stacked[:, :, :, 0, :, 1] *= -1 return x_stacked.reshape(-1, 2 * x.shape[0], 2 * x.shape[1])
9fb38004041280da0d6d53830761501aebf7969a
3,657,320
import copy def mcais(A, X, verbose=False): """ Returns the maximal constraint-admissible (positive) invariant set O_inf for the system x(t+1) = A x(t) subject to the constraint x in X. O_inf is also known as maximum output admissible set. It holds that x(0) in O_inf <=> x(t) in X for all t >= 0. (Implementation of Algorithm 3.2 from: Gilbert, Tan - Linear Systems with State and Control Constraints, The Theory and Application of Maximal Output Admissible Sets.) Sufficient conditions for this set to be finitely determined (i.e. defined by a finite number of facets) are: A stable, X bounded and containing the origin. Math ---------- At each time step t, we want to verify if at the next time step t+1 the system will go outside X. Let's consider X := {x | D_i x <= e_i, i = 1,...,n} and t = 0. In order to ensure that x(1) = A x(0) is inside X, we need to consider one by one all the constraints and for each of them, the worst-case x(0). We can do this solvin an LP V(t=0, i) = max_{x in X} D_i A x - e_i for i = 1,...,n if all these LPs has V < 0 there is no x(0) such that x(1) is outside X. The previous implies that all the time-evolution x(t) will lie in X (see Gilbert and Tan). In case one of the LPs gives a V > 0, we iterate and consider V(t=1, i) = max_{x in X, x in A X} D_i A^2 x - e_i for i = 1,...,n where A X := {x | D A x <= e}. If now all V < 0, then O_inf = X U AX, otherwise we iterate until convergence V(t, i) = max_{x in X, x in A X, ..., x in A^t X} D_i A^(t+1) x - e_i for i = 1,...,n Once at convergence O_Inf = X U A X U ... U A^t X. Arguments ---------- A : numpy.ndarray State transition matrix. X : instance of Polyhedron State-space domain of the dynamical system. verbose : bool If True prints at each iteration the convergence parameters. Returns: ---------- O_inf : instance of Polyhedron Maximal constraint-admissible (positive) ivariant. t : int Determinedness index. """ # ensure convergence of the algorithm eig_max = np.max(np.absolute(np.linalg.eig(A)[0])) if eig_max > 1.: raise ValueError('unstable system, cannot derive maximal constraint-admissible set.') [nc, nx] = X.A.shape if not X.contains(np.zeros((nx, 1))): raise ValueError('the origin is not contained in the constraint set, cannot derive maximal constraint-admissible set.') if not X.bounded: raise ValueError('unbounded constraint set, cannot derive maximal constraint-admissible set.') # initialize mcais O_inf = copy(X) # loop over time t = 1 convergence = False while not convergence: # solve one LP per facet J = X.A.dot(np.linalg.matrix_power(A,t)) residuals = [] for i in range(X.A.shape[0]): sol = linear_program(- J[i,:], O_inf.A, O_inf.b) residuals.append(- sol['min'] - X.b[i,0]) # print status of the algorithm if verbose: print('Time horizon: ' + str(t) + '.'), print('Convergence index: ' + str(max(residuals)) + '.'), print('Number of facets: ' + str(O_inf.A.shape[0]) + '. \r'), # convergence check new_facets = [i for i, r in enumerate(residuals) if r > 0.] if len(new_facets) == 0: convergence = True else: # add (only non-redundant!) facets O_inf.add_inequality(J[new_facets,:], X.b[new_facets,:]) t += 1 # remove redundant facets if verbose: print('\nMaximal constraint-admissible invariant set found.') print('Removing redundant facets ...'), O_inf.remove_redundant_inequalities() if verbose: print('minimal facets are ' + str(O_inf.A.shape[0]) + '.') return O_inf
e162a1aed724166f373f8afbd6541622254e8b42
3,657,321
def evaluation_seasonal_srmse(model_name, variable_name='mean', background='all'): """ Evaluate the model in different seasons using the standardized RMSE. :type model_name: str :param model_name: The name of the model. :type variable_name: str :param variable_name: The name of the variable which shell be evaluated\ against the ONI prediction. :returns: The SRMSE for different seasons and the \ 0, 3, 6, 9, 12 and 15-month lead times. The returned arrays have the shape \ (lead time, season). The season corresponding to the the array entry [:,0]\ is DJF and to [:,1] is JFM (and so on). """ reader = data_reader(startdate='1963-01', enddate='2017-12') # seasonal scores seas_srmse = np.zeros((n_lead, 12)) # ONI observation oni = reader.read_csv('oni') if background=="el-nino-like": obs = oni[(oni.index.year>=1982)&(oni.index.year<=2001)] elif background=="la-nina-like": obs = oni[(oni.index.year<1982)|(oni.index.year>2001)] elif background=="all": obs = oni obs_time = obs.index for i in range(n_lead): pred_all = reader.read_forecasts(model_name, lead_times[i]).loc[{'target_season':obs_time}] pred = pred_all[variable_name] seas_srmse[i, :] = seasonal_srmse(obs, pred, obs_time - pd.tseries.offsets.MonthBegin(1)) return seas_srmse
39fb7ae64ab32fc5092e46c77c8593f1aeaf4c92
3,657,322
def generate_accession_id() -> str: """Generate Stable ID.""" accessionID = uuid4() urn = accessionID.urn LOG.debug(f"generated accession id as: {urn}") return urn
d55f63aa0b48a06aaa98f978b6f92a219c0b1457
3,657,323
def _async_device_ha_info( hass: HomeAssistant, lg_device_id: str ) -> dict | None: """Gather information how this ThinQ device is represented in Home Assistant.""" device_registry = dr.async_get(hass) entity_registry = er.async_get(hass) hass_device = device_registry.async_get_device( identifiers={(DOMAIN, lg_device_id)} ) if not hass_device: return None data = { "name": hass_device.name, "name_by_user": hass_device.name_by_user, "model": hass_device.model, "manufacturer": hass_device.manufacturer, "sw_version": hass_device.sw_version, "disabled": hass_device.disabled, "disabled_by": hass_device.disabled_by, "entities": {}, } hass_entities = er.async_entries_for_device( entity_registry, device_id=hass_device.id, include_disabled_entities=True, ) for entity_entry in hass_entities: if entity_entry.platform != DOMAIN: continue state = hass.states.get(entity_entry.entity_id) state_dict = None if state: state_dict = dict(state.as_dict()) # The entity_id is already provided at root level. state_dict.pop("entity_id", None) # The context doesn't provide useful information in this case. state_dict.pop("context", None) data["entities"][entity_entry.entity_id] = { "name": entity_entry.name, "original_name": entity_entry.original_name, "disabled": entity_entry.disabled, "disabled_by": entity_entry.disabled_by, "entity_category": entity_entry.entity_category, "device_class": entity_entry.device_class, "original_device_class": entity_entry.original_device_class, "icon": entity_entry.icon, "original_icon": entity_entry.original_icon, "unit_of_measurement": entity_entry.unit_of_measurement, "state": state_dict, } return data
47af173daba91aa70ea167baf58c05e9f6f595f6
3,657,324
from typing import Optional def get_travis_pr_num() -> Optional[int]: """Return the PR number if the job is a pull request, None otherwise Returns: int See also: - <https://docs.travis-ci.com/user/environment-variables/#default-environment-variables> """ # noqa E501 try: travis_pull_request = get_travis_env_or_fail('TRAVIS_PULL_REQUEST') if falsy(travis_pull_request): return None else: try: return int(travis_pull_request) except ValueError: return None except UnexpectedTravisEnvironmentError: return None
86ef6ce3f9bf3c3e056b11e575b1b13381e490fe
3,657,325
from typing import List import json def get_updated_records(table_name: str, existing_items: List) -> List: """ Determine the list of record updates, to be sent to a DDB stream after a PartiQL update operation. Note: This is currently a fairly expensive operation, as we need to retrieve the list of all items from the table, and compare the items to the previously available. This is a limitation as we're currently using the DynamoDB Local backend as a blackbox. In future, we should consider hooking into the PartiQL query execution inside DynamoDB Local and directly extract the list of updated items. """ result = [] stream_spec = dynamodb_get_table_stream_specification(table_name=table_name) key_schema = SchemaExtractor.get_key_schema(table_name) before = ItemSet(existing_items, key_schema=key_schema) after = ItemSet(ItemFinder.get_all_table_items(table_name), key_schema=key_schema) def _add_record(item, comparison_set: ItemSet): matching_item = comparison_set.find_item(item) if matching_item == item: return # determine event type if comparison_set == after: if matching_item: return event_name = "REMOVE" else: event_name = "INSERT" if not matching_item else "MODIFY" old_image = item if event_name == "REMOVE" else matching_item new_image = matching_item if event_name == "REMOVE" else item # prepare record keys = SchemaExtractor.extract_keys_for_schema(item=item, key_schema=key_schema) record = { "eventName": event_name, "eventID": short_uid(), "dynamodb": { "Keys": keys, "NewImage": new_image, "SizeBytes": len(json.dumps(item)), }, } if stream_spec: record["dynamodb"]["StreamViewType"] = stream_spec["StreamViewType"] if old_image: record["dynamodb"]["OldImage"] = old_image result.append(record) # loop over items in new item list (find INSERT/MODIFY events) for item in after.items_list: _add_record(item, before) # loop over items in old item list (find REMOVE events) for item in before.items_list: _add_record(item, after) return result
631c21836614731e5b53ed752036f1216d555196
3,657,326
def normalize_record(input_object, parent_name="root_entity"): """ This function orchestrates the main normalization. It will go through the json document and recursively work with the data to: - unnest (flatten/normalize) keys in objects with the standard <parentkey>_<itemkey> convention - identify arrays, which will be pulled out and normalized - create an array of entities, ready for streaming or export for each item in the object: if the item is a non object or non list item: append to this flattened_dict object if the item is a dictionary: trigger the flatten dict function the flatten dict function will iterate through the items and append them to a dictionary. it will return a dictionary with {"dictionary": <dict_data>, "array": <arrays>} join flattened_dict and the returned[dictionary] data append returned[array] to arrays layer arrays will be dealt with a little differently. Because we're expecting multiple entries we'll be workign with a loop which will always belong to an array create new dict object dict_object = {"name": <dict name>, "data": [dict array entries data]} for each in the array loop - trigger normalize_layer with parent name of array name dict_object.append the `dicts_array`["data"] to the dict_object["data"] array """ arrays = [] dicts = [] output_dictionary = {} parent_keys = extract_parent_keys(dictionary_name=parent_name, dictionary_object=input_object) if isinstance(input_object, (dict)): for key, value in input_object.items(): if not isinstance(value, (dict,list) ): # if the item is a non object or non list item: output_dictionary[key] = value elif isinstance(value, dict): # if the item is a dictionary: # trigger the flatten dict function dict_contents = flatten_object(key,value) # will return {"dictionary": <dict_data>, "array": <arrays>} instance_dictionary = dict_contents["dictionary"] instance_array = dict_contents["array"] if len(instance_array) >0: arrays.extend(instance_array) output_dictionary = merge_two_dicts(output_dictionary,instance_dictionary) #join the dict elif isinstance(value, list): arrays.append({"name":key, "data":value, "parent_keys": parent_keys}) elif isinstance(input_object, (list)): arrays.append({"name":parent_name,"data":input_object }) ############################## ### Now process the arrays ### ############################## for each_array in arrays: for each_entry in each_array["data"]: each_entry = each_entry try: if each_array["parent_keys"]: each_entry = merge_two_dicts(each_entry, each_array["parent_keys"]) except: pass normalized_array = (normalize_record(input_object = each_entry, parent_name = each_array["name"]) ) #expect list here #let the normalizer recursively work through and pull the data out. Once it's out, we can append the data to the dicts array :) #may return 1 or more dictionaries for each_normalized_array_entry in normalized_array: # iterate through each output in the normalized array #check if there is an instance of this data already matches = False for each_dictionary_entity in dicts: if each_normalized_array_entry["name"] == each_dictionary_entity["name"]: #check if there is data in place already for this. If so, we add an entry to it each_dictionary_entity["data"].extend(each_normalized_array_entry["data"]) matches = True if matches == False: dicts.append({"name": each_normalized_array_entry["name"] , "data": each_normalized_array_entry["data"] }) dicts.append({"name":parent_name, "data": [output_dictionary]}) return(dicts)
73647b04ba943e18a38ebf2f1d03cca46b533935
3,657,327
def rmse(f, p, xdata, ydata): """Root-mean-square error.""" results = np.asarray([f(p, x) for x in xdata]) sqerr = (results - ydata)**2 return np.sqrt(sqerr.mean())
2b8afdb1742aad5e5c48fbe4407ab0989dbaf762
3,657,328
import logging def get_logger(name=None, propagate=True): """Get logger object""" logger = logging.getLogger(name) logger.propagate = propagate loggers.append(logger) return logger
3ad4dbc39f9bf934b02e2dc6e713a4793a28298b
3,657,329
import os def load_movielens1m(infile=None, event_dtype=event_dtype_timestamp): """ load the MovieLens 1m data set Original file ``ml-1m.zip`` is distributed by the Grouplens Research Project at the site: `MovieLens Data Sets <http://www.grouplens.org/node/73>`_. Parameters ---------- infile : optional, file or str input file if specified; otherwise, read from default sample directory. event_dtype : np.dtype dtype of extra event features. as default, it consists of only a ``timestamp`` feature. Returns ------- data : :class:`kamrecsys.data.EventWithScoreData` sample data Notes ----- Format of events: * each event consists of a vector whose format is [user, item]. * 1,000,209 events in total * 6,040 users rate 3,706 items (=movies) * dtype=int Format of scores: * one score is given to each event * domain of score is [1.0, 2.0, 3.0, 4.0, 5.0] * dtype=float Default format of event_features ( `data.event_feature` ): timestamp : int represented in seconds since the epoch as returned by time(2) Format of user's feature ( `data.feature[0]` ): gender : int gender of the user, {0:male, 1:female} age : int, {0, 1,..., 6} age of the user, where 1:"Under 18", 18:"18-24", 25:"25-34", 35:"35-44", 45:"45-49", 50:"50-55", 56:"56+" occupation : int, {0,1,...,20} the number indicates the occupation of the user as follows: 0:"other" or not specified, 1:"academic/educator", 2:"artist", 3:"clerical/admin", 4:"college/grad student" 5:"customer service", 6:"doctor/health care", 7:"executive/managerial" 8:"farmer", 9:"homemaker", 10:"K-12 student", 11:"lawyer", 12:"programmer", 13:"retired", 14:"sales/marketing", 15:"scientist", 16:"self-employed", 17:"technician/engineer", 18:"tradesman/craftsman", 19:"unemployed", 20:"writer" zip : str, length=5 zip code of 5 digits, which represents the residential area of the user Format of item's feature ( `data.feature[1]` ): name : str, length=[8, 82] title of the movie with release year year : int released year genre : binary_int * 18 18 binary numbers represents a genre of the movie. 1 if the movie belongs to the genre; 0 other wise. All 0 implies unknown. Each column corresponds to the following genres: 0:Action, 1:Adventure, 2:Animation, 3:Children's, 4:Comedy, 5:Crime, 6:Documentary, 7:Drama, 8:Fantasy, 9:Film-Noir, 10:Horror, 11:Musical, 12:Mystery, 13:Romance, 14:Sci-Fi, 15:Thriller, 16:War, 17:Western """ # load event file if infile is None: infile = os.path.join(SAMPLE_PATH, 'movielens1m.event') data = load_event_with_score( infile, n_otypes=2, event_otypes=(0, 1), score_domain=(1., 5., 1.), event_dtype=event_dtype) # load user's feature file infile = os.path.join(SAMPLE_PATH, 'movielens1m.user') fdtype = np.dtype([('gender', int), ('age', int), ('occupation', int), ('zip', 'U5')]) dtype = np.dtype([('eid', int), ('feature', fdtype)]) x = np.genfromtxt(fname=infile, delimiter='\t', dtype=dtype) data.set_feature(0, x['eid'], x['feature']) # load item's feature file infile = os.path.join(SAMPLE_PATH, 'movielens1m.item') fdtype = np.dtype([('name', 'U82'), ('year', int), ('genre', 'i1', 18)]) dtype = np.dtype([('eid', int), ('feature', fdtype)]) x = np.genfromtxt(fname=infile, delimiter='\t', dtype=dtype, converters={1: np.char.decode}) data.set_feature(1, x['eid'], x['feature']) return data
594e222f1b2fce4fcb97e5ffe7082ccc42172681
3,657,330
import os def load_coco_data(split): """load the `split` data containing image and label Args: split (str): the split of the dataset (train, val, test) Returns: tf.data.Dataset: the dataset contains image and label image (tf.tensor), shape (224, 224, 3) label (tf.tensor), shape (1000, ) """ dataset = tfds.load(name="coco_captions", split=split) write_captions_of_iamges_to_file(dataset, split) img_cap_dict = get_captions_of_images(dataset, split) attr_list = get_attributes_list( os.path.join(WORKING_PATH, "finetune", "attribute_list.pickle") ) attr2idx = {word: idx for idx, word in enumerate(attr_list)} attr_dict = get_attributes_dict(dataset, split, attr_list, img_cap_dict) attr_onehot = get_onehot_attributes(attr_dict, attr2idx, split) attr_onehot_labels = [attr_onehot[idx] for idx in attr_onehot.keys()] attr_onehot_labels = tf.data.Dataset.from_tensor_slices( tf.cast(attr_onehot_labels, tf.int32) ) def process(image): image = tf.image.resize(image, (224, 224)) image = tf.cast(image, tf.float32) image = image / 255 return image def parse_fn(feature): image = feature["image"] return process(image) img_dataset = dataset.map(parse_fn) ds = tf.data.Dataset.zip((img_dataset, attr_onehot_labels)) return ds
56d42130dca83ab883a02a1dce48c3374dc7398f
3,657,331
import argparse import os def get_args(): """ Get User defined arguments, or assign defaults :rtype: argparse.ArgumentParser() :return: User defined or default arguments """ parser = argparse.ArgumentParser() # Positional arguments parser.add_argument("main_args", type=str, nargs="*", help="task for Seisflows to perform") # Optional parameters parser.add_argument("-w", "--workdir", nargs="?", default=os.getcwd()) parser.add_argument("-p", "--parameter_file", nargs="?", default="parameters.yaml") return parser.parse_args()
2f31a2142034127d3de7f4212841c3432b451fc4
3,657,332
import requests from typing import Match def getMatches(tournamentName=None, matchDate=None, matchPatch=None, matchTeam=None): """ Params: tournamentName: str/List[str]/Tuple(str) : filter by tournament names (e.g. LCK 2020 Spring) matchDate: str/List[str]/Tuple(str) : date in the format of yyyy-mm-dd matchPatch: str/List[str]/Tuple(str) : game patch the match is played on (e.g. 10.15) matchTeam: str/List[str]/Tuple(str) Returns: List[Match] """ argsString = " AND ".join(filter(None, [ _formatArgs(tournamentName, "SG.Tournament"), _formatDateTimeArgs(matchDate, "SG.DateTime_UTC"), _formatArgs(matchPatch, "SG.Patch") ])) url = MATCHES_URL.format(argsString) matchesJson = requests.get(url).json()["cargoquery"] matches = [] uniqueMatchMap = {} for i in range(len(matchesJson)): matchJson = matchesJson[i]["title"] # apply team filter if isinstance(matchTeam, str): matchTeam = [matchTeam] if isinstance(matchTeam, list): if matchJson["Team1"] not in matchTeam and matchJson["Team2"] not in matchTeam: continue elif isinstance(matchTeam, tuple): if not set(matchTeam).issubset(set([matchJson["Team1"], matchJson["Team2"]])): continue uniqueMatch = matchJson["UniqueGame"][:-2] if uniqueMatch not in uniqueMatchMap: match = Match(uniqueMatch) match._uniqueGames.append(matchJson["UniqueGame"]) match.dateTime = matchJson["DateTime UTC"] match.patch = matchJson["Patch"] match.teams = (matchJson["Team1"], matchJson["Team2"]) match.scores = (int(matchJson["Team1Score"]), int(matchJson["Team2Score"])) matches.append(match) uniqueMatchMap[uniqueMatch] = match else: match = uniqueMatchMap[uniqueMatch] match._uniqueGames.append(matchJson["UniqueGame"]) match.dateTime = matchJson["DateTime UTC"] return matches
89525caa9da0a3b546e0b8982e96469f32f8c5bc
3,657,333
from typing import Optional import os def parse_e_elect(path: str, zpe_scale_factor: float = 1., ) -> Optional[float]: """ Parse the electronic energy from an sp job output file. Args: path (str): The ESS log file to parse from. zpe_scale_factor (float): The ZPE scaling factor, used only for composite methods in Gaussian via Arkane. Returns: Optional[float] The electronic energy in kJ/mol. """ if not os.path.isfile(path): raise InputError(f'Could not find file {path}') log = ess_factory(fullpath=path) try: e_elect = log.load_energy(zpe_scale_factor) * 0.001 # convert to kJ/mol except (LogError, NotImplementedError): logger.warning(f'Could not read e_elect from {path}') e_elect = None return e_elect
d76eae166309ebe765afcfdcf5fcf26bd19a9826
3,657,334
from my_app.admin import admin from my_app.main import main import os def create_app(): """Creates the instance of an app.""" configuration_file=os.getcwd()+'/./configuration.cfg' app=Flask(__name__) app.config.from_pyfile(configuration_file) bootstrap.init_app(app) mail.init_app(app) app.register_blueprint(admin) app.register_blueprint(main) return app
54cd56142dadc8c27fa385b3eb12a3b4726c291c
3,657,335
def get_fields(fields): """ From the last column of a GTF, return a dictionary mapping each value. Parameters: fields (str): The last column of a GTF Returns: attributes (dict): Dictionary created from fields. """ attributes = {} description = fields.strip() description = [x.strip() for x in description.split(";")] for pair in description: if pair == "": continue pair = pair.replace('"', '') key, val = pair.split() attributes[key] = val # put in placeholders for important attributes (such as gene_id) if they # are absent if 'gene_id' not in attributes: attributes['gene_id'] = 'NULL' return attributes
30777838934b18a0046017f3da6b3a111a911a9c
3,657,336
def add_log_group_name_params(log_group_name, configs): """Add a "log_group_name": log_group_name to every config.""" for config in configs: config.update({"log_group_name": log_group_name}) return configs
a5fce8143c3404257789c1720bbfefc49c8ea3f5
3,657,337
from typing import Union def on_update_user_info(data: dict, activity: Activity) -> (int, Union[str, None]): """ broadcast a user info update to a room, or all rooms the user is in if no target.id specified :param data: activity streams format, must include object.attachments (user info) :param activity: the parsed activity, supplied by @pre_process decorator, NOT by calling endpoint :return: {'status_code': ECodes.OK, 'data': '<same AS as client sent, plus timestamp>'} """ activity.actor.display_name = utils.b64e(environ.env.session.get(SessionKeys.user_name.value)) data['actor']['displayName'] = activity.actor.display_name environ.env.observer.emit('on_update_user_info', (data, activity)) return ECodes.OK, data
735486cad96545885a76a5a18418db549869304d
3,657,338
def discover(isamAppliance, check_mode=False, force=False): """ Discover available updates """ return isamAppliance.invoke_get("Discover available updates", "/updates/available/discover")
04c68b0ce57d27bc4032cf9b1607f2f1f371e384
3,657,339
from re import A def ltistep(U, A=A, B=B, C=C): """ LTI( A B C ): U -> y linear straight up """ U, A, B, C = map(np.asarray, (U, A, B, C)) xk = np.zeros(A.shape[1]) x = [xk] for u in U[:-1]: xk = A.dot(xk) + B.dot(u) x.append(xk.copy()) return np.dot(x, C)
5d7c7550a9a6407a8f1a68ee32e158f25a7d50bf
3,657,340
def _registry(): """Registry to download images from.""" return _registry_config()["host"]
ee7c724f3b9381c4106a4e19d0434b9b4f0125fc
3,657,341
def load_structure(query, reduce=True, strip='solvent&~@/pseudoBonds'): """ Load a structure in Chimera. It can be anything accepted by `open` command. Parameters ========== query : str Path to molecular file, or special query for Chimera's open (e.g. pdb:3pk2). reduce : bool Add hydrogens to structure. Defaults to True. strip : str Chimera selection spec that will be removed. Defaults to solvent&~@/pseudoBonds (solvent that is not attached to a metal ion). """ print('Opening', query) chimera.runCommand('open ' + query) m = chimera.openModels.list()[0] m.setAllPDBHeaders({}) if strip: print(' Removing {}...'.format(strip)) chimera.runCommand('del ' + strip) if reduce: print(' Adding hydrogens...') chimera.runCommand('addh') return m
d91ceeba36eb04e33c238ab2ecb88ba2cc1928c7
3,657,342
from re import T def is_into_keyword(token): """ INTO判定 """ return token.match(T.Keyword, "INTO")
337fb0062dc4288aad8ac715efcca564ddfad113
3,657,343
from typing import Union def exp( value: Union[Tensor, MPCTensor, int, float], iterations: int = 8 ) -> Union[MPCTensor, float, Tensor]: """Approximates the exponential function using a limit approximation. exp(x) = lim_{n -> infty} (1 + x / n) ^ n Here we compute exp by choosing n = 2 ** d for some large d equal to iterations. We then compute (1 + x / n) once and square `d` times. Args: value: tensor whose exp is to be calculated iterations (int): number of iterations for limit approximation Ref: https://github.com/LaRiffle/approximate-models Returns: MPCTensor: the calculated exponential of the given tensor """ result = (value / 2**iterations) + 1 for _ in range(iterations): result = result * result return result
9cfbb63d39d41e92b506366244ec6e77d52162b2
3,657,344
from typing import Any def train(estimator: Estimator, data_root_dir: str, max_steps: int) -> Any: """Train a Tensorflow estimator""" train_spec = tf.estimator.TrainSpec( input_fn=_build_input_fn(data_root_dir, ModeKeys.TRAIN), max_steps=max_steps, ) if max_steps > Training.LONG_TRAINING_STEPS: throttle_secs = Training.LONG_DELAY else: throttle_secs = Training.SHORT_DELAY eval_spec = tf.estimator.EvalSpec( input_fn=_build_input_fn(data_root_dir, ModeKeys.EVAL), start_delay_secs=Training.SHORT_DELAY, throttle_secs=throttle_secs, ) LOGGER.debug('Train the model') results = tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) training_metrics = results[0] return training_metrics
bcf81a0b46f3c0eea8f2c26929d3b6440df5e2cb
3,657,345
def isDllInCorrectPath(): """ Returns True if the BUFFY DLL is present and in the correct location (...\<BTS>\Mods\<BUFFY>\Assets\). """ return IS_DLL_IN_CORRECT_PATH
ea31391d41ba04b27df70124a65fdb48791cce57
3,657,346
import time def time_remaining(event_time): """ Args: event_time (time.struct_time): Time of the event. Returns: float: Time remaining between now and the event, in seconds since epoch. """ now = time.localtime() time_remaining = time.mktime(event_time) - time.mktime(now) return time_remaining
cb3dfcf916cffc3b45f215f7642aeac8a1d6fef7
3,657,347
def _repeat(values, count): """Produces a list of lists suitable for testing interleave. Args: values: for each element `x` the result contains `[x] * x` count: determines how many times to repeat `[x] * x` in the result Returns: A list of lists of values suitable for testing interleave. """ return [[value] * value for value in np.tile(values, count)]
46aa7899e7ed536525b7a94675edf89958f6f37f
3,657,348
from functools import reduce def P2D_l_TAN(df, cond, attr): # P(attr | 'target', cond) """Calcule la probabilité d'un attribut sachant la classe et un autre attribut. Parameters ---------- df : pandas.DataFrame La base d'examples. cond : str Le nom de l'attribut conditionnant. attr : str Le nom de l'attribut conditionné. Returns ------- dict of (int, number): (dict of number: float) Un dictionnaire associant au couple (`t`, `c`), de classe `t` et de valeur d'attribut conditionnant `c`, un dictionnaire qui associe à la valeur `a` de l'attribut conditionné la probabilité .. math:: P(attr=a|target=t,cond=c). """ joint_target_cond_attr = getJoint(df, ['target', cond, attr]) joint_target_cond = getJoint(df, ['target', cond]) raw_dico = dict(divide(joint_target_cond_attr, joint_target_cond)) dicos = [{(k_t, k_c): {k_a: proba}} for (k_t, k_c, k_a), proba in raw_dico.items()] res = {} reduce(reduce_update, [res] + dicos) return res
88affcaea0368c400ccd25356d97a25c9a88a15e
3,657,349
def has_no_jump(bigram, peaks_groundtruth): """ Tell if the two components of the bigram are same or successive in the sequence of valid peaks or not For exemple, if groundtruth = [1,2,3], [1,1] or [2,3] have no jump but [1,3] has a jump. bigram : the bigram to judge peaks_groundtruth : the list of valid peaks Return boolean """ assert len(bigram) == 2 if len(set(bigram)) == 1: return True sorted_groundtruth = sorted(peaks_groundtruth) sorted_peaks = sorted(list(bigram)) begin = sorted_groundtruth.index(sorted_peaks[0]) end = begin+len(sorted_peaks) return sorted_peaks == sorted_groundtruth[begin:end]
e334c389436d5cda2642f8ac7629b64074dcd0e0
3,657,350
import base64 def Base64WSDecode(s): """ Return decoded version of given Base64 string. Ignore whitespace. Uses URL-safe alphabet: - replaces +, _ replaces /. Will convert s of type unicode to string type first. @param s: Base64 string to decode @type s: string @return: original string that was encoded as Base64 @rtype: bytes @raise Base64DecodingError: If length of string (ignoring whitespace) is one more than a multiple of four. """ s = RawString(s) # Base64W decode can only work with strings s = ''.join(s.splitlines()) s = str(s.replace(" ", "")) # kill whitespace, make string (not unicode) d = len(s) % 4 if d == 1: raise kzr_errors.Base64DecodingError() elif d == 2: s += "==" elif d == 3: s += "=" s = RawBytes(s) try: return base64.urlsafe_b64decode(s) except TypeError: # Decoding raises TypeError if s contains invalid characters. raise kzr_errors.Base64DecodingError()
67db2d3f298e0220411f224299dcb20feeba5b3e
3,657,351
def make_window(): """create the window""" window = Tk() window.title("Pac-Man") window.geometry("%dx%d+%d+%d" % ( WINDOW_WIDTH, WINDOW_HEIGHT, X_WIN_POS, Y_WIN_POS ) ) window = window return window
1e9ecb5acf91e75797520c54be1087d24392f190
3,657,352
from typing import Union import re def construct_scrape_regex_patterns(scrape_info: dict[str, Union[ParseResult, str]]) -> dict[str, Union[ParseResult, str]]: """ Construct regex patterns for seasons/episodes """ logger.debug("Constructing scrape regexes") for info in scrape_info: if info == 'url': continue if info == 'seasons': if scrape_info[info] is not None: if re.search(r'/season-\d{1,6}', scrape_info['url'].geturl()): logger.warning("Season already specified in url") raise exceptions.InvalidInput("Season already specified in url") scrape_info['seasons'] = parse_scrape_info(scrape_info[info]) else: s = re.search(r'/season-(\d{1,6})', scrape_info['url'].geturl()) if s: scrape_info['seasons'] = s.group(1) else: scrape_info['seasons'] = r'\d{1,6}' if info == 'episodes': if scrape_info[info] is not None: if re.search(r'/episode-\d{1,6}', scrape_info['url'].geturl()): logger.warning("Episode already specified in url") raise exceptions.InvalidInput("Episode already specified in url") scrape_info['episodes'] = parse_scrape_info(scrape_info[info]) else: e = re.search(r'/episode-(\d{1,6})', scrape_info['url'].geturl()) if e: scrape_info['episodes'] = e.group(1) else: scrape_info['episodes'] = r'\d{1,6}' return scrape_info
8d731dee1dc1ce493a4a49140a2fbd11223018fd
3,657,353
def hasf(e): """ Returns a function which if applied with `x` tests whether `x` has `e`. Examples -------- >>> filter(hasf("."), ['statement', 'A sentence.']) ['A sentence.'] """ return lambda x: e in x
ac9ce7cf2ed2ee8a050acf24a8d0a3b95b7f2d50
3,657,354
def borehole_model(x, theta): """Given x and theta, return matrix of [row x] times [row theta] of values.""" return f
9ccfd530ff162d5f2ec786757ec03917f3367635
3,657,355
def findNodesOnHostname(hostname): """Return the list of nodes name of a (non-dmgr) node on the given hostname, or None Function parameters: hostname - the hostname to check, with or without the domain suffix """ m = "findNodesOnHostname:" nodes = [] for nodename in listNodes(): if hostname.lower() == getNodeHostname(nodename).lower(): sop(m, "Found node %s which is on %s" % (nodename, hostname)) nodes.append(nodename) #endif #endfor # Not found - try matching without domain - z/OS systems might not have domain configured shorthostname = hostname.split(".")[0].lower() for nodename in listNodes(): shortnodehostname = getNodeHostname(nodename).split(".")[0].lower() if shortnodehostname == shorthostname: if nodename in nodes : sop(m, "Node name %s was already found with the domain attached" % nodename) else : nodes.append(nodename) sop(m, "Found node %s which is on %s" % (nodename, hostname)) #endif #endif #endfor if len(nodes) == 0 : sop(m,"WARNING: Unable to find any node with the hostname %s (not case-sensitive)" % hostname) sop(m,"HERE are the hostnames that your nodes think they're on:") for nodename in listNodes(): sop(m,"\tNode %s: hostname %s" % (nodename, getNodeHostname(nodename))) #endfor return None else : return nodes #endif
3a4f28d5fa8c72388cb81d40913e517d343834f0
3,657,356
def MakeControlClass( controlClass, name = None ): """Given a CoClass in a generated .py file, this function will return a Class object which can be used as an OCX control. This function is used when you do not want to handle any events from the OCX control. If you need events, then you should derive a class from both the activex.Control class and the CoClass """ if name is None: name = controlClass.__name__ return new_type("OCX" + name, (Control, controlClass), {})
634544543027b1870bb72544517511d4f7b08e39
3,657,357
def obtenTipoNom(linea): """ Obtiene por ahora la primera palabra del título, tendría que regresar de que se trata""" res = linea.split('\t') return res[6].partition(' ')[0]
73edc42c5203b7ebd0086876096cdd3b7c65a54c
3,657,358
def histogramfrom2Darray(array, nbins): """ Creates histogram of elements from 2 dimensional array :param array: input 2 dimensional array :param nbins: number of bins so that bin size = (maximum value in array - minimum value in array) / nbins the motivation for returning this array is for the purpose of easily plotting with matplotlib :return: list of three elements: list[0] = length nbins list of integers, a histogram of the array elements list[1] = length nbins list of values of array element types, values of the lower end of the bins list[2] = [minimum in list, maximum in list] this is just good to know sometimes. """ #find minimum minimum = np.min(array) #find maximu maximum = np.max(array) #compute bin size binsize = (maximum - minimum) / nbins #create bin array bins = [minimum + binsize * i for i in range(nbins)] histo = [0 for b in range(nbins)] for x in array: for y in x: #find the lower end of the affiliated bin ab = y - (minimum + fmod(y - minimum, binsize)) histo[int(ab/binsize)-1] += 1 return [histo, bins, [minimum, maximum]]
2c377b926b4708b6a6b29d400ae82b8d2931b938
3,657,359
def build_pert_reg(unsupervised_regularizer, cut_backg_noise=1.0, cut_prob=1.0, box_reg_scale_mode='fixed', box_reg_scale=0.25, box_reg_random_aspect_ratio=False, cow_sigma_range=(4.0, 8.0), cow_prop_range=(0.0, 1.0),): """Build perturbation regularizer.""" if unsupervised_regularizer == 'none': unsup_reg = None augment_twice = False elif unsupervised_regularizer == 'mt': unsup_reg = regularizers.IdentityRegularizer() augment_twice = False elif unsupervised_regularizer == 'aug': unsup_reg = regularizers.IdentityRegularizer() augment_twice = True elif unsupervised_regularizer == 'cutout': unsup_reg = regularizers.BoxMaskRegularizer( cut_backg_noise, cut_prob, box_reg_scale_mode, box_reg_scale, box_reg_random_aspect_ratio) augment_twice = False elif unsupervised_regularizer == 'aug_cutout': unsup_reg = regularizers.BoxMaskRegularizer( cut_backg_noise, cut_prob, box_reg_scale_mode, box_reg_scale, box_reg_random_aspect_ratio) augment_twice = True elif unsupervised_regularizer == 'cowout': unsup_reg = regularizers.CowMaskRegularizer( cut_backg_noise, cut_prob, cow_sigma_range, cow_prop_range) augment_twice = False elif unsupervised_regularizer == 'aug_cowout': unsup_reg = regularizers.CowMaskRegularizer( cut_backg_noise, cut_prob, cow_sigma_range, cow_prop_range) augment_twice = True else: raise ValueError('Unknown supervised_regularizer \'{}\''.format( unsupervised_regularizer)) return unsup_reg, augment_twice
37d60049146c876d423fea6615cf43975f1ae389
3,657,360
def part_5b_avg_std_dev_of_replicates_analysis_completed(*jobs): """Check that the initial job data is written to the json files.""" file_written_bool_list = [] all_file_written_bool_pass = False for job in jobs: data_written_bool = False if job.isfile( f"../../src/engines/gomc/averagesWithinReplicatez.txt" ) and job.isfile(f"../../src/engines/gomc/setAverages.txt"): data_written_bool = True file_written_bool_list.append(data_written_bool) if False not in file_written_bool_list: all_file_written_bool_pass = True return all_file_written_bool_pass
f238382e18de32b86598d5daa13f92af01311d3d
3,657,361
def exportFlatClusterData(filename, root_dir, dataset_name, new_row_header,new_column_header,xt,ind1,ind2,display): """ Export the clustered results as a text file, only indicating the flat-clusters rather than the tree """ filename = string.replace(filename,'.pdf','.txt') export_text = export.ExportFile(filename) column_header = string.join(['UID','row_clusters-flat']+new_column_header,'\t')+'\n' ### format column-names for export export_text.write(column_header) column_clusters = string.join(['column_clusters-flat','']+ map(str, ind2),'\t')+'\n' ### format column-flat-clusters for export export_text.write(column_clusters) ### The clusters, dendrogram and flat clusters are drawn bottom-up, so we need to reverse the order to match #new_row_header = new_row_header[::-1] #xt = xt[::-1] try: elite_dir = getGOEliteExportDir(root_dir,dataset_name) except Exception: elite_dir = None elite_columns = string.join(['InputID','SystemCode']) try: sy = systemCodeCheck(new_row_header) except Exception: sy = None ### Export each row in the clustered data matrix xt i=0 cluster_db={} export_lines = [] for row in xt: id = new_row_header[i] if sy == '$En:Sy': cluster = 'cluster-'+string.split(id,':')[0] elif sy == 'S' and ':' in id: cluster = 'cluster-'+string.split(id,':')[0] elif sy == 'Sy' and ':' in id: cluster = 'cluster-'+string.split(id,':')[0] else: cluster = 'c'+str(ind1[i]) try: cluster_db[cluster].append(new_row_header[i]) except Exception: cluster_db[cluster] = [new_row_header[i]] export_lines.append(string.join([new_row_header[i],str(ind1[i])]+map(str, row),'\t')+'\n') i+=1 ### Reverse the order of the file export_lines.reverse() for line in export_lines: export_text.write(line) export_text.close() ### Export GO-Elite input files allGenes={} for cluster in cluster_db: export_elite = export.ExportFile(elite_dir+'/'+cluster+'.txt') if sy==None: export_elite.write('ID\n') else: export_elite.write('ID\tSystemCode\n') for id in cluster_db[cluster]: if sy == '$En:Sy': id = string.split(id,':')[1] ids = string.split(id,' ') if 'ENS' in ids[0]: id = ids[0] else: id = ids[-1] sc = 'En' elif sy == 'Sy' and ':' in id: id = string.split(id,':')[1] ids = string.split(id,' ') sc = 'Sy' elif sy == 'En:Sy': id = string.split(id,' ')[0] sc = 'En' elif sy == 'Ae': l = string.split(id,':') if len(l)==2: id = string.split(id,':')[0] ### Use the Ensembl if len(l) == 3: id = string.split(id,':')[1] ### Use the Ensembl sc = 'En' else: sc = sy if sy == 'S': if ':' in id: id = string.split(id,':')[-1] sc = 'Ae' try: export_elite.write(id+'\t'+sc+'\n') except Exception: export_elite.write(id+'\n') ### if no System Code known allGenes[id]=[] export_elite.close() try: if storeGeneSetName != None: if len(storeGeneSetName)>0 and 'driver' not in justShowTheseIDs: exportCustomGeneSet(storeGeneSetName,species,allGenes) print 'Exported geneset to "StoredGeneSets"' except Exception: pass ### Export as CDT file filename = string.replace(filename,'.txt','.cdt') if display: try: exportJTV(filename, new_column_header, new_row_header) except Exception: pass export_cdt = export.ExportFile(filename) column_header = string.join(['UNIQID','NAME','GWEIGHT']+new_column_header,'\t')+'\n' ### format column-names for export export_cdt.write(column_header) eweight = string.join(['EWEIGHT','','']+ ['1']*len(new_column_header),'\t')+'\n' ### format column-flat-clusters for export export_cdt.write(eweight) ### Export each row in the clustered data matrix xt i=0; cdt_lines=[] for row in xt: cdt_lines.append(string.join([new_row_header[i]]*2+['1']+map(str, row),'\t')+'\n') i+=1 ### Reverse the order of the file cdt_lines.reverse() for line in cdt_lines: export_cdt.write(line) export_cdt.close() return elite_dir, filename
f9ade521b67c87518741fb56fb1c80df0961065a
3,657,362
def indent_multiline(s: str, indentation: str = " ", add_newlines: bool = True) -> str: """Indent the given string if it contains more than one line. Args: s: String to indent indentation: Indentation to prepend to each line. add_newlines: Whether to add newlines surrounding the result if indentation was added. """ lines = s.splitlines() if len(lines) <= 1: return s lines_str = "\n".join(f"{indentation}{line}" for line in lines) if add_newlines: return f"\n{lines_str}\n" else: return lines_str
62eb2fc7c3f3b493a6edc009692f472e50e960f7
3,657,363
from typing import Optional def _get_property(self, key: str, *, offset: int = 0) -> Optional[int]: """Get a property from the location details. :param key: The key for the property :param offset: Any offset to apply to the value (if found) :returns: The property as an int value if found, None otherwise """ value = self.location_details.get(key) if value is None: return None return int(value[0]) + offset
8d2c35a88810db5255cfb0ca9d7bfa6345ff3276
3,657,364
def pca_normalization(points): """Projects points onto the directions of maximum variance.""" points = np.transpose(points) pca = PCA(n_components=len(np.transpose(points))) points = pca.fit_transform(points) return np.transpose(points)
753bea2546341fc0be3e7cf4fd444b3ee93378f9
3,657,365
def _reformTrend(percs, inits): """ Helper function to recreate original trend based on percent change data. """ trend = [] trend.append(percs[0]) for i in range(1, len(percs)): newLine = [] newLine.append(percs[i][0]) #append the date for j in range(1, len(percs[i])): #for each term on date level = float(trend[i-1][j]) * percs[i][j].numerator / percs[i][j].denominator #level is the prev level * %change newLine.append(level) trend.append(newLine) return trend
1f6c8bbb4786b53ea2c06643108ff50691b6f89c
3,657,366
def PET_initialize_compression_structure(N_axial,N_azimuthal,N_u,N_v): """Obtain 'offsets' and 'locations' arrays for fully sampled PET compressed projection data. """ descriptor = [{'name':'N_axial','type':'uint','value':N_axial}, {'name':'N_azimuthal','type':'uint','value':N_azimuthal}, {'name':'N_u','type':'uint','value':N_u}, {'name':'N_v','type':'uint','value':N_v}, { 'name':'offsets','type':'array','value':None, 'dtype':np.int32,'size':(N_azimuthal,N_axial), 'order':'F' }, { 'name':'locations','type':'array','value':None, 'dtype':np.uint16, 'size':(3,N_u * N_v * N_axial * N_azimuthal),'order':'F' }, ] r = call_c_function(niftyrec_c.PET_initialize_compression_structure, descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_initialize_compression_structure' was unsuccessful.", r.status, 'niftyrec_c.PET_initialize_compression_structure') return [r.dictionary['offsets'],r.dictionary['locations']]
1f879517182462d8b66886aa43a4103a05a5b6f9
3,657,367
def get_client_from_user_settings(settings_obj): """Same as get client, except its argument is a DropboxUserSettingsObject.""" return get_client(settings_obj.owner)
4b2c2e87310464807bf6f73d1ff8d7b7c21731ff
3,657,368
def train_student( model, dataset, test_data, test_labels, nb_labels, nb_teachers, stdnt_share, lap_scale, ): """This function trains a student using predictions made by an ensemble of teachers. The student and teacher models are trained using the same neural network architecture. :param dataset: string corresponding to mnist, cifar10, or svhn :param nb_teachers: number of teachers (in the ensemble) to learn from :return: True if student training went well """ # Call helper function to prepare student data using teacher predictions stdnt_dataset = prepare_student_data( model, dataset, test_data, test_labels, nb_labels, nb_teachers, stdnt_share, lap_scale, ) # Unpack the student dataset stdnt_data, stdnt_labels, stdnt_test_data, stdnt_test_labels = stdnt_dataset # Prepare checkpoint filename and path filename = str(dataset) + "_" + str(nb_teachers) + "_student.ckpt" stdnt_prep = PrepareData(stdnt_data, stdnt_labels) stdnt_loader = DataLoader(stdnt_prep, batch_size=64, shuffle=False) stdnt_test_prep = PrepareData(stdnt_test_data, stdnt_test_labels) stdnt_test_loader = DataLoader(stdnt_test_prep, batch_size=64, shuffle=False) # Start student training train(model, stdnt_loader, stdnt_test_loader, ckpt_path, filename) # Compute final checkpoint name for student student_preds = softmax_preds( model, nb_labels, stdnt_test_loader, ckpt_path + filename ) # Compute teacher accuracy precision = accuracy(student_preds, stdnt_test_labels) print("\nPrecision of student after training: " + str(precision)) return True
de8db38bde151f5dd65b93a0c8a44c2289351f81
3,657,369
import numpy def create_transition_matrix_numeric(mu, d, v): """ Use numerical integration. This is not so compatible with algopy because it goes through fortran. Note that d = 2*h - 1 following Kimura 1957. The rate mu is a catch-all scaling factor. The finite distribution v is assumed to be a stochastic vector. @param mu: scales the rate matrix @param d: dominance (as opposed to recessiveness) of preferred states. @param v: numpy array defining a distribution over states @return: transition matrix """ # Construct the numpy matrix whose entries # are differences of log equilibrium probabilities. # Everything in this code block is pure numpy. F = numpy.log(v) e = numpy.ones_like(F) S = numpy.outer(e, F) - numpy.outer(F, e) # Create the rate matrix Q and return its matrix exponential. # Things in this code block may use algopy if mu and d # are bundled with truncated Taylor information. D = d * numpy.sign(S) pre_Q = numpy.vectorize(numeric_fixation)(0.5*S, D) pre_Q = mu * pre_Q Q = pre_Q - algopy.diag(algopy.sum(pre_Q, axis=1)) P = algopy.expm(Q) return P
a60a3da34089fffe2a48cc282ea4cbb528454fd6
3,657,370
import os def parse_integrate(filename='INTEGRATE.LP'): """ Harvest data from INTEGRATE """ if not os.path.exists(filename): return {'failure': 'Integration step failed'} info = parser.parse(filename, 'integrate') for batch, frames in zip(info.get('batches',[]), info.pop('batch_frames', [])): batch.update(frames) return info
cc37e4a8f4ed35f0827e93f93e8da301d0b49c8e
3,657,371
def channelmap(stream: Stream, *args, **kwargs) -> FilterableStream: """https://ffmpeg.org/ffmpeg-filters.html#channelmap""" return filter(stream, channelmap.__name__, *args, **kwargs)
8293e9004fd4dfb7ff830e477dcee4de5d163a5d
3,657,372
def test_token(current_user: DBUser = Depends(get_current_user)): """ Test access-token """ return current_user
1ceb90c1321e358124520ab5b1b1ecb07de4619d
3,657,373
import mls import os def locate_data(name, check_exists=True): """Locate the named data file. Data files under mls/data/ are copied when this package is installed. This function locates these files relative to the install directory. Parameters ---------- name : str Path of data file relative to mls/data. check_exists : bool Raise a RuntimeError if the named file does not exist when this is True. Returns ------- str Path of data file within installation directory. """ pkg_path = mls.__path__[0] path = os.path.join(pkg_path, 'data', name) if check_exists and not os.path.exists(path): raise RuntimeError('No such data file: {}'.format(path)) return path
86ed5d2403a8d97aabcd4b65361ffa6f82095fff
3,657,374
def process_label_imA(im): """Crop a label image so that the result contains all labels, then return separate images, one for each label. Returns a dictionary of images and corresponding labels (for choosing colours), also a scene bounding box. Need to run shape statistics to determine the number of labels and the IDs """ # stuff to figure out which way we slice, etc isoidx = check_isotropy(im) otheridx = [0, 1, 2] otheridx.remove(isoidx) direction = get_direction(im, isoidx) sp = im.GetSpacing() sp = str2ds(sp) spacing = [sp[i] for i in otheridx] slthickness = sp[isoidx] labstats = sitk.LabelShapeStatisticsImageFilter() labstats.Execute(im) labels = labstats.GetLabels() boxes = [labstats.GetBoundingBox(i) for i in labels] # Need to compute bounding box for all labels, as # this will set the row/colums # boxes are corner and size - this code assumes 3D corners = [(x[0], x[1], x[2]) for x in boxes] othercorner = [(x[0] + x[3] - 1, x[1] + x[4] - 1, x[2] + x[5] - 1) for x in boxes] sizes = [(x[3], x[4], x[5]) for x in boxes] all_low_x = [C[0] for C in corners] all_low_y = [C[1] for C in corners] all_low_z = [C[2] for C in corners] low_x = min(all_low_x) low_y = min(all_low_y) low_z = min(all_low_z) lowcorner = (low_x, low_y, low_z) all_high_x = [C[0] for C in othercorner] all_high_y = [C[1] for C in othercorner] all_high_z = [C[2] for C in othercorner] high_x = max(all_high_x) high_y = max(all_high_y) high_z = max(all_high_z) highcorner = (high_x, high_y, high_z) allsize = (highcorner[0] - lowcorner[0] + 1, highcorner[1] - lowcorner[1] + 1, highcorner[2] - lowcorner[2] + 1) # corners [otheridx] and size[otheridx] should be all the same newcorners = [list(x) for x in corners] newsizes = [list(x) for x in sizes] a = otheridx[0] b = otheridx[1] for f in range(len(newcorners)): newcorners[f][a] = lowcorner[a] newcorners[f][b] = lowcorner[b] newsizes[f][a] = allsize[a] newsizes[f][b] = allsize[b] ims = [sitk.RegionOfInterest(im, allsize, lowcorner) == labels[i] for i in range(len(labels))] imcrop = sitk.RegionOfInterest(im, allsize, lowcorner) return({'rois': ims, 'labels': labels, 'original': im, 'cropped': imcrop})
66e89e84d773d102c8fe7a6d10dd0604b52d9862
3,657,375
def render_graphs(csv_data, append_titles=""): """ Convenience function. Gets the aggregated `monthlies` data from `aggregate_monthly_data(csv_data)` and returns a dict of graph titles mapped to rendered SVGs from `monthly_total_precip_line()` and `monthly_avg_min_max_temp_line()` using the `monthlies` data. """ monthlies = aggregate_monthly_data(csv_data) return { graph.config.title: graph.render() for graph in [ monthly_total_precip_line(monthlies, append_titles), monthly_avg_min_max_temp_line(monthlies, append_titles), monthly_max_temps_box(monthlies, append_titles), ] }
c2258faf759c2fd91e55fea06384d5f7ec030154
3,657,376
import traceback def _get_location(): """Return the location as a string, accounting for this function and the parent in the stack.""" return "".join(traceback.format_stack(limit=STACK_LIMIT + 2)[:-2])
f36037a440d2e8f3613beed217a758bc0cfa752d
3,657,377
from apyfal.client.syscall import SysCallClient from apyfal import Accelerator import apyfal.configuration as cfg import apyfal.exceptions as exc def test_syscall_client_init(): """Tests SysCallClient.__init__""" # Test: accelerator_executable_available, checks return type assert type(cfg.accelerator_executable_available()) is bool # Mocks some functions accelerator_available = True class DummySysCallClient(SysCallClient): """Dummy SysCallClient""" @staticmethod def _stop(*_, **__): """Do Nothing to skip object deletion""" def dummy_accelerator_executable_available(): """Return fake result""" return accelerator_available cfg_accelerator_executable_available = cfg.accelerator_executable_available cfg.accelerator_executable_available = ( dummy_accelerator_executable_available) # Tests try: # Accelerator not available DummySysCallClient() # Default for Accelerator if no host specified config = cfg.Configuration() try: del config._sections['host'] except KeyError: pass client = Accelerator(config=config).client client._stop = DummySysCallClient._stop # Disable __del__ assert isinstance(client, SysCallClient) # Accelerator not available accelerator_available = False with pytest.raises(exc.HostConfigurationException): SysCallClient() # Restores functions finally: cfg.accelerator_executable_available = ( cfg_accelerator_executable_available)
cdbe5bbcd9aa2b5e655f5c693316f32ee6b9d073
3,657,378
def start_session(): """do nothing here """ return Response.failed_response('Error')
b8c58ec837c5a77c35cb6682c6c405489cf512c0
3,657,379
def _combine_keras_model_with_trill(embedding_tfhub_handle, aggregating_model): """Combines keras model with TRILL model.""" trill_layer = hub.KerasLayer( handle=embedding_tfhub_handle, trainable=False, arguments={'sample_rate': 16000}, output_key='embedding', output_shape=[None, 2048] ) input1 = tf.keras.Input([None]) trill_output = trill_layer(input1) final_out = aggregating_model(trill_output) final_model = tf.keras.Model( inputs=input1, outputs=final_out) return final_model
97bf695e6b083dfefcad1d2c8ac24b54687047fd
3,657,380
def phases(times, names=[]): """ Creates named phases from a set of times defining the edges of hte intervals """ if not names: names = range(len(times)-1) return {names[i]:[times[i], times[i+1]] for (i, _) in enumerate(times) if i < len(times)-1}
0e56dcf57a736e4555cae02b8f79b827c17e1d38
3,657,381
def smesolve(H, rho0, times, c_ops=[], sc_ops=[], e_ops=[], _safe_mode=True, args={}, **kwargs): """ Solve stochastic master equation. Dispatch to specific solvers depending on the value of the `solver` keyword argument. Parameters ---------- H : :class:`qutip.Qobj`, or time dependent system. System Hamiltonian. Can depend on time, see StochasticSolverOptions help for format. rho0 : :class:`qutip.Qobj` Initial density matrix or state vector (ket). times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. c_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation. Can depend on time, see StochasticSolverOptions help for format. sc_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the eqaution of motion according to how the d1 and d2 functions are defined. Can depend on time, see StochasticSolverOptions help for format. e_ops : list of :class:`qutip.Qobj` single operator or list of operators for which to evaluate expectation values. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ if "method" in kwargs and kwargs["method"] == "photocurrent": print("stochastic solver with photocurrent method has been moved to " "it's own function: photocurrent_mesolve") return photocurrent_mesolve(H, rho0, times, c_ops=c_ops, sc_ops=sc_ops, e_ops=e_ops, _safe_mode=_safe_mode, args=args, **kwargs) if isket(rho0): rho0 = ket2dm(rho0) if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None sso = StochasticSolverOptions(True, H=H, state0=rho0, times=times, c_ops=c_ops, sc_ops=sc_ops, e_ops=e_ops, args=args, **kwargs) if _safe_mode: _safety_checks(sso) if sso.solver_code == 120: return _positive_map(sso, e_ops_dict) sso.LH = liouvillian(sso.H, c_ops=sso.sc_ops + sso.c_ops) * sso.dt if sso.method == 'homodyne' or sso.method is None: if sso.m_ops is None: sso.m_ops = [op + op.dag() for op in sso.sc_ops] sso.sops = [spre(op) + spost(op.dag()) for op in sso.sc_ops] if not isinstance(sso.dW_factors, list): sso.dW_factors = [1] * len(sso.m_ops) elif len(sso.dW_factors) != len(sso.m_ops): raise Exception("The len of dW_factors is not the same as m_ops") elif sso.method == 'heterodyne': if sso.m_ops is None: m_ops = [] sso.sops = [] for c in sso.sc_ops: if sso.m_ops is None: m_ops += [c + c.dag(), -1j * c - c.dag()] sso.sops += [(spre(c) + spost(c.dag())) / np.sqrt(2), (spre(c) - spost(c.dag())) * -1j / np.sqrt(2)] sso.m_ops = m_ops if not isinstance(sso.dW_factors, list): sso.dW_factors = [np.sqrt(2)] * len(sso.sops) elif len(sso.dW_factors) == len(sso.m_ops): pass elif len(sso.dW_factors) == len(sso.sc_ops): dW_factors = [] for fact in sso.dW_factors: dW_factors += [np.sqrt(2) * fact, np.sqrt(2) * fact] sso.dW_factors = dW_factors elif len(sso.dW_factors) != len(sso.m_ops): raise Exception("The len of dW_factors is not the same as sc_ops") elif sso.method == "photocurrent": raise NotImplementedError("Moved to 'photocurrent_mesolve'") else: raise Exception("The method must be one of None, homodyne, heterodyne") sso.ce_ops = [QobjEvo(spre(op)) for op in sso.e_ops] sso.cm_ops = [QobjEvo(spre(op)) for op in sso.m_ops] sso.LH.compile() [op.compile() for op in sso.sops] [op.compile() for op in sso.cm_ops] [op.compile() for op in sso.ce_ops] if sso.solver_code in [103, 153]: sso.imp = 1 - sso.LH * 0.5 sso.imp.compile() sso.solver_obj = SMESolver sso.solver_name = "smesolve_" + sso.solver res = _sesolve_generic(sso, sso.options, sso.progress_bar) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
4a27d54d2ca390bb3e4ac88ec2119633481df529
3,657,382
def harmonic_vector(n): """ create a vector in the form [1,1/2,1/3,...1/n] """ return np.array([[1.0 / i] for i in range(1, n + 1)], dtype='double')
6f2a94e0a54566db614bb3c4916e1a8538783862
3,657,383
import copy def get_install_task_flavor(job_config): """ Pokes through the install task's configuration (including its overrides) to figure out which flavor it will want to install. Only looks at the first instance of the install task in job_config. """ project, = job_config.get('project', 'ceph'), tasks = job_config.get('tasks', dict()) overrides = job_config.get('overrides', dict()) install_overrides = overrides.get('install', dict()) project_overrides = install_overrides.get(project, dict()) first_install_config = dict() for task in tasks: if task.keys()[0] == 'install': first_install_config = task.values()[0] or dict() break first_install_config = copy.deepcopy(first_install_config) deep_merge(first_install_config, install_overrides) deep_merge(first_install_config, project_overrides) return get_flavor(first_install_config)
11fcefe3df17acfbce395949aa615d8292585fb6
3,657,384
def equalize_hist(image, nbins=256): """Return image after histogram equalization. Parameters ---------- image : array Image array. nbins : int Number of bins for image histogram. Returns ------- out : float array Image array after histogram equalization. Notes ----- This function is adapted from [1]_ with the author's permission. References ---------- .. [1] http://www.janeriksolem.net/2009/06/histogram-equalization-with-python-and.html .. [2] http://en.wikipedia.org/wiki/Histogram_equalization """ image = img_as_float(image) cdf, bin_centers = cumulative_distribution(image, nbins) out = np.interp(image.flat, bin_centers, cdf) return out.reshape(image.shape)
ea990cee9bef0e2edc41e2c5279f52b98d2a4d89
3,657,385
def add9336(rh): """ Adds a 9336 (FBA) disk to virtual machine's directory entry. Input: Request Handle with the following properties: function - 'CHANGEVM' subfunction - 'ADD9336' userid - userid of the virtual machine parms['diskPool'] - Disk pool parms['diskSize'] - size of the disk in blocks or bytes. parms['fileSystem'] - Linux filesystem to install on the disk. parms['mode'] - Disk access mode parms['multiPW'] - Multi-write password parms['readPW'] - Read password parms['vaddr'] - Virtual address parms['writePW'] - Write password Output: Request Handle updated with the results. Return code - 0: ok, non-zero: error """ rh.printSysLog("Enter changeVM.add9336") results, blocks = generalUtils.cvtToBlocks(rh, rh.parms['diskSize']) if results['overallRC'] != 0: # message already sent. Only need to update the final results. rh.updateResults(results) if results['overallRC'] == 0: parms = [ "-T", rh.userid, "-v", rh.parms['vaddr'], "-t", "9336", "-a", "AUTOG", "-r", rh.parms['diskPool'], "-u", "1", "-z", blocks, "-f", "1"] hideList = [] if 'mode' in rh.parms: parms.extend(["-m", rh.parms['mode']]) else: parms.extend(["-m", 'W']) if 'readPW' in rh.parms: parms.extend(["-R", rh.parms['readPW']]) hideList.append(len(parms) - 1) if 'writePW' in rh.parms: parms.extend(["-W", rh.parms['writePW']]) hideList.append(len(parms) - 1) if 'multiPW' in rh.parms: parms.extend(["-M", rh.parms['multiPW']]) hideList.append(len(parms) - 1) results = invokeSMCLI(rh, "Image_Disk_Create_DM", parms, hideInLog=hideList) if results['overallRC'] != 0: # SMAPI API failed. rh.printLn("ES", results['response']) rh.updateResults(results) # Use results from invokeSMCLI if (results['overallRC'] == 0 and 'fileSystem' in rh.parms): # Install the file system results = installFS( rh, rh.parms['vaddr'], rh.parms['mode'], rh.parms['fileSystem'], "9336") if results['overallRC'] == 0: results = isLoggedOn(rh, rh.userid) if (results['overallRC'] == 0 and results['rs'] == 0): # Add the disk to the active configuration. parms = [ "-T", rh.userid, "-v", rh.parms['vaddr'], "-m", rh.parms['mode']] results = invokeSMCLI(rh, "Image_Disk_Create", parms) if results['overallRC'] == 0: rh.printLn("N", "Added dasd " + rh.parms['vaddr'] + " to the active configuration.") else: # SMAPI API failed. rh.printLn("ES", results['response']) rh.updateResults(results) # Use results from invokeSMCLI rh.printSysLog("Exit changeVM.add9336, rc: " + str(rh.results['overallRC'])) return rh.results['overallRC']
bb7168d5b0ee084b15e8ef91633d5554669cf83f
3,657,386
def window_data(s1,s2,s5,s6,s7,s8, sat,ele,azi,seconds,edot,f,az1,az2,e1,e2,satNu,pfitV,pele): """ author kristine m. larson also calculates the scale factor for various GNNS frequencies. currently returns meanTime in UTC hours and mean azimuth in degrees cf, which is the wavelength/2 currently works for GPS, GLONASS, GALILEO, and Beidou new: pele are the elevation angle limits for the polynomial fit. these are appplied before you start windowing the data """ cunit = 1 dat = []; x=[]; y=[] # get scale factor # added glonass, 101 and 102 if (f == 1) or (f==101) or (f==201): dat = s1 if (f == 2) or (f == 20) or (f == 102) or (f==302): dat = s2 if (f == 5) or (f==205): dat = s5 # these are galileo frequencies (via RINEX definition) if (f == 206) or (f == 306): dat = s6 if (f == 207) or (f == 307): dat = s7 if (f == 208): dat = s8 # get the scaling factor for this frequency and satellite number # print(f,satNu) cf = arc_scaleF(f,satNu) # if not, frequency does not exist, will be tripped by Nv # remove the direct signal component if (cf > 0): x,y,sat,azi,seconds,edot = removeDC(dat, satNu, sat,ele, pele, azi,az1,az2,edot,seconds) # Nv = len(y); Nvv = 0 ; # some defaults in case there are no data in this region meanTime = 0.0; avgAzim = 0.0; avgEdot = 1; Nvv = 0 avgEdot_fit =1; delT = 0.0 # no longer have to look for specific satellites. some minimum number of points required if Nv > 30: model = np.polyfit(x,y,pfitV) fit = np.polyval(model,x) # redefine x and y as old variables ele = x dat = y - fit # ok - now figure out what is within the more restricted elevation angles x = ele[(ele > e1) & (ele < e2) & (azi > az1) & (azi < az2)] y = dat[(ele > e1) & (ele < e2) & (azi > az1) & (azi < az2)] ed = edot[(ele > e1) & (ele < e2) & (azi > az1) & (azi < az2)] a = azi[(ele > e1) & (ele < e2) & (azi > az1) & (azi < az2)] t = seconds[(ele > e1) & (ele < e2) & (azi > az1) & (azi < az2)] sumval = np.sum(y) if sumval == 0: x = []; y=[] ; Nv = 0 ; Nvv = 0 # since units were changed to volts/volts, the zeros got changed to 1 values if sumval == Nv: x = []; y=[] ; Nv = 0 ; Nvv = 0 Nvv = len(y) # calculate average time in UTC (actually it is GPS time) in hours and average azimuth # this is fairly arbitrary, but can't be so small you can't fit a polymial to it if (Nvv > 10): dd = np.diff(t) # edot, in radians/sec model = np.polyfit(t,x*np.pi/180,1) # edot in radians/second avgEdot_fit = model[0] avgAzim = np.mean(a) meanTime = np.mean(t)/3600 avgEdot = np.mean(ed) # delta Time in minutes delT = (np.max(t) - np.min(t))/60 # average tan(elev) cunit =np.mean(np.tan(np.pi*x/180)) # return tan(e)/edot, in units of radians/hour now. used for RHdot correction if avgEdot == 0: outFact1 = 0 else: outFact1 = cunit/(avgEdot*3600) outFact2 = cunit/(avgEdot_fit*3600) # was debugging #if (satNu == 25) and (f == 20): # print('Edot,cunit,az', avgEdot_fit, cunit, avgAzim, outFact2) return x,y,Nvv,cf,meanTime,avgAzim,outFact1, outFact2, delT
f3bd4e96059882c518bd1e8eb2a966eee9c9968a
3,657,387
def get_related(user, kwargs): """ Get related model from user's input. """ for item in user.access_extra: if item[1] in kwargs: related_model = apps.get_model(item[0], item[1]) kwargs[item[1]] = related_model.objects.get(pk=get_id(kwargs[item[1]])) return kwargs
6b2ce081d1f61da734d26ef6f3c25e4da871b9ee
3,657,388
def make_logical(n_tiles=1): """ Make a toy dataset with three labels that represent the logical functions: OR, XOR, AND (functions of the 2D input). """ pat = np.array([ # X X Y Y Y [0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [1, 0, 1, 1, 0], [1, 1, 1, 0, 1] ], dtype=int) N, E = pat.shape D = 2 L = E - D pat2 = np.zeros((N, E)) pat2[:, 0:L] = pat[:, D:E] pat2[:, L:E] = pat[:, 0:D] pat2 = np.tile(pat2, (n_tiles, 1)) np.random.shuffle(pat2) Y = np.array(pat2[:, 0:L], dtype=float) X = np.array(pat2[:, L:E], dtype=float) return X, Y
e2d936db7ae0d9ea8b0f1654e89a32b5b8c247cc
3,657,389
def get_idmap_etl( p_idmap: object, p_etl_id: str, p_source_table: object =None ): """ Генерирует скрипт ETL для таблицы Idmap :param p_idmap: объект класса Idmap :param p_etl_id: id etl процесса :param p_source_table: таблица источник, которую требуется загрузить в idmap (если не указана, возвращается лист с etl всех таблиц источников) """ l_source_table_id=None if p_source_table: l_source_table_id=p_source_table.id l_etl=[] l_idmap_nk_column=None l_idmap_rk_column=None l_etl_column=None for i_attribute in _get_table_attribute_property(p_table=p_idmap): if i_attribute.attribute_type==C_RK: l_idmap_rk_column=i_attribute.id if i_attribute.attribute_type==C_NK: l_idmap_nk_column=i_attribute.id if i_attribute.attribute_type==C_ETL_ATTR: l_etl_column=i_attribute.id for i_source_table in p_idmap.entity.source_table: if l_source_table_id and l_source_table_id!=i_source_table.id: # пропускаем таблицу источник, если не она указана continue l_column_nk_sql="" # формируем скрипт для конкатенации натуральных ключей # сортируем список натуральных ключей по наименованию l_source_attribute_nk=sorted(p_idmap.source_attribute_nk, key=lambda nk: nk.name) for i_column_nk in l_source_attribute_nk: if i_source_table.id==i_column_nk.source_table.id: l_column_nk_sql=l_column_nk_sql+"CAST("+'"'+str(i_column_nk.id)+'"'+" AS VARCHAR(4000))\n\t\t||'@@'||\n\t\t" l_column_nk_sql=l_column_nk_sql[:-14] l_source_id=i_source_table.source.source_id # генерируем etl для каждой таблицы источника l_etl.append( Connection().dbms.get_idmap_etl( p_idmap_id=p_idmap.id, p_idmap_rk_id=l_idmap_rk_column, p_idmap_nk_id=l_idmap_nk_column, p_etl_id=l_etl_column, p_etl_value=p_etl_id, p_source_table_id=i_source_table.id, p_attribute_nk=l_column_nk_sql, p_source_id=l_source_id, p_max_rk=str(p_idmap.max_rk) ) ) return l_etl
0e24b4cbb5ea935c871cae3338094292c9ebfd02
3,657,390
def gs_tie(men, women, preftie): """ Gale-shapley algorithm, modified to exclude unacceptable matches Inputs: men (list of men's names) women (list of women's names) pref (dictionary of preferences mapping names to list of sets of preferred names in sorted order) Output: dictionary of stable matches """ rank = {} for w in women: rank[w] = {} i = 1 for m in preftie[w]: rank[w][tuple(m)] = i i += 1 #print(rank) prefpointer = {} for m in men: prefpointer[m] = 0 freemen = set(men) S = {} while(freemen) and prefpointer[m] < len(preftie[m]): m = freemen.pop() w = preftie[m][prefpointer[m]] w = tuple(w) #print(m + ' ' + str(w)) prefpointer[m] += 1 #print(m + ' ' + str(prefpointer[m])) for i in range(len(w)): if w[i] not in S: S[w[i]] = m #print(w[i]) else: mprime = S[w[i]] if m in rank[w[i]] and rank[w[i]][m] < rank[w[i]][mprime]: S[w[i]] = m freemen.add(mprime) else: freemen.add(m) #print(S) return S
b5dbe7047e3e6be7f0d288e49f8dae25a94db318
3,657,391
def is_iterable(value): """Return True if the object is an iterable type.""" return hasattr(value, '__iter__')
55e1ecc9b264d39aaf5cfcbe89fdc01264191d95
3,657,392
def get_search_app_by_model(model): """ :returns: a single search app (by django model) :param model: django model for the search app :raises LookupError: if it can't find the search app """ for search_app in get_search_apps(): if search_app.queryset.model is model: return search_app raise LookupError(f'search app for {model} not found.')
0670fe754df65b02d5dfc502ba3bd0a3a802370c
3,657,393
def prct_overlap(adata, key_1, key_2, norm=False, ax_norm="row", sort_index=False): """ % or cell count corresponding to the overlap of different cell types between 2 set of annotations/clusters. Parameters ---------- adata: AnnData objet key_1: observational key corresponding to one cell division/ one set of clusters key_2: bservational key corresponding to one cell division/ one set of clusters norm: normalise the ratio to the cell numbers given the total number of cells per cluster in key_1 Return ------ Table containing the ratio of cells within a cluster """ data_1 = adata.obs[key_1].tolist() data_2 = adata.obs[key_2].tolist() count = {k:[] for k in list(set(data_1))} #count = {k:[] for k in sorted(list(set(data_1)))} i = 0 for index in data_1: count[index].append(data_2[i]) i += 1 total_matrix = [] for key, value in count.items(): value = sorted(value) curr_key_list = [] for element in sorted(list(set(data_2))): curr_count = 0 for v in value: if element == v: curr_count += 1 curr_key_list.append(curr_count) curr_sum = sum(curr_key_list) #total_matrix.append([x/curr_sum for x in curr_key_list]) total_matrix.append(curr_key_list) if norm and ax_norm == "row": total_matrix = [] for key, value in count.items(): value = sorted(value) curr_key_list = [] for element in sorted(list(set(data_2))): curr_count = 0 for v in value: if element == v: curr_count += 1 curr_key_list.append(curr_count) curr_sum = sum(curr_key_list) total_matrix.append([x/curr_sum for x in curr_key_list]) elif norm: print("""error in the argument ax_norm or it is col and I haven't figure out how to make it for mow. , here is the heatmap with no normalisation""") if sort_index: data_heatmap = pd.DataFrame(data=np.matrix(total_matrix), index=list(set(data_1)), columns=sorted(list(set(data_2)))).sort_index() else: data_heatmap = pd.DataFrame(data=np.matrix(total_matrix), index=list(set(data_1)), columns=sorted(list(set(data_2)))) return(data_heatmap)
77a8382af77e8842a99211af58d6a6f85de6a50e
3,657,394
def keep_category(df, colname, pct=0.05, n=5): """ Keep a pct or number of every levels of a categorical variable Parameters ---------- pct : float Keep at least pct of the nb of observations having a specific category n : int Keep at least n of the variables having a specific category Returns -------- Returns an index of rows to keep """ tokeep = [] nmin = df.groupby(colname).apply(lambda x: x.sample( max(1, min(x.shape[0], n, int(x.shape[0] * pct)))).index) for index in nmin: tokeep += index.tolist() return pd.Index(tokeep)
3db00aa6bdea797827a693c8e12bbf942a55ec35
3,657,395
def remove_scope_from_name(name, scope): """ Args: name (str): full name of the tf variable with all the scopes Returns: (str): full name of the variable with the scope removed """ result = name.split(scope)[1] result = result[1:] if result[0] == '/' else result return result.split(":")[0]
aa70042a2f57185a0f5e401d182a02e5654eb2b0
3,657,396
async def get_timers_matching(ctx, name_str, channel_only=True, info=False): """ Interactively get a guild timer matching the given string. Parameters ---------- name_str: str Name or partial name of a group timer in the current guild or channel. channel_only: bool Whether to match against the groups in the current channel or those in the whole guild. info: bool Whether to display some summary info about the timer in the selector. Returns: Timer Raises ------ cmdClient.lib.UserCancelled: Raised if the user manually cancels the selection. cmdClient.lib.ResponseTimedOut: Raised if the user fails to respond to the selector within `120` seconds. """ # Get the full timer list if channel_only: timers = ctx.client.interface.get_channel_timers(ctx.ch.id) else: timers = ctx.client.interface.get_guild_timers(ctx.guild.id) # If there are no timers, quit early if not timers: return None # Build a list of matching timers name_str = name_str.strip() timers = [timer for timer in timers if name_str.lower() in timer.name.lower()] if len(timers) == 0: return None elif len(timers) == 1: return timers[0] else: if info: select_from = [timer.oneline_summary() for timer in timers] else: select_from = [timer.name for timer in timers] try: selected = await ctx.selector("Multiple matching groups found, please select one.", select_from) except ResponseTimedOut: raise ResponseTimedOut("Group selection timed out.") from None except UserCancelled: raise UserCancelled("User cancelled group selection.") from None return timers[selected]
48e94d2930f48b47b033ec024246065206a2bebb
3,657,397
import random def comprehension_array(size=1000000): """Fills an array that is handled by Python via list comprehension.""" return [random() * i for i in range(size)]
e3ccdc992e5b741cf6f164c93d36f2e45d59a590
3,657,398
def alignment(alpha, p, treatment): """Alignment confounding function. Reference: Blackwell, Matthew. "A selection bias approach to sensitivity analysis for causal effects." Political Analysis 22.2 (2014): 169-182. https://www.mattblackwell.org/files/papers/causalsens.pdf Args: alpha (np.array): a confounding values vector p (np.array): a propensity score vector between 0 and 1 treatment (np.array): a treatment vector (1 if treated, otherwise 0) """ assert p.shape[0] == treatment.shape[0] adj = alpha * (1 - p) * treatment + alpha * p * (1 - treatment) return adj
8097dbcd62ba934b31b1f8a9e72fd906109b5181
3,657,399