text
stringlengths
56
1.16k
[2023-09-01 20:11:58,306::train::INFO] [train] Iter 01894 | loss 2.9045 | loss(rot) 2.2086 | loss(pos) 0.2228 | loss(seq) 0.4730 | grad 2.1964 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4860
[2023-09-01 20:12:06,759::train::INFO] [train] Iter 01895 | loss 2.6238 | loss(rot) 2.4196 | loss(pos) 0.1408 | loss(seq) 0.0635 | grad 7.9016 | lr 0.0010 | time_forward 3.5850 | time_backward 4.8640
[2023-09-01 20:12:15,267::train::INFO] [train] Iter 01896 | loss 3.1295 | loss(rot) 0.0571 | loss(pos) 3.0666 | loss(seq) 0.0058 | grad 6.9255 | lr 0.0010 | time_forward 3.5870 | time_backward 4.9170
[2023-09-01 20:12:24,108::train::INFO] [train] Iter 01897 | loss 1.4920 | loss(rot) 0.7015 | loss(pos) 0.6837 | loss(seq) 0.1069 | grad 4.0506 | lr 0.0010 | time_forward 3.5370 | time_backward 5.3000
[2023-09-01 20:12:35,154::train::INFO] [train] Iter 01898 | loss 2.2357 | loss(rot) 1.3539 | loss(pos) 0.3406 | loss(seq) 0.5411 | grad 4.0735 | lr 0.0010 | time_forward 4.4880 | time_backward 6.5530
[2023-09-01 20:12:46,884::train::INFO] [train] Iter 01899 | loss 2.0264 | loss(rot) 0.9767 | loss(pos) 0.5688 | loss(seq) 0.4808 | grad 3.6360 | lr 0.0010 | time_forward 5.3170 | time_backward 6.4100
[2023-09-01 20:12:49,842::train::INFO] [train] Iter 01900 | loss 3.3143 | loss(rot) 3.0075 | loss(pos) 0.2892 | loss(seq) 0.0175 | grad 3.3029 | lr 0.0010 | time_forward 1.3470 | time_backward 1.5960
[2023-09-01 20:13:00,223::train::INFO] [train] Iter 01901 | loss 3.8122 | loss(rot) 2.4943 | loss(pos) 0.5569 | loss(seq) 0.7610 | grad 4.1217 | lr 0.0010 | time_forward 4.2490 | time_backward 6.1280
[2023-09-01 20:13:09,255::train::INFO] [train] Iter 01902 | loss 3.0704 | loss(rot) 2.2413 | loss(pos) 0.3531 | loss(seq) 0.4760 | grad 3.0774 | lr 0.0010 | time_forward 3.8170 | time_backward 5.2120
[2023-09-01 20:13:18,640::train::INFO] [train] Iter 01903 | loss 1.8141 | loss(rot) 0.9387 | loss(pos) 0.6150 | loss(seq) 0.2603 | grad 4.1727 | lr 0.0010 | time_forward 4.0470 | time_backward 5.3330
[2023-09-01 20:13:21,125::train::INFO] [train] Iter 01904 | loss 2.0019 | loss(rot) 1.0531 | loss(pos) 0.4976 | loss(seq) 0.4511 | grad 3.1640 | lr 0.0010 | time_forward 1.1780 | time_backward 1.3040
[2023-09-01 20:13:31,639::train::INFO] [train] Iter 01905 | loss 2.3986 | loss(rot) 1.3976 | loss(pos) 0.6366 | loss(seq) 0.3644 | grad 4.1273 | lr 0.0010 | time_forward 4.3390 | time_backward 6.1700
[2023-09-01 20:13:40,462::train::INFO] [train] Iter 01906 | loss 1.9894 | loss(rot) 0.9023 | loss(pos) 0.9626 | loss(seq) 0.1244 | grad 6.5553 | lr 0.0010 | time_forward 3.7830 | time_backward 5.0360
[2023-09-01 20:13:50,104::train::INFO] [train] Iter 01907 | loss 3.2806 | loss(rot) 3.0152 | loss(pos) 0.2568 | loss(seq) 0.0087 | grad 2.9084 | lr 0.0010 | time_forward 4.3470 | time_backward 5.2910
[2023-09-01 20:13:53,576::train::INFO] [train] Iter 01908 | loss 3.0504 | loss(rot) 1.8918 | loss(pos) 0.5805 | loss(seq) 0.5781 | grad 3.5228 | lr 0.0010 | time_forward 1.6170 | time_backward 1.8510
[2023-09-01 20:14:00,915::train::INFO] [train] Iter 01909 | loss 1.8866 | loss(rot) 1.0019 | loss(pos) 0.6608 | loss(seq) 0.2239 | grad 3.6815 | lr 0.0010 | time_forward 3.2250 | time_backward 4.1110
[2023-09-01 20:14:08,703::train::INFO] [train] Iter 01910 | loss 2.4386 | loss(rot) 1.1754 | loss(pos) 0.7555 | loss(seq) 0.5077 | grad 4.0327 | lr 0.0010 | time_forward 3.4780 | time_backward 4.3040
[2023-09-01 20:14:19,473::train::INFO] [train] Iter 01911 | loss 1.4216 | loss(rot) 0.3013 | loss(pos) 1.0880 | loss(seq) 0.0322 | grad 4.6160 | lr 0.0010 | time_forward 4.3400 | time_backward 6.4260
[2023-09-01 20:14:25,835::train::INFO] [train] Iter 01912 | loss 1.1034 | loss(rot) 0.5958 | loss(pos) 0.2763 | loss(seq) 0.2313 | grad 3.1460 | lr 0.0010 | time_forward 2.6680 | time_backward 3.6890
[2023-09-01 20:14:36,698::train::INFO] [train] Iter 01913 | loss 2.5762 | loss(rot) 1.7831 | loss(pos) 0.4155 | loss(seq) 0.3776 | grad 3.7035 | lr 0.0010 | time_forward 4.4250 | time_backward 6.4350
[2023-09-01 20:14:47,446::train::INFO] [train] Iter 01914 | loss 1.6365 | loss(rot) 0.1585 | loss(pos) 1.4589 | loss(seq) 0.0191 | grad 5.6309 | lr 0.0010 | time_forward 4.4080 | time_backward 6.3360
[2023-09-01 20:14:55,993::train::INFO] [train] Iter 01915 | loss 3.3412 | loss(rot) 2.8904 | loss(pos) 0.4501 | loss(seq) 0.0007 | grad 5.9916 | lr 0.0010 | time_forward 3.6300 | time_backward 4.9130
[2023-09-01 20:15:06,974::train::INFO] [train] Iter 01916 | loss 3.1879 | loss(rot) 2.7442 | loss(pos) 0.3947 | loss(seq) 0.0489 | grad 3.7505 | lr 0.0010 | time_forward 4.7100 | time_backward 6.2660
[2023-09-01 20:15:09,954::train::INFO] [train] Iter 01917 | loss 3.8038 | loss(rot) 3.3618 | loss(pos) 0.4419 | loss(seq) 0.0000 | grad 4.4502 | lr 0.0010 | time_forward 1.3900 | time_backward 1.5860
[2023-09-01 20:15:19,297::train::INFO] [train] Iter 01918 | loss 1.5082 | loss(rot) 0.4512 | loss(pos) 0.7992 | loss(seq) 0.2577 | grad 4.9876 | lr 0.0010 | time_forward 4.1020 | time_backward 5.2370
[2023-09-01 20:15:29,638::train::INFO] [train] Iter 01919 | loss 3.2825 | loss(rot) 2.6639 | loss(pos) 0.3535 | loss(seq) 0.2651 | grad 3.2612 | lr 0.0010 | time_forward 4.3060 | time_backward 6.0310
[2023-09-01 20:15:39,622::train::INFO] [train] Iter 01920 | loss 3.2242 | loss(rot) 2.8192 | loss(pos) 0.3926 | loss(seq) 0.0123 | grad 5.6037 | lr 0.0010 | time_forward 4.2400 | time_backward 5.7400
[2023-09-01 20:15:49,763::train::INFO] [train] Iter 01921 | loss 3.0951 | loss(rot) 2.6380 | loss(pos) 0.1855 | loss(seq) 0.2716 | grad 3.0238 | lr 0.0010 | time_forward 4.1090 | time_backward 6.0290
[2023-09-01 20:15:52,060::train::INFO] [train] Iter 01922 | loss 0.8558 | loss(rot) 0.2847 | loss(pos) 0.5440 | loss(seq) 0.0271 | grad 5.4027 | lr 0.0010 | time_forward 1.0980 | time_backward 1.1950
[2023-09-01 20:15:56,947::train::INFO] [train] Iter 01923 | loss 3.6310 | loss(rot) 2.7352 | loss(pos) 0.7221 | loss(seq) 0.1737 | grad 5.8577 | lr 0.0010 | time_forward 2.0970 | time_backward 2.7870
[2023-09-01 20:15:59,540::train::INFO] [train] Iter 01924 | loss 1.9225 | loss(rot) 0.1961 | loss(pos) 1.6888 | loss(seq) 0.0376 | grad 6.7041 | lr 0.0010 | time_forward 1.1470 | time_backward 1.4430
[2023-09-01 20:16:08,330::train::INFO] [train] Iter 01925 | loss 2.9813 | loss(rot) 2.6808 | loss(pos) 0.1834 | loss(seq) 0.1171 | grad 2.8280 | lr 0.0010 | time_forward 3.6920 | time_backward 5.0780
[2023-09-01 20:16:11,068::train::INFO] [train] Iter 01926 | loss 4.1860 | loss(rot) 3.5223 | loss(pos) 0.3282 | loss(seq) 0.3355 | grad 3.7245 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4850
[2023-09-01 20:16:20,941::train::INFO] [train] Iter 01927 | loss 1.6886 | loss(rot) 0.8906 | loss(pos) 0.6259 | loss(seq) 0.1721 | grad 3.6245 | lr 0.0010 | time_forward 4.0910 | time_backward 5.7780
[2023-09-01 20:16:30,885::train::INFO] [train] Iter 01928 | loss 3.8734 | loss(rot) 0.0502 | loss(pos) 3.8227 | loss(seq) 0.0006 | grad 6.6457 | lr 0.0010 | time_forward 4.0060 | time_backward 5.9360
[2023-09-01 20:16:33,553::train::INFO] [train] Iter 01929 | loss 2.3801 | loss(rot) 1.9932 | loss(pos) 0.1114 | loss(seq) 0.2755 | grad 3.0830 | lr 0.0010 | time_forward 1.2650 | time_backward 1.3990
[2023-09-01 20:16:43,395::train::INFO] [train] Iter 01930 | loss 2.2751 | loss(rot) 0.7538 | loss(pos) 0.9582 | loss(seq) 0.5631 | grad 4.1012 | lr 0.0010 | time_forward 4.1000 | time_backward 5.7370
[2023-09-01 20:16:52,724::train::INFO] [train] Iter 01931 | loss 3.2022 | loss(rot) 2.5821 | loss(pos) 0.3327 | loss(seq) 0.2874 | grad 3.1976 | lr 0.0010 | time_forward 3.9690 | time_backward 5.3570
[2023-09-01 20:17:03,059::train::INFO] [train] Iter 01932 | loss 3.3846 | loss(rot) 2.5065 | loss(pos) 0.4173 | loss(seq) 0.4608 | grad 2.0856 | lr 0.0010 | time_forward 4.1730 | time_backward 6.1590
[2023-09-01 20:17:12,201::train::INFO] [train] Iter 01933 | loss 3.9430 | loss(rot) 3.7324 | loss(pos) 0.2104 | loss(seq) 0.0001 | grad 3.9204 | lr 0.0010 | time_forward 3.9040 | time_backward 5.2250
[2023-09-01 20:17:15,379::train::INFO] [train] Iter 01934 | loss 2.9861 | loss(rot) 2.1760 | loss(pos) 0.5817 | loss(seq) 0.2285 | grad 5.3052 | lr 0.0010 | time_forward 1.4090 | time_backward 1.7650
[2023-09-01 20:17:23,769::train::INFO] [train] Iter 01935 | loss 3.6284 | loss(rot) 3.4545 | loss(pos) 0.1737 | loss(seq) 0.0003 | grad 2.7104 | lr 0.0010 | time_forward 3.6360 | time_backward 4.7500
[2023-09-01 20:17:26,473::train::INFO] [train] Iter 01936 | loss 1.9485 | loss(rot) 1.0333 | loss(pos) 0.4383 | loss(seq) 0.4769 | grad 3.6314 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4090
[2023-09-01 20:17:29,335::train::INFO] [train] Iter 01937 | loss 1.5998 | loss(rot) 0.4455 | loss(pos) 1.0783 | loss(seq) 0.0760 | grad 4.8837 | lr 0.0010 | time_forward 1.3750 | time_backward 1.4830
[2023-09-01 20:17:35,105::train::INFO] [train] Iter 01938 | loss 3.2872 | loss(rot) 2.9048 | loss(pos) 0.2984 | loss(seq) 0.0840 | grad 4.0933 | lr 0.0010 | time_forward 2.4250 | time_backward 3.3420
[2023-09-01 20:17:45,030::train::INFO] [train] Iter 01939 | loss 2.1605 | loss(rot) 0.9899 | loss(pos) 1.0840 | loss(seq) 0.0866 | grad 4.9821 | lr 0.0010 | time_forward 4.0520 | time_backward 5.8700
[2023-09-01 20:17:52,067::train::INFO] [train] Iter 01940 | loss 3.1365 | loss(rot) 2.5637 | loss(pos) 0.1930 | loss(seq) 0.3797 | grad 3.2897 | lr 0.0010 | time_forward 2.9960 | time_backward 4.0380
[2023-09-01 20:18:02,111::train::INFO] [train] Iter 01941 | loss 1.7618 | loss(rot) 0.4679 | loss(pos) 1.0111 | loss(seq) 0.2827 | grad 4.5814 | lr 0.0010 | time_forward 4.1510 | time_backward 5.8890
[2023-09-01 20:18:10,769::train::INFO] [train] Iter 01942 | loss 2.3429 | loss(rot) 1.6501 | loss(pos) 0.1960 | loss(seq) 0.4968 | grad 3.5341 | lr 0.0010 | time_forward 3.5970 | time_backward 5.0470
[2023-09-01 20:18:13,614::train::INFO] [train] Iter 01943 | loss 3.1454 | loss(rot) 2.9162 | loss(pos) 0.2052 | loss(seq) 0.0240 | grad 3.6519 | lr 0.0010 | time_forward 1.3220 | time_backward 1.5200
[2023-09-01 20:18:23,953::train::INFO] [train] Iter 01944 | loss 2.5496 | loss(rot) 1.7161 | loss(pos) 0.2719 | loss(seq) 0.5616 | grad 3.3075 | lr 0.0010 | time_forward 4.1830 | time_backward 6.1110
[2023-09-01 20:18:26,745::train::INFO] [train] Iter 01945 | loss 1.7591 | loss(rot) 0.7846 | loss(pos) 0.3998 | loss(seq) 0.5747 | grad 3.9457 | lr 0.0010 | time_forward 1.2680 | time_backward 1.5200
[2023-09-01 20:18:35,986::train::INFO] [train] Iter 01946 | loss 3.4805 | loss(rot) 3.0126 | loss(pos) 0.3025 | loss(seq) 0.1655 | grad 3.7991 | lr 0.0010 | time_forward 3.7810 | time_backward 5.4570
[2023-09-01 20:18:43,214::train::INFO] [train] Iter 01947 | loss 2.7716 | loss(rot) 2.1443 | loss(pos) 0.3298 | loss(seq) 0.2974 | grad 3.6495 | lr 0.0010 | time_forward 3.0290 | time_backward 4.1950
[2023-09-01 20:18:45,936::train::INFO] [train] Iter 01948 | loss 3.2608 | loss(rot) 0.1327 | loss(pos) 3.1281 | loss(seq) 0.0000 | grad 6.3427 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4610
[2023-09-01 20:18:55,731::train::INFO] [train] Iter 01949 | loss 3.0103 | loss(rot) 1.8062 | loss(pos) 0.5207 | loss(seq) 0.6834 | grad 5.3882 | lr 0.0010 | time_forward 4.0370 | time_backward 5.7150
[2023-09-01 20:18:58,742::train::INFO] [train] Iter 01950 | loss 2.7175 | loss(rot) 0.1087 | loss(pos) 2.6089 | loss(seq) 0.0000 | grad 7.3493 | lr 0.0010 | time_forward 1.3920 | time_backward 1.6150
[2023-09-01 20:19:08,899::train::INFO] [train] Iter 01951 | loss 1.9132 | loss(rot) 1.1154 | loss(pos) 0.2776 | loss(seq) 0.5201 | grad 3.5500 | lr 0.0010 | time_forward 4.1830 | time_backward 5.9710
[2023-09-01 20:19:11,191::train::INFO] [train] Iter 01952 | loss 1.3020 | loss(rot) 0.2020 | loss(pos) 1.0640 | loss(seq) 0.0360 | grad 4.3526 | lr 0.0010 | time_forward 1.0500 | time_backward 1.2380
[2023-09-01 20:19:13,470::train::INFO] [train] Iter 01953 | loss 2.0499 | loss(rot) 0.9817 | loss(pos) 0.6960 | loss(seq) 0.3722 | grad 4.0333 | lr 0.0010 | time_forward 1.0310 | time_backward 1.2440
[2023-09-01 20:19:23,549::train::INFO] [train] Iter 01954 | loss 3.5026 | loss(rot) 2.4734 | loss(pos) 0.4876 | loss(seq) 0.5417 | grad 4.4631 | lr 0.0010 | time_forward 4.0520 | time_backward 6.0230
[2023-09-01 20:19:33,609::train::INFO] [train] Iter 01955 | loss 3.8191 | loss(rot) 1.8806 | loss(pos) 1.4609 | loss(seq) 0.4776 | grad 9.1764 | lr 0.0010 | time_forward 4.0990 | time_backward 5.9570
[2023-09-01 20:19:42,815::train::INFO] [train] Iter 01956 | loss 2.2054 | loss(rot) 0.6937 | loss(pos) 1.4427 | loss(seq) 0.0690 | grad 4.5753 | lr 0.0010 | time_forward 3.9220 | time_backward 5.2810
[2023-09-01 20:19:45,512::train::INFO] [train] Iter 01957 | loss 2.6343 | loss(rot) 1.8433 | loss(pos) 0.5251 | loss(seq) 0.2658 | grad 7.2759 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4430
[2023-09-01 20:19:48,801::train::INFO] [train] Iter 01958 | loss 3.5941 | loss(rot) 3.3302 | loss(pos) 0.2591 | loss(seq) 0.0047 | grad 3.8010 | lr 0.0010 | time_forward 1.4600 | time_backward 1.8260
[2023-09-01 20:19:57,278::train::INFO] [train] Iter 01959 | loss 2.9757 | loss(rot) 2.6028 | loss(pos) 0.2541 | loss(seq) 0.1189 | grad 5.5860 | lr 0.0010 | time_forward 3.5210 | time_backward 4.9530
[2023-09-01 20:20:06,568::train::INFO] [train] Iter 01960 | loss 3.2208 | loss(rot) 2.4352 | loss(pos) 0.2279 | loss(seq) 0.5577 | grad 2.6942 | lr 0.0010 | time_forward 3.9040 | time_backward 5.3820
[2023-09-01 20:20:15,165::train::INFO] [train] Iter 01961 | loss 1.9700 | loss(rot) 1.1164 | loss(pos) 0.3842 | loss(seq) 0.4694 | grad 3.7312 | lr 0.0010 | time_forward 3.6330 | time_backward 4.9600
[2023-09-01 20:20:17,900::train::INFO] [train] Iter 01962 | loss 2.5059 | loss(rot) 1.7302 | loss(pos) 0.3105 | loss(seq) 0.4652 | grad 2.9636 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4610
[2023-09-01 20:20:26,808::train::INFO] [train] Iter 01963 | loss 1.5056 | loss(rot) 0.7174 | loss(pos) 0.4440 | loss(seq) 0.3442 | grad 2.8875 | lr 0.0010 | time_forward 3.6900 | time_backward 5.1750
[2023-09-01 20:20:37,037::train::INFO] [train] Iter 01964 | loss 1.5783 | loss(rot) 0.1799 | loss(pos) 1.3657 | loss(seq) 0.0327 | grad 4.3603 | lr 0.0010 | time_forward 4.1440 | time_backward 6.0810
[2023-09-01 20:20:48,128::train::INFO] [train] Iter 01965 | loss 1.1750 | loss(rot) 0.4900 | loss(pos) 0.3197 | loss(seq) 0.3652 | grad 2.5894 | lr 0.0010 | time_forward 5.0900 | time_backward 5.9970
[2023-09-01 20:20:51,085::train::INFO] [train] Iter 01966 | loss 3.1282 | loss(rot) 2.8649 | loss(pos) 0.2477 | loss(seq) 0.0157 | grad 3.1306 | lr 0.0010 | time_forward 1.4700 | time_backward 1.4830
[2023-09-01 20:20:53,896::train::INFO] [train] Iter 01967 | loss 1.7975 | loss(rot) 0.5905 | loss(pos) 0.9223 | loss(seq) 0.2846 | grad 5.0407 | lr 0.0010 | time_forward 1.3300 | time_backward 1.4780
[2023-09-01 20:21:04,182::train::INFO] [train] Iter 01968 | loss 3.2835 | loss(rot) 2.1661 | loss(pos) 0.5754 | loss(seq) 0.5420 | grad 4.1996 | lr 0.0010 | time_forward 4.2150 | time_backward 6.0680
[2023-09-01 20:21:14,403::train::INFO] [train] Iter 01969 | loss 2.1290 | loss(rot) 0.0234 | loss(pos) 2.1047 | loss(seq) 0.0009 | grad 2.8987 | lr 0.0010 | time_forward 4.2860 | time_backward 5.9310
[2023-09-01 20:21:22,971::train::INFO] [train] Iter 01970 | loss 1.0770 | loss(rot) 0.1822 | loss(pos) 0.8750 | loss(seq) 0.0198 | grad 3.7015 | lr 0.0010 | time_forward 3.5010 | time_backward 5.0630
[2023-09-01 20:21:28,972::train::INFO] [train] Iter 01971 | loss 2.0573 | loss(rot) 1.2922 | loss(pos) 0.1905 | loss(seq) 0.5746 | grad 3.3414 | lr 0.0010 | time_forward 2.4410 | time_backward 3.5570
[2023-09-01 20:21:38,448::train::INFO] [train] Iter 01972 | loss 3.0877 | loss(rot) 2.9027 | loss(pos) 0.1830 | loss(seq) 0.0020 | grad 2.8220 | lr 0.0010 | time_forward 3.9660 | time_backward 5.5070
[2023-09-01 20:21:41,242::train::INFO] [train] Iter 01973 | loss 3.1607 | loss(rot) 2.3130 | loss(pos) 0.5258 | loss(seq) 0.3219 | grad 4.3688 | lr 0.0010 | time_forward 1.2440 | time_backward 1.5460
[2023-09-01 20:21:44,092::train::INFO] [train] Iter 01974 | loss 1.2214 | loss(rot) 0.7924 | loss(pos) 0.3835 | loss(seq) 0.0455 | grad 3.3256 | lr 0.0010 | time_forward 1.3140 | time_backward 1.5330
[2023-09-01 20:21:52,550::train::INFO] [train] Iter 01975 | loss 3.1957 | loss(rot) 2.4461 | loss(pos) 0.3445 | loss(seq) 0.4050 | grad 4.1395 | lr 0.0010 | time_forward 3.5040 | time_backward 4.9510
[2023-09-01 20:22:01,909::train::INFO] [train] Iter 01976 | loss 1.2387 | loss(rot) 0.2489 | loss(pos) 0.9468 | loss(seq) 0.0430 | grad 4.9388 | lr 0.0010 | time_forward 3.8460 | time_backward 5.5080
[2023-09-01 20:22:04,386::train::INFO] [train] Iter 01977 | loss 1.9171 | loss(rot) 0.6060 | loss(pos) 1.0041 | loss(seq) 0.3070 | grad 5.9903 | lr 0.0010 | time_forward 1.1900 | time_backward 1.2830
[2023-09-01 20:22:07,234::train::INFO] [train] Iter 01978 | loss 2.9164 | loss(rot) 2.5326 | loss(pos) 0.3241 | loss(seq) 0.0596 | grad 4.2120 | lr 0.0010 | time_forward 1.2910 | time_backward 1.5210
[2023-09-01 20:22:15,585::train::INFO] [train] Iter 01979 | loss 3.2228 | loss(rot) 2.6017 | loss(pos) 0.2550 | loss(seq) 0.3660 | grad 4.4089 | lr 0.0010 | time_forward 3.6330 | time_backward 4.7130
[2023-09-01 20:22:18,408::train::INFO] [train] Iter 01980 | loss 2.8874 | loss(rot) 2.5410 | loss(pos) 0.2583 | loss(seq) 0.0881 | grad 5.1728 | lr 0.0010 | time_forward 1.3470 | time_backward 1.4730
[2023-09-01 20:22:26,518::train::INFO] [train] Iter 01981 | loss 1.9795 | loss(rot) 0.9046 | loss(pos) 0.4616 | loss(seq) 0.6132 | grad 3.3469 | lr 0.0010 | time_forward 3.4410 | time_backward 4.6660
[2023-09-01 20:22:36,636::train::INFO] [train] Iter 01982 | loss 2.0703 | loss(rot) 1.2385 | loss(pos) 0.6003 | loss(seq) 0.2315 | grad 4.7351 | lr 0.0010 | time_forward 4.2540 | time_backward 5.8600
[2023-09-01 20:22:38,919::train::INFO] [train] Iter 01983 | loss 1.3181 | loss(rot) 0.1638 | loss(pos) 1.1178 | loss(seq) 0.0365 | grad 5.4581 | lr 0.0010 | time_forward 1.0410 | time_backward 1.2270
[2023-09-01 20:22:49,253::train::INFO] [train] Iter 01984 | loss 3.2020 | loss(rot) 2.7977 | loss(pos) 0.4011 | loss(seq) 0.0032 | grad 3.5600 | lr 0.0010 | time_forward 4.1980 | time_backward 6.1320
[2023-09-01 20:22:51,996::train::INFO] [train] Iter 01985 | loss 3.1721 | loss(rot) 2.4707 | loss(pos) 0.3646 | loss(seq) 0.3369 | grad 5.8155 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4830
[2023-09-01 20:23:01,531::train::INFO] [train] Iter 01986 | loss 2.5958 | loss(rot) 1.8136 | loss(pos) 0.2456 | loss(seq) 0.5366 | grad 3.0256 | lr 0.0010 | time_forward 3.9740 | time_backward 5.5140
[2023-09-01 20:23:09,260::train::INFO] [train] Iter 01987 | loss 2.4718 | loss(rot) 2.1341 | loss(pos) 0.2679 | loss(seq) 0.0698 | grad 3.9479 | lr 0.0010 | time_forward 3.3440 | time_backward 4.3810
[2023-09-01 20:23:17,809::train::INFO] [train] Iter 01988 | loss 3.0018 | loss(rot) 2.6178 | loss(pos) 0.1721 | loss(seq) 0.2118 | grad 3.0633 | lr 0.0010 | time_forward 3.5300 | time_backward 5.0150
[2023-09-01 20:23:28,059::train::INFO] [train] Iter 01989 | loss 3.0197 | loss(rot) 2.8559 | loss(pos) 0.1538 | loss(seq) 0.0101 | grad 1.9500 | lr 0.0010 | time_forward 4.0660 | time_backward 6.1810
[2023-09-01 20:23:31,024::train::INFO] [train] Iter 01990 | loss 0.7517 | loss(rot) 0.2299 | loss(pos) 0.4995 | loss(seq) 0.0223 | grad 3.3014 | lr 0.0010 | time_forward 1.4550 | time_backward 1.5060
[2023-09-01 20:23:40,305::train::INFO] [train] Iter 01991 | loss 2.5755 | loss(rot) 1.3378 | loss(pos) 0.7872 | loss(seq) 0.4506 | grad 4.9442 | lr 0.0010 | time_forward 3.9140 | time_backward 5.3640
[2023-09-01 20:23:50,442::train::INFO] [train] Iter 01992 | loss 2.8037 | loss(rot) 1.9468 | loss(pos) 0.3403 | loss(seq) 0.5165 | grad 2.8856 | lr 0.0010 | time_forward 4.0450 | time_backward 6.0890
[2023-09-01 20:24:00,622::train::INFO] [train] Iter 01993 | loss 3.2251 | loss(rot) 2.8544 | loss(pos) 0.2159 | loss(seq) 0.1548 | grad 4.5121 | lr 0.0010 | time_forward 4.0890 | time_backward 6.0870