text
stringlengths 56
1.16k
|
---|
[2023-09-01 20:24:03,396::train::INFO] [train] Iter 01994 | loss 2.3963 | loss(rot) 1.5702 | loss(pos) 0.2355 | loss(seq) 0.5906 | grad 4.1504 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4820 |
[2023-09-01 20:24:13,712::train::INFO] [train] Iter 01995 | loss 3.1892 | loss(rot) 2.6609 | loss(pos) 0.3130 | loss(seq) 0.2152 | grad 2.7825 | lr 0.0010 | time_forward 4.2100 | time_backward 6.1020 |
[2023-09-01 20:24:22,647::train::INFO] [train] Iter 01996 | loss 3.2441 | loss(rot) 2.7961 | loss(pos) 0.2589 | loss(seq) 0.1891 | grad 3.4144 | lr 0.0010 | time_forward 3.7870 | time_backward 5.1430 |
[2023-09-01 20:24:25,374::train::INFO] [train] Iter 01997 | loss 2.9906 | loss(rot) 2.6472 | loss(pos) 0.2153 | loss(seq) 0.1281 | grad 4.1540 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4300 |
[2023-09-01 20:24:33,688::train::INFO] [train] Iter 01998 | loss 2.4113 | loss(rot) 1.8964 | loss(pos) 0.2052 | loss(seq) 0.3097 | grad 3.6259 | lr 0.0010 | time_forward 3.4500 | time_backward 4.8600 |
[2023-09-01 20:24:42,252::train::INFO] [train] Iter 01999 | loss 2.7474 | loss(rot) 2.5908 | loss(pos) 0.1449 | loss(seq) 0.0116 | grad 3.0473 | lr 0.0010 | time_forward 3.7590 | time_backward 4.8010 |
[2023-09-01 20:24:51,830::train::INFO] [train] Iter 02000 | loss 3.4782 | loss(rot) 2.9099 | loss(pos) 0.5682 | loss(seq) 0.0000 | grad 4.9119 | lr 0.0010 | time_forward 4.2140 | time_backward 5.3600 |
[2023-09-01 20:25:26,224::train::INFO] [val] Iter 02000 | loss 2.4806 | loss(rot) 1.5699 | loss(pos) 0.6828 | loss(seq) 0.2278 |
[2023-09-01 20:25:36,354::train::INFO] [train] Iter 02001 | loss 3.1252 | loss(rot) 0.0672 | loss(pos) 3.0538 | loss(seq) 0.0043 | grad 4.9974 | lr 0.0010 | time_forward 4.0300 | time_backward 5.6690 |
[2023-09-01 20:25:46,984::train::INFO] [train] Iter 02002 | loss 3.3765 | loss(rot) 2.4441 | loss(pos) 0.3751 | loss(seq) 0.5572 | grad 3.4062 | lr 0.0010 | time_forward 4.2880 | time_backward 6.3380 |
[2023-09-01 20:25:57,497::train::INFO] [train] Iter 02003 | loss 2.7915 | loss(rot) 2.0822 | loss(pos) 0.2294 | loss(seq) 0.4798 | grad 3.6901 | lr 0.0010 | time_forward 4.2530 | time_backward 6.2570 |
[2023-09-01 20:26:08,244::train::INFO] [train] Iter 02004 | loss 1.8661 | loss(rot) 0.5153 | loss(pos) 0.9795 | loss(seq) 0.3713 | grad 5.5114 | lr 0.0010 | time_forward 4.4350 | time_backward 6.3090 |
[2023-09-01 20:26:16,336::train::INFO] [train] Iter 02005 | loss 2.5283 | loss(rot) 2.2735 | loss(pos) 0.2548 | loss(seq) 0.0000 | grad 2.6420 | lr 0.0010 | time_forward 3.3820 | time_backward 4.7060 |
[2023-09-01 20:26:22,663::train::INFO] [train] Iter 02006 | loss 2.3927 | loss(rot) 2.2022 | loss(pos) 0.1841 | loss(seq) 0.0064 | grad 3.5298 | lr 0.0010 | time_forward 2.6450 | time_backward 3.6780 |
[2023-09-01 20:26:32,841::train::INFO] [train] Iter 02007 | loss 2.6767 | loss(rot) 1.9819 | loss(pos) 0.1786 | loss(seq) 0.5163 | grad 2.2916 | lr 0.0010 | time_forward 4.1780 | time_backward 5.9970 |
[2023-09-01 20:26:43,063::train::INFO] [train] Iter 02008 | loss 1.7743 | loss(rot) 0.7816 | loss(pos) 0.6247 | loss(seq) 0.3681 | grad 3.9075 | lr 0.0010 | time_forward 4.2800 | time_backward 5.9390 |
[2023-09-01 20:26:51,935::train::INFO] [train] Iter 02009 | loss 3.1776 | loss(rot) 2.7862 | loss(pos) 0.3849 | loss(seq) 0.0064 | grad 5.3778 | lr 0.0010 | time_forward 3.7840 | time_backward 5.0840 |
[2023-09-01 20:27:02,064::train::INFO] [train] Iter 02010 | loss 3.3037 | loss(rot) 2.5485 | loss(pos) 0.2770 | loss(seq) 0.4781 | grad 2.6791 | lr 0.0010 | time_forward 4.0900 | time_backward 6.0350 |
[2023-09-01 20:27:11,097::train::INFO] [train] Iter 02011 | loss 3.0710 | loss(rot) 2.3725 | loss(pos) 0.2530 | loss(seq) 0.4455 | grad 4.1536 | lr 0.0010 | time_forward 3.6740 | time_backward 5.3560 |
[2023-09-01 20:27:20,665::train::INFO] [train] Iter 02012 | loss 4.3718 | loss(rot) 0.0228 | loss(pos) 4.3490 | loss(seq) 0.0000 | grad 8.0719 | lr 0.0010 | time_forward 4.0130 | time_backward 5.5510 |
[2023-09-01 20:27:29,840::train::INFO] [train] Iter 02013 | loss 3.0967 | loss(rot) 2.4868 | loss(pos) 0.3366 | loss(seq) 0.2734 | grad 5.0610 | lr 0.0010 | time_forward 3.9170 | time_backward 5.2540 |
[2023-09-01 20:27:38,379::train::INFO] [train] Iter 02014 | loss 3.0745 | loss(rot) 2.0544 | loss(pos) 0.4951 | loss(seq) 0.5250 | grad 3.0467 | lr 0.0010 | time_forward 3.5400 | time_backward 4.9950 |
[2023-09-01 20:27:48,561::train::INFO] [train] Iter 02015 | loss 2.9722 | loss(rot) 0.0703 | loss(pos) 2.9003 | loss(seq) 0.0016 | grad 3.4153 | lr 0.0010 | time_forward 4.2790 | time_backward 5.8990 |
[2023-09-01 20:27:57,223::train::INFO] [train] Iter 02016 | loss 2.5391 | loss(rot) 2.1584 | loss(pos) 0.3062 | loss(seq) 0.0746 | grad 5.0020 | lr 0.0010 | time_forward 3.6440 | time_backward 5.0150 |
[2023-09-01 20:27:59,931::train::INFO] [train] Iter 02017 | loss 2.2486 | loss(rot) 0.0608 | loss(pos) 2.1873 | loss(seq) 0.0004 | grad 5.3159 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4460 |
[2023-09-01 20:28:09,995::train::INFO] [train] Iter 02018 | loss 2.4617 | loss(rot) 1.6438 | loss(pos) 0.3653 | loss(seq) 0.4526 | grad 3.3588 | lr 0.0010 | time_forward 4.3320 | time_backward 5.7270 |
[2023-09-01 20:28:11,664::train::INFO] [train] Iter 02019 | loss 2.8332 | loss(rot) 2.2978 | loss(pos) 0.3800 | loss(seq) 0.1553 | grad 5.7992 | lr 0.0010 | time_forward 0.7630 | time_backward 0.9020 |
[2023-09-01 20:28:14,303::train::INFO] [train] Iter 02020 | loss 2.0898 | loss(rot) 0.0279 | loss(pos) 2.0614 | loss(seq) 0.0006 | grad 2.6436 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4060 |
[2023-09-01 20:28:24,706::train::INFO] [train] Iter 02021 | loss 1.4093 | loss(rot) 0.0712 | loss(pos) 1.3221 | loss(seq) 0.0159 | grad 3.4346 | lr 0.0010 | time_forward 4.3510 | time_backward 6.0230 |
[2023-09-01 20:28:34,766::train::INFO] [train] Iter 02022 | loss 3.0542 | loss(rot) 2.0668 | loss(pos) 0.4564 | loss(seq) 0.5310 | grad 4.5690 | lr 0.0010 | time_forward 4.0400 | time_backward 6.0180 |
[2023-09-01 20:28:37,436::train::INFO] [train] Iter 02023 | loss 2.9720 | loss(rot) 1.9167 | loss(pos) 0.5028 | loss(seq) 0.5525 | grad 3.3401 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4300 |
[2023-09-01 20:28:45,669::train::INFO] [train] Iter 02024 | loss 2.5639 | loss(rot) 1.7097 | loss(pos) 0.3062 | loss(seq) 0.5480 | grad 4.1966 | lr 0.0010 | time_forward 3.5250 | time_backward 4.7040 |
[2023-09-01 20:28:55,660::train::INFO] [train] Iter 02025 | loss 3.0115 | loss(rot) 1.8211 | loss(pos) 0.5914 | loss(seq) 0.5990 | grad 3.3913 | lr 0.0010 | time_forward 4.1830 | time_backward 5.8040 |
[2023-09-01 20:29:04,036::train::INFO] [train] Iter 02026 | loss 2.9690 | loss(rot) 2.7591 | loss(pos) 0.1851 | loss(seq) 0.0248 | grad 2.9806 | lr 0.0010 | time_forward 3.5280 | time_backward 4.8450 |
[2023-09-01 20:29:13,945::train::INFO] [train] Iter 02027 | loss 3.2131 | loss(rot) 2.9767 | loss(pos) 0.2352 | loss(seq) 0.0012 | grad 2.3882 | lr 0.0010 | time_forward 3.9870 | time_backward 5.9180 |
[2023-09-01 20:29:16,652::train::INFO] [train] Iter 02028 | loss 1.9200 | loss(rot) 1.0130 | loss(pos) 0.4936 | loss(seq) 0.4134 | grad 4.7475 | lr 0.0010 | time_forward 1.3060 | time_backward 1.3970 |
[2023-09-01 20:29:26,645::train::INFO] [train] Iter 02029 | loss 2.8994 | loss(rot) 2.1298 | loss(pos) 0.3392 | loss(seq) 0.4304 | grad 3.5791 | lr 0.0010 | time_forward 4.1340 | time_backward 5.8560 |
[2023-09-01 20:29:28,990::train::INFO] [train] Iter 02030 | loss 1.8690 | loss(rot) 0.1383 | loss(pos) 1.7169 | loss(seq) 0.0138 | grad 4.7118 | lr 0.0010 | time_forward 1.1400 | time_backward 1.2020 |
[2023-09-01 20:29:38,111::train::INFO] [train] Iter 02031 | loss 2.3054 | loss(rot) 1.2591 | loss(pos) 0.4968 | loss(seq) 0.5495 | grad 3.2780 | lr 0.0010 | time_forward 3.8230 | time_backward 5.2940 |
[2023-09-01 20:29:46,567::train::INFO] [train] Iter 02032 | loss 3.3287 | loss(rot) 2.7524 | loss(pos) 0.1431 | loss(seq) 0.4333 | grad 3.4273 | lr 0.0010 | time_forward 3.5550 | time_backward 4.8970 |
[2023-09-01 20:29:49,264::train::INFO] [train] Iter 02033 | loss 3.5248 | loss(rot) 3.2854 | loss(pos) 0.2393 | loss(seq) 0.0000 | grad 3.8761 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4690 |
[2023-09-01 20:29:58,031::train::INFO] [train] Iter 02034 | loss 2.9357 | loss(rot) 2.1921 | loss(pos) 0.6023 | loss(seq) 0.1413 | grad 6.9885 | lr 0.0010 | time_forward 3.7430 | time_backward 5.0200 |
[2023-09-01 20:30:00,732::train::INFO] [train] Iter 02035 | loss 2.8182 | loss(rot) 2.2174 | loss(pos) 0.1220 | loss(seq) 0.4788 | grad 3.7713 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4480 |
[2023-09-01 20:30:09,205::train::INFO] [train] Iter 02036 | loss 2.4533 | loss(rot) 1.5327 | loss(pos) 0.4691 | loss(seq) 0.4515 | grad 4.6892 | lr 0.0010 | time_forward 3.5960 | time_backward 4.8730 |
[2023-09-01 20:30:12,304::train::INFO] [train] Iter 02037 | loss 2.3377 | loss(rot) 1.5365 | loss(pos) 0.3624 | loss(seq) 0.4389 | grad 4.0006 | lr 0.0010 | time_forward 1.4040 | time_backward 1.6900 |
[2023-09-01 20:30:15,620::train::INFO] [train] Iter 02038 | loss 5.7591 | loss(rot) 0.0346 | loss(pos) 5.7245 | loss(seq) 0.0000 | grad 8.2686 | lr 0.0010 | time_forward 1.5070 | time_backward 1.8060 |
[2023-09-01 20:30:23,743::train::INFO] [train] Iter 02039 | loss 3.6148 | loss(rot) 2.9294 | loss(pos) 0.2086 | loss(seq) 0.4767 | grad 3.1551 | lr 0.0010 | time_forward 3.4530 | time_backward 4.6670 |
[2023-09-01 20:30:30,782::train::INFO] [train] Iter 02040 | loss 1.6414 | loss(rot) 0.4826 | loss(pos) 0.8067 | loss(seq) 0.3522 | grad 4.8754 | lr 0.0010 | time_forward 2.9610 | time_backward 4.0740 |
[2023-09-01 20:30:35,502::train::INFO] [train] Iter 02041 | loss 1.4903 | loss(rot) 0.4569 | loss(pos) 0.6347 | loss(seq) 0.3987 | grad 3.2372 | lr 0.0010 | time_forward 2.0420 | time_backward 2.6760 |
[2023-09-01 20:30:44,061::train::INFO] [train] Iter 02042 | loss 2.8879 | loss(rot) 2.0921 | loss(pos) 0.3588 | loss(seq) 0.4371 | grad 4.1656 | lr 0.0010 | time_forward 3.6810 | time_backward 4.8750 |
[2023-09-01 20:30:46,738::train::INFO] [train] Iter 02043 | loss 2.2677 | loss(rot) 0.0337 | loss(pos) 2.2318 | loss(seq) 0.0021 | grad 4.8551 | lr 0.0010 | time_forward 1.2360 | time_backward 1.3970 |
[2023-09-01 20:30:55,659::train::INFO] [train] Iter 02044 | loss 3.1990 | loss(rot) 2.5462 | loss(pos) 0.2888 | loss(seq) 0.3641 | grad 2.5778 | lr 0.0010 | time_forward 3.8460 | time_backward 5.0720 |
[2023-09-01 20:31:06,272::train::INFO] [train] Iter 02045 | loss 2.6494 | loss(rot) 1.7051 | loss(pos) 0.2407 | loss(seq) 0.7035 | grad 3.0147 | lr 0.0010 | time_forward 4.0490 | time_backward 6.5610 |
[2023-09-01 20:31:16,380::train::INFO] [train] Iter 02046 | loss 3.0712 | loss(rot) 2.8050 | loss(pos) 0.2591 | loss(seq) 0.0072 | grad 3.2146 | lr 0.0010 | time_forward 4.1570 | time_backward 5.9480 |
[2023-09-01 20:31:18,820::train::INFO] [train] Iter 02047 | loss 2.7385 | loss(rot) 1.5210 | loss(pos) 0.8458 | loss(seq) 0.3717 | grad 6.6641 | lr 0.0010 | time_forward 1.1630 | time_backward 1.2740 |
[2023-09-01 20:31:21,541::train::INFO] [train] Iter 02048 | loss 3.0108 | loss(rot) 2.6916 | loss(pos) 0.2598 | loss(seq) 0.0594 | grad 2.8454 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4240 |
[2023-09-01 20:31:29,494::train::INFO] [train] Iter 02049 | loss 1.9237 | loss(rot) 1.3184 | loss(pos) 0.3842 | loss(seq) 0.2211 | grad 3.6573 | lr 0.0010 | time_forward 3.3660 | time_backward 4.5850 |
[2023-09-01 20:31:39,466::train::INFO] [train] Iter 02050 | loss 1.8631 | loss(rot) 0.8022 | loss(pos) 0.5014 | loss(seq) 0.5595 | grad 2.6093 | lr 0.0010 | time_forward 4.0580 | time_backward 5.9110 |
[2023-09-01 20:31:47,609::train::INFO] [train] Iter 02051 | loss 3.1534 | loss(rot) 2.6242 | loss(pos) 0.3662 | loss(seq) 0.1630 | grad 2.9703 | lr 0.0010 | time_forward 3.4230 | time_backward 4.7140 |
[2023-09-01 20:31:56,956::train::INFO] [train] Iter 02052 | loss 3.3457 | loss(rot) 3.1946 | loss(pos) 0.1511 | loss(seq) 0.0000 | grad 2.8784 | lr 0.0010 | time_forward 4.0000 | time_backward 5.3420 |
[2023-09-01 20:32:02,898::train::INFO] [train] Iter 02053 | loss 3.3013 | loss(rot) 2.1729 | loss(pos) 0.5264 | loss(seq) 0.6020 | grad 3.4865 | lr 0.0010 | time_forward 2.5050 | time_backward 3.4330 |
[2023-09-01 20:32:10,114::train::INFO] [train] Iter 02054 | loss 3.6511 | loss(rot) 0.0280 | loss(pos) 3.6231 | loss(seq) 0.0000 | grad 11.2488 | lr 0.0010 | time_forward 3.0880 | time_backward 4.1250 |
[2023-09-01 20:32:12,814::train::INFO] [train] Iter 02055 | loss 3.1194 | loss(rot) 2.7370 | loss(pos) 0.3690 | loss(seq) 0.0134 | grad 4.0522 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4340 |
[2023-09-01 20:32:21,459::train::INFO] [train] Iter 02056 | loss 3.1742 | loss(rot) 1.7964 | loss(pos) 0.6576 | loss(seq) 0.7201 | grad 5.2697 | lr 0.0010 | time_forward 3.6610 | time_backward 4.9800 |
[2023-09-01 20:32:29,112::train::INFO] [train] Iter 02057 | loss 1.7590 | loss(rot) 0.6441 | loss(pos) 1.0717 | loss(seq) 0.0433 | grad 4.4415 | lr 0.0010 | time_forward 3.1820 | time_backward 4.4670 |
[2023-09-01 20:32:31,834::train::INFO] [train] Iter 02058 | loss 3.3041 | loss(rot) 3.1751 | loss(pos) 0.1291 | loss(seq) 0.0000 | grad 1.7625 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4660 |
[2023-09-01 20:32:34,102::train::INFO] [train] Iter 02059 | loss 1.4022 | loss(rot) 0.1227 | loss(pos) 1.2642 | loss(seq) 0.0152 | grad 3.4905 | lr 0.0010 | time_forward 1.0700 | time_backward 1.1940 |
[2023-09-01 20:32:43,980::train::INFO] [train] Iter 02060 | loss 1.4592 | loss(rot) 0.6455 | loss(pos) 0.3146 | loss(seq) 0.4991 | grad 3.5477 | lr 0.0010 | time_forward 4.0730 | time_backward 5.8020 |
[2023-09-01 20:32:53,135::train::INFO] [train] Iter 02061 | loss 2.7064 | loss(rot) 1.8860 | loss(pos) 0.1764 | loss(seq) 0.6441 | grad 2.5854 | lr 0.0010 | time_forward 3.8970 | time_backward 5.2540 |
[2023-09-01 20:32:55,867::train::INFO] [train] Iter 02062 | loss 3.3337 | loss(rot) 2.7902 | loss(pos) 0.5044 | loss(seq) 0.0390 | grad 6.8703 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4790 |
[2023-09-01 20:33:03,485::train::INFO] [train] Iter 02063 | loss 2.9193 | loss(rot) 2.7512 | loss(pos) 0.1678 | loss(seq) 0.0003 | grad 3.1745 | lr 0.0010 | time_forward 3.2230 | time_backward 4.3660 |
[2023-09-01 20:33:11,000::train::INFO] [train] Iter 02064 | loss 2.6894 | loss(rot) 2.3776 | loss(pos) 0.3096 | loss(seq) 0.0022 | grad 5.7282 | lr 0.0010 | time_forward 3.2050 | time_backward 4.3070 |
[2023-09-01 20:33:14,332::train::INFO] [train] Iter 02065 | loss 3.6819 | loss(rot) 2.8955 | loss(pos) 0.4975 | loss(seq) 0.2889 | grad 4.9262 | lr 0.0010 | time_forward 1.4500 | time_backward 1.8770 |
[2023-09-01 20:33:23,323::train::INFO] [train] Iter 02066 | loss 1.4861 | loss(rot) 0.7381 | loss(pos) 0.3949 | loss(seq) 0.3531 | grad 2.7329 | lr 0.0010 | time_forward 3.8190 | time_backward 5.1680 |
[2023-09-01 20:33:30,454::train::INFO] [train] Iter 02067 | loss 3.5545 | loss(rot) 3.3566 | loss(pos) 0.1978 | loss(seq) 0.0000 | grad 3.9752 | lr 0.0010 | time_forward 3.0590 | time_backward 4.0670 |
[2023-09-01 20:33:39,520::train::INFO] [train] Iter 02068 | loss 2.6475 | loss(rot) 1.5358 | loss(pos) 0.7390 | loss(seq) 0.3727 | grad 4.9581 | lr 0.0010 | time_forward 3.8120 | time_backward 5.2500 |
[2023-09-01 20:33:49,609::train::INFO] [train] Iter 02069 | loss 2.2137 | loss(rot) 1.3193 | loss(pos) 0.6158 | loss(seq) 0.2786 | grad 3.9273 | lr 0.0010 | time_forward 4.0740 | time_backward 6.0110 |
[2023-09-01 20:33:58,856::train::INFO] [train] Iter 02070 | loss 2.9400 | loss(rot) 1.2008 | loss(pos) 1.1851 | loss(seq) 0.5541 | grad 6.0821 | lr 0.0010 | time_forward 3.9200 | time_backward 5.3100 |
[2023-09-01 20:34:06,369::train::INFO] [train] Iter 02071 | loss 3.0467 | loss(rot) 2.3409 | loss(pos) 0.1903 | loss(seq) 0.5156 | grad 2.8705 | lr 0.0010 | time_forward 3.1790 | time_backward 4.3310 |
[2023-09-01 20:34:16,599::train::INFO] [train] Iter 02072 | loss 3.0175 | loss(rot) 2.3918 | loss(pos) 0.3900 | loss(seq) 0.2357 | grad 3.9011 | lr 0.0010 | time_forward 4.0970 | time_backward 6.1290 |
[2023-09-01 20:34:26,892::train::INFO] [train] Iter 02073 | loss 3.5253 | loss(rot) 2.8004 | loss(pos) 0.3677 | loss(seq) 0.3572 | grad 3.2595 | lr 0.0010 | time_forward 4.1020 | time_backward 6.1860 |
[2023-09-01 20:34:29,627::train::INFO] [train] Iter 02074 | loss 1.4747 | loss(rot) 0.7871 | loss(pos) 0.3673 | loss(seq) 0.3203 | grad 5.8767 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4640 |
[2023-09-01 20:34:38,848::train::INFO] [train] Iter 02075 | loss 3.2381 | loss(rot) 3.0476 | loss(pos) 0.1840 | loss(seq) 0.0066 | grad 2.9659 | lr 0.0010 | time_forward 3.9040 | time_backward 5.3140 |
[2023-09-01 20:34:47,415::train::INFO] [train] Iter 02076 | loss 3.1132 | loss(rot) 0.0474 | loss(pos) 3.0624 | loss(seq) 0.0034 | grad 8.1490 | lr 0.0010 | time_forward 3.5950 | time_backward 4.9690 |
[2023-09-01 20:34:56,095::train::INFO] [train] Iter 02077 | loss 1.5612 | loss(rot) 0.5791 | loss(pos) 0.5843 | loss(seq) 0.3978 | grad 2.9284 | lr 0.0010 | time_forward 3.6740 | time_backward 5.0010 |
[2023-09-01 20:35:06,201::train::INFO] [train] Iter 02078 | loss 1.2684 | loss(rot) 0.0992 | loss(pos) 1.1600 | loss(seq) 0.0092 | grad 3.5449 | lr 0.0010 | time_forward 4.1160 | time_backward 5.9860 |
[2023-09-01 20:35:08,889::train::INFO] [train] Iter 02079 | loss 3.1453 | loss(rot) 2.6917 | loss(pos) 0.1937 | loss(seq) 0.2598 | grad 2.7688 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4390 |
[2023-09-01 20:35:11,678::train::INFO] [train] Iter 02080 | loss 2.4025 | loss(rot) 1.8131 | loss(pos) 0.1294 | loss(seq) 0.4600 | grad 2.7773 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4660 |
[2023-09-01 20:35:19,778::train::INFO] [train] Iter 02081 | loss 3.4360 | loss(rot) 2.8618 | loss(pos) 0.3772 | loss(seq) 0.1971 | grad 4.2624 | lr 0.0010 | time_forward 3.4570 | time_backward 4.6400 |
[2023-09-01 20:35:22,467::train::INFO] [train] Iter 02082 | loss 2.6948 | loss(rot) 2.0208 | loss(pos) 0.3363 | loss(seq) 0.3377 | grad 5.0418 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4460 |
[2023-09-01 20:35:31,522::train::INFO] [train] Iter 02083 | loss 1.6953 | loss(rot) 0.8898 | loss(pos) 0.3483 | loss(seq) 0.4572 | grad 3.7374 | lr 0.0010 | time_forward 3.7780 | time_backward 5.2750 |
[2023-09-01 20:35:39,009::train::INFO] [train] Iter 02084 | loss 3.1456 | loss(rot) 0.0072 | loss(pos) 3.1384 | loss(seq) 0.0000 | grad 4.4613 | lr 0.0010 | time_forward 3.1600 | time_backward 4.3230 |
[2023-09-01 20:35:47,335::train::INFO] [train] Iter 02085 | loss 2.8355 | loss(rot) 2.3562 | loss(pos) 0.1728 | loss(seq) 0.3064 | grad 3.1047 | lr 0.0010 | time_forward 3.4810 | time_backward 4.8430 |
[2023-09-01 20:35:57,686::train::INFO] [train] Iter 02086 | loss 1.7202 | loss(rot) 0.7489 | loss(pos) 0.5430 | loss(seq) 0.4283 | grad 4.0633 | lr 0.0010 | time_forward 4.2990 | time_backward 6.0480 |
[2023-09-01 20:36:00,391::train::INFO] [train] Iter 02087 | loss 2.8210 | loss(rot) 1.2845 | loss(pos) 1.4504 | loss(seq) 0.0861 | grad 5.9937 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4580 |
[2023-09-01 20:36:03,158::train::INFO] [train] Iter 02088 | loss 2.9080 | loss(rot) 2.5405 | loss(pos) 0.3045 | loss(seq) 0.0631 | grad 3.6986 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4770 |
[2023-09-01 20:36:05,863::train::INFO] [train] Iter 02089 | loss 2.2170 | loss(rot) 1.9185 | loss(pos) 0.1089 | loss(seq) 0.1895 | grad 2.8290 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4130 |
[2023-09-01 20:36:08,134::train::INFO] [train] Iter 02090 | loss 3.3531 | loss(rot) 3.2203 | loss(pos) 0.1327 | loss(seq) 0.0001 | grad 1.5351 | lr 0.0010 | time_forward 1.1180 | time_backward 1.1490 |
[2023-09-01 20:36:10,787::train::INFO] [train] Iter 02091 | loss 2.7801 | loss(rot) 0.8797 | loss(pos) 1.8821 | loss(seq) 0.0183 | grad 4.9772 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4060 |
[2023-09-01 20:36:19,953::train::INFO] [train] Iter 02092 | loss 2.6277 | loss(rot) 2.1724 | loss(pos) 0.3380 | loss(seq) 0.1172 | grad 3.0927 | lr 0.0010 | time_forward 4.2520 | time_backward 4.8870 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.