text
stringlengths 56
1.16k
|
---|
[2023-09-01 19:48:25,864::train::INFO] [train] Iter 01694 | loss 1.7550 | loss(rot) 0.6617 | loss(pos) 0.8118 | loss(seq) 0.2815 | grad 5.2245 | lr 0.0010 | time_forward 2.7930 | time_backward 4.2980 |
[2023-09-01 19:48:34,992::train::INFO] [train] Iter 01695 | loss 1.8020 | loss(rot) 0.8279 | loss(pos) 0.6740 | loss(seq) 0.3002 | grad 3.3281 | lr 0.0010 | time_forward 3.5860 | time_backward 5.5370 |
[2023-09-01 19:48:42,515::train::INFO] [train] Iter 01696 | loss 1.3747 | loss(rot) 0.4919 | loss(pos) 0.8122 | loss(seq) 0.0706 | grad 4.5836 | lr 0.0010 | time_forward 3.2100 | time_backward 4.3010 |
[2023-09-01 19:48:51,207::train::INFO] [train] Iter 01697 | loss 3.3050 | loss(rot) 2.4766 | loss(pos) 0.3990 | loss(seq) 0.4294 | grad 4.9735 | lr 0.0010 | time_forward 3.6020 | time_backward 5.0850 |
[2023-09-01 19:48:59,036::train::INFO] [train] Iter 01698 | loss 3.6566 | loss(rot) 3.1516 | loss(pos) 0.3887 | loss(seq) 0.1163 | grad 4.2007 | lr 0.0010 | time_forward 3.3930 | time_backward 4.4320 |
[2023-09-01 19:49:01,784::train::INFO] [train] Iter 01699 | loss 4.3107 | loss(rot) 0.0161 | loss(pos) 4.2941 | loss(seq) 0.0005 | grad 6.6649 | lr 0.0010 | time_forward 1.2250 | time_backward 1.5210 |
[2023-09-01 19:49:10,120::train::INFO] [train] Iter 01700 | loss 2.5343 | loss(rot) 1.6910 | loss(pos) 0.4032 | loss(seq) 0.4401 | grad 5.1407 | lr 0.0010 | time_forward 3.4030 | time_backward 4.9290 |
[2023-09-01 19:49:13,000::train::INFO] [train] Iter 01701 | loss 3.0920 | loss(rot) 2.8016 | loss(pos) 0.2883 | loss(seq) 0.0021 | grad 3.7752 | lr 0.0010 | time_forward 1.3100 | time_backward 1.5670 |
[2023-09-01 19:49:20,373::train::INFO] [train] Iter 01702 | loss 4.0992 | loss(rot) 3.3571 | loss(pos) 0.7420 | loss(seq) 0.0000 | grad 5.8610 | lr 0.0010 | time_forward 3.0540 | time_backward 4.3130 |
[2023-09-01 19:49:27,486::train::INFO] [train] Iter 01703 | loss 2.6868 | loss(rot) 0.4538 | loss(pos) 2.2277 | loss(seq) 0.0053 | grad 4.9985 | lr 0.0010 | time_forward 3.0780 | time_backward 4.0310 |
[2023-09-01 19:49:35,360::train::INFO] [train] Iter 01704 | loss 3.1290 | loss(rot) 2.5460 | loss(pos) 0.2270 | loss(seq) 0.3560 | grad 3.1763 | lr 0.0010 | time_forward 3.3870 | time_backward 4.4830 |
[2023-09-01 19:49:44,021::train::INFO] [train] Iter 01705 | loss 3.3228 | loss(rot) 0.3451 | loss(pos) 2.9653 | loss(seq) 0.0124 | grad 5.6813 | lr 0.0010 | time_forward 3.7670 | time_backward 4.8900 |
[2023-09-01 19:49:46,699::train::INFO] [train] Iter 01706 | loss 3.7604 | loss(rot) 2.4093 | loss(pos) 0.8361 | loss(seq) 0.5150 | grad 6.6293 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4470 |
[2023-09-01 19:49:49,592::train::INFO] [train] Iter 01707 | loss 3.4441 | loss(rot) 2.7909 | loss(pos) 0.1592 | loss(seq) 0.4941 | grad 2.7009 | lr 0.0010 | time_forward 1.4610 | time_backward 1.4280 |
[2023-09-01 19:49:58,202::train::INFO] [train] Iter 01708 | loss 3.2573 | loss(rot) 2.8825 | loss(pos) 0.3741 | loss(seq) 0.0007 | grad 3.4246 | lr 0.0010 | time_forward 3.7010 | time_backward 4.9050 |
[2023-09-01 19:50:04,350::train::INFO] [train] Iter 01709 | loss 3.2931 | loss(rot) 3.0883 | loss(pos) 0.2045 | loss(seq) 0.0003 | grad 3.2278 | lr 0.0010 | time_forward 2.7200 | time_backward 3.4240 |
[2023-09-01 19:50:12,558::train::INFO] [train] Iter 01710 | loss 2.6410 | loss(rot) 1.9074 | loss(pos) 0.2381 | loss(seq) 0.4955 | grad 2.2656 | lr 0.0010 | time_forward 3.6980 | time_backward 4.5070 |
[2023-09-01 19:50:15,293::train::INFO] [train] Iter 01711 | loss 3.0453 | loss(rot) 2.9676 | loss(pos) 0.0568 | loss(seq) 0.0209 | grad 2.3473 | lr 0.0010 | time_forward 1.3290 | time_backward 1.4030 |
[2023-09-01 19:50:23,888::train::INFO] [train] Iter 01712 | loss 3.1906 | loss(rot) 2.7791 | loss(pos) 0.2227 | loss(seq) 0.1887 | grad 2.2478 | lr 0.0010 | time_forward 3.7320 | time_backward 4.8590 |
[2023-09-01 19:50:32,833::train::INFO] [train] Iter 01713 | loss 3.5749 | loss(rot) 3.1659 | loss(pos) 0.3619 | loss(seq) 0.0470 | grad 3.3811 | lr 0.0010 | time_forward 3.6680 | time_backward 5.2730 |
[2023-09-01 19:50:40,427::train::INFO] [train] Iter 01714 | loss 3.6998 | loss(rot) 2.8846 | loss(pos) 0.4932 | loss(seq) 0.3220 | grad 3.7045 | lr 0.0010 | time_forward 3.1070 | time_backward 4.4840 |
[2023-09-01 19:50:47,914::train::INFO] [train] Iter 01715 | loss 2.0070 | loss(rot) 0.0196 | loss(pos) 1.9867 | loss(seq) 0.0008 | grad 3.2037 | lr 0.0010 | time_forward 3.1360 | time_backward 4.3470 |
[2023-09-01 19:50:56,584::train::INFO] [train] Iter 01716 | loss 4.0466 | loss(rot) 3.4880 | loss(pos) 0.5392 | loss(seq) 0.0194 | grad 6.5488 | lr 0.0010 | time_forward 3.4280 | time_backward 5.2380 |
[2023-09-01 19:50:59,517::train::INFO] [train] Iter 01717 | loss 1.5954 | loss(rot) 0.2895 | loss(pos) 1.1823 | loss(seq) 0.1235 | grad 5.3226 | lr 0.0010 | time_forward 1.3440 | time_backward 1.5870 |
[2023-09-01 19:51:08,061::train::INFO] [train] Iter 01718 | loss 3.5238 | loss(rot) 3.0091 | loss(pos) 0.2084 | loss(seq) 0.3063 | grad 2.0982 | lr 0.0010 | time_forward 3.4140 | time_backward 5.1260 |
[2023-09-01 19:51:16,219::train::INFO] [train] Iter 01719 | loss 3.0315 | loss(rot) 2.8203 | loss(pos) 0.1627 | loss(seq) 0.0486 | grad 3.3451 | lr 0.0010 | time_forward 3.3000 | time_backward 4.8540 |
[2023-09-01 19:51:23,671::train::INFO] [train] Iter 01720 | loss 1.6980 | loss(rot) 0.5744 | loss(pos) 0.8013 | loss(seq) 0.3223 | grad 4.5781 | lr 0.0010 | time_forward 2.9500 | time_backward 4.4980 |
[2023-09-01 19:51:31,000::train::INFO] [train] Iter 01721 | loss 3.5655 | loss(rot) 3.3350 | loss(pos) 0.2081 | loss(seq) 0.0224 | grad 2.4256 | lr 0.0010 | time_forward 3.1670 | time_backward 4.1580 |
[2023-09-01 19:51:37,124::train::INFO] [train] Iter 01722 | loss 2.2486 | loss(rot) 1.0058 | loss(pos) 0.8330 | loss(seq) 0.4098 | grad 5.7367 | lr 0.0010 | time_forward 2.6460 | time_backward 3.4730 |
[2023-09-01 19:51:39,826::train::INFO] [train] Iter 01723 | loss 2.1807 | loss(rot) 1.3734 | loss(pos) 0.2441 | loss(seq) 0.5632 | grad 3.0852 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4430 |
[2023-09-01 19:51:46,782::train::INFO] [train] Iter 01724 | loss 2.8296 | loss(rot) 2.6156 | loss(pos) 0.2128 | loss(seq) 0.0012 | grad 4.8957 | lr 0.0010 | time_forward 2.8790 | time_backward 4.0740 |
[2023-09-01 19:51:55,296::train::INFO] [train] Iter 01725 | loss 1.8245 | loss(rot) 1.2581 | loss(pos) 0.3781 | loss(seq) 0.1882 | grad 2.4329 | lr 0.0010 | time_forward 3.4890 | time_backward 5.0220 |
[2023-09-01 19:52:02,880::train::INFO] [train] Iter 01726 | loss 3.3998 | loss(rot) 2.4207 | loss(pos) 0.6335 | loss(seq) 0.3456 | grad 5.8561 | lr 0.0010 | time_forward 3.2330 | time_backward 4.3480 |
[2023-09-01 19:52:05,782::train::INFO] [train] Iter 01727 | loss 1.3508 | loss(rot) 0.2553 | loss(pos) 0.7727 | loss(seq) 0.3228 | grad 3.3967 | lr 0.0010 | time_forward 1.4890 | time_backward 1.4090 |
[2023-09-01 19:52:08,673::train::INFO] [train] Iter 01728 | loss 1.9460 | loss(rot) 0.0253 | loss(pos) 1.9147 | loss(seq) 0.0059 | grad 5.6178 | lr 0.0010 | time_forward 1.5030 | time_backward 1.3680 |
[2023-09-01 19:52:17,372::train::INFO] [train] Iter 01729 | loss 2.3787 | loss(rot) 1.3781 | loss(pos) 0.4537 | loss(seq) 0.5468 | grad 4.7376 | lr 0.0010 | time_forward 3.4480 | time_backward 5.2290 |
[2023-09-01 19:52:26,167::train::INFO] [train] Iter 01730 | loss 3.2738 | loss(rot) 2.4973 | loss(pos) 0.3080 | loss(seq) 0.4685 | grad 2.5257 | lr 0.0010 | time_forward 3.9740 | time_backward 4.8180 |
[2023-09-01 19:52:34,190::train::INFO] [train] Iter 01731 | loss 3.1297 | loss(rot) 2.2387 | loss(pos) 0.4584 | loss(seq) 0.4325 | grad 3.4323 | lr 0.0010 | time_forward 4.7300 | time_backward 3.2900 |
[2023-09-01 19:52:46,905::train::INFO] [train] Iter 01732 | loss 3.8392 | loss(rot) 3.1271 | loss(pos) 0.2580 | loss(seq) 0.4541 | grad 4.0627 | lr 0.0010 | time_forward 6.4090 | time_backward 6.3010 |
[2023-09-01 19:52:55,737::train::INFO] [train] Iter 01733 | loss 2.7916 | loss(rot) 1.8003 | loss(pos) 0.5680 | loss(seq) 0.4233 | grad 3.2735 | lr 0.0010 | time_forward 3.7090 | time_backward 5.1200 |
[2023-09-01 19:53:03,895::train::INFO] [train] Iter 01734 | loss 2.9255 | loss(rot) 2.5791 | loss(pos) 0.2963 | loss(seq) 0.0501 | grad 3.8678 | lr 0.0010 | time_forward 4.2510 | time_backward 3.8990 |
[2023-09-01 19:53:07,272::train::INFO] [train] Iter 01735 | loss 3.2768 | loss(rot) 1.7668 | loss(pos) 1.1997 | loss(seq) 0.3103 | grad 4.7030 | lr 0.0010 | time_forward 1.5520 | time_backward 1.8200 |
[2023-09-01 19:53:21,110::train::INFO] [train] Iter 01736 | loss 2.5311 | loss(rot) 1.8408 | loss(pos) 0.2727 | loss(seq) 0.4176 | grad 3.1468 | lr 0.0010 | time_forward 8.4070 | time_backward 5.4280 |
[2023-09-01 19:53:23,839::train::INFO] [train] Iter 01737 | loss 2.1387 | loss(rot) 0.0374 | loss(pos) 2.0962 | loss(seq) 0.0052 | grad 4.5886 | lr 0.0010 | time_forward 1.4370 | time_backward 1.2790 |
[2023-09-01 19:53:27,011::train::INFO] [train] Iter 01738 | loss 3.4999 | loss(rot) 3.1454 | loss(pos) 0.2307 | loss(seq) 0.1238 | grad 2.8882 | lr 0.0010 | time_forward 1.4580 | time_backward 1.7100 |
[2023-09-01 19:53:34,692::train::INFO] [train] Iter 01739 | loss 1.7945 | loss(rot) 0.6231 | loss(pos) 0.3297 | loss(seq) 0.8417 | grad 3.8606 | lr 0.0010 | time_forward 3.3350 | time_backward 4.3420 |
[2023-09-01 19:53:37,148::train::INFO] [train] Iter 01740 | loss 1.3757 | loss(rot) 0.6071 | loss(pos) 0.6687 | loss(seq) 0.0999 | grad 3.6367 | lr 0.0010 | time_forward 1.1860 | time_backward 1.2670 |
[2023-09-01 19:53:44,845::train::INFO] [train] Iter 01741 | loss 3.5756 | loss(rot) 3.0854 | loss(pos) 0.3037 | loss(seq) 0.1865 | grad 3.8612 | lr 0.0010 | time_forward 3.2960 | time_backward 4.3780 |
[2023-09-01 19:53:47,545::train::INFO] [train] Iter 01742 | loss 2.8211 | loss(rot) 2.5897 | loss(pos) 0.0596 | loss(seq) 0.1719 | grad 1.3000 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4340 |
[2023-09-01 19:53:55,031::train::INFO] [train] Iter 01743 | loss 4.5790 | loss(rot) 0.0260 | loss(pos) 4.5531 | loss(seq) 0.0000 | grad 6.1387 | lr 0.0010 | time_forward 3.3900 | time_backward 4.0800 |
[2023-09-01 19:53:57,854::train::INFO] [train] Iter 01744 | loss 2.4062 | loss(rot) 1.0953 | loss(pos) 0.8751 | loss(seq) 0.4358 | grad 4.1955 | lr 0.0010 | time_forward 1.3600 | time_backward 1.4600 |
[2023-09-01 19:54:00,420::train::INFO] [train] Iter 01745 | loss 2.0138 | loss(rot) 1.2857 | loss(pos) 0.5889 | loss(seq) 0.1391 | grad 3.4645 | lr 0.0010 | time_forward 1.2440 | time_backward 1.3180 |
[2023-09-01 19:54:07,764::train::INFO] [train] Iter 01746 | loss 2.9255 | loss(rot) 1.8796 | loss(pos) 0.4389 | loss(seq) 0.6070 | grad 4.9639 | lr 0.0010 | time_forward 2.9710 | time_backward 4.3380 |
[2023-09-01 19:54:10,433::train::INFO] [train] Iter 01747 | loss 2.8966 | loss(rot) 1.5046 | loss(pos) 0.8872 | loss(seq) 0.5048 | grad 4.6201 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4280 |
[2023-09-01 19:54:13,139::train::INFO] [train] Iter 01748 | loss 2.1600 | loss(rot) 1.3596 | loss(pos) 0.4475 | loss(seq) 0.3529 | grad 5.1352 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4300 |
[2023-09-01 19:54:20,291::train::INFO] [train] Iter 01749 | loss 2.6398 | loss(rot) 1.8492 | loss(pos) 0.3645 | loss(seq) 0.4261 | grad 2.7943 | lr 0.0010 | time_forward 3.1000 | time_backward 4.0480 |
[2023-09-01 19:54:27,408::train::INFO] [train] Iter 01750 | loss 3.2001 | loss(rot) 2.4021 | loss(pos) 0.3105 | loss(seq) 0.4875 | grad 2.7596 | lr 0.0010 | time_forward 3.1540 | time_backward 3.9590 |
[2023-09-01 19:54:35,228::train::INFO] [train] Iter 01751 | loss 3.2431 | loss(rot) 2.7581 | loss(pos) 0.4847 | loss(seq) 0.0004 | grad 4.3514 | lr 0.0010 | time_forward 3.3390 | time_backward 4.4770 |
[2023-09-01 19:54:42,567::train::INFO] [train] Iter 01752 | loss 2.3892 | loss(rot) 1.6227 | loss(pos) 0.3544 | loss(seq) 0.4120 | grad 3.0907 | lr 0.0010 | time_forward 2.9620 | time_backward 4.3730 |
[2023-09-01 19:54:53,308::train::INFO] [train] Iter 01753 | loss 3.7331 | loss(rot) 3.3684 | loss(pos) 0.2624 | loss(seq) 0.1023 | grad 5.0925 | lr 0.0010 | time_forward 3.0340 | time_backward 7.7030 |
[2023-09-01 19:55:04,747::train::INFO] [train] Iter 01754 | loss 2.8569 | loss(rot) 2.6248 | loss(pos) 0.2317 | loss(seq) 0.0003 | grad 4.1071 | lr 0.0010 | time_forward 5.4480 | time_backward 5.9870 |
[2023-09-01 19:55:14,877::train::INFO] [train] Iter 01755 | loss 1.9152 | loss(rot) 0.1917 | loss(pos) 1.7061 | loss(seq) 0.0174 | grad 4.1971 | lr 0.0010 | time_forward 4.5020 | time_backward 5.6250 |
[2023-09-01 19:55:26,273::train::INFO] [train] Iter 01756 | loss 3.2574 | loss(rot) 2.6074 | loss(pos) 0.1592 | loss(seq) 0.4908 | grad 2.6575 | lr 0.0010 | time_forward 6.1430 | time_backward 5.2490 |
[2023-09-01 19:55:35,995::train::INFO] [train] Iter 01757 | loss 2.4942 | loss(rot) 2.0140 | loss(pos) 0.4783 | loss(seq) 0.0020 | grad 5.3705 | lr 0.0010 | time_forward 4.9100 | time_backward 4.8090 |
[2023-09-01 19:55:46,606::train::INFO] [train] Iter 01758 | loss 3.5534 | loss(rot) 3.3488 | loss(pos) 0.2040 | loss(seq) 0.0007 | grad 1.9971 | lr 0.0010 | time_forward 4.4010 | time_backward 6.2060 |
[2023-09-01 19:55:55,753::train::INFO] [train] Iter 01759 | loss 1.3010 | loss(rot) 0.2595 | loss(pos) 0.9766 | loss(seq) 0.0649 | grad 3.4913 | lr 0.0010 | time_forward 3.9430 | time_backward 5.2000 |
[2023-09-01 19:56:04,304::train::INFO] [train] Iter 01760 | loss 2.3897 | loss(rot) 1.2387 | loss(pos) 0.7636 | loss(seq) 0.3873 | grad 4.1207 | lr 0.0010 | time_forward 3.7420 | time_backward 4.8050 |
[2023-09-01 19:56:15,070::train::INFO] [train] Iter 01761 | loss 1.4630 | loss(rot) 0.1502 | loss(pos) 1.2986 | loss(seq) 0.0142 | grad 2.8095 | lr 0.0010 | time_forward 4.4570 | time_backward 6.3050 |
[2023-09-01 19:56:18,485::train::INFO] [train] Iter 01762 | loss 3.0034 | loss(rot) 2.2915 | loss(pos) 0.4096 | loss(seq) 0.3022 | grad 3.1242 | lr 0.0010 | time_forward 1.6500 | time_backward 1.7630 |
[2023-09-01 19:56:27,410::train::INFO] [train] Iter 01763 | loss 1.6306 | loss(rot) 0.4307 | loss(pos) 1.0766 | loss(seq) 0.1233 | grad 4.2520 | lr 0.0010 | time_forward 4.0670 | time_backward 4.8550 |
[2023-09-01 19:56:30,563::train::INFO] [train] Iter 01764 | loss 2.4176 | loss(rot) 1.4536 | loss(pos) 0.4099 | loss(seq) 0.5542 | grad 2.6507 | lr 0.0010 | time_forward 1.4640 | time_backward 1.6850 |
[2023-09-01 19:56:34,201::train::INFO] [train] Iter 01765 | loss 1.9727 | loss(rot) 0.7195 | loss(pos) 1.0171 | loss(seq) 0.2361 | grad 3.8463 | lr 0.0010 | time_forward 1.5980 | time_backward 2.0360 |
[2023-09-01 19:56:36,450::train::INFO] [train] Iter 01766 | loss 1.7147 | loss(rot) 0.0143 | loss(pos) 1.6971 | loss(seq) 0.0034 | grad 3.5829 | lr 0.0010 | time_forward 1.0270 | time_backward 1.2180 |
[2023-09-01 19:56:43,163::train::INFO] [train] Iter 01767 | loss 2.8432 | loss(rot) 1.5640 | loss(pos) 0.8045 | loss(seq) 0.4748 | grad 3.7846 | lr 0.0010 | time_forward 2.8900 | time_backward 3.8210 |
[2023-09-01 19:56:52,263::train::INFO] [train] Iter 01768 | loss 1.4735 | loss(rot) 0.6743 | loss(pos) 0.5802 | loss(seq) 0.2190 | grad 3.1838 | lr 0.0010 | time_forward 3.8520 | time_backward 5.2440 |
[2023-09-01 19:57:00,230::train::INFO] [train] Iter 01769 | loss 3.0346 | loss(rot) 2.7474 | loss(pos) 0.2872 | loss(seq) 0.0000 | grad 2.7172 | lr 0.0010 | time_forward 3.2460 | time_backward 4.7170 |
[2023-09-01 19:57:09,437::train::INFO] [train] Iter 01770 | loss 1.8742 | loss(rot) 0.2778 | loss(pos) 1.5637 | loss(seq) 0.0326 | grad 6.3912 | lr 0.0010 | time_forward 3.8430 | time_backward 5.3610 |
[2023-09-01 19:57:18,593::train::INFO] [train] Iter 01771 | loss 3.4397 | loss(rot) 2.5503 | loss(pos) 0.3450 | loss(seq) 0.5444 | grad 4.3381 | lr 0.0010 | time_forward 3.8280 | time_backward 5.3250 |
[2023-09-01 19:57:26,663::train::INFO] [train] Iter 01772 | loss 3.3346 | loss(rot) 2.9894 | loss(pos) 0.2965 | loss(seq) 0.0487 | grad 3.9379 | lr 0.0010 | time_forward 3.3070 | time_backward 4.7590 |
[2023-09-01 19:57:36,985::train::INFO] [train] Iter 01773 | loss 2.4402 | loss(rot) 1.3257 | loss(pos) 0.6360 | loss(seq) 0.4785 | grad 3.0811 | lr 0.0010 | time_forward 4.2700 | time_backward 6.0490 |
[2023-09-01 19:57:45,882::train::INFO] [train] Iter 01774 | loss 1.5408 | loss(rot) 0.8062 | loss(pos) 0.3919 | loss(seq) 0.3427 | grad 4.0008 | lr 0.0010 | time_forward 3.8050 | time_backward 5.0790 |
[2023-09-01 19:57:49,239::train::INFO] [train] Iter 01775 | loss 3.5035 | loss(rot) 3.0833 | loss(pos) 0.4182 | loss(seq) 0.0020 | grad 3.8848 | lr 0.0010 | time_forward 1.4830 | time_backward 1.8700 |
[2023-09-01 19:57:59,378::train::INFO] [train] Iter 01776 | loss 3.0320 | loss(rot) 2.0818 | loss(pos) 0.4543 | loss(seq) 0.4959 | grad 3.6207 | lr 0.0010 | time_forward 4.2880 | time_backward 5.8470 |
[2023-09-01 19:58:07,417::train::INFO] [train] Iter 01777 | loss 1.8545 | loss(rot) 1.2392 | loss(pos) 0.3042 | loss(seq) 0.3110 | grad 2.6617 | lr 0.0010 | time_forward 3.3640 | time_backward 4.6720 |
[2023-09-01 19:58:16,502::train::INFO] [train] Iter 01778 | loss 1.6788 | loss(rot) 0.3851 | loss(pos) 0.9884 | loss(seq) 0.3053 | grad 4.7373 | lr 0.0010 | time_forward 3.7550 | time_backward 5.3250 |
[2023-09-01 19:58:18,712::train::INFO] [train] Iter 01779 | loss 1.9933 | loss(rot) 0.7793 | loss(pos) 1.0293 | loss(seq) 0.1848 | grad 6.0733 | lr 0.0010 | time_forward 1.0240 | time_backward 1.1820 |
[2023-09-01 19:58:27,272::train::INFO] [train] Iter 01780 | loss 1.1715 | loss(rot) 0.5923 | loss(pos) 0.3337 | loss(seq) 0.2455 | grad 3.8908 | lr 0.0010 | time_forward 3.5640 | time_backward 4.9930 |
[2023-09-01 19:58:37,658::train::INFO] [train] Iter 01781 | loss 1.5821 | loss(rot) 0.8270 | loss(pos) 0.4803 | loss(seq) 0.2747 | grad 2.1874 | lr 0.0010 | time_forward 4.4200 | time_backward 5.9610 |
[2023-09-01 19:58:44,798::train::INFO] [train] Iter 01782 | loss 1.7287 | loss(rot) 0.9440 | loss(pos) 0.4578 | loss(seq) 0.3269 | grad 4.2917 | lr 0.0010 | time_forward 3.0700 | time_backward 4.0670 |
[2023-09-01 19:58:47,528::train::INFO] [train] Iter 01783 | loss 3.2677 | loss(rot) 2.8995 | loss(pos) 0.3204 | loss(seq) 0.0479 | grad 4.5642 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4670 |
[2023-09-01 19:58:57,657::train::INFO] [train] Iter 01784 | loss 2.9415 | loss(rot) 2.5022 | loss(pos) 0.3819 | loss(seq) 0.0575 | grad 3.6545 | lr 0.0010 | time_forward 4.1220 | time_backward 6.0030 |
[2023-09-01 19:59:06,735::train::INFO] [train] Iter 01785 | loss 1.0300 | loss(rot) 0.3427 | loss(pos) 0.6222 | loss(seq) 0.0651 | grad 2.6963 | lr 0.0010 | time_forward 3.7620 | time_backward 5.3010 |
[2023-09-01 19:59:14,703::train::INFO] [train] Iter 01786 | loss 2.6673 | loss(rot) 0.9684 | loss(pos) 1.3923 | loss(seq) 0.3066 | grad 5.2761 | lr 0.0010 | time_forward 3.2720 | time_backward 4.6930 |
[2023-09-01 19:59:24,666::train::INFO] [train] Iter 01787 | loss 2.5216 | loss(rot) 1.4500 | loss(pos) 0.4995 | loss(seq) 0.5721 | grad 4.3839 | lr 0.0010 | time_forward 4.0350 | time_backward 5.9240 |
[2023-09-01 19:59:33,123::train::INFO] [train] Iter 01788 | loss 2.7528 | loss(rot) 2.0168 | loss(pos) 0.2228 | loss(seq) 0.5132 | grad 2.3562 | lr 0.0010 | time_forward 3.6090 | time_backward 4.8460 |
[2023-09-01 19:59:42,977::train::INFO] [train] Iter 01789 | loss 2.4213 | loss(rot) 1.4788 | loss(pos) 0.2829 | loss(seq) 0.6595 | grad 3.6872 | lr 0.0010 | time_forward 4.0260 | time_backward 5.8250 |
[2023-09-01 19:59:51,014::train::INFO] [train] Iter 01790 | loss 2.3139 | loss(rot) 1.5768 | loss(pos) 0.1997 | loss(seq) 0.5374 | grad 2.3220 | lr 0.0010 | time_forward 3.3170 | time_backward 4.7160 |
[2023-09-01 19:59:59,731::train::INFO] [train] Iter 01791 | loss 3.2023 | loss(rot) 0.0244 | loss(pos) 3.1749 | loss(seq) 0.0030 | grad 9.2227 | lr 0.0010 | time_forward 3.7040 | time_backward 5.0090 |
[2023-09-01 20:00:01,456::train::INFO] [train] Iter 01792 | loss 1.8332 | loss(rot) 0.2680 | loss(pos) 1.5360 | loss(seq) 0.0292 | grad 5.3623 | lr 0.0010 | time_forward 0.7680 | time_backward 0.9540 |
[2023-09-01 20:00:11,760::train::INFO] [train] Iter 01793 | loss 3.4564 | loss(rot) 3.0082 | loss(pos) 0.3378 | loss(seq) 0.1104 | grad 4.0649 | lr 0.0010 | time_forward 4.3400 | time_backward 5.9610 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.