text
stringlengths 56
1.16k
|
---|
[2023-09-01 20:00:20,507::train::INFO] [train] Iter 01794 | loss 1.6214 | loss(rot) 0.7533 | loss(pos) 0.7115 | loss(seq) 0.1567 | grad 6.3186 | lr 0.0010 | time_forward 3.6980 | time_backward 5.0350 |
[2023-09-01 20:00:28,879::train::INFO] [train] Iter 01795 | loss 3.0633 | loss(rot) 2.3797 | loss(pos) 0.3272 | loss(seq) 0.3564 | grad 4.1142 | lr 0.0010 | time_forward 3.4730 | time_backward 4.8960 |
[2023-09-01 20:00:37,527::train::INFO] [train] Iter 01796 | loss 2.8278 | loss(rot) 1.9847 | loss(pos) 0.3609 | loss(seq) 0.4822 | grad 4.1453 | lr 0.0010 | time_forward 3.6650 | time_backward 4.9800 |
[2023-09-01 20:00:45,995::train::INFO] [train] Iter 01797 | loss 3.3243 | loss(rot) 3.0830 | loss(pos) 0.2054 | loss(seq) 0.0359 | grad 3.2947 | lr 0.0010 | time_forward 3.5400 | time_backward 4.9240 |
[2023-09-01 20:00:56,066::train::INFO] [train] Iter 01798 | loss 2.7533 | loss(rot) 0.0282 | loss(pos) 2.7198 | loss(seq) 0.0053 | grad 5.9130 | lr 0.0010 | time_forward 4.0730 | time_backward 5.9950 |
[2023-09-01 20:01:03,522::train::INFO] [train] Iter 01799 | loss 5.2483 | loss(rot) 0.0230 | loss(pos) 5.2253 | loss(seq) 0.0000 | grad 12.3798 | lr 0.0010 | time_forward 3.1100 | time_backward 4.3420 |
[2023-09-01 20:01:12,339::train::INFO] [train] Iter 01800 | loss 1.6906 | loss(rot) 0.3049 | loss(pos) 1.3229 | loss(seq) 0.0628 | grad 11.0944 | lr 0.0010 | time_forward 3.6630 | time_backward 5.1490 |
[2023-09-01 20:01:15,040::train::INFO] [train] Iter 01801 | loss 1.7723 | loss(rot) 0.1607 | loss(pos) 1.5834 | loss(seq) 0.0282 | grad 5.8837 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4450 |
[2023-09-01 20:01:17,913::train::INFO] [train] Iter 01802 | loss 1.8079 | loss(rot) 0.9811 | loss(pos) 0.4049 | loss(seq) 0.4219 | grad 3.8969 | lr 0.0010 | time_forward 1.4290 | time_backward 1.4050 |
[2023-09-01 20:01:26,589::train::INFO] [train] Iter 01803 | loss 2.8001 | loss(rot) 2.2261 | loss(pos) 0.4217 | loss(seq) 0.1523 | grad 5.0608 | lr 0.0010 | time_forward 3.7530 | time_backward 4.9190 |
[2023-09-01 20:01:36,387::train::INFO] [train] Iter 01804 | loss 3.1235 | loss(rot) 1.7055 | loss(pos) 0.8828 | loss(seq) 0.5352 | grad 4.5705 | lr 0.0010 | time_forward 4.1610 | time_backward 5.6320 |
[2023-09-01 20:01:43,421::train::INFO] [train] Iter 01805 | loss 2.8928 | loss(rot) 2.6606 | loss(pos) 0.2196 | loss(seq) 0.0125 | grad 3.6134 | lr 0.0010 | time_forward 3.1000 | time_backward 3.9300 |
[2023-09-01 20:01:46,072::train::INFO] [train] Iter 01806 | loss 3.1287 | loss(rot) 2.3570 | loss(pos) 0.3335 | loss(seq) 0.4381 | grad 3.3482 | lr 0.0010 | time_forward 1.2260 | time_backward 1.4210 |
[2023-09-01 20:01:48,843::train::INFO] [train] Iter 01807 | loss 3.3238 | loss(rot) 3.0566 | loss(pos) 0.2518 | loss(seq) 0.0154 | grad 4.0190 | lr 0.0010 | time_forward 1.3340 | time_backward 1.4150 |
[2023-09-01 20:01:50,903::train::INFO] [train] Iter 01808 | loss 1.7045 | loss(rot) 0.4640 | loss(pos) 1.1701 | loss(seq) 0.0704 | grad 5.4291 | lr 0.0010 | time_forward 0.9260 | time_backward 1.0830 |
[2023-09-01 20:02:00,785::train::INFO] [train] Iter 01809 | loss 2.7695 | loss(rot) 1.7829 | loss(pos) 0.4776 | loss(seq) 0.5089 | grad 3.4427 | lr 0.0010 | time_forward 4.0640 | time_backward 5.8150 |
[2023-09-01 20:02:11,187::train::INFO] [train] Iter 01810 | loss 3.1584 | loss(rot) 2.7554 | loss(pos) 0.1083 | loss(seq) 0.2947 | grad 2.4407 | lr 0.0010 | time_forward 4.1540 | time_backward 6.2340 |
[2023-09-01 20:02:20,115::train::INFO] [train] Iter 01811 | loss 2.3288 | loss(rot) 1.3596 | loss(pos) 0.2494 | loss(seq) 0.7198 | grad 2.6638 | lr 0.0010 | time_forward 3.7560 | time_backward 5.1680 |
[2023-09-01 20:02:26,861::train::INFO] [train] Iter 01812 | loss 2.3333 | loss(rot) 0.0245 | loss(pos) 2.3074 | loss(seq) 0.0014 | grad 6.0929 | lr 0.0010 | time_forward 2.8230 | time_backward 3.9190 |
[2023-09-01 20:02:37,188::train::INFO] [train] Iter 01813 | loss 1.7393 | loss(rot) 0.5221 | loss(pos) 1.1686 | loss(seq) 0.0486 | grad 3.3027 | lr 0.0010 | time_forward 4.1240 | time_backward 6.1990 |
[2023-09-01 20:02:40,065::train::INFO] [train] Iter 01814 | loss 3.0960 | loss(rot) 2.7413 | loss(pos) 0.2629 | loss(seq) 0.0918 | grad 3.6471 | lr 0.0010 | time_forward 1.3970 | time_backward 1.4630 |
[2023-09-01 20:02:48,530::train::INFO] [train] Iter 01815 | loss 2.4098 | loss(rot) 0.8749 | loss(pos) 0.7953 | loss(seq) 0.7396 | grad 5.3534 | lr 0.0010 | time_forward 3.5180 | time_backward 4.9160 |
[2023-09-01 20:02:58,960::train::INFO] [train] Iter 01816 | loss 1.8222 | loss(rot) 1.1587 | loss(pos) 0.3668 | loss(seq) 0.2967 | grad 3.7433 | lr 0.0010 | time_forward 4.1760 | time_backward 6.2510 |
[2023-09-01 20:03:01,783::train::INFO] [train] Iter 01817 | loss 2.8698 | loss(rot) 2.7055 | loss(pos) 0.1447 | loss(seq) 0.0196 | grad 2.5971 | lr 0.0010 | time_forward 1.3040 | time_backward 1.5140 |
[2023-09-01 20:03:04,240::train::INFO] [train] Iter 01818 | loss 1.8552 | loss(rot) 0.6809 | loss(pos) 1.0481 | loss(seq) 0.1261 | grad 3.7837 | lr 0.0010 | time_forward 1.1840 | time_backward 1.2690 |
[2023-09-01 20:03:06,890::train::INFO] [train] Iter 01819 | loss 3.3674 | loss(rot) 2.7694 | loss(pos) 0.5868 | loss(seq) 0.0112 | grad 6.8190 | lr 0.0010 | time_forward 1.3290 | time_backward 1.3180 |
[2023-09-01 20:03:16,984::train::INFO] [train] Iter 01820 | loss 2.2967 | loss(rot) 1.0388 | loss(pos) 0.6962 | loss(seq) 0.5617 | grad 4.6224 | lr 0.0010 | time_forward 4.0090 | time_backward 6.0390 |
[2023-09-01 20:03:26,349::train::INFO] [train] Iter 01821 | loss 1.8803 | loss(rot) 0.7184 | loss(pos) 0.6718 | loss(seq) 0.4901 | grad 4.5758 | lr 0.0010 | time_forward 4.1140 | time_backward 5.2380 |
[2023-09-01 20:03:32,201::train::INFO] [train] Iter 01822 | loss 2.1311 | loss(rot) 0.2543 | loss(pos) 1.5549 | loss(seq) 0.3219 | grad 6.4239 | lr 0.0010 | time_forward 2.4770 | time_backward 3.3710 |
[2023-09-01 20:03:45,417::train::INFO] [train] Iter 01823 | loss 0.7505 | loss(rot) 0.2158 | loss(pos) 0.1960 | loss(seq) 0.3388 | grad 1.9953 | lr 0.0010 | time_forward 4.1430 | time_backward 9.0710 |
[2023-09-01 20:04:01,283::train::INFO] [train] Iter 01824 | loss 2.8848 | loss(rot) 2.0756 | loss(pos) 0.2673 | loss(seq) 0.5419 | grad 2.3356 | lr 0.0010 | time_forward 10.2450 | time_backward 5.6170 |
[2023-09-01 20:04:10,861::train::INFO] [train] Iter 01825 | loss 1.2302 | loss(rot) 0.5854 | loss(pos) 0.4128 | loss(seq) 0.2320 | grad 2.7554 | lr 0.0010 | time_forward 3.9580 | time_backward 5.6120 |
[2023-09-01 20:04:20,431::train::INFO] [train] Iter 01826 | loss 1.1745 | loss(rot) 0.6142 | loss(pos) 0.4953 | loss(seq) 0.0650 | grad 4.9003 | lr 0.0010 | time_forward 3.8790 | time_backward 5.6880 |
[2023-09-01 20:04:30,565::train::INFO] [train] Iter 01827 | loss 2.3518 | loss(rot) 0.9200 | loss(pos) 0.9186 | loss(seq) 0.5133 | grad 5.8450 | lr 0.0010 | time_forward 3.9960 | time_backward 6.1340 |
[2023-09-01 20:04:33,277::train::INFO] [train] Iter 01828 | loss 3.0681 | loss(rot) 2.1431 | loss(pos) 0.4511 | loss(seq) 0.4739 | grad 4.7098 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4760 |
[2023-09-01 20:04:39,208::train::INFO] [train] Iter 01829 | loss 2.6320 | loss(rot) 1.8492 | loss(pos) 0.3058 | loss(seq) 0.4769 | grad 3.4664 | lr 0.0010 | time_forward 2.4900 | time_backward 3.4160 |
[2023-09-01 20:04:49,057::train::INFO] [train] Iter 01830 | loss 1.2899 | loss(rot) 0.3142 | loss(pos) 0.9189 | loss(seq) 0.0568 | grad 4.5926 | lr 0.0010 | time_forward 4.0740 | time_backward 5.7710 |
[2023-09-01 20:04:51,788::train::INFO] [train] Iter 01831 | loss 3.5676 | loss(rot) 3.1727 | loss(pos) 0.3468 | loss(seq) 0.0481 | grad 3.7103 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4020 |
[2023-09-01 20:04:55,070::train::INFO] [train] Iter 01832 | loss 3.0290 | loss(rot) 2.3922 | loss(pos) 0.3987 | loss(seq) 0.2381 | grad 5.8282 | lr 0.0010 | time_forward 1.4690 | time_backward 1.8100 |
[2023-09-01 20:04:57,728::train::INFO] [train] Iter 01833 | loss 3.3347 | loss(rot) 2.9611 | loss(pos) 0.3422 | loss(seq) 0.0315 | grad 3.5159 | lr 0.0010 | time_forward 1.2230 | time_backward 1.4320 |
[2023-09-01 20:05:00,449::train::INFO] [train] Iter 01834 | loss 2.6925 | loss(rot) 2.3716 | loss(pos) 0.1935 | loss(seq) 0.1274 | grad 3.9310 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4100 |
[2023-09-01 20:05:02,756::train::INFO] [train] Iter 01835 | loss 1.7142 | loss(rot) 0.4391 | loss(pos) 1.2120 | loss(seq) 0.0631 | grad 4.9858 | lr 0.0010 | time_forward 1.0810 | time_backward 1.2240 |
[2023-09-01 20:05:05,540::train::INFO] [train] Iter 01836 | loss 3.3835 | loss(rot) 3.0518 | loss(pos) 0.2394 | loss(seq) 0.0924 | grad 2.8724 | lr 0.0010 | time_forward 1.2760 | time_backward 1.5050 |
[2023-09-01 20:05:15,543::train::INFO] [train] Iter 01837 | loss 2.9590 | loss(rot) 2.2010 | loss(pos) 0.2316 | loss(seq) 0.5265 | grad 2.1711 | lr 0.0010 | time_forward 3.9390 | time_backward 6.0130 |
[2023-09-01 20:05:23,549::train::INFO] [train] Iter 01838 | loss 3.1993 | loss(rot) 2.3355 | loss(pos) 0.3719 | loss(seq) 0.4919 | grad 3.6700 | lr 0.0010 | time_forward 3.3460 | time_backward 4.6550 |
[2023-09-01 20:05:32,630::train::INFO] [train] Iter 01839 | loss 2.9084 | loss(rot) 2.7152 | loss(pos) 0.1815 | loss(seq) 0.0117 | grad 3.1414 | lr 0.0010 | time_forward 3.8070 | time_backward 5.2610 |
[2023-09-01 20:05:41,367::train::INFO] [train] Iter 01840 | loss 2.3232 | loss(rot) 0.4927 | loss(pos) 1.3412 | loss(seq) 0.4894 | grad 7.2103 | lr 0.0010 | time_forward 3.6450 | time_backward 5.0880 |
[2023-09-01 20:05:44,047::train::INFO] [train] Iter 01841 | loss 1.7508 | loss(rot) 1.0234 | loss(pos) 0.5773 | loss(seq) 0.1501 | grad 4.1767 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4310 |
[2023-09-01 20:05:53,984::train::INFO] [train] Iter 01842 | loss 2.3418 | loss(rot) 1.2783 | loss(pos) 0.6202 | loss(seq) 0.4433 | grad 4.3494 | lr 0.0010 | time_forward 4.2230 | time_backward 5.7120 |
[2023-09-01 20:06:02,238::train::INFO] [train] Iter 01843 | loss 2.1289 | loss(rot) 0.0268 | loss(pos) 2.0992 | loss(seq) 0.0028 | grad 4.7208 | lr 0.0010 | time_forward 3.4590 | time_backward 4.7910 |
[2023-09-01 20:06:12,173::train::INFO] [train] Iter 01844 | loss 2.0133 | loss(rot) 1.2826 | loss(pos) 0.4822 | loss(seq) 0.2485 | grad 3.0132 | lr 0.0010 | time_forward 3.9990 | time_backward 5.9320 |
[2023-09-01 20:06:20,982::train::INFO] [train] Iter 01845 | loss 2.8839 | loss(rot) 1.7753 | loss(pos) 0.5637 | loss(seq) 0.5450 | grad 4.9639 | lr 0.0010 | time_forward 3.6750 | time_backward 5.1200 |
[2023-09-01 20:06:23,679::train::INFO] [train] Iter 01846 | loss 3.5817 | loss(rot) 3.1636 | loss(pos) 0.3514 | loss(seq) 0.0667 | grad 5.3878 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4530 |
[2023-09-01 20:06:26,457::train::INFO] [train] Iter 01847 | loss 3.3551 | loss(rot) 0.0205 | loss(pos) 3.3325 | loss(seq) 0.0021 | grad 8.6661 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4610 |
[2023-09-01 20:06:35,537::train::INFO] [train] Iter 01848 | loss 1.0759 | loss(rot) 0.3960 | loss(pos) 0.4370 | loss(seq) 0.2429 | grad 3.3973 | lr 0.0010 | time_forward 3.8000 | time_backward 5.2760 |
[2023-09-01 20:06:37,984::train::INFO] [train] Iter 01849 | loss 3.2239 | loss(rot) 2.6807 | loss(pos) 0.3435 | loss(seq) 0.1996 | grad 5.2120 | lr 0.0010 | time_forward 1.1740 | time_backward 1.2700 |
[2023-09-01 20:06:47,316::train::INFO] [train] Iter 01850 | loss 3.4106 | loss(rot) 3.1325 | loss(pos) 0.2358 | loss(seq) 0.0422 | grad 3.5856 | lr 0.0010 | time_forward 4.1070 | time_backward 5.1860 |
[2023-09-01 20:06:55,181::train::INFO] [train] Iter 01851 | loss 1.2988 | loss(rot) 0.5156 | loss(pos) 0.5093 | loss(seq) 0.2739 | grad 2.7391 | lr 0.0010 | time_forward 3.3240 | time_backward 4.5350 |
[2023-09-01 20:07:05,102::train::INFO] [train] Iter 01852 | loss 2.7906 | loss(rot) 1.0500 | loss(pos) 1.4301 | loss(seq) 0.3105 | grad 5.3036 | lr 0.0010 | time_forward 4.0110 | time_backward 5.9060 |
[2023-09-01 20:07:13,976::train::INFO] [train] Iter 01853 | loss 2.8591 | loss(rot) 2.4217 | loss(pos) 0.2869 | loss(seq) 0.1505 | grad 4.0077 | lr 0.0010 | time_forward 3.9010 | time_backward 4.9700 |
[2023-09-01 20:07:24,076::train::INFO] [train] Iter 01854 | loss 2.3735 | loss(rot) 0.1638 | loss(pos) 2.1999 | loss(seq) 0.0098 | grad 5.3386 | lr 0.0010 | time_forward 4.0580 | time_backward 6.0390 |
[2023-09-01 20:07:32,662::train::INFO] [train] Iter 01855 | loss 3.2958 | loss(rot) 2.8725 | loss(pos) 0.2750 | loss(seq) 0.1483 | grad 5.2484 | lr 0.0010 | time_forward 3.6070 | time_backward 4.9760 |
[2023-09-01 20:07:41,708::train::INFO] [train] Iter 01856 | loss 2.5055 | loss(rot) 1.1495 | loss(pos) 0.9324 | loss(seq) 0.4236 | grad 4.3006 | lr 0.0010 | time_forward 3.7700 | time_backward 5.2720 |
[2023-09-01 20:07:51,693::train::INFO] [train] Iter 01857 | loss 2.8072 | loss(rot) 1.8172 | loss(pos) 0.5221 | loss(seq) 0.4679 | grad 3.4740 | lr 0.0010 | time_forward 4.1480 | time_backward 5.8040 |
[2023-09-01 20:07:58,351::train::INFO] [train] Iter 01858 | loss 3.4568 | loss(rot) 3.1660 | loss(pos) 0.2466 | loss(seq) 0.0441 | grad 2.2350 | lr 0.0010 | time_forward 2.8810 | time_backward 3.7730 |
[2023-09-01 20:08:01,020::train::INFO] [train] Iter 01859 | loss 3.2976 | loss(rot) 3.0498 | loss(pos) 0.2204 | loss(seq) 0.0274 | grad 2.5862 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4410 |
[2023-09-01 20:08:11,462::train::INFO] [train] Iter 01860 | loss 1.7666 | loss(rot) 0.5946 | loss(pos) 1.0505 | loss(seq) 0.1214 | grad 4.7932 | lr 0.0010 | time_forward 4.2200 | time_backward 6.2160 |
[2023-09-01 20:08:21,226::train::INFO] [train] Iter 01861 | loss 3.0086 | loss(rot) 2.5059 | loss(pos) 0.5027 | loss(seq) 0.0000 | grad 3.3669 | lr 0.0010 | time_forward 4.0550 | time_backward 5.7050 |
[2023-09-01 20:08:30,456::train::INFO] [train] Iter 01862 | loss 2.6169 | loss(rot) 1.1589 | loss(pos) 0.9681 | loss(seq) 0.4900 | grad 5.3524 | lr 0.0010 | time_forward 3.8310 | time_backward 5.3960 |
[2023-09-01 20:08:40,598::train::INFO] [train] Iter 01863 | loss 4.3176 | loss(rot) 0.0156 | loss(pos) 4.3020 | loss(seq) 0.0000 | grad 5.6537 | lr 0.0010 | time_forward 4.1830 | time_backward 5.9550 |
[2023-09-01 20:08:43,410::train::INFO] [train] Iter 01864 | loss 3.5257 | loss(rot) 2.9889 | loss(pos) 0.3903 | loss(seq) 0.1465 | grad 3.7014 | lr 0.0010 | time_forward 1.3380 | time_backward 1.4600 |
[2023-09-01 20:08:45,946::train::INFO] [train] Iter 01865 | loss 2.6493 | loss(rot) 2.1806 | loss(pos) 0.1973 | loss(seq) 0.2714 | grad 2.2911 | lr 0.0010 | time_forward 1.2080 | time_backward 1.3240 |
[2023-09-01 20:08:48,251::train::INFO] [train] Iter 01866 | loss 2.1285 | loss(rot) 1.3791 | loss(pos) 0.2970 | loss(seq) 0.4525 | grad 3.7386 | lr 0.0010 | time_forward 1.0410 | time_backward 1.2270 |
[2023-09-01 20:08:58,066::train::INFO] [train] Iter 01867 | loss 3.3189 | loss(rot) 3.1018 | loss(pos) 0.1786 | loss(seq) 0.0385 | grad 2.8588 | lr 0.0010 | time_forward 4.0330 | time_backward 5.7780 |
[2023-09-01 20:09:08,113::train::INFO] [train] Iter 01868 | loss 3.3633 | loss(rot) 2.3271 | loss(pos) 0.4672 | loss(seq) 0.5689 | grad 3.4734 | lr 0.0010 | time_forward 4.0340 | time_backward 6.0100 |
[2023-09-01 20:09:18,353::train::INFO] [train] Iter 01869 | loss 3.2311 | loss(rot) 2.7534 | loss(pos) 0.4597 | loss(seq) 0.0181 | grad 4.3790 | lr 0.0010 | time_forward 4.0330 | time_backward 6.2030 |
[2023-09-01 20:09:28,719::train::INFO] [train] Iter 01870 | loss 3.7270 | loss(rot) 1.7940 | loss(pos) 1.6538 | loss(seq) 0.2792 | grad 7.4258 | lr 0.0010 | time_forward 4.1630 | time_backward 6.1900 |
[2023-09-01 20:09:36,226::train::INFO] [train] Iter 01871 | loss 3.9141 | loss(rot) 3.7097 | loss(pos) 0.1034 | loss(seq) 0.1011 | grad 2.4783 | lr 0.0010 | time_forward 3.1890 | time_backward 4.3150 |
[2023-09-01 20:09:38,653::train::INFO] [train] Iter 01872 | loss 3.4360 | loss(rot) 3.0251 | loss(pos) 0.4097 | loss(seq) 0.0012 | grad 3.5552 | lr 0.0010 | time_forward 1.1280 | time_backward 1.2950 |
[2023-09-01 20:09:47,539::train::INFO] [train] Iter 01873 | loss 2.5142 | loss(rot) 0.1354 | loss(pos) 2.3685 | loss(seq) 0.0103 | grad 4.1868 | lr 0.0010 | time_forward 3.6880 | time_backward 5.1580 |
[2023-09-01 20:09:57,469::train::INFO] [train] Iter 01874 | loss 2.8059 | loss(rot) 2.6411 | loss(pos) 0.1641 | loss(seq) 0.0007 | grad 3.3335 | lr 0.0010 | time_forward 4.0170 | time_backward 5.9100 |
[2023-09-01 20:10:05,813::train::INFO] [train] Iter 01875 | loss 3.4130 | loss(rot) 0.0107 | loss(pos) 3.4023 | loss(seq) 0.0000 | grad 4.9034 | lr 0.0010 | time_forward 3.5610 | time_backward 4.7790 |
[2023-09-01 20:10:15,659::train::INFO] [train] Iter 01876 | loss 3.0363 | loss(rot) 0.0382 | loss(pos) 2.9976 | loss(seq) 0.0006 | grad 3.7720 | lr 0.0010 | time_forward 4.0150 | time_backward 5.8280 |
[2023-09-01 20:10:18,448::train::INFO] [train] Iter 01877 | loss 1.6323 | loss(rot) 0.3710 | loss(pos) 0.9179 | loss(seq) 0.3434 | grad 3.4597 | lr 0.0010 | time_forward 1.2340 | time_backward 1.5520 |
[2023-09-01 20:10:28,800::train::INFO] [train] Iter 01878 | loss 2.1597 | loss(rot) 1.9241 | loss(pos) 0.2336 | loss(seq) 0.0020 | grad 3.1155 | lr 0.0010 | time_forward 4.1020 | time_backward 6.2470 |
[2023-09-01 20:10:36,767::train::INFO] [train] Iter 01879 | loss 1.5929 | loss(rot) 0.2851 | loss(pos) 1.2913 | loss(seq) 0.0165 | grad 2.9191 | lr 0.0010 | time_forward 3.3170 | time_backward 4.6460 |
[2023-09-01 20:10:39,491::train::INFO] [train] Iter 01880 | loss 2.2090 | loss(rot) 0.0973 | loss(pos) 2.0936 | loss(seq) 0.0180 | grad 5.0864 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4570 |
[2023-09-01 20:10:48,008::train::INFO] [train] Iter 01881 | loss 3.3604 | loss(rot) 2.8555 | loss(pos) 0.4705 | loss(seq) 0.0344 | grad 3.8689 | lr 0.0010 | time_forward 3.6250 | time_backward 4.8880 |
[2023-09-01 20:10:50,793::train::INFO] [train] Iter 01882 | loss 2.5050 | loss(rot) 2.3086 | loss(pos) 0.1751 | loss(seq) 0.0212 | grad 2.9396 | lr 0.0010 | time_forward 1.2710 | time_backward 1.5110 |
[2023-09-01 20:10:53,678::train::INFO] [train] Iter 01883 | loss 2.4884 | loss(rot) 1.1390 | loss(pos) 0.8424 | loss(seq) 0.5071 | grad 4.0097 | lr 0.0010 | time_forward 1.3650 | time_backward 1.5160 |
[2023-09-01 20:11:01,523::train::INFO] [train] Iter 01884 | loss 2.3697 | loss(rot) 1.5298 | loss(pos) 0.3932 | loss(seq) 0.4467 | grad 3.6485 | lr 0.0010 | time_forward 3.3470 | time_backward 4.4930 |
[2023-09-01 20:11:11,742::train::INFO] [train] Iter 01885 | loss 1.5645 | loss(rot) 0.4662 | loss(pos) 1.0481 | loss(seq) 0.0501 | grad 4.1901 | lr 0.0010 | time_forward 4.0810 | time_backward 6.1340 |
[2023-09-01 20:11:20,421::train::INFO] [train] Iter 01886 | loss 2.3996 | loss(rot) 1.3268 | loss(pos) 0.4802 | loss(seq) 0.5927 | grad 3.0749 | lr 0.0010 | time_forward 3.5930 | time_backward 5.0820 |
[2023-09-01 20:11:23,260::train::INFO] [train] Iter 01887 | loss 3.2729 | loss(rot) 2.5008 | loss(pos) 0.4167 | loss(seq) 0.3554 | grad 3.9691 | lr 0.0010 | time_forward 1.2790 | time_backward 1.5550 |
[2023-09-01 20:11:26,649::train::INFO] [train] Iter 01888 | loss 3.4294 | loss(rot) 3.0140 | loss(pos) 0.4108 | loss(seq) 0.0046 | grad 5.4079 | lr 0.0010 | time_forward 1.5000 | time_backward 1.8720 |
[2023-09-01 20:11:29,377::train::INFO] [train] Iter 01889 | loss 3.4622 | loss(rot) 3.1008 | loss(pos) 0.3613 | loss(seq) 0.0000 | grad 3.6834 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4770 |
[2023-09-01 20:11:39,312::train::INFO] [train] Iter 01890 | loss 3.5473 | loss(rot) 3.2463 | loss(pos) 0.3010 | loss(seq) 0.0000 | grad 2.7535 | lr 0.0010 | time_forward 4.1060 | time_backward 5.8250 |
[2023-09-01 20:11:42,192::train::INFO] [train] Iter 01891 | loss 2.5845 | loss(rot) 1.9766 | loss(pos) 0.2716 | loss(seq) 0.3364 | grad 3.4683 | lr 0.0010 | time_forward 1.3680 | time_backward 1.5080 |
[2023-09-01 20:11:47,928::train::INFO] [train] Iter 01892 | loss 3.9606 | loss(rot) 0.0447 | loss(pos) 3.9114 | loss(seq) 0.0045 | grad 8.6558 | lr 0.0010 | time_forward 2.3370 | time_backward 3.3620 |
[2023-09-01 20:11:55,561::train::INFO] [train] Iter 01893 | loss 3.3833 | loss(rot) 3.1653 | loss(pos) 0.2173 | loss(seq) 0.0007 | grad 1.8042 | lr 0.0010 | time_forward 3.2340 | time_backward 4.3950 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.