text
stringlengths
56
1.16k
[2023-09-01 19:24:59,795::train::INFO] [train] Iter 01494 | loss 2.4302 | loss(rot) 1.6024 | loss(pos) 0.3750 | loss(seq) 0.4529 | grad 2.8489 | lr 0.0010 | time_forward 3.7120 | time_backward 5.3510
[2023-09-01 19:25:03,041::train::INFO] [train] Iter 01495 | loss 2.9742 | loss(rot) 1.9204 | loss(pos) 0.4269 | loss(seq) 0.6268 | grad 3.7197 | lr 0.0010 | time_forward 1.5150 | time_backward 1.7280
[2023-09-01 19:25:12,086::train::INFO] [train] Iter 01496 | loss 2.9565 | loss(rot) 2.2258 | loss(pos) 0.3810 | loss(seq) 0.3497 | grad 4.8312 | lr 0.0010 | time_forward 3.8660 | time_backward 5.1760
[2023-09-01 19:25:21,926::train::INFO] [train] Iter 01497 | loss 3.7104 | loss(rot) 3.0637 | loss(pos) 0.2661 | loss(seq) 0.3806 | grad 3.3315 | lr 0.0010 | time_forward 4.1440 | time_backward 5.6930
[2023-09-01 19:25:30,790::train::INFO] [train] Iter 01498 | loss 2.5777 | loss(rot) 1.7490 | loss(pos) 0.2558 | loss(seq) 0.5729 | grad 3.9296 | lr 0.0010 | time_forward 5.0900 | time_backward 3.7700
[2023-09-01 19:25:42,327::train::INFO] [train] Iter 01499 | loss 3.1438 | loss(rot) 2.6926 | loss(pos) 0.4511 | loss(seq) 0.0000 | grad 4.3215 | lr 0.0010 | time_forward 4.1540 | time_backward 7.3790
[2023-09-01 19:25:51,375::train::INFO] [train] Iter 01500 | loss 3.2406 | loss(rot) 2.6442 | loss(pos) 0.4945 | loss(seq) 0.1019 | grad 6.4749 | lr 0.0010 | time_forward 4.6550 | time_backward 4.3890
[2023-09-01 19:25:53,887::train::INFO] [train] Iter 01501 | loss 3.7928 | loss(rot) 3.3575 | loss(pos) 0.3493 | loss(seq) 0.0860 | grad 4.6487 | lr 0.0010 | time_forward 1.2360 | time_backward 1.2730
[2023-09-01 19:25:58,819::train::INFO] [train] Iter 01502 | loss 2.9083 | loss(rot) 2.1453 | loss(pos) 0.2699 | loss(seq) 0.4930 | grad 3.9455 | lr 0.0010 | time_forward 3.5070 | time_backward 1.3820
[2023-09-01 19:26:07,567::train::INFO] [train] Iter 01503 | loss 2.8181 | loss(rot) 2.0929 | loss(pos) 0.2063 | loss(seq) 0.5188 | grad 2.6158 | lr 0.0010 | time_forward 3.5330 | time_backward 5.1880
[2023-09-01 19:26:10,294::train::INFO] [train] Iter 01504 | loss 2.9742 | loss(rot) 2.7465 | loss(pos) 0.2271 | loss(seq) 0.0006 | grad 2.9331 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4510
[2023-09-01 19:26:19,545::train::INFO] [train] Iter 01505 | loss 3.4588 | loss(rot) 3.2578 | loss(pos) 0.2009 | loss(seq) 0.0001 | grad 2.2965 | lr 0.0010 | time_forward 3.7650 | time_backward 5.4820
[2023-09-01 19:26:29,078::train::INFO] [train] Iter 01506 | loss 2.9011 | loss(rot) 2.4551 | loss(pos) 0.0902 | loss(seq) 0.3559 | grad 2.0711 | lr 0.0010 | time_forward 3.9730 | time_backward 5.5560
[2023-09-01 19:26:41,339::train::INFO] [train] Iter 01507 | loss 2.8946 | loss(rot) 2.1102 | loss(pos) 0.2892 | loss(seq) 0.4952 | grad 3.1239 | lr 0.0010 | time_forward 6.3460 | time_backward 5.9120
[2023-09-01 19:26:51,569::train::INFO] [train] Iter 01508 | loss 2.2316 | loss(rot) 1.0445 | loss(pos) 0.5502 | loss(seq) 0.6369 | grad 2.5395 | lr 0.0010 | time_forward 4.0010 | time_backward 6.2250
[2023-09-01 19:27:03,864::train::INFO] [train] Iter 01509 | loss 1.8531 | loss(rot) 0.9093 | loss(pos) 0.8579 | loss(seq) 0.0859 | grad 4.4077 | lr 0.0010 | time_forward 5.5590 | time_backward 6.7210
[2023-09-01 19:27:13,902::train::INFO] [train] Iter 01510 | loss 1.5218 | loss(rot) 0.3814 | loss(pos) 1.0726 | loss(seq) 0.0679 | grad 3.7736 | lr 0.0010 | time_forward 4.1130 | time_backward 5.9210
[2023-09-01 19:27:23,813::train::INFO] [train] Iter 01511 | loss 1.8769 | loss(rot) 1.1742 | loss(pos) 0.2804 | loss(seq) 0.4223 | grad 2.2947 | lr 0.0010 | time_forward 4.0500 | time_backward 5.8480
[2023-09-01 19:27:26,502::train::INFO] [train] Iter 01512 | loss 2.7133 | loss(rot) 2.5338 | loss(pos) 0.1701 | loss(seq) 0.0093 | grad 2.9608 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4080
[2023-09-01 19:27:35,399::train::INFO] [train] Iter 01513 | loss 3.3000 | loss(rot) 3.1416 | loss(pos) 0.1051 | loss(seq) 0.0533 | grad 2.6638 | lr 0.0010 | time_forward 3.8040 | time_backward 5.0900
[2023-09-01 19:27:44,662::train::INFO] [train] Iter 01514 | loss 1.7262 | loss(rot) 0.6576 | loss(pos) 0.7617 | loss(seq) 0.3070 | grad 4.5242 | lr 0.0010 | time_forward 3.9160 | time_backward 5.3380
[2023-09-01 19:27:47,352::train::INFO] [train] Iter 01515 | loss 2.7597 | loss(rot) 1.7885 | loss(pos) 0.4181 | loss(seq) 0.5531 | grad 3.7503 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4180
[2023-09-01 19:27:56,669::train::INFO] [train] Iter 01516 | loss 2.7587 | loss(rot) 2.4932 | loss(pos) 0.2468 | loss(seq) 0.0188 | grad 3.6627 | lr 0.0010 | time_forward 3.9980 | time_backward 5.2700
[2023-09-01 19:28:05,202::train::INFO] [train] Iter 01517 | loss 3.3057 | loss(rot) 2.9798 | loss(pos) 0.2618 | loss(seq) 0.0641 | grad 5.5457 | lr 0.0010 | time_forward 3.9680 | time_backward 4.5630
[2023-09-01 19:28:07,866::train::INFO] [train] Iter 01518 | loss 2.2685 | loss(rot) 1.3851 | loss(pos) 0.3493 | loss(seq) 0.5342 | grad 3.9183 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4180
[2023-09-01 19:28:16,461::train::INFO] [train] Iter 01519 | loss 3.0957 | loss(rot) 2.9248 | loss(pos) 0.1709 | loss(seq) 0.0000 | grad 2.2222 | lr 0.0010 | time_forward 3.5940 | time_backward 4.9970
[2023-09-01 19:28:18,509::train::INFO] [train] Iter 01520 | loss 1.8135 | loss(rot) 0.0226 | loss(pos) 1.7884 | loss(seq) 0.0025 | grad 4.9166 | lr 0.0010 | time_forward 0.9500 | time_backward 1.0940
[2023-09-01 19:28:26,895::train::INFO] [train] Iter 01521 | loss 2.0928 | loss(rot) 1.1374 | loss(pos) 0.6162 | loss(seq) 0.3392 | grad 3.5878 | lr 0.0010 | time_forward 3.6320 | time_backward 4.7520
[2023-09-01 19:28:36,432::train::INFO] [train] Iter 01522 | loss 2.7943 | loss(rot) 1.5985 | loss(pos) 0.5714 | loss(seq) 0.6244 | grad 3.2016 | lr 0.0010 | time_forward 3.9910 | time_backward 5.5420
[2023-09-01 19:28:38,753::train::INFO] [train] Iter 01523 | loss 2.0469 | loss(rot) 1.4364 | loss(pos) 0.2353 | loss(seq) 0.3752 | grad 3.1260 | lr 0.0010 | time_forward 1.1130 | time_backward 1.2050
[2023-09-01 19:28:47,162::train::INFO] [train] Iter 01524 | loss 3.1621 | loss(rot) 3.0126 | loss(pos) 0.1496 | loss(seq) 0.0000 | grad 1.7262 | lr 0.0010 | time_forward 3.5040 | time_backward 4.9010
[2023-09-01 19:28:49,880::train::INFO] [train] Iter 01525 | loss 3.4388 | loss(rot) 2.9252 | loss(pos) 0.2245 | loss(seq) 0.2890 | grad 2.9822 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4510
[2023-09-01 19:28:57,973::train::INFO] [train] Iter 01526 | loss 3.3257 | loss(rot) 2.6220 | loss(pos) 0.3727 | loss(seq) 0.3310 | grad 3.9597 | lr 0.0010 | time_forward 3.4540 | time_backward 4.6370
[2023-09-01 19:29:00,746::train::INFO] [train] Iter 01527 | loss 1.6180 | loss(rot) 0.1288 | loss(pos) 1.4590 | loss(seq) 0.0302 | grad 5.1760 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4430
[2023-09-01 19:29:03,588::train::INFO] [train] Iter 01528 | loss 2.8692 | loss(rot) 2.6703 | loss(pos) 0.1920 | loss(seq) 0.0069 | grad 2.3010 | lr 0.0010 | time_forward 1.2910 | time_backward 1.5100
[2023-09-01 19:29:13,748::train::INFO] [train] Iter 01529 | loss 3.4934 | loss(rot) 2.4061 | loss(pos) 0.6367 | loss(seq) 0.4506 | grad 4.1408 | lr 0.0010 | time_forward 4.1570 | time_backward 6.0000
[2023-09-01 19:29:16,030::train::INFO] [train] Iter 01530 | loss 2.9515 | loss(rot) 2.7839 | loss(pos) 0.1448 | loss(seq) 0.0227 | grad 2.5207 | lr 0.0010 | time_forward 1.0570 | time_backward 1.2120
[2023-09-01 19:29:18,837::train::INFO] [train] Iter 01531 | loss 1.7277 | loss(rot) 0.4024 | loss(pos) 1.0756 | loss(seq) 0.2496 | grad 5.1061 | lr 0.0010 | time_forward 1.3530 | time_backward 1.4510
[2023-09-01 19:29:29,045::train::INFO] [train] Iter 01532 | loss 2.9194 | loss(rot) 2.2310 | loss(pos) 0.2032 | loss(seq) 0.4852 | grad 2.1194 | lr 0.0010 | time_forward 4.0890 | time_backward 6.1150
[2023-09-01 19:29:39,589::train::INFO] [train] Iter 01533 | loss 2.3843 | loss(rot) 1.0708 | loss(pos) 0.9038 | loss(seq) 0.4097 | grad 3.6994 | lr 0.0010 | time_forward 4.3630 | time_backward 6.1780
[2023-09-01 19:29:49,882::train::INFO] [train] Iter 01534 | loss 1.2151 | loss(rot) 0.2008 | loss(pos) 0.9954 | loss(seq) 0.0189 | grad 3.9222 | lr 0.0010 | time_forward 3.6540 | time_backward 6.6340
[2023-09-01 19:29:59,014::train::INFO] [train] Iter 01535 | loss 1.5827 | loss(rot) 0.6566 | loss(pos) 0.7972 | loss(seq) 0.1290 | grad 4.3133 | lr 0.0010 | time_forward 3.7970 | time_backward 5.3320
[2023-09-01 19:30:08,589::train::INFO] [train] Iter 01536 | loss 3.6820 | loss(rot) 2.9398 | loss(pos) 0.4869 | loss(seq) 0.2553 | grad 5.0701 | lr 0.0010 | time_forward 4.5320 | time_backward 5.0390
[2023-09-01 19:30:35,738::train::INFO] [train] Iter 01537 | loss 3.1156 | loss(rot) 2.5841 | loss(pos) 0.5150 | loss(seq) 0.0165 | grad 4.9550 | lr 0.0010 | time_forward 22.2780 | time_backward 4.8660
[2023-09-01 19:30:38,034::train::INFO] [train] Iter 01538 | loss 2.1802 | loss(rot) 1.1135 | loss(pos) 0.5463 | loss(seq) 0.5204 | grad 4.4922 | lr 0.0010 | time_forward 1.1200 | time_backward 1.1740
[2023-09-01 19:30:41,761::train::INFO] [train] Iter 01539 | loss 3.2370 | loss(rot) 3.0698 | loss(pos) 0.1641 | loss(seq) 0.0030 | grad 3.0760 | lr 0.0010 | time_forward 1.5370 | time_backward 2.1860
[2023-09-01 19:31:01,169::train::INFO] [train] Iter 01540 | loss 1.2348 | loss(rot) 0.5155 | loss(pos) 0.6444 | loss(seq) 0.0749 | grad 3.8876 | lr 0.0010 | time_forward 11.7640 | time_backward 7.6400
[2023-09-01 19:31:09,448::train::INFO] [train] Iter 01541 | loss 2.9880 | loss(rot) 2.2600 | loss(pos) 0.4036 | loss(seq) 0.3244 | grad 4.2875 | lr 0.0010 | time_forward 3.5670 | time_backward 4.7090
[2023-09-01 19:31:17,847::train::INFO] [train] Iter 01542 | loss 3.0501 | loss(rot) 2.3757 | loss(pos) 0.2227 | loss(seq) 0.4518 | grad 2.8034 | lr 0.0010 | time_forward 3.5930 | time_backward 4.8030
[2023-09-01 19:31:21,090::train::INFO] [train] Iter 01543 | loss 1.3707 | loss(rot) 0.3328 | loss(pos) 0.6016 | loss(seq) 0.4362 | grad 3.6126 | lr 0.0010 | time_forward 1.9390 | time_backward 1.3010
[2023-09-01 19:31:36,307::train::INFO] [train] Iter 01544 | loss 2.3921 | loss(rot) 1.8147 | loss(pos) 0.1083 | loss(seq) 0.4690 | grad 2.8068 | lr 0.0010 | time_forward 5.6040 | time_backward 9.5870
[2023-09-01 19:31:47,452::train::INFO] [train] Iter 01545 | loss 1.8437 | loss(rot) 1.1290 | loss(pos) 0.2985 | loss(seq) 0.4162 | grad 3.3225 | lr 0.0010 | time_forward 6.3620 | time_backward 4.7790
[2023-09-01 19:31:56,164::train::INFO] [train] Iter 01546 | loss 3.6114 | loss(rot) 2.9704 | loss(pos) 0.2144 | loss(seq) 0.4265 | grad 3.2345 | lr 0.0010 | time_forward 3.9090 | time_backward 4.8010
[2023-09-01 19:31:59,124::train::INFO] [train] Iter 01547 | loss 1.7612 | loss(rot) 0.0929 | loss(pos) 1.6525 | loss(seq) 0.0159 | grad 4.7450 | lr 0.0010 | time_forward 1.3180 | time_backward 1.6380
[2023-09-01 19:32:07,851::train::INFO] [train] Iter 01548 | loss 1.4739 | loss(rot) 0.7821 | loss(pos) 0.6229 | loss(seq) 0.0689 | grad 4.1882 | lr 0.0010 | time_forward 3.5780 | time_backward 5.1470
[2023-09-01 19:32:10,907::train::INFO] [train] Iter 01549 | loss 2.3089 | loss(rot) 2.0705 | loss(pos) 0.2278 | loss(seq) 0.0106 | grad 3.3033 | lr 0.0010 | time_forward 1.5980 | time_backward 1.4550
[2023-09-01 19:32:19,330::train::INFO] [train] Iter 01550 | loss 2.9095 | loss(rot) 2.6937 | loss(pos) 0.2155 | loss(seq) 0.0003 | grad 2.5983 | lr 0.0010 | time_forward 3.2280 | time_backward 5.1920
[2023-09-01 19:32:28,114::train::INFO] [train] Iter 01551 | loss 3.8745 | loss(rot) 3.1288 | loss(pos) 0.4919 | loss(seq) 0.2538 | grad 2.6818 | lr 0.0010 | time_forward 3.3650 | time_backward 5.4140
[2023-09-01 19:32:30,789::train::INFO] [train] Iter 01552 | loss 3.1492 | loss(rot) 2.4000 | loss(pos) 0.2573 | loss(seq) 0.4919 | grad 2.9071 | lr 0.0010 | time_forward 1.2800 | time_backward 1.3910
[2023-09-01 19:32:33,535::train::INFO] [train] Iter 01553 | loss 2.4629 | loss(rot) 0.1250 | loss(pos) 2.3288 | loss(seq) 0.0091 | grad 7.8511 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4450
[2023-09-01 19:32:43,429::train::INFO] [train] Iter 01554 | loss 3.4853 | loss(rot) 2.7993 | loss(pos) 0.4511 | loss(seq) 0.2349 | grad 4.7116 | lr 0.0010 | time_forward 4.0840 | time_backward 5.8060
[2023-09-01 19:32:53,346::train::INFO] [train] Iter 01555 | loss 1.9490 | loss(rot) 0.1764 | loss(pos) 1.7479 | loss(seq) 0.0247 | grad 6.2363 | lr 0.0010 | time_forward 3.9700 | time_backward 5.9440
[2023-09-01 19:33:02,730::train::INFO] [train] Iter 01556 | loss 2.9557 | loss(rot) 1.9240 | loss(pos) 0.6173 | loss(seq) 0.4144 | grad 3.4330 | lr 0.0010 | time_forward 4.0730 | time_backward 5.2980
[2023-09-01 19:33:11,577::train::INFO] [train] Iter 01557 | loss 3.4013 | loss(rot) 2.8285 | loss(pos) 0.5478 | loss(seq) 0.0250 | grad 4.9116 | lr 0.0010 | time_forward 3.7510 | time_backward 5.0920
[2023-09-01 19:33:21,566::train::INFO] [train] Iter 01558 | loss 2.1992 | loss(rot) 1.3887 | loss(pos) 0.4624 | loss(seq) 0.3481 | grad 4.6042 | lr 0.0010 | time_forward 4.0950 | time_backward 5.8900
[2023-09-01 19:33:29,557::train::INFO] [train] Iter 01559 | loss 2.8862 | loss(rot) 1.8096 | loss(pos) 0.6292 | loss(seq) 0.4474 | grad 3.7522 | lr 0.0010 | time_forward 3.3140 | time_backward 4.6730
[2023-09-01 19:33:37,124::train::INFO] [train] Iter 01560 | loss 2.2872 | loss(rot) 1.4642 | loss(pos) 0.4981 | loss(seq) 0.3250 | grad 3.7214 | lr 0.0010 | time_forward 3.1840 | time_backward 4.3790
[2023-09-01 19:33:46,266::train::INFO] [train] Iter 01561 | loss 3.5736 | loss(rot) 2.9082 | loss(pos) 0.6487 | loss(seq) 0.0167 | grad 6.2624 | lr 0.0010 | time_forward 3.8280 | time_backward 5.3100
[2023-09-01 19:33:54,809::train::INFO] [train] Iter 01562 | loss 3.3356 | loss(rot) 2.8927 | loss(pos) 0.2085 | loss(seq) 0.2345 | grad 4.1654 | lr 0.0010 | time_forward 3.6660 | time_backward 4.8730
[2023-09-01 19:34:03,021::train::INFO] [train] Iter 01563 | loss 2.4607 | loss(rot) 1.2506 | loss(pos) 0.8486 | loss(seq) 0.3615 | grad 5.2568 | lr 0.0010 | time_forward 3.4730 | time_backward 4.7350
[2023-09-01 19:34:12,051::train::INFO] [train] Iter 01564 | loss 3.4625 | loss(rot) 3.2552 | loss(pos) 0.0858 | loss(seq) 0.1215 | grad 2.0657 | lr 0.0010 | time_forward 3.7980 | time_backward 5.2290
[2023-09-01 19:34:20,695::train::INFO] [train] Iter 01565 | loss 3.2167 | loss(rot) 3.0851 | loss(pos) 0.1216 | loss(seq) 0.0100 | grad 2.4014 | lr 0.0010 | time_forward 3.7090 | time_backward 4.9310
[2023-09-01 19:34:23,412::train::INFO] [train] Iter 01566 | loss 1.5723 | loss(rot) 0.6485 | loss(pos) 0.3739 | loss(seq) 0.5499 | grad 3.4015 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4660
[2023-09-01 19:34:32,476::train::INFO] [train] Iter 01567 | loss 2.8716 | loss(rot) 1.5345 | loss(pos) 0.7541 | loss(seq) 0.5830 | grad 4.4317 | lr 0.0010 | time_forward 3.6870 | time_backward 5.3470
[2023-09-01 19:34:41,066::train::INFO] [train] Iter 01568 | loss 1.7983 | loss(rot) 0.7134 | loss(pos) 0.7052 | loss(seq) 0.3797 | grad 2.9610 | lr 0.0010 | time_forward 3.5220 | time_backward 5.0610
[2023-09-01 19:34:43,753::train::INFO] [train] Iter 01569 | loss 2.3753 | loss(rot) 1.9929 | loss(pos) 0.1231 | loss(seq) 0.2592 | grad 2.4372 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4370
[2023-09-01 19:34:52,337::train::INFO] [train] Iter 01570 | loss 3.3734 | loss(rot) 0.4699 | loss(pos) 2.9028 | loss(seq) 0.0006 | grad 4.5391 | lr 0.0010 | time_forward 3.4600 | time_backward 5.0880
[2023-09-01 19:34:59,662::train::INFO] [train] Iter 01571 | loss 3.7478 | loss(rot) 3.5661 | loss(pos) 0.1796 | loss(seq) 0.0021 | grad 3.3187 | lr 0.0010 | time_forward 3.0080 | time_backward 4.3140
[2023-09-01 19:35:02,295::train::INFO] [train] Iter 01572 | loss 1.4866 | loss(rot) 0.1517 | loss(pos) 1.3007 | loss(seq) 0.0341 | grad 5.2320 | lr 0.0010 | time_forward 1.2440 | time_backward 1.3850
[2023-09-01 19:35:10,843::train::INFO] [train] Iter 01573 | loss 3.6186 | loss(rot) 2.5017 | loss(pos) 0.5494 | loss(seq) 0.5676 | grad 3.6448 | lr 0.0010 | time_forward 3.6290 | time_backward 4.8850
[2023-09-01 19:35:19,252::train::INFO] [train] Iter 01574 | loss 2.8061 | loss(rot) 1.3225 | loss(pos) 0.7393 | loss(seq) 0.7444 | grad 3.6566 | lr 0.0010 | time_forward 3.3890 | time_backward 5.0160
[2023-09-01 19:35:28,944::train::INFO] [train] Iter 01575 | loss 2.7496 | loss(rot) 2.2704 | loss(pos) 0.0883 | loss(seq) 0.3909 | grad 2.1880 | lr 0.0010 | time_forward 3.8640 | time_backward 5.8250
[2023-09-01 19:35:37,814::train::INFO] [train] Iter 01576 | loss 3.0906 | loss(rot) 2.6149 | loss(pos) 0.3075 | loss(seq) 0.1681 | grad 3.1292 | lr 0.0010 | time_forward 3.5910 | time_backward 5.2640
[2023-09-01 19:35:40,596::train::INFO] [train] Iter 01577 | loss 2.6136 | loss(rot) 2.1280 | loss(pos) 0.3875 | loss(seq) 0.0981 | grad 4.2862 | lr 0.0010 | time_forward 1.3230 | time_backward 1.4550
[2023-09-01 19:35:49,167::train::INFO] [train] Iter 01578 | loss 3.0650 | loss(rot) 1.6636 | loss(pos) 0.7907 | loss(seq) 0.6107 | grad 4.4419 | lr 0.0010 | time_forward 3.4790 | time_backward 5.0560
[2023-09-01 19:35:57,258::train::INFO] [train] Iter 01579 | loss 3.0969 | loss(rot) 2.5000 | loss(pos) 0.1772 | loss(seq) 0.4197 | grad 1.8638 | lr 0.0010 | time_forward 3.3450 | time_backward 4.7420
[2023-09-01 19:36:00,022::train::INFO] [train] Iter 01580 | loss 2.2088 | loss(rot) 0.9723 | loss(pos) 0.6968 | loss(seq) 0.5397 | grad 7.6320 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4970
[2023-09-01 19:36:08,192::train::INFO] [train] Iter 01581 | loss 3.5887 | loss(rot) 3.1533 | loss(pos) 0.1348 | loss(seq) 0.3006 | grad 2.7908 | lr 0.0010 | time_forward 3.2740 | time_backward 4.8940
[2023-09-01 19:36:11,296::train::INFO] [train] Iter 01582 | loss 2.0056 | loss(rot) 0.6751 | loss(pos) 1.1116 | loss(seq) 0.2189 | grad 4.5279 | lr 0.0010 | time_forward 1.4160 | time_backward 1.6830
[2023-09-01 19:36:21,289::train::INFO] [train] Iter 01583 | loss 2.2892 | loss(rot) 0.0633 | loss(pos) 1.9987 | loss(seq) 0.2271 | grad 7.0259 | lr 0.0010 | time_forward 3.9590 | time_backward 6.0300
[2023-09-01 19:36:24,039::train::INFO] [train] Iter 01584 | loss 2.8928 | loss(rot) 2.4711 | loss(pos) 0.2150 | loss(seq) 0.2066 | grad 3.6592 | lr 0.0010 | time_forward 1.3010 | time_backward 1.4460
[2023-09-01 19:36:32,922::train::INFO] [train] Iter 01585 | loss 1.8267 | loss(rot) 0.2610 | loss(pos) 1.3168 | loss(seq) 0.2489 | grad 4.8974 | lr 0.0010 | time_forward 3.5860 | time_backward 5.2590
[2023-09-01 19:36:41,353::train::INFO] [train] Iter 01586 | loss 3.4450 | loss(rot) 2.8060 | loss(pos) 0.1994 | loss(seq) 0.4396 | grad 3.0794 | lr 0.0010 | time_forward 3.3160 | time_backward 5.1100
[2023-09-01 19:36:49,859::train::INFO] [train] Iter 01587 | loss 3.3875 | loss(rot) 2.9767 | loss(pos) 0.2895 | loss(seq) 0.1213 | grad 4.7777 | lr 0.0010 | time_forward 3.3470 | time_backward 5.1560
[2023-09-01 19:36:52,159::train::INFO] [train] Iter 01588 | loss 1.5763 | loss(rot) 0.6923 | loss(pos) 0.5697 | loss(seq) 0.3143 | grad 3.1761 | lr 0.0010 | time_forward 1.0730 | time_backward 1.2230
[2023-09-01 19:37:01,530::train::INFO] [train] Iter 01589 | loss 2.5234 | loss(rot) 1.7006 | loss(pos) 0.3051 | loss(seq) 0.5178 | grad 2.0920 | lr 0.0010 | time_forward 3.9140 | time_backward 5.4530
[2023-09-01 19:37:11,700::train::INFO] [train] Iter 01590 | loss 3.3299 | loss(rot) 3.0434 | loss(pos) 0.2864 | loss(seq) 0.0000 | grad 3.6165 | lr 0.0010 | time_forward 4.0460 | time_backward 6.1200
[2023-09-01 19:37:19,565::train::INFO] [train] Iter 01591 | loss 3.0892 | loss(rot) 2.9581 | loss(pos) 0.1217 | loss(seq) 0.0094 | grad 2.1012 | lr 0.0010 | time_forward 3.1210 | time_backward 4.7400
[2023-09-01 19:37:28,052::train::INFO] [train] Iter 01592 | loss 3.3631 | loss(rot) 2.7321 | loss(pos) 0.2208 | loss(seq) 0.4101 | grad 3.6378 | lr 0.0010 | time_forward 3.4530 | time_backward 5.0300
[2023-09-01 19:37:37,689::train::INFO] [train] Iter 01593 | loss 1.8238 | loss(rot) 0.5665 | loss(pos) 0.8668 | loss(seq) 0.3906 | grad 3.8777 | lr 0.0010 | time_forward 3.9360 | time_backward 5.6970