text
stringlengths 56
1.16k
|
---|
[2023-09-01 20:36:28,676::train::INFO] [train] Iter 02093 | loss 2.5132 | loss(rot) 1.2816 | loss(pos) 1.0325 | loss(seq) 0.1991 | grad 4.7033 | lr 0.0010 | time_forward 3.7440 | time_backward 4.9750 |
[2023-09-01 20:36:31,307::train::INFO] [train] Iter 02094 | loss 3.3220 | loss(rot) 2.9087 | loss(pos) 0.3773 | loss(seq) 0.0360 | grad 6.5626 | lr 0.0010 | time_forward 1.2330 | time_backward 1.3950 |
[2023-09-01 20:36:34,092::train::INFO] [train] Iter 02095 | loss 1.7086 | loss(rot) 0.4506 | loss(pos) 1.2277 | loss(seq) 0.0302 | grad 4.6269 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4460 |
[2023-09-01 20:36:36,782::train::INFO] [train] Iter 02096 | loss 3.2152 | loss(rot) 2.4459 | loss(pos) 0.2825 | loss(seq) 0.4868 | grad 2.8790 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4250 |
[2023-09-01 20:36:44,166::train::INFO] [train] Iter 02097 | loss 1.6759 | loss(rot) 1.1298 | loss(pos) 0.4572 | loss(seq) 0.0890 | grad 4.5121 | lr 0.0010 | time_forward 3.1620 | time_backward 4.2200 |
[2023-09-01 20:36:54,058::train::INFO] [train] Iter 02098 | loss 1.2382 | loss(rot) 0.0604 | loss(pos) 1.1696 | loss(seq) 0.0081 | grad 3.8626 | lr 0.0010 | time_forward 3.9830 | time_backward 5.9040 |
[2023-09-01 20:37:03,899::train::INFO] [train] Iter 02099 | loss 2.4709 | loss(rot) 0.0139 | loss(pos) 2.4563 | loss(seq) 0.0006 | grad 4.7126 | lr 0.0010 | time_forward 4.0890 | time_backward 5.7490 |
[2023-09-01 20:37:11,751::train::INFO] [train] Iter 02100 | loss 1.3807 | loss(rot) 0.9654 | loss(pos) 0.1189 | loss(seq) 0.2964 | grad 2.7764 | lr 0.0010 | time_forward 3.3580 | time_backward 4.4910 |
[2023-09-01 20:37:19,641::train::INFO] [train] Iter 02101 | loss 3.1384 | loss(rot) 2.1550 | loss(pos) 0.4640 | loss(seq) 0.5194 | grad 3.7614 | lr 0.0010 | time_forward 3.3280 | time_backward 4.5580 |
[2023-09-01 20:37:29,421::train::INFO] [train] Iter 02102 | loss 3.0921 | loss(rot) 2.1590 | loss(pos) 0.3916 | loss(seq) 0.5416 | grad 4.3840 | lr 0.0010 | time_forward 4.0450 | time_backward 5.7320 |
[2023-09-01 20:37:39,222::train::INFO] [train] Iter 02103 | loss 3.6239 | loss(rot) 3.0364 | loss(pos) 0.3636 | loss(seq) 0.2239 | grad 4.6201 | lr 0.0010 | time_forward 3.9450 | time_backward 5.8520 |
[2023-09-01 20:37:41,640::train::INFO] [train] Iter 02104 | loss 2.5910 | loss(rot) 2.2601 | loss(pos) 0.2910 | loss(seq) 0.0400 | grad 3.3080 | lr 0.0010 | time_forward 1.1430 | time_backward 1.2610 |
[2023-09-01 20:37:51,756::train::INFO] [train] Iter 02105 | loss 3.0541 | loss(rot) 2.2513 | loss(pos) 0.2990 | loss(seq) 0.5037 | grad 4.0756 | lr 0.0010 | time_forward 4.1560 | time_backward 5.9450 |
[2023-09-01 20:38:01,579::train::INFO] [train] Iter 02106 | loss 2.1809 | loss(rot) 1.2739 | loss(pos) 0.3851 | loss(seq) 0.5219 | grad 3.3912 | lr 0.0010 | time_forward 3.9920 | time_backward 5.8160 |
[2023-09-01 20:38:10,020::train::INFO] [train] Iter 02107 | loss 3.2184 | loss(rot) 2.7622 | loss(pos) 0.2521 | loss(seq) 0.2041 | grad 4.1219 | lr 0.0010 | time_forward 3.5790 | time_backward 4.8590 |
[2023-09-01 20:38:18,180::train::INFO] [train] Iter 02108 | loss 1.6059 | loss(rot) 0.8239 | loss(pos) 0.4120 | loss(seq) 0.3700 | grad 3.9438 | lr 0.0010 | time_forward 3.3940 | time_backward 4.7600 |
[2023-09-01 20:38:27,909::train::INFO] [train] Iter 02109 | loss 2.7841 | loss(rot) 2.5852 | loss(pos) 0.1987 | loss(seq) 0.0001 | grad 2.2372 | lr 0.0010 | time_forward 3.9730 | time_backward 5.7530 |
[2023-09-01 20:38:37,780::train::INFO] [train] Iter 02110 | loss 3.0442 | loss(rot) 2.2392 | loss(pos) 0.3351 | loss(seq) 0.4699 | grad 3.3113 | lr 0.0010 | time_forward 3.9980 | time_backward 5.8590 |
[2023-09-01 20:38:40,493::train::INFO] [train] Iter 02111 | loss 2.6377 | loss(rot) 1.9803 | loss(pos) 0.2115 | loss(seq) 0.4459 | grad 3.8295 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4780 |
[2023-09-01 20:38:50,236::train::INFO] [train] Iter 02112 | loss 1.9262 | loss(rot) 1.6746 | loss(pos) 0.2516 | loss(seq) 0.0000 | grad 4.0320 | lr 0.0010 | time_forward 3.9800 | time_backward 5.7600 |
[2023-09-01 20:38:52,904::train::INFO] [train] Iter 02113 | loss 3.6953 | loss(rot) 2.5409 | loss(pos) 0.7329 | loss(seq) 0.4215 | grad 5.5958 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4370 |
[2023-09-01 20:38:55,608::train::INFO] [train] Iter 02114 | loss 3.4794 | loss(rot) 2.8487 | loss(pos) 0.4905 | loss(seq) 0.1402 | grad 4.5319 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4470 |
[2023-09-01 20:39:04,787::train::INFO] [train] Iter 02115 | loss 3.1444 | loss(rot) 2.9688 | loss(pos) 0.1752 | loss(seq) 0.0003 | grad 3.0521 | lr 0.0010 | time_forward 3.8860 | time_backward 5.2880 |
[2023-09-01 20:39:13,858::train::INFO] [train] Iter 02116 | loss 2.3192 | loss(rot) 1.8724 | loss(pos) 0.3394 | loss(seq) 0.1074 | grad 4.6948 | lr 0.0010 | time_forward 3.8260 | time_backward 5.2420 |
[2023-09-01 20:39:22,331::train::INFO] [train] Iter 02117 | loss 2.8499 | loss(rot) 2.4646 | loss(pos) 0.2582 | loss(seq) 0.1271 | grad 3.6859 | lr 0.0010 | time_forward 3.5220 | time_backward 4.9480 |
[2023-09-01 20:39:30,734::train::INFO] [train] Iter 02118 | loss 2.9664 | loss(rot) 2.2817 | loss(pos) 0.2912 | loss(seq) 0.3935 | grad 4.2384 | lr 0.0010 | time_forward 3.5640 | time_backward 4.8360 |
[2023-09-01 20:39:40,760::train::INFO] [train] Iter 02119 | loss 2.9027 | loss(rot) 2.0384 | loss(pos) 0.3772 | loss(seq) 0.4871 | grad 3.9051 | lr 0.0010 | time_forward 3.9520 | time_backward 6.0700 |
[2023-09-01 20:39:49,403::train::INFO] [train] Iter 02120 | loss 2.5794 | loss(rot) 2.3028 | loss(pos) 0.1554 | loss(seq) 0.1212 | grad 4.0442 | lr 0.0010 | time_forward 3.6670 | time_backward 4.9730 |
[2023-09-01 20:39:59,430::train::INFO] [train] Iter 02121 | loss 4.0438 | loss(rot) 0.0747 | loss(pos) 3.9686 | loss(seq) 0.0005 | grad 6.7137 | lr 0.0010 | time_forward 4.0000 | time_backward 6.0240 |
[2023-09-01 20:40:09,487::train::INFO] [train] Iter 02122 | loss 1.6164 | loss(rot) 0.1518 | loss(pos) 1.2926 | loss(seq) 0.1721 | grad 6.5587 | lr 0.0010 | time_forward 4.2360 | time_backward 5.8170 |
[2023-09-01 20:40:17,749::train::INFO] [train] Iter 02123 | loss 2.7592 | loss(rot) 2.6447 | loss(pos) 0.1145 | loss(seq) 0.0000 | grad 2.2390 | lr 0.0010 | time_forward 3.5020 | time_backward 4.7580 |
[2023-09-01 20:40:26,416::train::INFO] [train] Iter 02124 | loss 3.4461 | loss(rot) 2.9819 | loss(pos) 0.1727 | loss(seq) 0.2915 | grad 3.2370 | lr 0.0010 | time_forward 3.6610 | time_backward 5.0020 |
[2023-09-01 20:40:35,167::train::INFO] [train] Iter 02125 | loss 2.6113 | loss(rot) 1.6984 | loss(pos) 0.3774 | loss(seq) 0.5355 | grad 3.1721 | lr 0.0010 | time_forward 3.6490 | time_backward 5.0990 |
[2023-09-01 20:40:43,635::train::INFO] [train] Iter 02126 | loss 3.0090 | loss(rot) 0.9947 | loss(pos) 1.8383 | loss(seq) 0.1760 | grad 4.3200 | lr 0.0010 | time_forward 3.5360 | time_backward 4.9300 |
[2023-09-01 20:40:46,336::train::INFO] [train] Iter 02127 | loss 3.4734 | loss(rot) 3.0406 | loss(pos) 0.2976 | loss(seq) 0.1353 | grad 3.0677 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4410 |
[2023-09-01 20:40:56,325::train::INFO] [train] Iter 02128 | loss 1.9918 | loss(rot) 0.8583 | loss(pos) 0.6501 | loss(seq) 0.4834 | grad 3.2663 | lr 0.0010 | time_forward 4.1630 | time_backward 5.8220 |
[2023-09-01 20:40:59,435::train::INFO] [train] Iter 02129 | loss 3.1754 | loss(rot) 2.2585 | loss(pos) 0.4540 | loss(seq) 0.4630 | grad 3.5440 | lr 0.0010 | time_forward 1.4110 | time_backward 1.6960 |
[2023-09-01 20:41:02,099::train::INFO] [train] Iter 02130 | loss 2.7717 | loss(rot) 1.6876 | loss(pos) 0.6881 | loss(seq) 0.3960 | grad 6.5001 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4270 |
[2023-09-01 20:41:05,006::train::INFO] [train] Iter 02131 | loss 2.9870 | loss(rot) 2.6344 | loss(pos) 0.1926 | loss(seq) 0.1600 | grad 3.3284 | lr 0.0010 | time_forward 1.4580 | time_backward 1.4460 |
[2023-09-01 20:41:13,789::train::INFO] [train] Iter 02132 | loss 3.1291 | loss(rot) 2.8282 | loss(pos) 0.2936 | loss(seq) 0.0073 | grad 3.3733 | lr 0.0010 | time_forward 3.6690 | time_backward 5.1110 |
[2023-09-01 20:41:19,663::train::INFO] [train] Iter 02133 | loss 3.2301 | loss(rot) 3.0581 | loss(pos) 0.1709 | loss(seq) 0.0010 | grad 2.7320 | lr 0.0010 | time_forward 2.4610 | time_backward 3.4090 |
[2023-09-01 20:41:28,333::train::INFO] [train] Iter 02134 | loss 2.1196 | loss(rot) 1.1280 | loss(pos) 0.5135 | loss(seq) 0.4781 | grad 3.8900 | lr 0.0010 | time_forward 3.7430 | time_backward 4.9240 |
[2023-09-01 20:41:35,959::train::INFO] [train] Iter 02135 | loss 3.7018 | loss(rot) 3.2495 | loss(pos) 0.4511 | loss(seq) 0.0012 | grad 4.4168 | lr 0.0010 | time_forward 3.1770 | time_backward 4.4460 |
[2023-09-01 20:41:43,961::train::INFO] [train] Iter 02136 | loss 2.2328 | loss(rot) 0.8292 | loss(pos) 1.1304 | loss(seq) 0.2732 | grad 4.8331 | lr 0.0010 | time_forward 3.3560 | time_backward 4.6420 |
[2023-09-01 20:41:46,763::train::INFO] [train] Iter 02137 | loss 2.3836 | loss(rot) 0.0473 | loss(pos) 2.3363 | loss(seq) 0.0000 | grad 3.9178 | lr 0.0010 | time_forward 1.2850 | time_backward 1.5150 |
[2023-09-01 20:41:53,756::train::INFO] [train] Iter 02138 | loss 2.8950 | loss(rot) 0.7915 | loss(pos) 1.1952 | loss(seq) 0.9082 | grad 6.6961 | lr 0.0010 | time_forward 2.9670 | time_backward 4.0230 |
[2023-09-01 20:42:02,136::train::INFO] [train] Iter 02139 | loss 3.0775 | loss(rot) 2.8880 | loss(pos) 0.1815 | loss(seq) 0.0081 | grad 3.0906 | lr 0.0010 | time_forward 3.5340 | time_backward 4.8420 |
[2023-09-01 20:42:09,973::train::INFO] [train] Iter 02140 | loss 1.1391 | loss(rot) 0.3129 | loss(pos) 0.7612 | loss(seq) 0.0651 | grad 4.8614 | lr 0.0010 | time_forward 3.3600 | time_backward 4.4740 |
[2023-09-01 20:42:17,861::train::INFO] [train] Iter 02141 | loss 2.5618 | loss(rot) 2.2225 | loss(pos) 0.3121 | loss(seq) 0.0272 | grad 5.1936 | lr 0.0010 | time_forward 3.2800 | time_backward 4.6040 |
[2023-09-01 20:42:20,025::train::INFO] [train] Iter 02142 | loss 2.1404 | loss(rot) 0.0616 | loss(pos) 2.0764 | loss(seq) 0.0024 | grad 5.1443 | lr 0.0010 | time_forward 0.9980 | time_backward 1.1640 |
[2023-09-01 20:42:22,664::train::INFO] [train] Iter 02143 | loss 2.5655 | loss(rot) 1.8411 | loss(pos) 0.3613 | loss(seq) 0.3630 | grad 4.6949 | lr 0.0010 | time_forward 1.2410 | time_backward 1.3940 |
[2023-09-01 20:42:32,359::train::INFO] [train] Iter 02144 | loss 2.6787 | loss(rot) 1.9647 | loss(pos) 0.4366 | loss(seq) 0.2773 | grad 6.9652 | lr 0.0010 | time_forward 3.9510 | time_backward 5.6960 |
[2023-09-01 20:42:39,702::train::INFO] [train] Iter 02145 | loss 3.6748 | loss(rot) 2.8297 | loss(pos) 0.3482 | loss(seq) 0.4970 | grad 4.9491 | lr 0.0010 | time_forward 3.0970 | time_backward 4.2430 |
[2023-09-01 20:42:41,692::train::INFO] [train] Iter 02146 | loss 3.2502 | loss(rot) 2.5856 | loss(pos) 0.6639 | loss(seq) 0.0008 | grad 4.4770 | lr 0.0010 | time_forward 0.9620 | time_backward 1.0250 |
[2023-09-01 20:42:44,373::train::INFO] [train] Iter 02147 | loss 2.4689 | loss(rot) 1.8604 | loss(pos) 0.2528 | loss(seq) 0.3558 | grad 3.5112 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4250 |
[2023-09-01 20:42:47,104::train::INFO] [train] Iter 02148 | loss 2.7100 | loss(rot) 1.8508 | loss(pos) 0.5056 | loss(seq) 0.3536 | grad 5.8512 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4410 |
[2023-09-01 20:42:55,089::train::INFO] [train] Iter 02149 | loss 1.5174 | loss(rot) 0.2024 | loss(pos) 1.2973 | loss(seq) 0.0178 | grad 6.1425 | lr 0.0010 | time_forward 3.3640 | time_backward 4.6150 |
[2023-09-01 20:42:57,285::train::INFO] [train] Iter 02150 | loss 2.1376 | loss(rot) 0.2261 | loss(pos) 1.5988 | loss(seq) 0.3126 | grad 4.5482 | lr 0.0010 | time_forward 1.0230 | time_backward 1.1690 |
[2023-09-01 20:43:05,233::train::INFO] [train] Iter 02151 | loss 3.0920 | loss(rot) 2.8706 | loss(pos) 0.2210 | loss(seq) 0.0003 | grad 3.6870 | lr 0.0010 | time_forward 3.3530 | time_backward 4.5920 |
[2023-09-01 20:43:07,620::train::INFO] [train] Iter 02152 | loss 2.0135 | loss(rot) 0.9776 | loss(pos) 0.3441 | loss(seq) 0.6918 | grad 2.6781 | lr 0.0010 | time_forward 1.1230 | time_backward 1.2620 |
[2023-09-01 20:43:17,672::train::INFO] [train] Iter 02153 | loss 2.7726 | loss(rot) 1.6799 | loss(pos) 0.8133 | loss(seq) 0.2794 | grad 3.9809 | lr 0.0010 | time_forward 4.2530 | time_backward 5.7560 |
[2023-09-01 20:43:27,810::train::INFO] [train] Iter 02154 | loss 3.5785 | loss(rot) 3.3477 | loss(pos) 0.2029 | loss(seq) 0.0278 | grad 2.8694 | lr 0.0010 | time_forward 4.0830 | time_backward 6.0520 |
[2023-09-01 20:43:36,810::train::INFO] [train] Iter 02155 | loss 2.4148 | loss(rot) 1.5951 | loss(pos) 0.2698 | loss(seq) 0.5499 | grad 4.5802 | lr 0.0010 | time_forward 3.7830 | time_backward 5.2130 |
[2023-09-01 20:43:46,586::train::INFO] [train] Iter 02156 | loss 1.3537 | loss(rot) 0.1923 | loss(pos) 0.9074 | loss(seq) 0.2540 | grad 5.0880 | lr 0.0010 | time_forward 4.1190 | time_backward 5.6540 |
[2023-09-01 20:43:56,395::train::INFO] [train] Iter 02157 | loss 2.6732 | loss(rot) 2.3647 | loss(pos) 0.1291 | loss(seq) 0.1795 | grad 3.3392 | lr 0.0010 | time_forward 3.9860 | time_backward 5.8190 |
[2023-09-01 20:44:06,313::train::INFO] [train] Iter 02158 | loss 0.8563 | loss(rot) 0.2068 | loss(pos) 0.5964 | loss(seq) 0.0532 | grad 3.5605 | lr 0.0010 | time_forward 4.0030 | time_backward 5.9110 |
[2023-09-01 20:44:15,463::train::INFO] [train] Iter 02159 | loss 2.7843 | loss(rot) 2.0728 | loss(pos) 0.3377 | loss(seq) 0.3738 | grad 4.6569 | lr 0.0010 | time_forward 3.8470 | time_backward 5.3000 |
[2023-09-01 20:44:25,296::train::INFO] [train] Iter 02160 | loss 3.5641 | loss(rot) 0.0308 | loss(pos) 3.5333 | loss(seq) 0.0000 | grad 7.4238 | lr 0.0010 | time_forward 4.0050 | time_backward 5.8240 |
[2023-09-01 20:44:35,380::train::INFO] [train] Iter 02161 | loss 1.9309 | loss(rot) 0.2738 | loss(pos) 1.4397 | loss(seq) 0.2174 | grad 6.4562 | lr 0.0010 | time_forward 4.0390 | time_backward 6.0410 |
[2023-09-01 20:44:43,848::train::INFO] [train] Iter 02162 | loss 1.4721 | loss(rot) 0.0310 | loss(pos) 1.4335 | loss(seq) 0.0076 | grad 7.0683 | lr 0.0010 | time_forward 3.5770 | time_backward 4.8760 |
[2023-09-01 20:44:54,136::train::INFO] [train] Iter 02163 | loss 3.2506 | loss(rot) 2.8382 | loss(pos) 0.3947 | loss(seq) 0.0177 | grad 5.2720 | lr 0.0010 | time_forward 4.0820 | time_backward 6.2040 |
[2023-09-01 20:44:56,849::train::INFO] [train] Iter 02164 | loss 2.9267 | loss(rot) 2.6637 | loss(pos) 0.2409 | loss(seq) 0.0221 | grad 4.1955 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4360 |
[2023-09-01 20:45:05,315::train::INFO] [train] Iter 02165 | loss 2.9295 | loss(rot) 1.4222 | loss(pos) 1.0886 | loss(seq) 0.4186 | grad 4.8482 | lr 0.0010 | time_forward 3.5620 | time_backward 4.9000 |
[2023-09-01 20:45:08,414::train::INFO] [train] Iter 02166 | loss 2.6178 | loss(rot) 1.4970 | loss(pos) 0.4367 | loss(seq) 0.6841 | grad 5.1302 | lr 0.0010 | time_forward 1.4160 | time_backward 1.6800 |
[2023-09-01 20:45:11,098::train::INFO] [train] Iter 02167 | loss 2.1339 | loss(rot) 0.1578 | loss(pos) 1.9719 | loss(seq) 0.0042 | grad 7.4700 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4220 |
[2023-09-01 20:45:13,831::train::INFO] [train] Iter 02168 | loss 1.2472 | loss(rot) 0.2590 | loss(pos) 0.7321 | loss(seq) 0.2561 | grad 4.8543 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4150 |
[2023-09-01 20:45:23,906::train::INFO] [train] Iter 02169 | loss 1.6398 | loss(rot) 0.0801 | loss(pos) 1.5539 | loss(seq) 0.0058 | grad 6.1025 | lr 0.0010 | time_forward 4.1090 | time_backward 5.9630 |
[2023-09-01 20:45:26,576::train::INFO] [train] Iter 02170 | loss 2.6324 | loss(rot) 1.7289 | loss(pos) 0.3681 | loss(seq) 0.5355 | grad 4.1264 | lr 0.0010 | time_forward 1.2260 | time_backward 1.4400 |
[2023-09-01 20:45:35,661::train::INFO] [train] Iter 02171 | loss 2.2300 | loss(rot) 1.7982 | loss(pos) 0.2879 | loss(seq) 0.1439 | grad 4.2121 | lr 0.0010 | time_forward 3.8580 | time_backward 5.2230 |
[2023-09-01 20:45:45,646::train::INFO] [train] Iter 02172 | loss 2.7442 | loss(rot) 1.8938 | loss(pos) 0.3433 | loss(seq) 0.5071 | grad 3.7774 | lr 0.0010 | time_forward 4.0360 | time_backward 5.9460 |
[2023-09-01 20:45:53,699::train::INFO] [train] Iter 02173 | loss 3.5216 | loss(rot) 2.8469 | loss(pos) 0.3875 | loss(seq) 0.2871 | grad 3.8920 | lr 0.0010 | time_forward 3.3340 | time_backward 4.7040 |
[2023-09-01 20:46:04,032::train::INFO] [train] Iter 02174 | loss 3.3156 | loss(rot) 3.0118 | loss(pos) 0.3026 | loss(seq) 0.0012 | grad 3.9142 | lr 0.0010 | time_forward 4.3300 | time_backward 5.9990 |
[2023-09-01 20:46:07,131::train::INFO] [train] Iter 02175 | loss 1.6667 | loss(rot) 0.8120 | loss(pos) 0.6272 | loss(seq) 0.2275 | grad 4.4064 | lr 0.0010 | time_forward 1.4220 | time_backward 1.6750 |
[2023-09-01 20:46:09,525::train::INFO] [train] Iter 02176 | loss 3.0617 | loss(rot) 2.0035 | loss(pos) 0.5651 | loss(seq) 0.4931 | grad 3.3322 | lr 0.0010 | time_forward 1.1950 | time_backward 1.1950 |
[2023-09-01 20:46:17,456::train::INFO] [train] Iter 02177 | loss 3.4998 | loss(rot) 1.8872 | loss(pos) 1.2014 | loss(seq) 0.4113 | grad 4.5595 | lr 0.0010 | time_forward 3.3830 | time_backward 4.5450 |
[2023-09-01 20:46:25,784::train::INFO] [train] Iter 02178 | loss 2.9114 | loss(rot) 1.7496 | loss(pos) 0.5780 | loss(seq) 0.5838 | grad 3.3073 | lr 0.0010 | time_forward 3.5200 | time_backward 4.8040 |
[2023-09-01 20:46:35,595::train::INFO] [train] Iter 02179 | loss 2.6347 | loss(rot) 2.1770 | loss(pos) 0.2294 | loss(seq) 0.2283 | grad 2.9049 | lr 0.0010 | time_forward 4.0110 | time_backward 5.7960 |
[2023-09-01 20:46:43,956::train::INFO] [train] Iter 02180 | loss 1.6734 | loss(rot) 0.5403 | loss(pos) 0.8215 | loss(seq) 0.3116 | grad 3.6636 | lr 0.0010 | time_forward 3.5230 | time_backward 4.8230 |
[2023-09-01 20:46:53,992::train::INFO] [train] Iter 02181 | loss 1.8343 | loss(rot) 0.7831 | loss(pos) 0.6171 | loss(seq) 0.4341 | grad 6.9874 | lr 0.0010 | time_forward 4.0780 | time_backward 5.9530 |
[2023-09-01 20:47:01,408::train::INFO] [train] Iter 02182 | loss 3.1689 | loss(rot) 2.8504 | loss(pos) 0.2645 | loss(seq) 0.0541 | grad 3.8466 | lr 0.0010 | time_forward 3.1070 | time_backward 4.3060 |
[2023-09-01 20:47:10,705::train::INFO] [train] Iter 02183 | loss 2.8154 | loss(rot) 2.4791 | loss(pos) 0.2205 | loss(seq) 0.1158 | grad 3.6787 | lr 0.0010 | time_forward 3.9360 | time_backward 5.3570 |
[2023-09-01 20:47:20,855::train::INFO] [train] Iter 02184 | loss 3.1045 | loss(rot) 2.2617 | loss(pos) 0.4048 | loss(seq) 0.4380 | grad 4.0126 | lr 0.0010 | time_forward 4.0700 | time_backward 6.0750 |
[2023-09-01 20:47:29,659::train::INFO] [train] Iter 02185 | loss 2.4951 | loss(rot) 1.6110 | loss(pos) 0.3167 | loss(seq) 0.5674 | grad 4.9532 | lr 0.0010 | time_forward 3.6950 | time_backward 5.1060 |
[2023-09-01 20:47:39,710::train::INFO] [train] Iter 02186 | loss 3.3687 | loss(rot) 3.0685 | loss(pos) 0.2881 | loss(seq) 0.0121 | grad 2.8955 | lr 0.0010 | time_forward 4.0570 | time_backward 5.9900 |
[2023-09-01 20:47:48,324::train::INFO] [train] Iter 02187 | loss 1.4348 | loss(rot) 0.1794 | loss(pos) 1.2501 | loss(seq) 0.0052 | grad 5.8759 | lr 0.0010 | time_forward 3.7350 | time_backward 4.8750 |
[2023-09-01 20:47:56,497::train::INFO] [train] Iter 02188 | loss 1.5028 | loss(rot) 0.7508 | loss(pos) 0.3876 | loss(seq) 0.3644 | grad 3.8999 | lr 0.0010 | time_forward 3.4300 | time_backward 4.7390 |
[2023-09-01 20:48:06,510::train::INFO] [train] Iter 02189 | loss 2.0334 | loss(rot) 0.4913 | loss(pos) 1.5385 | loss(seq) 0.0036 | grad 5.2162 | lr 0.0010 | time_forward 4.1230 | time_backward 5.8880 |
[2023-09-01 20:48:09,220::train::INFO] [train] Iter 02190 | loss 1.8844 | loss(rot) 1.1766 | loss(pos) 0.2841 | loss(seq) 0.4237 | grad 4.7476 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4240 |
[2023-09-01 20:48:17,978::train::INFO] [train] Iter 02191 | loss 2.8552 | loss(rot) 2.6188 | loss(pos) 0.2358 | loss(seq) 0.0007 | grad 3.9151 | lr 0.0010 | time_forward 3.6590 | time_backward 5.0650 |
[2023-09-01 20:48:25,314::train::INFO] [train] Iter 02192 | loss 1.3888 | loss(rot) 0.5281 | loss(pos) 0.4148 | loss(seq) 0.4459 | grad 3.2065 | lr 0.0010 | time_forward 3.0720 | time_backward 4.2610 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.