text
stringlengths
56
1.16k
[2023-09-01 18:46:45,658::train::INFO] [train] Iter 01194 | loss 3.4554 | loss(rot) 2.8028 | loss(pos) 0.6464 | loss(seq) 0.0062 | grad 6.3543 | lr 0.0010 | time_forward 3.6160 | time_backward 4.8330
[2023-09-01 18:46:48,369::train::INFO] [train] Iter 01195 | loss 2.1045 | loss(rot) 0.0117 | loss(pos) 2.0919 | loss(seq) 0.0009 | grad 7.7653 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4350
[2023-09-01 18:46:51,207::train::INFO] [train] Iter 01196 | loss 3.4732 | loss(rot) 2.5626 | loss(pos) 0.4232 | loss(seq) 0.4874 | grad 3.6268 | lr 0.0010 | time_forward 1.3050 | time_backward 1.5290
[2023-09-01 18:47:01,236::train::INFO] [train] Iter 01197 | loss 3.1915 | loss(rot) 2.1662 | loss(pos) 0.4331 | loss(seq) 0.5922 | grad 2.7877 | lr 0.0010 | time_forward 3.9840 | time_backward 5.9890
[2023-09-01 18:47:09,463::train::INFO] [train] Iter 01198 | loss 3.0075 | loss(rot) 2.3761 | loss(pos) 0.2040 | loss(seq) 0.4274 | grad 2.6362 | lr 0.0010 | time_forward 3.4190 | time_backward 4.8040
[2023-09-01 18:47:17,875::train::INFO] [train] Iter 01199 | loss 2.8222 | loss(rot) 1.9093 | loss(pos) 0.4316 | loss(seq) 0.4813 | grad 4.2058 | lr 0.0010 | time_forward 3.6690 | time_backward 4.7390
[2023-09-01 18:47:26,372::train::INFO] [train] Iter 01200 | loss 2.5306 | loss(rot) 2.3799 | loss(pos) 0.1383 | loss(seq) 0.0124 | grad 2.6715 | lr 0.0010 | time_forward 3.2660 | time_backward 5.2280
[2023-09-01 18:47:29,072::train::INFO] [train] Iter 01201 | loss 2.5195 | loss(rot) 0.0082 | loss(pos) 2.5106 | loss(seq) 0.0007 | grad 4.7034 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4520
[2023-09-01 18:47:31,820::train::INFO] [train] Iter 01202 | loss 1.6508 | loss(rot) 1.0027 | loss(pos) 0.3548 | loss(seq) 0.2934 | grad 3.5956 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4480
[2023-09-01 18:47:34,193::train::INFO] [train] Iter 01203 | loss 3.5869 | loss(rot) 3.3548 | loss(pos) 0.2255 | loss(seq) 0.0066 | grad 4.5014 | lr 0.0010 | time_forward 1.1700 | time_backward 1.2010
[2023-09-01 18:47:42,893::train::INFO] [train] Iter 01204 | loss 3.1189 | loss(rot) 2.6047 | loss(pos) 0.3650 | loss(seq) 0.1492 | grad 3.9247 | lr 0.0010 | time_forward 3.4950 | time_backward 5.2010
[2023-09-01 18:47:52,716::train::INFO] [train] Iter 01205 | loss 3.1946 | loss(rot) 2.8411 | loss(pos) 0.3320 | loss(seq) 0.0215 | grad 2.7816 | lr 0.0010 | time_forward 4.0310 | time_backward 5.7900
[2023-09-01 18:48:00,128::train::INFO] [train] Iter 01206 | loss 3.3670 | loss(rot) 3.0316 | loss(pos) 0.1410 | loss(seq) 0.1944 | grad 2.1579 | lr 0.0010 | time_forward 2.8190 | time_backward 4.5880
[2023-09-01 18:48:07,499::train::INFO] [train] Iter 01207 | loss 3.4778 | loss(rot) 3.2308 | loss(pos) 0.2468 | loss(seq) 0.0001 | grad 3.2530 | lr 0.0010 | time_forward 3.1080 | time_backward 4.2600
[2023-09-01 18:48:17,227::train::INFO] [train] Iter 01208 | loss 2.8757 | loss(rot) 1.8138 | loss(pos) 0.5203 | loss(seq) 0.5416 | grad 3.8574 | lr 0.0010 | time_forward 4.1150 | time_backward 5.6100
[2023-09-01 18:48:19,991::train::INFO] [train] Iter 01209 | loss 3.3428 | loss(rot) 3.1550 | loss(pos) 0.0679 | loss(seq) 0.1199 | grad 2.0875 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4410
[2023-09-01 18:48:28,950::train::INFO] [train] Iter 01210 | loss 3.1713 | loss(rot) 2.6998 | loss(pos) 0.2482 | loss(seq) 0.2232 | grad 2.5714 | lr 0.0010 | time_forward 3.7720 | time_backward 5.1830
[2023-09-01 18:48:36,291::train::INFO] [train] Iter 01211 | loss 2.9131 | loss(rot) 2.7042 | loss(pos) 0.2076 | loss(seq) 0.0013 | grad 2.4999 | lr 0.0010 | time_forward 3.0640 | time_backward 4.2730
[2023-09-01 18:48:44,712::train::INFO] [train] Iter 01212 | loss 3.3113 | loss(rot) 3.0981 | loss(pos) 0.2040 | loss(seq) 0.0092 | grad 2.6083 | lr 0.0010 | time_forward 3.7120 | time_backward 4.7060
[2023-09-01 18:48:52,744::train::INFO] [train] Iter 01213 | loss 3.1473 | loss(rot) 2.9402 | loss(pos) 0.0947 | loss(seq) 0.1123 | grad 1.7817 | lr 0.0010 | time_forward 2.9700 | time_backward 5.0580
[2023-09-01 18:48:59,774::train::INFO] [train] Iter 01214 | loss 2.4557 | loss(rot) 0.6029 | loss(pos) 1.7348 | loss(seq) 0.1180 | grad 7.3239 | lr 0.0010 | time_forward 2.7890 | time_backward 4.2380
[2023-09-01 18:49:02,622::train::INFO] [train] Iter 01215 | loss 2.0030 | loss(rot) 1.1860 | loss(pos) 0.3425 | loss(seq) 0.4746 | grad 4.1478 | lr 0.0010 | time_forward 1.3240 | time_backward 1.5210
[2023-09-01 18:49:11,796::train::INFO] [train] Iter 01216 | loss 3.0752 | loss(rot) 2.7350 | loss(pos) 0.2107 | loss(seq) 0.1296 | grad 2.9271 | lr 0.0010 | time_forward 3.7910 | time_backward 5.3390
[2023-09-01 18:49:21,999::train::INFO] [train] Iter 01217 | loss 3.5270 | loss(rot) 3.2007 | loss(pos) 0.3263 | loss(seq) 0.0000 | grad 3.2251 | lr 0.0010 | time_forward 4.2720 | time_backward 5.9280
[2023-09-01 18:49:30,735::train::INFO] [train] Iter 01218 | loss 2.6847 | loss(rot) 1.8157 | loss(pos) 0.4106 | loss(seq) 0.4584 | grad 3.7595 | lr 0.0010 | time_forward 3.8060 | time_backward 4.9260
[2023-09-01 18:49:40,850::train::INFO] [train] Iter 01219 | loss 3.0339 | loss(rot) 2.6714 | loss(pos) 0.3624 | loss(seq) 0.0001 | grad 4.1990 | lr 0.0010 | time_forward 3.9750 | time_backward 6.1360
[2023-09-01 18:49:49,360::train::INFO] [train] Iter 01220 | loss 3.0268 | loss(rot) 2.8383 | loss(pos) 0.1818 | loss(seq) 0.0067 | grad 2.5956 | lr 0.0010 | time_forward 3.6440 | time_backward 4.8500
[2023-09-01 18:49:58,418::train::INFO] [train] Iter 01221 | loss 3.3121 | loss(rot) 2.3645 | loss(pos) 0.4606 | loss(seq) 0.4869 | grad 3.6527 | lr 0.0010 | time_forward 3.8820 | time_backward 5.1740
[2023-09-01 18:50:04,038::train::INFO] [train] Iter 01222 | loss 3.4843 | loss(rot) 3.2055 | loss(pos) 0.2767 | loss(seq) 0.0021 | grad 4.4975 | lr 0.0010 | time_forward 2.4260 | time_backward 3.1900
[2023-09-01 18:50:14,342::train::INFO] [train] Iter 01223 | loss 3.3691 | loss(rot) 0.0203 | loss(pos) 3.3471 | loss(seq) 0.0018 | grad 5.1542 | lr 0.0010 | time_forward 3.7720 | time_backward 6.5280
[2023-09-01 18:50:16,885::train::INFO] [train] Iter 01224 | loss 3.0421 | loss(rot) 2.5383 | loss(pos) 0.2934 | loss(seq) 0.2103 | grad 3.2742 | lr 0.0010 | time_forward 1.2170 | time_backward 1.3220
[2023-09-01 18:50:21,258::train::INFO] [train] Iter 01225 | loss 2.6627 | loss(rot) 0.0629 | loss(pos) 2.5934 | loss(seq) 0.0064 | grad 4.5164 | lr 0.0010 | time_forward 1.9260 | time_backward 2.4130
[2023-09-01 18:50:35,751::train::INFO] [train] Iter 01226 | loss 2.7778 | loss(rot) 2.2941 | loss(pos) 0.1189 | loss(seq) 0.3648 | grad 1.6688 | lr 0.0010 | time_forward 9.8310 | time_backward 4.6590
[2023-09-01 18:50:38,619::train::INFO] [train] Iter 01227 | loss 3.6870 | loss(rot) 3.2509 | loss(pos) 0.2524 | loss(seq) 0.1837 | grad 2.2506 | lr 0.0010 | time_forward 1.3670 | time_backward 1.4600
[2023-09-01 18:50:48,157::train::INFO] [train] Iter 01228 | loss 3.4793 | loss(rot) 3.2618 | loss(pos) 0.1275 | loss(seq) 0.0899 | grad 2.1487 | lr 0.0010 | time_forward 3.2230 | time_backward 6.3130
[2023-09-01 18:50:53,356::train::INFO] [train] Iter 01229 | loss 3.1045 | loss(rot) 2.7621 | loss(pos) 0.1090 | loss(seq) 0.2334 | grad 2.6709 | lr 0.0010 | time_forward 2.3210 | time_backward 2.8740
[2023-09-01 18:51:02,120::train::INFO] [train] Iter 01230 | loss 1.9897 | loss(rot) 1.2727 | loss(pos) 0.3012 | loss(seq) 0.4158 | grad 3.4420 | lr 0.0010 | time_forward 4.5950 | time_backward 4.1660
[2023-09-01 18:51:11,299::train::INFO] [train] Iter 01231 | loss 3.1534 | loss(rot) 2.8354 | loss(pos) 0.3178 | loss(seq) 0.0001 | grad 3.1242 | lr 0.0010 | time_forward 4.7520 | time_backward 4.4250
[2023-09-01 18:51:13,693::train::INFO] [train] Iter 01232 | loss 3.6662 | loss(rot) 2.8390 | loss(pos) 0.4772 | loss(seq) 0.3500 | grad 3.3828 | lr 0.0010 | time_forward 1.1210 | time_backward 1.2690
[2023-09-01 18:51:22,719::train::INFO] [train] Iter 01233 | loss 3.3965 | loss(rot) 2.8227 | loss(pos) 0.1245 | loss(seq) 0.4493 | grad 2.8225 | lr 0.0010 | time_forward 3.6170 | time_backward 5.3890
[2023-09-01 18:51:29,735::train::INFO] [train] Iter 01234 | loss 3.4094 | loss(rot) 2.3779 | loss(pos) 0.5953 | loss(seq) 0.4363 | grad 5.4049 | lr 0.0010 | time_forward 3.0510 | time_backward 3.9610
[2023-09-01 18:51:37,001::train::INFO] [train] Iter 01235 | loss 2.8713 | loss(rot) 0.1109 | loss(pos) 2.7465 | loss(seq) 0.0140 | grad 7.2601 | lr 0.0010 | time_forward 2.8980 | time_backward 4.3660
[2023-09-01 18:51:45,918::train::INFO] [train] Iter 01236 | loss 1.9069 | loss(rot) 0.0478 | loss(pos) 1.8561 | loss(seq) 0.0031 | grad 5.6100 | lr 0.0010 | time_forward 3.5620 | time_backward 5.3510
[2023-09-01 18:51:53,818::train::INFO] [train] Iter 01237 | loss 2.1718 | loss(rot) 0.7221 | loss(pos) 1.0498 | loss(seq) 0.3999 | grad 5.1048 | lr 0.0010 | time_forward 3.4310 | time_backward 4.4600
[2023-09-01 18:51:56,454::train::INFO] [train] Iter 01238 | loss 2.5148 | loss(rot) 1.6249 | loss(pos) 0.4215 | loss(seq) 0.4683 | grad 3.5510 | lr 0.0010 | time_forward 1.2160 | time_backward 1.4160
[2023-09-01 18:52:03,530::train::INFO] [train] Iter 01239 | loss 1.7805 | loss(rot) 0.8489 | loss(pos) 0.5287 | loss(seq) 0.4030 | grad 3.9254 | lr 0.0010 | time_forward 2.9440 | time_backward 4.1190
[2023-09-01 18:52:06,436::train::INFO] [train] Iter 01240 | loss 3.4917 | loss(rot) 2.9295 | loss(pos) 0.4598 | loss(seq) 0.1025 | grad 5.8214 | lr 0.0010 | time_forward 1.4140 | time_backward 1.4890
[2023-09-01 18:52:13,555::train::INFO] [train] Iter 01241 | loss 3.9267 | loss(rot) 2.8351 | loss(pos) 0.5646 | loss(seq) 0.5271 | grad 5.9868 | lr 0.0010 | time_forward 3.1070 | time_backward 4.0090
[2023-09-01 18:52:25,462::train::INFO] [train] Iter 01242 | loss 3.4071 | loss(rot) 2.6752 | loss(pos) 0.4819 | loss(seq) 0.2500 | grad 5.3649 | lr 0.0010 | time_forward 7.5340 | time_backward 4.3690
[2023-09-01 18:52:35,676::train::INFO] [train] Iter 01243 | loss 1.1592 | loss(rot) 0.1061 | loss(pos) 1.0405 | loss(seq) 0.0127 | grad 4.0679 | lr 0.0010 | time_forward 5.4430 | time_backward 4.7670
[2023-09-01 18:52:39,397::train::INFO] [train] Iter 01244 | loss 3.4016 | loss(rot) 3.0493 | loss(pos) 0.3239 | loss(seq) 0.0284 | grad 4.2030 | lr 0.0010 | time_forward 2.2580 | time_backward 1.4600
[2023-09-01 18:52:45,050::train::INFO] [train] Iter 01245 | loss 2.9904 | loss(rot) 1.9647 | loss(pos) 0.5131 | loss(seq) 0.5126 | grad 3.4780 | lr 0.0010 | time_forward 2.4730 | time_backward 3.1640
[2023-09-01 18:52:47,716::train::INFO] [train] Iter 01246 | loss 2.9100 | loss(rot) 1.7667 | loss(pos) 0.4885 | loss(seq) 0.6547 | grad 3.8661 | lr 0.0010 | time_forward 1.2100 | time_backward 1.4520
[2023-09-01 18:52:50,650::train::INFO] [train] Iter 01247 | loss 2.7486 | loss(rot) 2.5506 | loss(pos) 0.1980 | loss(seq) 0.0000 | grad 2.7077 | lr 0.0010 | time_forward 1.4550 | time_backward 1.4710
[2023-09-01 18:53:11,608::train::INFO] [train] Iter 01248 | loss 2.6124 | loss(rot) 1.8168 | loss(pos) 0.2969 | loss(seq) 0.4987 | grad 2.5980 | lr 0.0010 | time_forward 19.4870 | time_backward 1.4670
[2023-09-01 18:53:14,310::train::INFO] [train] Iter 01249 | loss 1.9269 | loss(rot) 0.0045 | loss(pos) 1.9224 | loss(seq) 0.0000 | grad 3.5340 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4240
[2023-09-01 18:53:29,480::train::INFO] [train] Iter 01250 | loss 1.7421 | loss(rot) 0.5596 | loss(pos) 0.8978 | loss(seq) 0.2848 | grad 3.4251 | lr 0.0010 | time_forward 4.8530 | time_backward 10.3130
[2023-09-01 18:53:38,519::train::INFO] [train] Iter 01251 | loss 2.8874 | loss(rot) 2.3701 | loss(pos) 0.1471 | loss(seq) 0.3702 | grad 3.3544 | lr 0.0010 | time_forward 4.1930 | time_backward 4.8430
[2023-09-01 18:53:41,218::train::INFO] [train] Iter 01252 | loss 2.5845 | loss(rot) 1.7300 | loss(pos) 0.2867 | loss(seq) 0.5678 | grad 3.0745 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4160
[2023-09-01 18:53:44,034::train::INFO] [train] Iter 01253 | loss 2.6039 | loss(rot) 1.4641 | loss(pos) 0.7940 | loss(seq) 0.3458 | grad 6.1886 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4870
[2023-09-01 18:53:46,852::train::INFO] [train] Iter 01254 | loss 2.2421 | loss(rot) 1.9464 | loss(pos) 0.2833 | loss(seq) 0.0124 | grad 3.9040 | lr 0.0010 | time_forward 1.2920 | time_backward 1.5020
[2023-09-01 18:54:22,341::train::INFO] [train] Iter 01255 | loss 2.2531 | loss(rot) 0.0733 | loss(pos) 2.1697 | loss(seq) 0.0101 | grad 5.9465 | lr 0.0010 | time_forward 29.9660 | time_backward 5.4940
[2023-09-01 18:54:37,967::train::INFO] [train] Iter 01256 | loss 2.2794 | loss(rot) 1.6258 | loss(pos) 0.2129 | loss(seq) 0.4407 | grad 3.2831 | lr 0.0010 | time_forward 4.6520 | time_backward 10.9710
[2023-09-01 18:55:05,617::train::INFO] [train] Iter 01257 | loss 3.1021 | loss(rot) 2.7904 | loss(pos) 0.2965 | loss(seq) 0.0152 | grad 2.7523 | lr 0.0010 | time_forward 13.1030 | time_backward 14.5430
[2023-09-01 18:55:22,082::train::INFO] [train] Iter 01258 | loss 3.4184 | loss(rot) 2.5009 | loss(pos) 0.5790 | loss(seq) 0.3385 | grad 3.4360 | lr 0.0010 | time_forward 10.3620 | time_backward 6.0990
[2023-09-01 18:55:24,727::train::INFO] [train] Iter 01259 | loss 3.1641 | loss(rot) 2.8565 | loss(pos) 0.3058 | loss(seq) 0.0019 | grad 4.3072 | lr 0.0010 | time_forward 1.2800 | time_backward 1.3610
[2023-09-01 18:55:36,124::train::INFO] [train] Iter 01260 | loss 3.2440 | loss(rot) 3.0971 | loss(pos) 0.1374 | loss(seq) 0.0095 | grad 3.0210 | lr 0.0010 | time_forward 4.8710 | time_backward 6.5220
[2023-09-01 18:55:47,131::train::INFO] [train] Iter 01261 | loss 3.2444 | loss(rot) 2.8881 | loss(pos) 0.2357 | loss(seq) 0.1206 | grad 3.2786 | lr 0.0010 | time_forward 4.5280 | time_backward 6.4740
[2023-09-01 18:55:55,348::train::INFO] [train] Iter 01262 | loss 2.5735 | loss(rot) 1.4715 | loss(pos) 0.5883 | loss(seq) 0.5138 | grad 3.6454 | lr 0.0010 | time_forward 3.5070 | time_backward 4.7060
[2023-09-01 18:56:03,585::train::INFO] [train] Iter 01263 | loss 2.7259 | loss(rot) 0.8814 | loss(pos) 1.4822 | loss(seq) 0.3624 | grad 6.7048 | lr 0.0010 | time_forward 3.5170 | time_backward 4.7160
[2023-09-01 18:56:13,691::train::INFO] [train] Iter 01264 | loss 2.5146 | loss(rot) 0.7749 | loss(pos) 1.4139 | loss(seq) 0.3258 | grad 3.7891 | lr 0.0010 | time_forward 4.2470 | time_backward 5.8560
[2023-09-01 18:56:16,417::train::INFO] [train] Iter 01265 | loss 2.7844 | loss(rot) 2.5790 | loss(pos) 0.1905 | loss(seq) 0.0149 | grad 2.7104 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4390
[2023-09-01 18:56:24,828::train::INFO] [train] Iter 01266 | loss 2.8914 | loss(rot) 1.7482 | loss(pos) 0.5604 | loss(seq) 0.5827 | grad 3.5368 | lr 0.0010 | time_forward 3.5710 | time_backward 4.8360
[2023-09-01 18:56:33,470::train::INFO] [train] Iter 01267 | loss 3.2249 | loss(rot) 2.9067 | loss(pos) 0.2962 | loss(seq) 0.0220 | grad 4.6018 | lr 0.0010 | time_forward 3.6520 | time_backward 4.9870
[2023-09-01 18:56:42,764::train::INFO] [train] Iter 01268 | loss 3.1927 | loss(rot) 2.3169 | loss(pos) 0.2777 | loss(seq) 0.5981 | grad 2.3938 | lr 0.0010 | time_forward 3.8760 | time_backward 5.4140
[2023-09-01 18:56:50,933::train::INFO] [train] Iter 01269 | loss 2.5345 | loss(rot) 2.3139 | loss(pos) 0.2206 | loss(seq) 0.0000 | grad 2.9874 | lr 0.0010 | time_forward 3.3980 | time_backward 4.7670
[2023-09-01 18:56:59,283::train::INFO] [train] Iter 01270 | loss 3.1632 | loss(rot) 2.9230 | loss(pos) 0.2207 | loss(seq) 0.0195 | grad 3.8615 | lr 0.0010 | time_forward 3.5320 | time_backward 4.8150
[2023-09-01 18:57:07,392::train::INFO] [train] Iter 01271 | loss 2.1712 | loss(rot) 0.3653 | loss(pos) 1.6811 | loss(seq) 0.1248 | grad 4.9374 | lr 0.0010 | time_forward 3.3180 | time_backward 4.7870
[2023-09-01 18:57:10,228::train::INFO] [train] Iter 01272 | loss 1.3941 | loss(rot) 0.6964 | loss(pos) 0.4083 | loss(seq) 0.2894 | grad 2.3426 | lr 0.0010 | time_forward 1.2940 | time_backward 1.5390
[2023-09-01 18:57:19,136::train::INFO] [train] Iter 01273 | loss 1.4841 | loss(rot) 0.7848 | loss(pos) 0.6284 | loss(seq) 0.0710 | grad 3.8628 | lr 0.0010 | time_forward 3.8810 | time_backward 5.0220
[2023-09-01 18:57:21,581::train::INFO] [train] Iter 01274 | loss 1.7013 | loss(rot) 0.5170 | loss(pos) 0.8948 | loss(seq) 0.2894 | grad 3.3022 | lr 0.0010 | time_forward 1.1750 | time_backward 1.2660
[2023-09-01 18:57:31,671::train::INFO] [train] Iter 01275 | loss 3.1065 | loss(rot) 2.3797 | loss(pos) 0.4101 | loss(seq) 0.3167 | grad 3.4110 | lr 0.0010 | time_forward 4.0190 | time_backward 6.0380
[2023-09-01 18:57:34,334::train::INFO] [train] Iter 01276 | loss 2.1904 | loss(rot) 0.5322 | loss(pos) 1.5569 | loss(seq) 0.1012 | grad 6.8062 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4310
[2023-09-01 18:57:44,631::train::INFO] [train] Iter 01277 | loss 3.1355 | loss(rot) 2.7688 | loss(pos) 0.3480 | loss(seq) 0.0186 | grad 3.8821 | lr 0.0010 | time_forward 4.4140 | time_backward 5.8790
[2023-09-01 18:57:54,803::train::INFO] [train] Iter 01278 | loss 3.3120 | loss(rot) 3.0910 | loss(pos) 0.2204 | loss(seq) 0.0007 | grad 2.7156 | lr 0.0010 | time_forward 4.1280 | time_backward 6.0400
[2023-09-01 18:57:57,573::train::INFO] [train] Iter 01279 | loss 1.4389 | loss(rot) 0.6175 | loss(pos) 0.5435 | loss(seq) 0.2779 | grad 3.4053 | lr 0.0010 | time_forward 1.2610 | time_backward 1.5050
[2023-09-01 18:58:07,370::train::INFO] [train] Iter 01280 | loss 3.3198 | loss(rot) 2.7194 | loss(pos) 0.2800 | loss(seq) 0.3204 | grad 3.5036 | lr 0.0010 | time_forward 3.9820 | time_backward 5.8130
[2023-09-01 18:58:17,304::train::INFO] [train] Iter 01281 | loss 3.1530 | loss(rot) 2.6258 | loss(pos) 0.1920 | loss(seq) 0.3352 | grad 2.4763 | lr 0.0010 | time_forward 4.0460 | time_backward 5.8810
[2023-09-01 18:58:19,631::train::INFO] [train] Iter 01282 | loss 4.0185 | loss(rot) 0.0123 | loss(pos) 4.0056 | loss(seq) 0.0006 | grad 3.8798 | lr 0.0010 | time_forward 1.1060 | time_backward 1.2170
[2023-09-01 18:58:29,764::train::INFO] [train] Iter 01283 | loss 2.8327 | loss(rot) 2.0183 | loss(pos) 0.5380 | loss(seq) 0.2763 | grad 3.2545 | lr 0.0010 | time_forward 4.1330 | time_backward 5.9960
[2023-09-01 18:58:40,081::train::INFO] [train] Iter 01284 | loss 3.4307 | loss(rot) 2.9920 | loss(pos) 0.4386 | loss(seq) 0.0001 | grad 3.8174 | lr 0.0010 | time_forward 4.1830 | time_backward 6.1100
[2023-09-01 18:58:50,309::train::INFO] [train] Iter 01285 | loss 3.1350 | loss(rot) 1.9762 | loss(pos) 0.5859 | loss(seq) 0.5730 | grad 3.4847 | lr 0.0010 | time_forward 4.2400 | time_backward 5.9830
[2023-09-01 18:59:00,488::train::INFO] [train] Iter 01286 | loss 3.8468 | loss(rot) 2.5904 | loss(pos) 0.7503 | loss(seq) 0.5061 | grad 3.4267 | lr 0.0010 | time_forward 4.1140 | time_backward 6.0620
[2023-09-01 18:59:10,507::train::INFO] [train] Iter 01287 | loss 1.5386 | loss(rot) 0.6076 | loss(pos) 0.5966 | loss(seq) 0.3344 | grad 3.2633 | lr 0.0010 | time_forward 4.0150 | time_backward 6.0010
[2023-09-01 18:59:13,223::train::INFO] [train] Iter 01288 | loss 3.3806 | loss(rot) 3.0094 | loss(pos) 0.1934 | loss(seq) 0.1778 | grad 3.3548 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4440
[2023-09-01 18:59:15,921::train::INFO] [train] Iter 01289 | loss 3.1470 | loss(rot) 3.0327 | loss(pos) 0.1112 | loss(seq) 0.0030 | grad 2.3628 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4210
[2023-09-01 18:59:24,925::train::INFO] [train] Iter 01290 | loss 2.1931 | loss(rot) 0.8659 | loss(pos) 0.8688 | loss(seq) 0.4584 | grad 5.5162 | lr 0.0010 | time_forward 3.7600 | time_backward 5.2400
[2023-09-01 18:59:33,504::train::INFO] [train] Iter 01291 | loss 1.7441 | loss(rot) 0.2458 | loss(pos) 1.4467 | loss(seq) 0.0516 | grad 4.0043 | lr 0.0010 | time_forward 3.5690 | time_backward 5.0070
[2023-09-01 18:59:44,333::train::INFO] [train] Iter 01292 | loss 1.9481 | loss(rot) 0.7455 | loss(pos) 0.8222 | loss(seq) 0.3804 | grad 4.1559 | lr 0.0010 | time_forward 4.0100 | time_backward 6.8150
[2023-09-01 18:59:47,029::train::INFO] [train] Iter 01293 | loss 2.6900 | loss(rot) 2.5008 | loss(pos) 0.1347 | loss(seq) 0.0546 | grad 2.3302 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4080