text
stringlengths 56
1.16k
|
---|
[2023-09-01 18:34:50,933::train::INFO] [train] Iter 01094 | loss 3.8590 | loss(rot) 3.0175 | loss(pos) 0.4112 | loss(seq) 0.4303 | grad 4.1196 | lr 0.0010 | time_forward 3.1870 | time_backward 4.5140 |
[2023-09-01 18:35:01,438::train::INFO] [train] Iter 01095 | loss 2.1748 | loss(rot) 0.0435 | loss(pos) 2.1224 | loss(seq) 0.0089 | grad 6.1293 | lr 0.0010 | time_forward 4.7880 | time_backward 5.7130 |
[2023-09-01 18:35:10,980::train::INFO] [train] Iter 01096 | loss 2.3025 | loss(rot) 1.1667 | loss(pos) 0.5625 | loss(seq) 0.5733 | grad 2.7136 | lr 0.0010 | time_forward 3.7460 | time_backward 5.7800 |
[2023-09-01 18:35:18,375::train::INFO] [train] Iter 01097 | loss 2.6112 | loss(rot) 1.4770 | loss(pos) 0.6073 | loss(seq) 0.5270 | grad 3.1458 | lr 0.0010 | time_forward 2.9900 | time_backward 4.4010 |
[2023-09-01 18:35:21,175::train::INFO] [train] Iter 01098 | loss 3.7102 | loss(rot) 3.3933 | loss(pos) 0.3105 | loss(seq) 0.0064 | grad 3.7908 | lr 0.0010 | time_forward 1.3410 | time_backward 1.4550 |
[2023-09-01 18:35:29,641::train::INFO] [train] Iter 01099 | loss 1.6543 | loss(rot) 0.6004 | loss(pos) 1.0214 | loss(seq) 0.0325 | grad 5.1039 | lr 0.0010 | time_forward 3.6060 | time_backward 4.8580 |
[2023-09-01 18:35:40,241::train::INFO] [train] Iter 01100 | loss 2.9803 | loss(rot) 2.6951 | loss(pos) 0.2689 | loss(seq) 0.0163 | grad 3.2833 | lr 0.0010 | time_forward 4.9570 | time_backward 5.6390 |
[2023-09-01 18:35:42,726::train::INFO] [train] Iter 01101 | loss 1.7262 | loss(rot) 0.6217 | loss(pos) 0.6172 | loss(seq) 0.4872 | grad 3.7031 | lr 0.0010 | time_forward 1.1850 | time_backward 1.2960 |
[2023-09-01 18:35:45,707::train::INFO] [train] Iter 01102 | loss 2.2926 | loss(rot) 0.8080 | loss(pos) 1.0083 | loss(seq) 0.4763 | grad 4.8994 | lr 0.0010 | time_forward 1.4600 | time_backward 1.5170 |
[2023-09-01 18:35:55,257::train::INFO] [train] Iter 01103 | loss 3.3991 | loss(rot) 2.4357 | loss(pos) 0.5048 | loss(seq) 0.4586 | grad 3.3079 | lr 0.0010 | time_forward 3.8640 | time_backward 5.6820 |
[2023-09-01 18:36:03,779::train::INFO] [train] Iter 01104 | loss 3.7439 | loss(rot) 3.3401 | loss(pos) 0.3988 | loss(seq) 0.0051 | grad 3.6107 | lr 0.0010 | time_forward 3.6530 | time_backward 4.8650 |
[2023-09-01 18:36:13,233::train::INFO] [train] Iter 01105 | loss 2.8799 | loss(rot) 2.6265 | loss(pos) 0.2502 | loss(seq) 0.0032 | grad 2.8492 | lr 0.0010 | time_forward 3.8980 | time_backward 5.5530 |
[2023-09-01 18:36:23,558::train::INFO] [train] Iter 01106 | loss 2.1471 | loss(rot) 1.1756 | loss(pos) 0.6729 | loss(seq) 0.2986 | grad 3.4535 | lr 0.0010 | time_forward 4.3370 | time_backward 5.9840 |
[2023-09-01 18:36:33,774::train::INFO] [train] Iter 01107 | loss 3.0915 | loss(rot) 2.7723 | loss(pos) 0.2140 | loss(seq) 0.1052 | grad 2.4582 | lr 0.0010 | time_forward 4.1610 | time_backward 6.0510 |
[2023-09-01 18:36:36,566::train::INFO] [train] Iter 01108 | loss 3.5752 | loss(rot) 2.4471 | loss(pos) 0.5671 | loss(seq) 0.5610 | grad 3.4731 | lr 0.0010 | time_forward 1.3440 | time_backward 1.4450 |
[2023-09-01 18:36:39,690::train::INFO] [train] Iter 01109 | loss 3.3727 | loss(rot) 3.1526 | loss(pos) 0.2198 | loss(seq) 0.0003 | grad 2.9902 | lr 0.0010 | time_forward 1.6670 | time_backward 1.4540 |
[2023-09-01 18:36:48,557::train::INFO] [train] Iter 01110 | loss 2.2059 | loss(rot) 1.6127 | loss(pos) 0.1826 | loss(seq) 0.4106 | grad 2.9910 | lr 0.0010 | time_forward 3.9730 | time_backward 4.8910 |
[2023-09-01 18:36:51,689::train::INFO] [train] Iter 01111 | loss 3.7575 | loss(rot) 2.7514 | loss(pos) 0.4973 | loss(seq) 0.5088 | grad 4.5883 | lr 0.0010 | time_forward 1.6520 | time_backward 1.4760 |
[2023-09-01 18:37:00,695::train::INFO] [train] Iter 01112 | loss 1.4106 | loss(rot) 0.2226 | loss(pos) 1.1582 | loss(seq) 0.0299 | grad 6.3576 | lr 0.0010 | time_forward 4.0320 | time_backward 4.9700 |
[2023-09-01 18:37:03,552::train::INFO] [train] Iter 01113 | loss 3.2836 | loss(rot) 2.5941 | loss(pos) 0.1752 | loss(seq) 0.5143 | grad 2.9172 | lr 0.0010 | time_forward 1.3560 | time_backward 1.4970 |
[2023-09-01 18:37:12,611::train::INFO] [train] Iter 01114 | loss 1.9071 | loss(rot) 0.2277 | loss(pos) 1.3808 | loss(seq) 0.2986 | grad 4.0601 | lr 0.0010 | time_forward 3.7060 | time_backward 5.3370 |
[2023-09-01 18:37:22,589::train::INFO] [train] Iter 01115 | loss 2.4303 | loss(rot) 0.0095 | loss(pos) 2.4199 | loss(seq) 0.0008 | grad 3.7472 | lr 0.0010 | time_forward 3.8950 | time_backward 6.0790 |
[2023-09-01 18:37:31,737::train::INFO] [train] Iter 01116 | loss 3.7608 | loss(rot) 3.1329 | loss(pos) 0.1863 | loss(seq) 0.4416 | grad 2.0659 | lr 0.0010 | time_forward 3.6720 | time_backward 5.4740 |
[2023-09-01 18:37:39,320::train::INFO] [train] Iter 01117 | loss 2.9218 | loss(rot) 2.4293 | loss(pos) 0.2997 | loss(seq) 0.1928 | grad 4.2632 | lr 0.0010 | time_forward 3.4290 | time_backward 4.1500 |
[2023-09-01 18:37:47,465::train::INFO] [train] Iter 01118 | loss 3.1591 | loss(rot) 2.7625 | loss(pos) 0.3276 | loss(seq) 0.0690 | grad 5.2327 | lr 0.0010 | time_forward 3.5570 | time_backward 4.5850 |
[2023-09-01 18:37:55,372::train::INFO] [train] Iter 01119 | loss 2.1172 | loss(rot) 0.0416 | loss(pos) 2.0705 | loss(seq) 0.0051 | grad 5.0067 | lr 0.0010 | time_forward 3.3310 | time_backward 4.5720 |
[2023-09-01 18:37:58,026::train::INFO] [train] Iter 01120 | loss 1.6389 | loss(rot) 0.2895 | loss(pos) 1.0209 | loss(seq) 0.3285 | grad 6.1014 | lr 0.0010 | time_forward 1.3410 | time_backward 1.3090 |
[2023-09-01 18:38:06,889::train::INFO] [train] Iter 01121 | loss 3.1213 | loss(rot) 2.5271 | loss(pos) 0.1543 | loss(seq) 0.4400 | grad 2.6702 | lr 0.0010 | time_forward 3.8720 | time_backward 4.9480 |
[2023-09-01 18:38:09,784::train::INFO] [train] Iter 01122 | loss 2.7932 | loss(rot) 1.7340 | loss(pos) 0.5471 | loss(seq) 0.5121 | grad 2.9639 | lr 0.0010 | time_forward 1.3850 | time_backward 1.5060 |
[2023-09-01 18:38:12,637::train::INFO] [train] Iter 01123 | loss 3.0642 | loss(rot) 2.4681 | loss(pos) 0.3635 | loss(seq) 0.2326 | grad 4.4432 | lr 0.0010 | time_forward 1.4240 | time_backward 1.4270 |
[2023-09-01 18:38:20,022::train::INFO] [train] Iter 01124 | loss 2.1980 | loss(rot) 1.2614 | loss(pos) 0.4760 | loss(seq) 0.4606 | grad 3.8799 | lr 0.0010 | time_forward 3.2460 | time_backward 4.1350 |
[2023-09-01 18:38:22,767::train::INFO] [train] Iter 01125 | loss 3.6293 | loss(rot) 3.3110 | loss(pos) 0.2760 | loss(seq) 0.0422 | grad 3.2497 | lr 0.0010 | time_forward 1.4360 | time_backward 1.3060 |
[2023-09-01 18:38:32,487::train::INFO] [train] Iter 01126 | loss 2.9970 | loss(rot) 1.0228 | loss(pos) 1.3714 | loss(seq) 0.6028 | grad 6.4461 | lr 0.0010 | time_forward 4.3810 | time_backward 5.2630 |
[2023-09-01 18:38:41,880::train::INFO] [train] Iter 01127 | loss 3.2625 | loss(rot) 2.3595 | loss(pos) 0.2864 | loss(seq) 0.6166 | grad 2.9118 | lr 0.0010 | time_forward 3.8950 | time_backward 5.4950 |
[2023-09-01 18:38:44,758::train::INFO] [train] Iter 01128 | loss 1.4127 | loss(rot) 0.3878 | loss(pos) 0.9492 | loss(seq) 0.0757 | grad 5.5915 | lr 0.0010 | time_forward 1.3580 | time_backward 1.5170 |
[2023-09-01 18:38:54,932::train::INFO] [train] Iter 01129 | loss 1.4573 | loss(rot) 0.4633 | loss(pos) 0.8059 | loss(seq) 0.1881 | grad 3.0925 | lr 0.0010 | time_forward 4.0660 | time_backward 6.1050 |
[2023-09-01 18:39:07,122::train::INFO] [train] Iter 01130 | loss 3.7139 | loss(rot) 1.8391 | loss(pos) 1.4216 | loss(seq) 0.4532 | grad 5.7512 | lr 0.0010 | time_forward 6.5780 | time_backward 5.6080 |
[2023-09-01 18:39:16,381::train::INFO] [train] Iter 01131 | loss 3.9389 | loss(rot) 3.3201 | loss(pos) 0.5733 | loss(seq) 0.0455 | grad 5.2166 | lr 0.0010 | time_forward 3.9340 | time_backward 5.3150 |
[2023-09-01 18:39:26,217::train::INFO] [train] Iter 01132 | loss 2.4156 | loss(rot) 1.6786 | loss(pos) 0.2493 | loss(seq) 0.4876 | grad 2.5590 | lr 0.0010 | time_forward 4.0120 | time_backward 5.8210 |
[2023-09-01 18:39:35,665::train::INFO] [train] Iter 01133 | loss 3.1308 | loss(rot) 1.8840 | loss(pos) 0.5992 | loss(seq) 0.6476 | grad 4.8682 | lr 0.0010 | time_forward 3.7110 | time_backward 5.7350 |
[2023-09-01 18:39:45,535::train::INFO] [train] Iter 01134 | loss 3.3760 | loss(rot) 3.0178 | loss(pos) 0.3581 | loss(seq) 0.0000 | grad 2.6842 | lr 0.0010 | time_forward 4.0420 | time_backward 5.8210 |
[2023-09-01 18:39:48,470::train::INFO] [train] Iter 01135 | loss 2.4743 | loss(rot) 1.4008 | loss(pos) 0.3833 | loss(seq) 0.6902 | grad 3.5602 | lr 0.0010 | time_forward 1.3770 | time_backward 1.5430 |
[2023-09-01 18:39:56,779::train::INFO] [train] Iter 01136 | loss 3.6234 | loss(rot) 3.3760 | loss(pos) 0.2474 | loss(seq) 0.0000 | grad 3.7351 | lr 0.0010 | time_forward 3.5530 | time_backward 4.7520 |
[2023-09-01 18:39:59,646::train::INFO] [train] Iter 01137 | loss 3.0274 | loss(rot) 2.5790 | loss(pos) 0.2770 | loss(seq) 0.1714 | grad 2.7973 | lr 0.0010 | time_forward 1.3850 | time_backward 1.4790 |
[2023-09-01 18:40:09,584::train::INFO] [train] Iter 01138 | loss 1.6581 | loss(rot) 0.7461 | loss(pos) 0.7789 | loss(seq) 0.1330 | grad 3.3499 | lr 0.0010 | time_forward 4.2650 | time_backward 5.6690 |
[2023-09-01 18:40:18,216::train::INFO] [train] Iter 01139 | loss 2.2995 | loss(rot) 0.1069 | loss(pos) 2.1841 | loss(seq) 0.0085 | grad 4.7811 | lr 0.0010 | time_forward 4.0530 | time_backward 4.5760 |
[2023-09-01 18:40:21,208::train::INFO] [train] Iter 01140 | loss 2.6155 | loss(rot) 1.6602 | loss(pos) 0.6215 | loss(seq) 0.3339 | grad 5.6607 | lr 0.0010 | time_forward 1.4630 | time_backward 1.5250 |
[2023-09-01 18:40:31,221::train::INFO] [train] Iter 01141 | loss 1.8558 | loss(rot) 0.8523 | loss(pos) 0.7427 | loss(seq) 0.2609 | grad 3.7051 | lr 0.0010 | time_forward 4.2080 | time_backward 5.7690 |
[2023-09-01 18:40:39,347::train::INFO] [train] Iter 01142 | loss 2.6296 | loss(rot) 1.9328 | loss(pos) 0.3752 | loss(seq) 0.3215 | grad 3.6442 | lr 0.0010 | time_forward 3.1900 | time_backward 4.9250 |
[2023-09-01 18:40:42,670::train::INFO] [train] Iter 01143 | loss 3.5018 | loss(rot) 2.0037 | loss(pos) 0.9965 | loss(seq) 0.5016 | grad 4.7106 | lr 0.0010 | time_forward 1.5120 | time_backward 1.8070 |
[2023-09-01 18:40:51,943::train::INFO] [train] Iter 01144 | loss 2.3106 | loss(rot) 1.4253 | loss(pos) 0.4249 | loss(seq) 0.4604 | grad 3.6419 | lr 0.0010 | time_forward 3.6260 | time_backward 5.6310 |
[2023-09-01 18:41:01,771::train::INFO] [train] Iter 01145 | loss 2.1566 | loss(rot) 1.2059 | loss(pos) 0.5025 | loss(seq) 0.4483 | grad 3.4230 | lr 0.0010 | time_forward 4.0980 | time_backward 5.7260 |
[2023-09-01 18:41:11,282::train::INFO] [train] Iter 01146 | loss 2.6987 | loss(rot) 1.8206 | loss(pos) 0.3676 | loss(seq) 0.5105 | grad 3.0709 | lr 0.0010 | time_forward 3.7240 | time_backward 5.7710 |
[2023-09-01 18:41:20,882::train::INFO] [train] Iter 01147 | loss 3.3089 | loss(rot) 2.7227 | loss(pos) 0.5862 | loss(seq) 0.0000 | grad 4.2081 | lr 0.0010 | time_forward 3.7520 | time_backward 5.8340 |
[2023-09-01 18:41:30,027::train::INFO] [train] Iter 01148 | loss 3.3521 | loss(rot) 3.0277 | loss(pos) 0.3241 | loss(seq) 0.0003 | grad 2.4656 | lr 0.0010 | time_forward 3.4710 | time_backward 5.6500 |
[2023-09-01 18:41:39,006::train::INFO] [train] Iter 01149 | loss 2.4631 | loss(rot) 1.7318 | loss(pos) 0.4729 | loss(seq) 0.2584 | grad 3.2327 | lr 0.0010 | time_forward 3.6610 | time_backward 5.3150 |
[2023-09-01 18:41:48,770::train::INFO] [train] Iter 01150 | loss 2.7364 | loss(rot) 1.8862 | loss(pos) 0.3702 | loss(seq) 0.4800 | grad 3.4403 | lr 0.0010 | time_forward 3.9280 | time_backward 5.8250 |
[2023-09-01 18:41:56,906::train::INFO] [train] Iter 01151 | loss 2.7226 | loss(rot) 1.9050 | loss(pos) 0.4170 | loss(seq) 0.4007 | grad 2.6876 | lr 0.0010 | time_forward 3.3560 | time_backward 4.7750 |
[2023-09-01 18:41:59,660::train::INFO] [train] Iter 01152 | loss 3.0132 | loss(rot) 2.0749 | loss(pos) 0.4879 | loss(seq) 0.4504 | grad 4.5643 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4230 |
[2023-09-01 18:42:08,252::train::INFO] [train] Iter 01153 | loss 1.4144 | loss(rot) 0.2403 | loss(pos) 1.1186 | loss(seq) 0.0555 | grad 5.6925 | lr 0.0010 | time_forward 3.3870 | time_backward 5.0930 |
[2023-09-01 18:42:17,048::train::INFO] [train] Iter 01154 | loss 3.7729 | loss(rot) 3.3767 | loss(pos) 0.3942 | loss(seq) 0.0020 | grad 5.0300 | lr 0.0010 | time_forward 3.4910 | time_backward 5.3020 |
[2023-09-01 18:42:26,506::train::INFO] [train] Iter 01155 | loss 2.1598 | loss(rot) 0.9671 | loss(pos) 0.9228 | loss(seq) 0.2699 | grad 5.3574 | lr 0.0010 | time_forward 3.8710 | time_backward 5.5830 |
[2023-09-01 18:42:35,232::train::INFO] [train] Iter 01156 | loss 3.4033 | loss(rot) 2.6010 | loss(pos) 0.3754 | loss(seq) 0.4269 | grad 4.5806 | lr 0.0010 | time_forward 3.5950 | time_backward 5.1280 |
[2023-09-01 18:42:38,048::train::INFO] [train] Iter 01157 | loss 1.7813 | loss(rot) 0.7424 | loss(pos) 0.8141 | loss(seq) 0.2248 | grad 4.1315 | lr 0.0010 | time_forward 1.3330 | time_backward 1.4800 |
[2023-09-01 18:42:47,359::train::INFO] [train] Iter 01158 | loss 3.5132 | loss(rot) 3.1373 | loss(pos) 0.3455 | loss(seq) 0.0304 | grad 3.8776 | lr 0.0010 | time_forward 3.6860 | time_backward 5.6210 |
[2023-09-01 18:42:57,085::train::INFO] [train] Iter 01159 | loss 2.0015 | loss(rot) 0.9830 | loss(pos) 0.4660 | loss(seq) 0.5526 | grad 2.6583 | lr 0.0010 | time_forward 3.8660 | time_backward 5.8570 |
[2023-09-01 18:43:00,051::train::INFO] [train] Iter 01160 | loss 3.5303 | loss(rot) 2.8914 | loss(pos) 0.2982 | loss(seq) 0.3406 | grad 5.2530 | lr 0.0010 | time_forward 1.4740 | time_backward 1.4780 |
[2023-09-01 18:43:03,549::train::INFO] [train] Iter 01161 | loss 3.3392 | loss(rot) 2.0992 | loss(pos) 0.6436 | loss(seq) 0.5965 | grad 4.1354 | lr 0.0010 | time_forward 1.5400 | time_backward 1.8950 |
[2023-09-01 18:43:06,250::train::INFO] [train] Iter 01162 | loss 3.2520 | loss(rot) 2.2167 | loss(pos) 0.5214 | loss(seq) 0.5139 | grad 4.3088 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4350 |
[2023-09-01 18:43:09,954::train::INFO] [train] Iter 01163 | loss 2.0323 | loss(rot) 0.1392 | loss(pos) 1.8779 | loss(seq) 0.0151 | grad 4.2246 | lr 0.0010 | time_forward 1.6700 | time_backward 2.0300 |
[2023-09-01 18:43:11,700::train::INFO] [train] Iter 01164 | loss 3.2147 | loss(rot) 2.4995 | loss(pos) 0.2979 | loss(seq) 0.4173 | grad 4.4544 | lr 0.0010 | time_forward 0.8310 | time_backward 0.9000 |
[2023-09-01 18:43:21,137::train::INFO] [train] Iter 01165 | loss 3.3569 | loss(rot) 2.4109 | loss(pos) 0.3837 | loss(seq) 0.5624 | grad 3.0818 | lr 0.0010 | time_forward 3.8830 | time_backward 5.5510 |
[2023-09-01 18:43:23,539::train::INFO] [train] Iter 01166 | loss 3.8707 | loss(rot) 3.7094 | loss(pos) 0.1611 | loss(seq) 0.0001 | grad 2.0091 | lr 0.0010 | time_forward 1.1430 | time_backward 1.2170 |
[2023-09-01 18:43:30,794::train::INFO] [train] Iter 01167 | loss 2.9994 | loss(rot) 2.2965 | loss(pos) 0.2881 | loss(seq) 0.4147 | grad 3.3232 | lr 0.0010 | time_forward 2.8850 | time_backward 4.3650 |
[2023-09-01 18:43:39,521::train::INFO] [train] Iter 01168 | loss 2.3935 | loss(rot) 0.7249 | loss(pos) 1.4462 | loss(seq) 0.2224 | grad 5.0622 | lr 0.0010 | time_forward 3.7570 | time_backward 4.9670 |
[2023-09-01 18:43:42,287::train::INFO] [train] Iter 01169 | loss 3.5603 | loss(rot) 2.7703 | loss(pos) 0.4236 | loss(seq) 0.3664 | grad 4.5250 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4520 |
[2023-09-01 18:43:50,698::train::INFO] [train] Iter 01170 | loss 3.1471 | loss(rot) 2.4705 | loss(pos) 0.2786 | loss(seq) 0.3980 | grad 2.9525 | lr 0.0010 | time_forward 3.5910 | time_backward 4.8170 |
[2023-09-01 18:44:00,588::train::INFO] [train] Iter 01171 | loss 2.3305 | loss(rot) 1.4262 | loss(pos) 0.3586 | loss(seq) 0.5458 | grad 3.2468 | lr 0.0010 | time_forward 4.0580 | time_backward 5.8280 |
[2023-09-01 18:44:03,335::train::INFO] [train] Iter 01172 | loss 3.0462 | loss(rot) 2.8916 | loss(pos) 0.1401 | loss(seq) 0.0145 | grad 2.2566 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4580 |
[2023-09-01 18:44:12,106::train::INFO] [train] Iter 01173 | loss 1.9261 | loss(rot) 1.1099 | loss(pos) 0.3784 | loss(seq) 0.4378 | grad 3.6791 | lr 0.0010 | time_forward 3.5300 | time_backward 5.2370 |
[2023-09-01 18:44:14,832::train::INFO] [train] Iter 01174 | loss 2.6656 | loss(rot) 1.7181 | loss(pos) 0.4118 | loss(seq) 0.5357 | grad 2.9523 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4410 |
[2023-09-01 18:44:17,674::train::INFO] [train] Iter 01175 | loss 3.1515 | loss(rot) 1.9326 | loss(pos) 0.5676 | loss(seq) 0.6513 | grad 4.3063 | lr 0.0010 | time_forward 1.3650 | time_backward 1.4730 |
[2023-09-01 18:44:24,899::train::INFO] [train] Iter 01176 | loss 3.4206 | loss(rot) 2.2994 | loss(pos) 0.5208 | loss(seq) 0.6004 | grad 4.0631 | lr 0.0010 | time_forward 3.0100 | time_backward 4.0870 |
[2023-09-01 18:44:27,658::train::INFO] [train] Iter 01177 | loss 1.6017 | loss(rot) 0.7238 | loss(pos) 0.7593 | loss(seq) 0.1186 | grad 4.0553 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4280 |
[2023-09-01 18:44:35,643::train::INFO] [train] Iter 01178 | loss 2.6781 | loss(rot) 1.8774 | loss(pos) 0.3154 | loss(seq) 0.4852 | grad 3.8148 | lr 0.0010 | time_forward 3.1950 | time_backward 4.7870 |
[2023-09-01 18:44:45,603::train::INFO] [train] Iter 01179 | loss 3.6498 | loss(rot) 3.4205 | loss(pos) 0.2293 | loss(seq) 0.0000 | grad 3.5923 | lr 0.0010 | time_forward 4.0290 | time_backward 5.9270 |
[2023-09-01 18:44:53,738::train::INFO] [train] Iter 01180 | loss 2.6569 | loss(rot) 2.1304 | loss(pos) 0.2399 | loss(seq) 0.2866 | grad 3.5583 | lr 0.0010 | time_forward 3.4370 | time_backward 4.6940 |
[2023-09-01 18:45:01,699::train::INFO] [train] Iter 01181 | loss 2.8633 | loss(rot) 2.3460 | loss(pos) 0.1541 | loss(seq) 0.3631 | grad 3.0157 | lr 0.0010 | time_forward 3.3810 | time_backward 4.5750 |
[2023-09-01 18:45:11,479::train::INFO] [train] Iter 01182 | loss 2.3471 | loss(rot) 0.4482 | loss(pos) 1.5719 | loss(seq) 0.3271 | grad 3.3411 | lr 0.0010 | time_forward 4.2190 | time_backward 5.5580 |
[2023-09-01 18:45:21,507::train::INFO] [train] Iter 01183 | loss 2.4566 | loss(rot) 1.6256 | loss(pos) 0.3947 | loss(seq) 0.4363 | grad 3.0299 | lr 0.0010 | time_forward 4.1630 | time_backward 5.8610 |
[2023-09-01 18:45:28,895::train::INFO] [train] Iter 01184 | loss 1.7712 | loss(rot) 0.4342 | loss(pos) 1.2809 | loss(seq) 0.0561 | grad 5.3094 | lr 0.0010 | time_forward 3.1440 | time_backward 4.2400 |
[2023-09-01 18:45:38,755::train::INFO] [train] Iter 01185 | loss 3.4573 | loss(rot) 2.7866 | loss(pos) 0.3123 | loss(seq) 0.3584 | grad 3.4474 | lr 0.0010 | time_forward 4.0350 | time_backward 5.8220 |
[2023-09-01 18:45:45,358::train::INFO] [train] Iter 01186 | loss 2.5233 | loss(rot) 1.6956 | loss(pos) 0.2423 | loss(seq) 0.5854 | grad 2.1022 | lr 0.0010 | time_forward 2.8550 | time_backward 3.7390 |
[2023-09-01 18:45:55,501::train::INFO] [train] Iter 01187 | loss 3.4900 | loss(rot) 3.2359 | loss(pos) 0.2541 | loss(seq) 0.0000 | grad 2.8025 | lr 0.0010 | time_forward 4.1900 | time_backward 5.9500 |
[2023-09-01 18:46:04,244::train::INFO] [train] Iter 01188 | loss 2.7851 | loss(rot) 2.2126 | loss(pos) 0.3372 | loss(seq) 0.2352 | grad 3.9497 | lr 0.0010 | time_forward 3.8210 | time_backward 4.9190 |
[2023-09-01 18:46:06,948::train::INFO] [train] Iter 01189 | loss 1.4468 | loss(rot) 0.5068 | loss(pos) 0.6992 | loss(seq) 0.2408 | grad 3.4277 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4340 |
[2023-09-01 18:46:16,243::train::INFO] [train] Iter 01190 | loss 3.5749 | loss(rot) 2.6614 | loss(pos) 0.3746 | loss(seq) 0.5388 | grad 1.9858 | lr 0.0010 | time_forward 3.7520 | time_backward 5.5390 |
[2023-09-01 18:46:24,595::train::INFO] [train] Iter 01191 | loss 3.5733 | loss(rot) 2.7850 | loss(pos) 0.3286 | loss(seq) 0.4597 | grad 3.5422 | lr 0.0010 | time_forward 3.2280 | time_backward 5.1200 |
[2023-09-01 18:46:34,567::train::INFO] [train] Iter 01192 | loss 1.3283 | loss(rot) 0.4013 | loss(pos) 0.5920 | loss(seq) 0.3349 | grad 5.0807 | lr 0.0010 | time_forward 3.9100 | time_backward 5.8270 |
[2023-09-01 18:46:37,206::train::INFO] [train] Iter 01193 | loss 1.8292 | loss(rot) 0.2039 | loss(pos) 1.5995 | loss(seq) 0.0258 | grad 5.4853 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4010 |
Subsets and Splits