text
stringlengths
56
1.16k
[2023-09-01 19:11:39,209::train::INFO] [train] Iter 01394 | loss 3.1976 | loss(rot) 1.3249 | loss(pos) 1.2534 | loss(seq) 0.6192 | grad 5.0498 | lr 0.0010 | time_forward 3.1300 | time_backward 4.8420
[2023-09-01 19:11:48,645::train::INFO] [train] Iter 01395 | loss 3.3365 | loss(rot) 2.5261 | loss(pos) 0.3436 | loss(seq) 0.4668 | grad 3.0793 | lr 0.0010 | time_forward 3.6010 | time_backward 5.8320
[2023-09-01 19:11:58,450::train::INFO] [train] Iter 01396 | loss 3.0505 | loss(rot) 2.3128 | loss(pos) 0.3566 | loss(seq) 0.3812 | grad 3.3135 | lr 0.0010 | time_forward 3.8970 | time_backward 5.8930
[2023-09-01 19:12:01,179::train::INFO] [train] Iter 01397 | loss 3.2359 | loss(rot) 2.8107 | loss(pos) 0.1621 | loss(seq) 0.2632 | grad 2.2671 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4650
[2023-09-01 19:12:08,992::train::INFO] [train] Iter 01398 | loss 3.0853 | loss(rot) 2.3036 | loss(pos) 0.4613 | loss(seq) 0.3203 | grad 3.0304 | lr 0.0010 | time_forward 3.1500 | time_backward 4.6590
[2023-09-01 19:12:18,819::train::INFO] [train] Iter 01399 | loss 3.1207 | loss(rot) 1.9621 | loss(pos) 0.7465 | loss(seq) 0.4120 | grad 5.9173 | lr 0.0010 | time_forward 3.7700 | time_backward 6.0540
[2023-09-01 19:12:21,108::train::INFO] [train] Iter 01400 | loss 2.9089 | loss(rot) 2.7363 | loss(pos) 0.1714 | loss(seq) 0.0012 | grad 2.3051 | lr 0.0010 | time_forward 1.0470 | time_backward 1.2400
[2023-09-01 19:12:30,530::train::INFO] [train] Iter 01401 | loss 2.9543 | loss(rot) 2.1224 | loss(pos) 0.4487 | loss(seq) 0.3833 | grad 3.4697 | lr 0.0010 | time_forward 3.6630 | time_backward 5.7550
[2023-09-01 19:12:36,822::train::INFO] [train] Iter 01402 | loss 3.5511 | loss(rot) 2.5915 | loss(pos) 0.4165 | loss(seq) 0.5431 | grad 5.1368 | lr 0.0010 | time_forward 2.5400 | time_backward 3.7400
[2023-09-01 19:12:39,423::train::INFO] [train] Iter 01403 | loss 1.9301 | loss(rot) 0.5157 | loss(pos) 1.1922 | loss(seq) 0.2222 | grad 4.2338 | lr 0.0010 | time_forward 1.2000 | time_backward 1.3980
[2023-09-01 19:12:49,033::train::INFO] [train] Iter 01404 | loss 2.4325 | loss(rot) 1.4868 | loss(pos) 0.4895 | loss(seq) 0.4561 | grad 3.2077 | lr 0.0010 | time_forward 3.8430 | time_backward 5.7630
[2023-09-01 19:12:52,132::train::INFO] [train] Iter 01405 | loss 2.6555 | loss(rot) 1.7337 | loss(pos) 0.3474 | loss(seq) 0.5743 | grad 2.5918 | lr 0.0010 | time_forward 1.4110 | time_backward 1.6850
[2023-09-01 19:12:54,586::train::INFO] [train] Iter 01406 | loss 1.9890 | loss(rot) 1.6571 | loss(pos) 0.1266 | loss(seq) 0.2053 | grad 2.6766 | lr 0.0010 | time_forward 1.1840 | time_backward 1.2650
[2023-09-01 19:13:03,227::train::INFO] [train] Iter 01407 | loss 2.1767 | loss(rot) 1.3858 | loss(pos) 0.2727 | loss(seq) 0.5182 | grad 3.3577 | lr 0.0010 | time_forward 3.8710 | time_backward 4.7250
[2023-09-01 19:13:05,921::train::INFO] [train] Iter 01408 | loss 3.0322 | loss(rot) 2.5207 | loss(pos) 0.3429 | loss(seq) 0.1686 | grad 4.7536 | lr 0.0010 | time_forward 1.2240 | time_backward 1.4640
[2023-09-01 19:13:14,069::train::INFO] [train] Iter 01409 | loss 1.3306 | loss(rot) 0.3939 | loss(pos) 0.7119 | loss(seq) 0.2248 | grad 6.0704 | lr 0.0010 | time_forward 3.3010 | time_backward 4.8430
[2023-09-01 19:13:16,799::train::INFO] [train] Iter 01410 | loss 3.0463 | loss(rot) 2.4316 | loss(pos) 0.2374 | loss(seq) 0.3772 | grad 2.9749 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4200
[2023-09-01 19:13:25,597::train::INFO] [train] Iter 01411 | loss 3.6208 | loss(rot) 2.9471 | loss(pos) 0.2660 | loss(seq) 0.4077 | grad 4.4400 | lr 0.0010 | time_forward 3.6680 | time_backward 5.1250
[2023-09-01 19:13:35,207::train::INFO] [train] Iter 01412 | loss 3.4634 | loss(rot) 2.9078 | loss(pos) 0.4018 | loss(seq) 0.1538 | grad 4.0677 | lr 0.0010 | time_forward 3.9070 | time_backward 5.6990
[2023-09-01 19:13:44,784::train::INFO] [train] Iter 01413 | loss 3.6437 | loss(rot) 3.1535 | loss(pos) 0.4673 | loss(seq) 0.0228 | grad 5.3736 | lr 0.0010 | time_forward 4.0680 | time_backward 5.5060
[2023-09-01 19:13:53,174::train::INFO] [train] Iter 01414 | loss 3.0538 | loss(rot) 2.3630 | loss(pos) 0.1911 | loss(seq) 0.4997 | grad 3.3580 | lr 0.0010 | time_forward 3.2890 | time_backward 5.0980
[2023-09-01 19:14:02,027::train::INFO] [train] Iter 01415 | loss 2.5646 | loss(rot) 2.0222 | loss(pos) 0.2263 | loss(seq) 0.3161 | grad 3.7723 | lr 0.0010 | time_forward 3.5200 | time_backward 5.3290
[2023-09-01 19:14:12,000::train::INFO] [train] Iter 01416 | loss 3.0205 | loss(rot) 2.6095 | loss(pos) 0.3464 | loss(seq) 0.0647 | grad 2.9064 | lr 0.0010 | time_forward 3.9070 | time_backward 6.0620
[2023-09-01 19:14:20,790::train::INFO] [train] Iter 01417 | loss 3.2714 | loss(rot) 3.0670 | loss(pos) 0.2044 | loss(seq) 0.0000 | grad 3.2324 | lr 0.0010 | time_forward 3.4940 | time_backward 5.2900
[2023-09-01 19:14:30,433::train::INFO] [train] Iter 01418 | loss 2.3515 | loss(rot) 0.1959 | loss(pos) 2.1398 | loss(seq) 0.0157 | grad 3.9769 | lr 0.0010 | time_forward 3.8620 | time_backward 5.7790
[2023-09-01 19:14:33,148::train::INFO] [train] Iter 01419 | loss 2.9042 | loss(rot) 2.0506 | loss(pos) 0.4490 | loss(seq) 0.4046 | grad 3.7669 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4440
[2023-09-01 19:14:36,034::train::INFO] [train] Iter 01420 | loss 3.3183 | loss(rot) 3.0125 | loss(pos) 0.1692 | loss(seq) 0.1366 | grad 2.2707 | lr 0.0010 | time_forward 1.3920 | time_backward 1.4900
[2023-09-01 19:14:41,581::train::INFO] [train] Iter 01421 | loss 2.4822 | loss(rot) 1.3408 | loss(pos) 0.5819 | loss(seq) 0.5595 | grad 4.0877 | lr 0.0010 | time_forward 2.4140 | time_backward 3.1300
[2023-09-01 19:14:47,453::train::INFO] [train] Iter 01422 | loss 1.8926 | loss(rot) 1.0444 | loss(pos) 0.5062 | loss(seq) 0.3420 | grad 2.4812 | lr 0.0010 | time_forward 2.4260 | time_backward 3.4420
[2023-09-01 19:14:50,674::train::INFO] [train] Iter 01423 | loss 3.2484 | loss(rot) 3.1074 | loss(pos) 0.1403 | loss(seq) 0.0007 | grad 2.3454 | lr 0.0010 | time_forward 1.4380 | time_backward 1.7790
[2023-09-01 19:14:53,503::train::INFO] [train] Iter 01424 | loss 3.2714 | loss(rot) 3.0605 | loss(pos) 0.1937 | loss(seq) 0.0171 | grad 2.4157 | lr 0.0010 | time_forward 1.3720 | time_backward 1.4530
[2023-09-01 19:14:56,293::train::INFO] [train] Iter 01425 | loss 2.5467 | loss(rot) 0.2107 | loss(pos) 2.2974 | loss(seq) 0.0386 | grad 6.5779 | lr 0.0010 | time_forward 1.3540 | time_backward 1.4340
[2023-09-01 19:15:06,768::train::INFO] [train] Iter 01426 | loss 1.3603 | loss(rot) 0.3598 | loss(pos) 0.8390 | loss(seq) 0.1615 | grad 3.0347 | lr 0.0010 | time_forward 4.3210 | time_backward 6.1510
[2023-09-01 19:15:09,449::train::INFO] [train] Iter 01427 | loss 1.4776 | loss(rot) 0.7380 | loss(pos) 0.5317 | loss(seq) 0.2079 | grad 3.4294 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4060
[2023-09-01 19:15:18,474::train::INFO] [train] Iter 01428 | loss 2.1633 | loss(rot) 1.2325 | loss(pos) 0.5329 | loss(seq) 0.3979 | grad 3.7422 | lr 0.0010 | time_forward 4.0100 | time_backward 5.0110
[2023-09-01 19:15:27,268::train::INFO] [train] Iter 01429 | loss 2.6106 | loss(rot) 2.3508 | loss(pos) 0.2597 | loss(seq) 0.0001 | grad 3.5899 | lr 0.0010 | time_forward 3.8050 | time_backward 4.9850
[2023-09-01 19:15:29,573::train::INFO] [train] Iter 01430 | loss 1.9488 | loss(rot) 0.3679 | loss(pos) 1.2986 | loss(seq) 0.2823 | grad 7.0280 | lr 0.0010 | time_forward 1.1070 | time_backward 1.1960
[2023-09-01 19:15:39,541::train::INFO] [train] Iter 01431 | loss 3.3505 | loss(rot) 2.9556 | loss(pos) 0.3576 | loss(seq) 0.0373 | grad 4.5720 | lr 0.0010 | time_forward 4.0520 | time_backward 5.9120
[2023-09-01 19:15:47,756::train::INFO] [train] Iter 01432 | loss 2.4426 | loss(rot) 0.7168 | loss(pos) 1.4596 | loss(seq) 0.2662 | grad 4.7402 | lr 0.0010 | time_forward 3.4720 | time_backward 4.7400
[2023-09-01 19:15:50,536::train::INFO] [train] Iter 01433 | loss 3.5259 | loss(rot) 2.9973 | loss(pos) 0.5266 | loss(seq) 0.0020 | grad 6.4192 | lr 0.0010 | time_forward 1.3480 | time_backward 1.4290
[2023-09-01 19:16:00,496::train::INFO] [train] Iter 01434 | loss 1.3602 | loss(rot) 0.4749 | loss(pos) 0.8311 | loss(seq) 0.0542 | grad 6.0314 | lr 0.0010 | time_forward 4.0670 | time_backward 5.8900
[2023-09-01 19:16:08,408::train::INFO] [train] Iter 01435 | loss 2.5701 | loss(rot) 1.7191 | loss(pos) 0.3279 | loss(seq) 0.5231 | grad 5.6252 | lr 0.0010 | time_forward 3.3440 | time_backward 4.5650
[2023-09-01 19:16:18,664::train::INFO] [train] Iter 01436 | loss 2.7766 | loss(rot) 2.1326 | loss(pos) 0.3283 | loss(seq) 0.3157 | grad 4.6740 | lr 0.0010 | time_forward 4.0520 | time_backward 6.1990
[2023-09-01 19:16:28,835::train::INFO] [train] Iter 01437 | loss 2.9097 | loss(rot) 2.7482 | loss(pos) 0.1565 | loss(seq) 0.0050 | grad 3.4384 | lr 0.0010 | time_forward 4.0910 | time_backward 6.0690
[2023-09-01 19:16:37,295::train::INFO] [train] Iter 01438 | loss 2.1247 | loss(rot) 0.9855 | loss(pos) 0.4833 | loss(seq) 0.6559 | grad 3.9105 | lr 0.0010 | time_forward 3.3830 | time_backward 5.0740
[2023-09-01 19:16:47,343::train::INFO] [train] Iter 01439 | loss 1.4683 | loss(rot) 0.7446 | loss(pos) 0.3072 | loss(seq) 0.4164 | grad 3.2474 | lr 0.0010 | time_forward 4.0990 | time_backward 5.9410
[2023-09-01 19:16:56,921::train::INFO] [train] Iter 01440 | loss 3.0619 | loss(rot) 2.8049 | loss(pos) 0.2359 | loss(seq) 0.0211 | grad 2.9660 | lr 0.0010 | time_forward 3.8420 | time_backward 5.7320
[2023-09-01 19:17:07,232::train::INFO] [train] Iter 01441 | loss 2.3728 | loss(rot) 1.5831 | loss(pos) 0.3072 | loss(seq) 0.4825 | grad 3.1070 | lr 0.0010 | time_forward 4.1850 | time_backward 6.1230
[2023-09-01 19:17:16,131::train::INFO] [train] Iter 01442 | loss 2.9219 | loss(rot) 2.3034 | loss(pos) 0.2641 | loss(seq) 0.3544 | grad 4.9714 | lr 0.0010 | time_forward 3.5020 | time_backward 5.3940
[2023-09-01 19:17:25,579::train::INFO] [train] Iter 01443 | loss 3.4005 | loss(rot) 3.1328 | loss(pos) 0.2664 | loss(seq) 0.0013 | grad 3.4350 | lr 0.0010 | time_forward 3.6890 | time_backward 5.7550
[2023-09-01 19:17:35,465::train::INFO] [train] Iter 01444 | loss 3.4505 | loss(rot) 2.2942 | loss(pos) 0.6347 | loss(seq) 0.5216 | grad 4.4098 | lr 0.0010 | time_forward 3.8720 | time_backward 6.0100
[2023-09-01 19:17:38,707::train::INFO] [train] Iter 01445 | loss 1.9462 | loss(rot) 1.0833 | loss(pos) 0.4985 | loss(seq) 0.3644 | grad 3.4505 | lr 0.0010 | time_forward 1.4390 | time_backward 1.7860
[2023-09-01 19:17:48,739::train::INFO] [train] Iter 01446 | loss 2.9454 | loss(rot) 2.6574 | loss(pos) 0.2357 | loss(seq) 0.0523 | grad 3.6475 | lr 0.0010 | time_forward 4.1050 | time_backward 5.9240
[2023-09-01 19:17:51,956::train::INFO] [train] Iter 01447 | loss 2.6881 | loss(rot) 2.5322 | loss(pos) 0.1172 | loss(seq) 0.0387 | grad 1.9431 | lr 0.0010 | time_forward 1.4240 | time_backward 1.7900
[2023-09-01 19:18:06,451::train::INFO] [train] Iter 01448 | loss 2.6991 | loss(rot) 2.6165 | loss(pos) 0.0825 | loss(seq) 0.0000 | grad 1.7792 | lr 0.0010 | time_forward 9.9450 | time_backward 4.5470
[2023-09-01 19:18:13,142::train::INFO] [train] Iter 01449 | loss 3.1762 | loss(rot) 2.8775 | loss(pos) 0.2983 | loss(seq) 0.0003 | grad 2.8031 | lr 0.0010 | time_forward 2.8520 | time_backward 3.8360
[2023-09-01 19:18:17,565::train::INFO] [train] Iter 01450 | loss 1.4801 | loss(rot) 0.2293 | loss(pos) 0.9911 | loss(seq) 0.2596 | grad 3.2813 | lr 0.0010 | time_forward 2.7140 | time_backward 1.7060
[2023-09-01 19:18:19,987::train::INFO] [train] Iter 01451 | loss 2.7199 | loss(rot) 1.8442 | loss(pos) 0.4413 | loss(seq) 0.4344 | grad 3.8700 | lr 0.0010 | time_forward 1.1470 | time_backward 1.2710
[2023-09-01 19:18:22,768::train::INFO] [train] Iter 01452 | loss 1.1844 | loss(rot) 0.1669 | loss(pos) 0.7663 | loss(seq) 0.2512 | grad 4.2596 | lr 0.0010 | time_forward 1.3470 | time_backward 1.4140
[2023-09-01 19:18:34,354::train::INFO] [train] Iter 01453 | loss 2.1803 | loss(rot) 0.6481 | loss(pos) 1.2018 | loss(seq) 0.3305 | grad 3.9499 | lr 0.0010 | time_forward 6.7180 | time_backward 4.8640
[2023-09-01 19:18:42,720::train::INFO] [train] Iter 01454 | loss 3.5583 | loss(rot) 3.3097 | loss(pos) 0.1252 | loss(seq) 0.1233 | grad 2.8505 | lr 0.0010 | time_forward 3.5970 | time_backward 4.7660
[2023-09-01 19:18:45,535::train::INFO] [train] Iter 01455 | loss 3.0081 | loss(rot) 1.9620 | loss(pos) 0.4760 | loss(seq) 0.5700 | grad 3.8802 | lr 0.0010 | time_forward 1.3570 | time_backward 1.4540
[2023-09-01 19:18:53,118::train::INFO] [train] Iter 01456 | loss 3.2351 | loss(rot) 2.7792 | loss(pos) 0.4558 | loss(seq) 0.0001 | grad 4.1409 | lr 0.0010 | time_forward 3.3390 | time_backward 4.2300
[2023-09-01 19:19:00,210::train::INFO] [train] Iter 01457 | loss 2.9625 | loss(rot) 2.6949 | loss(pos) 0.2676 | loss(seq) 0.0000 | grad 3.6655 | lr 0.0010 | time_forward 3.0660 | time_backward 4.0220
[2023-09-01 19:19:06,015::train::INFO] [train] Iter 01458 | loss 2.8394 | loss(rot) 2.4862 | loss(pos) 0.3222 | loss(seq) 0.0310 | grad 5.8570 | lr 0.0010 | time_forward 2.4900 | time_backward 3.3110
[2023-09-01 19:19:14,543::train::INFO] [train] Iter 01459 | loss 2.7644 | loss(rot) 1.7299 | loss(pos) 0.4320 | loss(seq) 0.6024 | grad 3.7040 | lr 0.0010 | time_forward 3.4920 | time_backward 5.0330
[2023-09-01 19:19:22,540::train::INFO] [train] Iter 01460 | loss 2.7403 | loss(rot) 1.4992 | loss(pos) 0.6377 | loss(seq) 0.6033 | grad 4.0485 | lr 0.0010 | time_forward 3.2690 | time_backward 4.7240
[2023-09-01 19:19:25,160::train::INFO] [train] Iter 01461 | loss 1.1550 | loss(rot) 0.0272 | loss(pos) 1.1242 | loss(seq) 0.0036 | grad 4.3572 | lr 0.0010 | time_forward 1.2380 | time_backward 1.3790
[2023-09-01 19:19:32,673::train::INFO] [train] Iter 01462 | loss 3.1050 | loss(rot) 2.6073 | loss(pos) 0.2384 | loss(seq) 0.2593 | grad 2.6641 | lr 0.0010 | time_forward 3.7700 | time_backward 3.7400
[2023-09-01 19:19:57,491::train::INFO] [train] Iter 01463 | loss 2.8056 | loss(rot) 2.2086 | loss(pos) 0.1836 | loss(seq) 0.4134 | grad 2.5563 | lr 0.0010 | time_forward 16.7030 | time_backward 8.1110
[2023-09-01 19:20:08,890::train::INFO] [train] Iter 01464 | loss 3.0989 | loss(rot) 2.9542 | loss(pos) 0.1446 | loss(seq) 0.0000 | grad 2.1918 | lr 0.0010 | time_forward 5.9090 | time_backward 5.4800
[2023-09-01 19:20:21,365::train::INFO] [train] Iter 01465 | loss 2.8770 | loss(rot) 2.3831 | loss(pos) 0.4849 | loss(seq) 0.0090 | grad 4.8292 | lr 0.0010 | time_forward 7.1730 | time_backward 5.2990
[2023-09-01 19:20:31,423::train::INFO] [train] Iter 01466 | loss 2.9922 | loss(rot) 2.4987 | loss(pos) 0.1702 | loss(seq) 0.3234 | grad 3.5155 | lr 0.0010 | time_forward 4.7200 | time_backward 4.6190
[2023-09-01 19:20:38,626::train::INFO] [train] Iter 01467 | loss 3.0011 | loss(rot) 2.3469 | loss(pos) 0.1600 | loss(seq) 0.4941 | grad 3.0286 | lr 0.0010 | time_forward 3.0910 | time_backward 4.1090
[2023-09-01 19:20:41,390::train::INFO] [train] Iter 01468 | loss 1.8555 | loss(rot) 0.5446 | loss(pos) 1.2845 | loss(seq) 0.0265 | grad 4.9856 | lr 0.0010 | time_forward 1.2920 | time_backward 1.4680
[2023-09-01 19:20:49,043::train::INFO] [train] Iter 01469 | loss 3.4957 | loss(rot) 2.0906 | loss(pos) 0.8466 | loss(seq) 0.5585 | grad 5.3050 | lr 0.0010 | time_forward 3.3340 | time_backward 4.2370
[2023-09-01 19:20:57,777::train::INFO] [train] Iter 01470 | loss 3.0876 | loss(rot) 2.6002 | loss(pos) 0.4484 | loss(seq) 0.0390 | grad 4.0557 | lr 0.0010 | time_forward 3.8620 | time_backward 4.8680
[2023-09-01 19:21:03,514::train::INFO] [train] Iter 01471 | loss 2.7686 | loss(rot) 2.5944 | loss(pos) 0.1742 | loss(seq) 0.0000 | grad 2.8166 | lr 0.0010 | time_forward 2.4640 | time_backward 3.2700
[2023-09-01 19:21:12,933::train::INFO] [train] Iter 01472 | loss 3.7681 | loss(rot) 2.4585 | loss(pos) 0.8126 | loss(seq) 0.4970 | grad 3.1422 | lr 0.0010 | time_forward 3.8120 | time_backward 5.6030
[2023-09-01 19:21:22,465::train::INFO] [train] Iter 01473 | loss 2.6342 | loss(rot) 0.9376 | loss(pos) 1.2200 | loss(seq) 0.4766 | grad 3.0248 | lr 0.0010 | time_forward 4.8820 | time_backward 4.6460
[2023-09-01 19:21:32,464::train::INFO] [train] Iter 01474 | loss 3.3440 | loss(rot) 2.8000 | loss(pos) 0.3569 | loss(seq) 0.1872 | grad 2.5707 | lr 0.0010 | time_forward 4.5530 | time_backward 5.4430
[2023-09-01 19:21:41,592::train::INFO] [train] Iter 01475 | loss 3.2833 | loss(rot) 2.2314 | loss(pos) 0.5584 | loss(seq) 0.4934 | grad 4.8123 | lr 0.0010 | time_forward 3.8130 | time_backward 5.3110
[2023-09-01 19:21:43,904::train::INFO] [train] Iter 01476 | loss 3.4384 | loss(rot) 2.7024 | loss(pos) 0.2414 | loss(seq) 0.4946 | grad 2.5147 | lr 0.0010 | time_forward 1.0940 | time_backward 1.2130
[2023-09-01 19:21:51,537::train::INFO] [train] Iter 01477 | loss 2.4056 | loss(rot) 1.3513 | loss(pos) 0.4007 | loss(seq) 0.6536 | grad 4.0479 | lr 0.0010 | time_forward 3.1170 | time_backward 4.5120
[2023-09-01 19:21:59,700::train::INFO] [train] Iter 01478 | loss 3.2883 | loss(rot) 2.6075 | loss(pos) 0.2301 | loss(seq) 0.4507 | grad 4.0938 | lr 0.0010 | time_forward 3.4210 | time_backward 4.7380
[2023-09-01 19:22:02,881::train::INFO] [train] Iter 01479 | loss 3.1185 | loss(rot) 1.7535 | loss(pos) 0.8054 | loss(seq) 0.5596 | grad 3.4497 | lr 0.0010 | time_forward 1.5100 | time_backward 1.6670
[2023-09-01 19:22:11,366::train::INFO] [train] Iter 01480 | loss 2.9018 | loss(rot) 2.4868 | loss(pos) 0.1806 | loss(seq) 0.2345 | grad 3.1738 | lr 0.0010 | time_forward 3.3010 | time_backward 5.1810
[2023-09-01 19:22:18,963::train::INFO] [train] Iter 01481 | loss 1.5188 | loss(rot) 0.5200 | loss(pos) 0.9148 | loss(seq) 0.0839 | grad 3.3895 | lr 0.0010 | time_forward 2.9620 | time_backward 4.6300
[2023-09-01 19:22:27,187::train::INFO] [train] Iter 01482 | loss 2.1295 | loss(rot) 1.4148 | loss(pos) 0.3239 | loss(seq) 0.3908 | grad 2.4142 | lr 0.0010 | time_forward 3.1630 | time_backward 5.0590
[2023-09-01 19:22:35,016::train::INFO] [train] Iter 01483 | loss 2.2437 | loss(rot) 1.3662 | loss(pos) 0.4016 | loss(seq) 0.4759 | grad 3.7350 | lr 0.0010 | time_forward 3.0490 | time_backward 4.7760
[2023-09-01 19:22:42,471::train::INFO] [train] Iter 01484 | loss 1.6679 | loss(rot) 0.9280 | loss(pos) 0.3951 | loss(seq) 0.3448 | grad 3.1282 | lr 0.0010 | time_forward 3.0380 | time_backward 4.4130
[2023-09-01 19:22:50,668::train::INFO] [train] Iter 01485 | loss 3.6081 | loss(rot) 3.3716 | loss(pos) 0.2160 | loss(seq) 0.0206 | grad 3.6615 | lr 0.0010 | time_forward 3.5200 | time_backward 4.6740
[2023-09-01 19:22:52,965::train::INFO] [train] Iter 01486 | loss 2.5424 | loss(rot) 1.6855 | loss(pos) 0.4183 | loss(seq) 0.4386 | grad 2.8492 | lr 0.0010 | time_forward 1.0770 | time_backward 1.2160
[2023-09-01 19:22:55,429::train::INFO] [train] Iter 01487 | loss 2.6627 | loss(rot) 1.5578 | loss(pos) 0.5706 | loss(seq) 0.5343 | grad 3.6314 | lr 0.0010 | time_forward 1.1660 | time_backward 1.2940
[2023-09-01 19:23:09,862::train::INFO] [train] Iter 01488 | loss 3.1120 | loss(rot) 2.8112 | loss(pos) 0.2405 | loss(seq) 0.0603 | grad 3.4406 | lr 0.0010 | time_forward 3.1120 | time_backward 11.3020
[2023-09-01 19:23:13,745::train::INFO] [train] Iter 01489 | loss 2.3877 | loss(rot) 1.0091 | loss(pos) 0.6919 | loss(seq) 0.6867 | grad 4.2734 | lr 0.0010 | time_forward 2.4110 | time_backward 1.4690
[2023-09-01 19:24:08,176::train::INFO] [train] Iter 01490 | loss 2.1826 | loss(rot) 1.4817 | loss(pos) 0.1784 | loss(seq) 0.5226 | grad 4.7673 | lr 0.0010 | time_forward 35.3950 | time_backward 19.0330
[2023-09-01 19:24:25,450::train::INFO] [train] Iter 01491 | loss 2.6696 | loss(rot) 1.3989 | loss(pos) 0.6529 | loss(seq) 0.6177 | grad 3.8783 | lr 0.0010 | time_forward 12.4800 | time_backward 4.7890
[2023-09-01 19:24:35,591::train::INFO] [train] Iter 01492 | loss 2.9822 | loss(rot) 1.8906 | loss(pos) 0.6833 | loss(seq) 0.4082 | grad 5.3153 | lr 0.0010 | time_forward 5.1950 | time_backward 4.9430
[2023-09-01 19:24:50,723::train::INFO] [train] Iter 01493 | loss 3.4722 | loss(rot) 2.9832 | loss(pos) 0.1797 | loss(seq) 0.3093 | grad 3.1458 | lr 0.0010 | time_forward 9.5810 | time_backward 5.5470