text
stringlengths 56
1.16k
|
---|
[2023-09-01 18:22:33,265::train::INFO] [train] Iter 00995 | loss 3.0282 | loss(rot) 2.4104 | loss(pos) 0.3576 | loss(seq) 0.2603 | grad 3.8691 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4750 |
[2023-09-01 18:22:42,860::train::INFO] [train] Iter 00996 | loss 4.3643 | loss(rot) 3.6986 | loss(pos) 0.6657 | loss(seq) 0.0000 | grad 3.6577 | lr 0.0010 | time_forward 3.7170 | time_backward 5.8750 |
[2023-09-01 18:22:49,757::train::INFO] [train] Iter 00997 | loss 2.7896 | loss(rot) 2.5454 | loss(pos) 0.2343 | loss(seq) 0.0099 | grad 4.5158 | lr 0.0010 | time_forward 2.7710 | time_backward 4.1220 |
[2023-09-01 18:22:57,907::train::INFO] [train] Iter 00998 | loss 3.0947 | loss(rot) 2.6181 | loss(pos) 0.2733 | loss(seq) 0.2033 | grad 4.0698 | lr 0.0010 | time_forward 3.4910 | time_backward 4.6550 |
[2023-09-01 18:23:05,909::train::INFO] [train] Iter 00999 | loss 2.3299 | loss(rot) 1.7630 | loss(pos) 0.1829 | loss(seq) 0.3841 | grad 3.7274 | lr 0.0010 | time_forward 3.4650 | time_backward 4.5340 |
[2023-09-01 18:23:15,292::train::INFO] [train] Iter 01000 | loss 2.7956 | loss(rot) 0.0362 | loss(pos) 2.7515 | loss(seq) 0.0078 | grad 5.1319 | lr 0.0010 | time_forward 4.0260 | time_backward 5.3530 |
[2023-09-01 18:24:00,447::train::INFO] [val] Iter 01000 | loss 2.8151 | loss(rot) 1.7900 | loss(pos) 0.8739 | loss(seq) 0.1512 |
[2023-09-01 18:24:03,536::train::INFO] [train] Iter 01001 | loss 2.2705 | loss(rot) 0.4684 | loss(pos) 1.2960 | loss(seq) 0.5062 | grad 4.8080 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4520 |
[2023-09-01 18:24:06,360::train::INFO] [train] Iter 01002 | loss 1.3941 | loss(rot) 0.0804 | loss(pos) 1.2225 | loss(seq) 0.0912 | grad 6.7288 | lr 0.0010 | time_forward 1.3820 | time_backward 1.4380 |
[2023-09-01 18:24:13,948::train::INFO] [train] Iter 01003 | loss 2.8011 | loss(rot) 2.2373 | loss(pos) 0.3126 | loss(seq) 0.2512 | grad 3.3173 | lr 0.0010 | time_forward 3.3080 | time_backward 4.2770 |
[2023-09-01 18:24:16,694::train::INFO] [train] Iter 01004 | loss 2.9263 | loss(rot) 0.8807 | loss(pos) 1.9527 | loss(seq) 0.0929 | grad 5.7703 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4650 |
[2023-09-01 18:24:23,127::train::INFO] [train] Iter 01005 | loss 2.8825 | loss(rot) 1.8456 | loss(pos) 0.4571 | loss(seq) 0.5798 | grad 2.2236 | lr 0.0010 | time_forward 2.7710 | time_backward 3.6580 |
[2023-09-01 18:24:31,228::train::INFO] [train] Iter 01006 | loss 1.9468 | loss(rot) 0.5258 | loss(pos) 1.0244 | loss(seq) 0.3966 | grad 4.3814 | lr 0.0010 | time_forward 3.5210 | time_backward 4.5590 |
[2023-09-01 18:24:40,969::train::INFO] [train] Iter 01007 | loss 2.5861 | loss(rot) 0.0123 | loss(pos) 2.5726 | loss(seq) 0.0012 | grad 4.4069 | lr 0.0010 | time_forward 3.9900 | time_backward 5.7480 |
[2023-09-01 18:24:50,446::train::INFO] [train] Iter 01008 | loss 3.1781 | loss(rot) 2.4910 | loss(pos) 0.6397 | loss(seq) 0.0474 | grad 5.8112 | lr 0.0010 | time_forward 3.9220 | time_backward 5.5510 |
[2023-09-01 18:24:53,381::train::INFO] [train] Iter 01009 | loss 3.2949 | loss(rot) 2.6563 | loss(pos) 0.2047 | loss(seq) 0.4338 | grad 3.2342 | lr 0.0010 | time_forward 1.3700 | time_backward 1.5460 |
[2023-09-01 18:25:03,453::train::INFO] [train] Iter 01010 | loss 1.7456 | loss(rot) 0.8096 | loss(pos) 0.7086 | loss(seq) 0.2274 | grad 2.0273 | lr 0.0010 | time_forward 4.2500 | time_backward 5.8190 |
[2023-09-01 18:25:11,196::train::INFO] [train] Iter 01011 | loss 3.2624 | loss(rot) 3.0664 | loss(pos) 0.1961 | loss(seq) 0.0000 | grad 2.0179 | lr 0.0010 | time_forward 2.9730 | time_backward 4.7550 |
[2023-09-01 18:25:20,376::train::INFO] [train] Iter 01012 | loss 2.1548 | loss(rot) 0.3952 | loss(pos) 1.6876 | loss(seq) 0.0720 | grad 8.6056 | lr 0.0010 | time_forward 3.5040 | time_backward 5.6720 |
[2023-09-01 18:25:28,399::train::INFO] [train] Iter 01013 | loss 2.6261 | loss(rot) 0.0221 | loss(pos) 2.6024 | loss(seq) 0.0015 | grad 8.3439 | lr 0.0010 | time_forward 3.2880 | time_backward 4.7320 |
[2023-09-01 18:25:38,156::train::INFO] [train] Iter 01014 | loss 3.8180 | loss(rot) 2.8924 | loss(pos) 0.4332 | loss(seq) 0.4923 | grad 3.4779 | lr 0.0010 | time_forward 4.1930 | time_backward 5.5540 |
[2023-09-01 18:25:47,090::train::INFO] [train] Iter 01015 | loss 1.4685 | loss(rot) 0.1526 | loss(pos) 1.2891 | loss(seq) 0.0267 | grad 6.4591 | lr 0.0010 | time_forward 3.7390 | time_backward 5.1910 |
[2023-09-01 18:25:57,126::train::INFO] [train] Iter 01016 | loss 2.2898 | loss(rot) 1.1957 | loss(pos) 0.8067 | loss(seq) 0.2874 | grad 4.2847 | lr 0.0010 | time_forward 4.2030 | time_backward 5.8280 |
[2023-09-01 18:25:59,900::train::INFO] [train] Iter 01017 | loss 2.9997 | loss(rot) 1.8953 | loss(pos) 0.5101 | loss(seq) 0.5943 | grad 5.4739 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4430 |
[2023-09-01 18:26:02,672::train::INFO] [train] Iter 01018 | loss 3.3184 | loss(rot) 2.4440 | loss(pos) 0.8743 | loss(seq) 0.0001 | grad 9.0971 | lr 0.0010 | time_forward 1.3730 | time_backward 1.3960 |
[2023-09-01 18:26:12,416::train::INFO] [train] Iter 01019 | loss 1.9669 | loss(rot) 0.1303 | loss(pos) 1.8216 | loss(seq) 0.0150 | grad 5.2813 | lr 0.0010 | time_forward 3.8550 | time_backward 5.8460 |
[2023-09-01 18:26:15,167::train::INFO] [train] Iter 01020 | loss 3.2120 | loss(rot) 2.5688 | loss(pos) 0.6432 | loss(seq) 0.0000 | grad 6.4582 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4400 |
[2023-09-01 18:26:24,402::train::INFO] [train] Iter 01021 | loss 2.9456 | loss(rot) 1.7132 | loss(pos) 0.7187 | loss(seq) 0.5137 | grad 3.7253 | lr 0.0010 | time_forward 3.9570 | time_backward 5.2400 |
[2023-09-01 18:26:27,709::train::INFO] [train] Iter 01022 | loss 2.6011 | loss(rot) 1.7100 | loss(pos) 0.3838 | loss(seq) 0.5074 | grad 2.7100 | lr 0.0010 | time_forward 1.4940 | time_backward 1.8060 |
[2023-09-01 18:26:35,324::train::INFO] [train] Iter 01023 | loss 2.3106 | loss(rot) 0.0031 | loss(pos) 2.3075 | loss(seq) 0.0000 | grad 7.1797 | lr 0.0010 | time_forward 3.0690 | time_backward 4.5300 |
[2023-09-01 18:26:44,389::train::INFO] [train] Iter 01024 | loss 3.0615 | loss(rot) 1.9538 | loss(pos) 0.5775 | loss(seq) 0.5301 | grad 5.1262 | lr 0.0010 | time_forward 3.5210 | time_backward 5.5400 |
[2023-09-01 18:26:52,401::train::INFO] [train] Iter 01025 | loss 1.2682 | loss(rot) 0.2043 | loss(pos) 0.7562 | loss(seq) 0.3076 | grad 3.2049 | lr 0.0010 | time_forward 3.1460 | time_backward 4.8630 |
[2023-09-01 18:26:58,975::train::INFO] [train] Iter 01026 | loss 3.6380 | loss(rot) 3.4133 | loss(pos) 0.2214 | loss(seq) 0.0033 | grad 2.0872 | lr 0.0010 | time_forward 2.7260 | time_backward 3.8460 |
[2023-09-01 18:27:08,696::train::INFO] [train] Iter 01027 | loss 3.0270 | loss(rot) 2.6622 | loss(pos) 0.3488 | loss(seq) 0.0159 | grad 3.5284 | lr 0.0010 | time_forward 3.8400 | time_backward 5.8770 |
[2023-09-01 18:27:16,956::train::INFO] [train] Iter 01028 | loss 2.2129 | loss(rot) 1.5572 | loss(pos) 0.2313 | loss(seq) 0.4245 | grad 2.8226 | lr 0.0010 | time_forward 3.2430 | time_backward 5.0150 |
[2023-09-01 18:27:25,023::train::INFO] [train] Iter 01029 | loss 2.8318 | loss(rot) 1.9656 | loss(pos) 0.3932 | loss(seq) 0.4730 | grad 3.4172 | lr 0.0010 | time_forward 3.1070 | time_backward 4.9560 |
[2023-09-01 18:27:33,305::train::INFO] [train] Iter 01030 | loss 2.5084 | loss(rot) 2.2215 | loss(pos) 0.2851 | loss(seq) 0.0018 | grad 3.1445 | lr 0.0010 | time_forward 3.4200 | time_backward 4.8600 |
[2023-09-01 18:27:36,235::train::INFO] [train] Iter 01031 | loss 2.5795 | loss(rot) 1.7121 | loss(pos) 0.2440 | loss(seq) 0.6234 | grad 1.8751 | lr 0.0010 | time_forward 1.4380 | time_backward 1.4880 |
[2023-09-01 18:27:41,004::train::INFO] [train] Iter 01032 | loss 2.8723 | loss(rot) 2.6005 | loss(pos) 0.2042 | loss(seq) 0.0676 | grad 2.9386 | lr 0.0010 | time_forward 2.0800 | time_backward 2.6360 |
[2023-09-01 18:27:49,102::train::INFO] [train] Iter 01033 | loss 1.6707 | loss(rot) 0.8240 | loss(pos) 0.6852 | loss(seq) 0.1615 | grad 3.2118 | lr 0.0010 | time_forward 3.3180 | time_backward 4.7760 |
[2023-09-01 18:27:57,286::train::INFO] [train] Iter 01034 | loss 2.8705 | loss(rot) 2.2381 | loss(pos) 0.2683 | loss(seq) 0.3641 | grad 2.4953 | lr 0.0010 | time_forward 3.5170 | time_backward 4.6630 |
[2023-09-01 18:28:00,288::train::INFO] [train] Iter 01035 | loss 3.1129 | loss(rot) 2.6649 | loss(pos) 0.2740 | loss(seq) 0.1740 | grad 3.7391 | lr 0.0010 | time_forward 1.4800 | time_backward 1.5190 |
[2023-09-01 18:28:10,255::train::INFO] [train] Iter 01036 | loss 2.4308 | loss(rot) 2.1587 | loss(pos) 0.2721 | loss(seq) 0.0000 | grad 2.6914 | lr 0.0010 | time_forward 3.9480 | time_backward 6.0150 |
[2023-09-01 18:28:13,182::train::INFO] [train] Iter 01037 | loss 2.9467 | loss(rot) 2.6199 | loss(pos) 0.3256 | loss(seq) 0.0011 | grad 3.6004 | lr 0.0010 | time_forward 1.4430 | time_backward 1.4810 |
[2023-09-01 18:28:22,164::train::INFO] [train] Iter 01038 | loss 2.2137 | loss(rot) 1.5604 | loss(pos) 0.2633 | loss(seq) 0.3900 | grad 4.8339 | lr 0.0010 | time_forward 3.7030 | time_backward 5.2750 |
[2023-09-01 18:28:24,984::train::INFO] [train] Iter 01039 | loss 2.2943 | loss(rot) 1.2890 | loss(pos) 0.5389 | loss(seq) 0.4664 | grad 4.7749 | lr 0.0010 | time_forward 1.3890 | time_backward 1.4260 |
[2023-09-01 18:28:27,770::train::INFO] [train] Iter 01040 | loss 2.6944 | loss(rot) 1.3761 | loss(pos) 0.7111 | loss(seq) 0.6072 | grad 4.0517 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4580 |
[2023-09-01 18:28:36,853::train::INFO] [train] Iter 01041 | loss 1.8637 | loss(rot) 0.2130 | loss(pos) 1.6297 | loss(seq) 0.0210 | grad 5.2205 | lr 0.0010 | time_forward 4.3880 | time_backward 4.6920 |
[2023-09-01 18:28:46,165::train::INFO] [train] Iter 01042 | loss 1.9859 | loss(rot) 1.2274 | loss(pos) 0.2303 | loss(seq) 0.5282 | grad 4.2001 | lr 0.0010 | time_forward 4.0220 | time_backward 5.2860 |
[2023-09-01 18:28:49,033::train::INFO] [train] Iter 01043 | loss 4.2228 | loss(rot) 0.0037 | loss(pos) 4.2191 | loss(seq) 0.0000 | grad 8.0982 | lr 0.0010 | time_forward 1.3440 | time_backward 1.5210 |
[2023-09-01 18:28:51,905::train::INFO] [train] Iter 01044 | loss 2.7686 | loss(rot) 0.0123 | loss(pos) 2.7549 | loss(seq) 0.0014 | grad 3.8119 | lr 0.0010 | time_forward 1.3730 | time_backward 1.4960 |
[2023-09-01 18:28:55,027::train::INFO] [train] Iter 01045 | loss 2.1243 | loss(rot) 1.2453 | loss(pos) 0.4670 | loss(seq) 0.4120 | grad 2.5546 | lr 0.0010 | time_forward 1.5500 | time_backward 1.5690 |
[2023-09-01 18:29:01,460::train::INFO] [train] Iter 01046 | loss 3.6850 | loss(rot) 3.2947 | loss(pos) 0.3891 | loss(seq) 0.0012 | grad 5.0684 | lr 0.0010 | time_forward 2.8000 | time_backward 3.6100 |
[2023-09-01 18:29:09,853::train::INFO] [train] Iter 01047 | loss 2.7760 | loss(rot) 0.0102 | loss(pos) 2.7633 | loss(seq) 0.0025 | grad 6.0507 | lr 0.0010 | time_forward 3.5100 | time_backward 4.8560 |
[2023-09-01 18:29:19,321::train::INFO] [train] Iter 01048 | loss 3.2903 | loss(rot) 2.3614 | loss(pos) 0.4948 | loss(seq) 0.4340 | grad 4.9155 | lr 0.0010 | time_forward 3.5430 | time_backward 5.9210 |
[2023-09-01 18:29:22,033::train::INFO] [train] Iter 01049 | loss 2.9982 | loss(rot) 2.3567 | loss(pos) 0.3531 | loss(seq) 0.2884 | grad 5.2856 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4200 |
[2023-09-01 18:29:24,806::train::INFO] [train] Iter 01050 | loss 2.4699 | loss(rot) 1.5812 | loss(pos) 0.3743 | loss(seq) 0.5143 | grad 2.9634 | lr 0.0010 | time_forward 1.3320 | time_backward 1.4390 |
[2023-09-01 18:29:27,178::train::INFO] [train] Iter 01051 | loss 2.3634 | loss(rot) 1.5036 | loss(pos) 0.3316 | loss(seq) 0.5282 | grad 2.6813 | lr 0.0010 | time_forward 1.0970 | time_backward 1.2330 |
[2023-09-01 18:29:37,026::train::INFO] [train] Iter 01052 | loss 3.2437 | loss(rot) 0.0152 | loss(pos) 3.2265 | loss(seq) 0.0020 | grad 6.2265 | lr 0.0010 | time_forward 3.9060 | time_backward 5.9400 |
[2023-09-01 18:29:45,260::train::INFO] [train] Iter 01053 | loss 1.8446 | loss(rot) 0.1711 | loss(pos) 1.6446 | loss(seq) 0.0288 | grad 3.5258 | lr 0.0010 | time_forward 3.4110 | time_backward 4.8200 |
[2023-09-01 18:29:54,806::train::INFO] [train] Iter 01054 | loss 2.4759 | loss(rot) 1.3836 | loss(pos) 0.7207 | loss(seq) 0.3715 | grad 4.0824 | lr 0.0010 | time_forward 4.0490 | time_backward 5.4930 |
[2023-09-01 18:30:02,680::train::INFO] [train] Iter 01055 | loss 2.3293 | loss(rot) 0.9923 | loss(pos) 0.8211 | loss(seq) 0.5159 | grad 4.6435 | lr 0.0010 | time_forward 3.3220 | time_backward 4.5490 |
[2023-09-01 18:30:11,115::train::INFO] [train] Iter 01056 | loss 2.5980 | loss(rot) 0.6616 | loss(pos) 1.5971 | loss(seq) 0.3393 | grad 5.4152 | lr 0.0010 | time_forward 3.9040 | time_backward 4.5280 |
[2023-09-01 18:30:20,894::train::INFO] [train] Iter 01057 | loss 3.4587 | loss(rot) 2.5275 | loss(pos) 0.5738 | loss(seq) 0.3574 | grad 2.8746 | lr 0.0010 | time_forward 4.0430 | time_backward 5.7330 |
[2023-09-01 18:30:30,785::train::INFO] [train] Iter 01058 | loss 3.2266 | loss(rot) 2.9262 | loss(pos) 0.3004 | loss(seq) 0.0000 | grad 4.8485 | lr 0.0010 | time_forward 4.0940 | time_backward 5.7930 |
[2023-09-01 18:30:40,481::train::INFO] [train] Iter 01059 | loss 1.8053 | loss(rot) 0.4423 | loss(pos) 1.0315 | loss(seq) 0.3315 | grad 3.2870 | lr 0.0010 | time_forward 3.9490 | time_backward 5.7370 |
[2023-09-01 18:30:49,361::train::INFO] [train] Iter 01060 | loss 3.5279 | loss(rot) 3.1116 | loss(pos) 0.4163 | loss(seq) 0.0000 | grad 3.2023 | lr 0.0010 | time_forward 3.5650 | time_backward 5.3110 |
[2023-09-01 18:30:57,665::train::INFO] [train] Iter 01061 | loss 1.3157 | loss(rot) 0.0920 | loss(pos) 1.2124 | loss(seq) 0.0112 | grad 4.6822 | lr 0.0010 | time_forward 3.3500 | time_backward 4.9510 |
[2023-09-01 18:31:06,902::train::INFO] [train] Iter 01062 | loss 1.1903 | loss(rot) 0.3501 | loss(pos) 0.5723 | loss(seq) 0.2679 | grad 4.7463 | lr 0.0010 | time_forward 3.7260 | time_backward 5.5070 |
[2023-09-01 18:31:09,793::train::INFO] [train] Iter 01063 | loss 3.4723 | loss(rot) 3.0564 | loss(pos) 0.3521 | loss(seq) 0.0638 | grad 4.4647 | lr 0.0010 | time_forward 1.4100 | time_backward 1.4770 |
[2023-09-01 18:31:18,218::train::INFO] [train] Iter 01064 | loss 2.7251 | loss(rot) 0.0037 | loss(pos) 2.7209 | loss(seq) 0.0005 | grad 7.6754 | lr 0.0010 | time_forward 3.4270 | time_backward 4.9950 |
[2023-09-01 18:31:21,013::train::INFO] [train] Iter 01065 | loss 2.9128 | loss(rot) 2.0663 | loss(pos) 0.3466 | loss(seq) 0.4999 | grad 4.6193 | lr 0.0010 | time_forward 1.3360 | time_backward 1.4560 |
[2023-09-01 18:31:28,616::train::INFO] [train] Iter 01066 | loss 2.9827 | loss(rot) 2.4971 | loss(pos) 0.4853 | loss(seq) 0.0003 | grad 5.4448 | lr 0.0010 | time_forward 3.1790 | time_backward 4.4170 |
[2023-09-01 18:31:36,513::train::INFO] [train] Iter 01067 | loss 2.7015 | loss(rot) 1.8360 | loss(pos) 0.3186 | loss(seq) 0.5469 | grad 3.6720 | lr 0.0010 | time_forward 3.2860 | time_backward 4.6080 |
[2023-09-01 18:31:44,334::train::INFO] [train] Iter 01068 | loss 3.4509 | loss(rot) 2.8950 | loss(pos) 0.1554 | loss(seq) 0.4005 | grad 4.0412 | lr 0.0010 | time_forward 3.3840 | time_backward 4.4350 |
[2023-09-01 18:31:53,413::train::INFO] [train] Iter 01069 | loss 2.1372 | loss(rot) 0.0813 | loss(pos) 1.8100 | loss(seq) 0.2459 | grad 4.5326 | lr 0.0010 | time_forward 3.7850 | time_backward 5.2910 |
[2023-09-01 18:31:56,255::train::INFO] [train] Iter 01070 | loss 2.8012 | loss(rot) 2.0323 | loss(pos) 0.2999 | loss(seq) 0.4690 | grad 3.5113 | lr 0.0010 | time_forward 1.4110 | time_backward 1.4110 |
[2023-09-01 18:32:04,680::train::INFO] [train] Iter 01071 | loss 3.5789 | loss(rot) 2.2635 | loss(pos) 0.7480 | loss(seq) 0.5675 | grad 3.7061 | lr 0.0010 | time_forward 3.5960 | time_backward 4.8260 |
[2023-09-01 18:32:07,523::train::INFO] [train] Iter 01072 | loss 2.0539 | loss(rot) 0.0415 | loss(pos) 2.0008 | loss(seq) 0.0115 | grad 4.9922 | lr 0.0010 | time_forward 1.3640 | time_backward 1.4740 |
[2023-09-01 18:32:15,925::train::INFO] [train] Iter 01073 | loss 2.6156 | loss(rot) 0.8847 | loss(pos) 1.2367 | loss(seq) 0.4942 | grad 5.9995 | lr 0.0010 | time_forward 3.5900 | time_backward 4.7690 |
[2023-09-01 18:32:18,752::train::INFO] [train] Iter 01074 | loss 3.3953 | loss(rot) 3.0975 | loss(pos) 0.2121 | loss(seq) 0.0857 | grad 5.6079 | lr 0.0010 | time_forward 1.3620 | time_backward 1.4620 |
[2023-09-01 18:32:21,263::train::INFO] [train] Iter 01075 | loss 2.6358 | loss(rot) 1.8912 | loss(pos) 0.2447 | loss(seq) 0.5000 | grad 2.8507 | lr 0.0010 | time_forward 1.3130 | time_backward 1.1930 |
[2023-09-01 18:32:31,434::train::INFO] [train] Iter 01076 | loss 3.5217 | loss(rot) 3.0259 | loss(pos) 0.4886 | loss(seq) 0.0071 | grad 3.2493 | lr 0.0010 | time_forward 4.0280 | time_backward 6.1400 |
[2023-09-01 18:32:41,370::train::INFO] [train] Iter 01077 | loss 2.2887 | loss(rot) 1.3075 | loss(pos) 0.4979 | loss(seq) 0.4834 | grad 3.1688 | lr 0.0010 | time_forward 4.1050 | time_backward 5.8290 |
[2023-09-01 18:32:52,142::train::INFO] [train] Iter 01078 | loss 2.1136 | loss(rot) 0.8390 | loss(pos) 1.1791 | loss(seq) 0.0955 | grad 5.2662 | lr 0.0010 | time_forward 4.3450 | time_backward 6.4230 |
[2023-09-01 18:33:00,600::train::INFO] [train] Iter 01079 | loss 1.9946 | loss(rot) 0.1227 | loss(pos) 1.6688 | loss(seq) 0.2032 | grad 4.3968 | lr 0.0010 | time_forward 3.4880 | time_backward 4.9670 |
[2023-09-01 18:33:04,082::train::INFO] [train] Iter 01080 | loss 2.8684 | loss(rot) 0.0356 | loss(pos) 2.8265 | loss(seq) 0.0062 | grad 6.2897 | lr 0.0010 | time_forward 1.5790 | time_backward 1.9000 |
[2023-09-01 18:33:13,634::train::INFO] [train] Iter 01081 | loss 0.7491 | loss(rot) 0.1663 | loss(pos) 0.4275 | loss(seq) 0.1553 | grad 1.9340 | lr 0.0010 | time_forward 3.7290 | time_backward 5.8020 |
[2023-09-01 18:33:16,376::train::INFO] [train] Iter 01082 | loss 1.4854 | loss(rot) 0.4476 | loss(pos) 0.5972 | loss(seq) 0.4406 | grad 4.0146 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4800 |
[2023-09-01 18:33:26,238::train::INFO] [train] Iter 01083 | loss 3.5046 | loss(rot) 0.0090 | loss(pos) 3.4950 | loss(seq) 0.0006 | grad 6.5700 | lr 0.0010 | time_forward 3.9470 | time_backward 5.8530 |
[2023-09-01 18:33:34,154::train::INFO] [train] Iter 01084 | loss 4.4634 | loss(rot) 3.2708 | loss(pos) 1.1915 | loss(seq) 0.0011 | grad 10.6422 | lr 0.0010 | time_forward 3.3740 | time_backward 4.5210 |
[2023-09-01 18:33:43,902::train::INFO] [train] Iter 01085 | loss 3.1022 | loss(rot) 2.4245 | loss(pos) 0.6637 | loss(seq) 0.0139 | grad 9.7658 | lr 0.0010 | time_forward 4.0350 | time_backward 5.7090 |
[2023-09-01 18:33:53,584::train::INFO] [train] Iter 01086 | loss 1.5000 | loss(rot) 0.0538 | loss(pos) 1.1088 | loss(seq) 0.3374 | grad 4.4134 | lr 0.0010 | time_forward 4.0820 | time_backward 5.5970 |
[2023-09-01 18:33:56,428::train::INFO] [train] Iter 01087 | loss 2.4701 | loss(rot) 0.7306 | loss(pos) 1.2068 | loss(seq) 0.5326 | grad 5.4538 | lr 0.0010 | time_forward 1.3470 | time_backward 1.4920 |
[2023-09-01 18:34:04,832::train::INFO] [train] Iter 01088 | loss 1.4144 | loss(rot) 0.4330 | loss(pos) 0.9108 | loss(seq) 0.0707 | grad 3.4769 | lr 0.0010 | time_forward 3.4520 | time_backward 4.8860 |
[2023-09-01 18:34:07,659::train::INFO] [train] Iter 01089 | loss 3.8155 | loss(rot) 2.8362 | loss(pos) 0.4817 | loss(seq) 0.4977 | grad 4.1166 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4970 |
[2023-09-01 18:34:16,549::train::INFO] [train] Iter 01090 | loss 1.2967 | loss(rot) 0.5409 | loss(pos) 0.6684 | loss(seq) 0.0874 | grad 2.7051 | lr 0.0010 | time_forward 3.5870 | time_backward 5.2990 |
[2023-09-01 18:34:25,345::train::INFO] [train] Iter 01091 | loss 3.8411 | loss(rot) 2.8138 | loss(pos) 0.5816 | loss(seq) 0.4458 | grad 3.6179 | lr 0.0010 | time_forward 3.4650 | time_backward 5.3270 |
[2023-09-01 18:34:34,971::train::INFO] [train] Iter 01092 | loss 2.5964 | loss(rot) 1.0431 | loss(pos) 0.9731 | loss(seq) 0.5801 | grad 6.4331 | lr 0.0010 | time_forward 3.5500 | time_backward 6.0730 |
[2023-09-01 18:34:43,229::train::INFO] [train] Iter 01093 | loss 3.2470 | loss(rot) 2.7756 | loss(pos) 0.2223 | loss(seq) 0.2491 | grad 3.3841 | lr 0.0010 | time_forward 3.2350 | time_backward 5.0200 |
Subsets and Splits