text
stringlengths
56
1.16k
[2023-09-02 12:40:01,070::train::INFO] [train] Iter 09986 | loss 2.2726 | loss(rot) 1.9825 | loss(pos) 0.2854 | loss(seq) 0.0046 | grad 3.6431 | lr 0.0010 | time_forward 1.2210 | time_backward 1.3830
[2023-09-02 12:40:11,036::train::INFO] [train] Iter 09987 | loss 2.3921 | loss(rot) 2.1116 | loss(pos) 0.1952 | loss(seq) 0.0853 | grad 5.2302 | lr 0.0010 | time_forward 4.0470 | time_backward 5.8970
[2023-09-02 12:40:20,169::train::INFO] [train] Iter 09988 | loss 0.9096 | loss(rot) 0.5281 | loss(pos) 0.2424 | loss(seq) 0.1391 | grad 5.6339 | lr 0.0010 | time_forward 3.8160 | time_backward 5.3150
[2023-09-02 12:40:25,989::train::INFO] [train] Iter 09989 | loss 2.4296 | loss(rot) 1.9196 | loss(pos) 0.2380 | loss(seq) 0.2720 | grad 6.5030 | lr 0.0010 | time_forward 2.4720 | time_backward 3.3440
[2023-09-02 12:40:35,187::train::INFO] [train] Iter 09990 | loss 1.2250 | loss(rot) 0.5645 | loss(pos) 0.2554 | loss(seq) 0.4051 | grad 4.3958 | lr 0.0010 | time_forward 3.8110 | time_backward 5.3840
[2023-09-02 12:40:44,603::train::INFO] [train] Iter 09991 | loss 1.3598 | loss(rot) 1.2754 | loss(pos) 0.0797 | loss(seq) 0.0048 | grad 5.0594 | lr 0.0010 | time_forward 3.7240 | time_backward 5.6900
[2023-09-02 12:40:47,503::train::INFO] [train] Iter 09992 | loss 2.0389 | loss(rot) 1.2835 | loss(pos) 0.2393 | loss(seq) 0.5160 | grad 3.2310 | lr 0.0010 | time_forward 1.3630 | time_backward 1.5330
[2023-09-02 12:40:55,451::train::INFO] [train] Iter 09993 | loss 2.2860 | loss(rot) 2.0847 | loss(pos) 0.1392 | loss(seq) 0.0621 | grad 5.2961 | lr 0.0010 | time_forward 3.3640 | time_backward 4.5800
[2023-09-02 12:41:05,803::train::INFO] [train] Iter 09994 | loss 1.6168 | loss(rot) 1.5146 | loss(pos) 0.0762 | loss(seq) 0.0260 | grad 5.5235 | lr 0.0010 | time_forward 4.2600 | time_backward 6.0890
[2023-09-02 12:41:15,156::train::INFO] [train] Iter 09995 | loss 2.6819 | loss(rot) 2.5286 | loss(pos) 0.0988 | loss(seq) 0.0544 | grad 6.2976 | lr 0.0010 | time_forward 3.8940 | time_backward 5.4550
[2023-09-02 12:41:24,571::train::INFO] [train] Iter 09996 | loss 1.0590 | loss(rot) 0.1804 | loss(pos) 0.5786 | loss(seq) 0.2999 | grad 3.9443 | lr 0.0010 | time_forward 4.0040 | time_backward 5.4070
[2023-09-02 12:41:34,562::train::INFO] [train] Iter 09997 | loss 2.5009 | loss(rot) 1.7621 | loss(pos) 0.2658 | loss(seq) 0.4730 | grad 4.8949 | lr 0.0010 | time_forward 3.9900 | time_backward 5.9980
[2023-09-02 12:41:37,233::train::INFO] [train] Iter 09998 | loss 1.3655 | loss(rot) 0.1852 | loss(pos) 0.6543 | loss(seq) 0.5260 | grad 5.3861 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4200
[2023-09-02 12:41:46,941::train::INFO] [train] Iter 09999 | loss 1.2418 | loss(rot) 0.3238 | loss(pos) 0.6558 | loss(seq) 0.2622 | grad 4.5106 | lr 0.0010 | time_forward 4.0560 | time_backward 5.6460
[2023-09-02 12:41:56,842::train::INFO] [train] Iter 10000 | loss 1.9982 | loss(rot) 1.8621 | loss(pos) 0.0458 | loss(seq) 0.0902 | grad 3.7094 | lr 0.0010 | time_forward 4.0770 | time_backward 5.8210
[2023-09-02 12:42:34,645::train::INFO] [val] Iter 10000 | loss 2.1276 | loss(rot) 1.2735 | loss(pos) 0.6439 | loss(seq) 0.2102
[2023-09-02 12:42:45,166::train::INFO] [train] Iter 10001 | loss 1.3207 | loss(rot) 0.4395 | loss(pos) 0.6188 | loss(seq) 0.2624 | grad 3.5626 | lr 0.0010 | time_forward 4.1930 | time_backward 6.0010
[2023-09-02 12:42:56,157::train::INFO] [train] Iter 10002 | loss 0.7784 | loss(rot) 0.2180 | loss(pos) 0.4931 | loss(seq) 0.0673 | grad 3.1744 | lr 0.0010 | time_forward 4.8030 | time_backward 6.1840
[2023-09-02 12:43:05,319::train::INFO] [train] Iter 10003 | loss 1.3716 | loss(rot) 0.7220 | loss(pos) 0.1665 | loss(seq) 0.4831 | grad 4.3234 | lr 0.0010 | time_forward 3.7350 | time_backward 5.4220
[2023-09-02 12:43:14,860::train::INFO] [train] Iter 10004 | loss 2.2162 | loss(rot) 2.0536 | loss(pos) 0.1216 | loss(seq) 0.0410 | grad 3.3613 | lr 0.0010 | time_forward 3.9810 | time_backward 5.5560
[2023-09-02 12:43:25,569::train::INFO] [train] Iter 10005 | loss 1.3265 | loss(rot) 0.5012 | loss(pos) 0.3123 | loss(seq) 0.5130 | grad 2.9942 | lr 0.0010 | time_forward 4.6000 | time_backward 6.1050
[2023-09-02 12:43:28,351::train::INFO] [train] Iter 10006 | loss 1.1833 | loss(rot) 0.0231 | loss(pos) 1.1578 | loss(seq) 0.0024 | grad 7.2637 | lr 0.0010 | time_forward 1.2550 | time_backward 1.5240
[2023-09-02 12:43:30,968::train::INFO] [train] Iter 10007 | loss 1.1252 | loss(rot) 0.3656 | loss(pos) 0.3743 | loss(seq) 0.3852 | grad 6.5802 | lr 0.0010 | time_forward 1.1910 | time_backward 1.4220
[2023-09-02 12:43:41,220::train::INFO] [train] Iter 10008 | loss 1.0043 | loss(rot) 0.0422 | loss(pos) 0.9552 | loss(seq) 0.0069 | grad 3.7926 | lr 0.0010 | time_forward 4.2490 | time_backward 5.9780
[2023-09-02 12:43:43,994::train::INFO] [train] Iter 10009 | loss 1.1896 | loss(rot) 0.6980 | loss(pos) 0.2884 | loss(seq) 0.2032 | grad 6.7425 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4910
[2023-09-02 12:43:46,690::train::INFO] [train] Iter 10010 | loss 0.5167 | loss(rot) 0.0650 | loss(pos) 0.4180 | loss(seq) 0.0336 | grad 3.9300 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4350
[2023-09-02 12:43:49,434::train::INFO] [train] Iter 10011 | loss 1.9660 | loss(rot) 1.3098 | loss(pos) 0.1850 | loss(seq) 0.4711 | grad 4.2482 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4700
[2023-09-02 12:43:57,962::train::INFO] [train] Iter 10012 | loss 4.6066 | loss(rot) 0.2017 | loss(pos) 4.4050 | loss(seq) 0.0000 | grad 10.8403 | lr 0.0010 | time_forward 3.5880 | time_backward 4.9370
[2023-09-02 12:44:06,473::train::INFO] [train] Iter 10013 | loss 3.1118 | loss(rot) 2.7841 | loss(pos) 0.1928 | loss(seq) 0.1349 | grad 5.7651 | lr 0.0010 | time_forward 3.6030 | time_backward 4.9060
[2023-09-02 12:44:08,699::train::INFO] [train] Iter 10014 | loss 1.3052 | loss(rot) 0.5194 | loss(pos) 0.5179 | loss(seq) 0.2678 | grad 4.7287 | lr 0.0010 | time_forward 1.0360 | time_backward 1.1860
[2023-09-02 12:44:11,118::train::INFO] [train] Iter 10015 | loss 2.2629 | loss(rot) 1.3765 | loss(pos) 0.4332 | loss(seq) 0.4532 | grad 4.5120 | lr 0.0010 | time_forward 1.1590 | time_backward 1.2560
[2023-09-02 12:44:17,256::train::INFO] [train] Iter 10016 | loss 2.0586 | loss(rot) 0.1000 | loss(pos) 1.9556 | loss(seq) 0.0030 | grad 7.1746 | lr 0.0010 | time_forward 2.6590 | time_backward 3.4750
[2023-09-02 12:44:27,224::train::INFO] [train] Iter 10017 | loss 1.7833 | loss(rot) 0.9248 | loss(pos) 0.3703 | loss(seq) 0.4882 | grad 4.4054 | lr 0.0010 | time_forward 4.0630 | time_backward 5.9020
[2023-09-02 12:44:35,936::train::INFO] [train] Iter 10018 | loss 1.6035 | loss(rot) 1.0283 | loss(pos) 0.1725 | loss(seq) 0.4027 | grad 4.9034 | lr 0.0010 | time_forward 3.6440 | time_backward 5.0650
[2023-09-02 12:44:38,636::train::INFO] [train] Iter 10019 | loss 2.7139 | loss(rot) 2.4913 | loss(pos) 0.2214 | loss(seq) 0.0012 | grad 3.0615 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4160
[2023-09-02 12:44:41,332::train::INFO] [train] Iter 10020 | loss 1.6386 | loss(rot) 0.9243 | loss(pos) 0.2376 | loss(seq) 0.4767 | grad 5.9173 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4180
[2023-09-02 12:44:50,738::train::INFO] [train] Iter 10021 | loss 2.4293 | loss(rot) 1.9926 | loss(pos) 0.4368 | loss(seq) 0.0000 | grad 7.7802 | lr 0.0010 | time_forward 3.9530 | time_backward 5.4150
[2023-09-02 12:44:58,256::train::INFO] [train] Iter 10022 | loss 1.3096 | loss(rot) 0.8555 | loss(pos) 0.1181 | loss(seq) 0.3360 | grad 4.9093 | lr 0.0010 | time_forward 3.1180 | time_backward 4.3960
[2023-09-02 12:45:01,642::train::INFO] [train] Iter 10023 | loss 1.4318 | loss(rot) 0.7018 | loss(pos) 0.3562 | loss(seq) 0.3738 | grad 3.8447 | lr 0.0010 | time_forward 1.4230 | time_backward 1.9600
[2023-09-02 12:45:10,434::train::INFO] [train] Iter 10024 | loss 1.1136 | loss(rot) 0.5819 | loss(pos) 0.0883 | loss(seq) 0.4433 | grad 3.8129 | lr 0.0010 | time_forward 3.6860 | time_backward 5.1030
[2023-09-02 12:45:12,871::train::INFO] [train] Iter 10025 | loss 0.8464 | loss(rot) 0.1573 | loss(pos) 0.3603 | loss(seq) 0.3287 | grad 3.0404 | lr 0.0010 | time_forward 1.1500 | time_backward 1.2830
[2023-09-02 12:45:22,119::train::INFO] [train] Iter 10026 | loss 0.6230 | loss(rot) 0.1095 | loss(pos) 0.4812 | loss(seq) 0.0323 | grad 3.2977 | lr 0.0010 | time_forward 3.9120 | time_backward 5.3110
[2023-09-02 12:45:30,188::train::INFO] [train] Iter 10027 | loss 1.5224 | loss(rot) 1.2806 | loss(pos) 0.2419 | loss(seq) 0.0000 | grad 4.7010 | lr 0.0010 | time_forward 3.3870 | time_backward 4.6770
[2023-09-02 12:45:37,482::train::INFO] [train] Iter 10028 | loss 2.0920 | loss(rot) 0.4957 | loss(pos) 1.5713 | loss(seq) 0.0250 | grad 5.0961 | lr 0.0010 | time_forward 3.0970 | time_backward 4.1940
[2023-09-02 12:45:40,185::train::INFO] [train] Iter 10029 | loss 2.4262 | loss(rot) 1.8461 | loss(pos) 0.1980 | loss(seq) 0.3821 | grad 4.8516 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4390
[2023-09-02 12:45:43,052::train::INFO] [train] Iter 10030 | loss 1.8987 | loss(rot) 1.4128 | loss(pos) 0.0840 | loss(seq) 0.4020 | grad 5.7767 | lr 0.0010 | time_forward 1.3640 | time_backward 1.4980
[2023-09-02 12:45:52,043::train::INFO] [train] Iter 10031 | loss 1.8686 | loss(rot) 1.0447 | loss(pos) 0.2597 | loss(seq) 0.5642 | grad 4.4127 | lr 0.0010 | time_forward 3.8460 | time_backward 5.1420
[2023-09-02 12:45:54,803::train::INFO] [train] Iter 10032 | loss 1.3736 | loss(rot) 0.4736 | loss(pos) 0.4710 | loss(seq) 0.4290 | grad 4.5195 | lr 0.0010 | time_forward 1.2930 | time_backward 1.4640
[2023-09-02 12:46:03,976::train::INFO] [train] Iter 10033 | loss 1.1958 | loss(rot) 0.5250 | loss(pos) 0.1738 | loss(seq) 0.4970 | grad 2.9010 | lr 0.0010 | time_forward 3.8810 | time_backward 5.2890
[2023-09-02 12:46:12,377::train::INFO] [train] Iter 10034 | loss 1.7842 | loss(rot) 1.4995 | loss(pos) 0.2802 | loss(seq) 0.0045 | grad 4.6032 | lr 0.0010 | time_forward 3.5130 | time_backward 4.8840
[2023-09-02 12:46:15,035::train::INFO] [train] Iter 10035 | loss 1.4404 | loss(rot) 1.0068 | loss(pos) 0.1303 | loss(seq) 0.3033 | grad 4.3274 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4220
[2023-09-02 12:46:17,758::train::INFO] [train] Iter 10036 | loss 1.2723 | loss(rot) 0.0555 | loss(pos) 0.8968 | loss(seq) 0.3200 | grad 3.3621 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4420
[2023-09-02 12:46:27,617::train::INFO] [train] Iter 10037 | loss 1.2335 | loss(rot) 0.4113 | loss(pos) 0.2435 | loss(seq) 0.5787 | grad 3.7678 | lr 0.0010 | time_forward 3.9800 | time_backward 5.8750
[2023-09-02 12:46:30,288::train::INFO] [train] Iter 10038 | loss 2.5972 | loss(rot) 2.1639 | loss(pos) 0.1818 | loss(seq) 0.2514 | grad 3.8820 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4380
[2023-09-02 12:46:32,989::train::INFO] [train] Iter 10039 | loss 2.1026 | loss(rot) 1.9854 | loss(pos) 0.1127 | loss(seq) 0.0045 | grad 5.4432 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4470
[2023-09-02 12:46:35,667::train::INFO] [train] Iter 10040 | loss 1.7424 | loss(rot) 1.5169 | loss(pos) 0.1694 | loss(seq) 0.0560 | grad 5.5359 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4180
[2023-09-02 12:46:45,412::train::INFO] [train] Iter 10041 | loss 1.5139 | loss(rot) 0.0304 | loss(pos) 1.4765 | loss(seq) 0.0070 | grad 6.0197 | lr 0.0010 | time_forward 3.9920 | time_backward 5.7490
[2023-09-02 12:46:54,588::train::INFO] [train] Iter 10042 | loss 1.4161 | loss(rot) 0.0402 | loss(pos) 1.1360 | loss(seq) 0.2399 | grad 5.3474 | lr 0.0010 | time_forward 3.8330 | time_backward 5.3410
[2023-09-02 12:47:02,871::train::INFO] [train] Iter 10043 | loss 1.4285 | loss(rot) 1.0659 | loss(pos) 0.2572 | loss(seq) 0.1055 | grad 8.7781 | lr 0.0010 | time_forward 3.4570 | time_backward 4.8220
[2023-09-02 12:47:05,564::train::INFO] [train] Iter 10044 | loss 1.0550 | loss(rot) 0.1321 | loss(pos) 0.4460 | loss(seq) 0.4769 | grad 5.6883 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4420
[2023-09-02 12:47:15,254::train::INFO] [train] Iter 10045 | loss 1.5019 | loss(rot) 1.2868 | loss(pos) 0.1592 | loss(seq) 0.0559 | grad 5.4182 | lr 0.0010 | time_forward 3.9550 | time_backward 5.7320
[2023-09-02 12:47:17,972::train::INFO] [train] Iter 10046 | loss 1.3681 | loss(rot) 0.8790 | loss(pos) 0.3613 | loss(seq) 0.1278 | grad 6.1853 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4890
[2023-09-02 12:47:20,810::train::INFO] [train] Iter 10047 | loss 1.0921 | loss(rot) 0.2305 | loss(pos) 0.5518 | loss(seq) 0.3098 | grad 4.3850 | lr 0.0010 | time_forward 1.2850 | time_backward 1.5500
[2023-09-02 12:47:30,646::train::INFO] [train] Iter 10048 | loss 2.8434 | loss(rot) 2.4394 | loss(pos) 0.1828 | loss(seq) 0.2213 | grad 5.0449 | lr 0.0010 | time_forward 4.0490 | time_backward 5.7840
[2023-09-02 12:47:40,754::train::INFO] [train] Iter 10049 | loss 2.3100 | loss(rot) 1.4434 | loss(pos) 0.3376 | loss(seq) 0.5290 | grad 4.3300 | lr 0.0010 | time_forward 4.1800 | time_backward 5.9240
[2023-09-02 12:47:50,094::train::INFO] [train] Iter 10050 | loss 2.1231 | loss(rot) 1.9301 | loss(pos) 0.0472 | loss(seq) 0.1458 | grad 5.4193 | lr 0.0010 | time_forward 3.9650 | time_backward 5.3720
[2023-09-02 12:48:00,154::train::INFO] [train] Iter 10051 | loss 1.7820 | loss(rot) 0.7756 | loss(pos) 0.3895 | loss(seq) 0.6168 | grad 6.4744 | lr 0.0010 | time_forward 4.0540 | time_backward 6.0020
[2023-09-02 12:48:10,163::train::INFO] [train] Iter 10052 | loss 1.9084 | loss(rot) 1.4454 | loss(pos) 0.1965 | loss(seq) 0.2665 | grad 5.2215 | lr 0.0010 | time_forward 3.9770 | time_backward 6.0290
[2023-09-02 12:48:18,822::train::INFO] [train] Iter 10053 | loss 1.8397 | loss(rot) 1.0908 | loss(pos) 0.1179 | loss(seq) 0.6310 | grad 3.4110 | lr 0.0010 | time_forward 3.6460 | time_backward 5.0100
[2023-09-02 12:48:27,615::train::INFO] [train] Iter 10054 | loss 1.2353 | loss(rot) 1.0543 | loss(pos) 0.0685 | loss(seq) 0.1125 | grad 11.5462 | lr 0.0010 | time_forward 3.6450 | time_backward 5.1450
[2023-09-02 12:48:36,030::train::INFO] [train] Iter 10055 | loss 2.2923 | loss(rot) 1.9966 | loss(pos) 0.2957 | loss(seq) 0.0000 | grad 4.4978 | lr 0.0010 | time_forward 3.6130 | time_backward 4.7980
[2023-09-02 12:48:38,707::train::INFO] [train] Iter 10056 | loss 1.4792 | loss(rot) 0.5255 | loss(pos) 0.4178 | loss(seq) 0.5359 | grad 3.0416 | lr 0.0010 | time_forward 1.2260 | time_backward 1.4480
[2023-09-02 12:48:48,182::train::INFO] [train] Iter 10057 | loss 0.8923 | loss(rot) 0.2976 | loss(pos) 0.5524 | loss(seq) 0.0423 | grad 3.9938 | lr 0.0010 | time_forward 4.0390 | time_backward 5.4340
[2023-09-02 12:48:51,037::train::INFO] [train] Iter 10058 | loss 0.9832 | loss(rot) 0.2690 | loss(pos) 0.1603 | loss(seq) 0.5539 | grad 3.3195 | lr 0.0010 | time_forward 1.3650 | time_backward 1.4860
[2023-09-02 12:49:00,353::train::INFO] [train] Iter 10059 | loss 1.2192 | loss(rot) 0.5128 | loss(pos) 0.2929 | loss(seq) 0.4135 | grad 2.9334 | lr 0.0010 | time_forward 3.8780 | time_backward 5.4340
[2023-09-02 12:49:12,626::train::INFO] [train] Iter 10060 | loss 1.4181 | loss(rot) 0.6495 | loss(pos) 0.2224 | loss(seq) 0.5462 | grad 4.8796 | lr 0.0010 | time_forward 4.1710 | time_backward 8.0990
[2023-09-02 12:49:15,252::train::INFO] [train] Iter 10061 | loss 1.0392 | loss(rot) 0.0738 | loss(pos) 0.5776 | loss(seq) 0.3879 | grad 3.8310 | lr 0.0010 | time_forward 1.2360 | time_backward 1.3860
[2023-09-02 12:49:25,021::train::INFO] [train] Iter 10062 | loss 2.3868 | loss(rot) 2.0353 | loss(pos) 0.2090 | loss(seq) 0.1425 | grad 3.8928 | lr 0.0010 | time_forward 4.8580 | time_backward 4.9070
[2023-09-02 12:49:35,359::train::INFO] [train] Iter 10063 | loss 1.1012 | loss(rot) 0.3187 | loss(pos) 0.5351 | loss(seq) 0.2474 | grad 4.0423 | lr 0.0010 | time_forward 4.2470 | time_backward 6.0880
[2023-09-02 12:49:43,490::train::INFO] [train] Iter 10064 | loss 2.6375 | loss(rot) 1.9913 | loss(pos) 0.3074 | loss(seq) 0.3388 | grad 5.6851 | lr 0.0010 | time_forward 3.3610 | time_backward 4.7670
[2023-09-02 12:49:46,177::train::INFO] [train] Iter 10065 | loss 1.1404 | loss(rot) 0.8446 | loss(pos) 0.1863 | loss(seq) 0.1095 | grad 6.3311 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4200
[2023-09-02 12:49:48,897::train::INFO] [train] Iter 10066 | loss 1.7529 | loss(rot) 1.5472 | loss(pos) 0.1158 | loss(seq) 0.0900 | grad 5.2745 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4070
[2023-09-02 12:49:57,339::train::INFO] [train] Iter 10067 | loss 1.7497 | loss(rot) 1.6524 | loss(pos) 0.0951 | loss(seq) 0.0022 | grad 6.7094 | lr 0.0010 | time_forward 3.5460 | time_backward 4.8920
[2023-09-02 12:50:07,571::train::INFO] [train] Iter 10068 | loss 1.2188 | loss(rot) 0.9516 | loss(pos) 0.1063 | loss(seq) 0.1609 | grad 10.1926 | lr 0.0010 | time_forward 4.0420 | time_backward 6.1880
[2023-09-02 12:50:17,638::train::INFO] [train] Iter 10069 | loss 1.9573 | loss(rot) 1.8103 | loss(pos) 0.1457 | loss(seq) 0.0013 | grad 2.9450 | lr 0.0010 | time_forward 4.0110 | time_backward 6.0530
[2023-09-02 12:50:20,309::train::INFO] [train] Iter 10070 | loss 2.2954 | loss(rot) 1.8334 | loss(pos) 0.1931 | loss(seq) 0.2688 | grad 3.3027 | lr 0.0010 | time_forward 1.2240 | time_backward 1.4310
[2023-09-02 12:50:29,673::train::INFO] [train] Iter 10071 | loss 1.9069 | loss(rot) 1.7533 | loss(pos) 0.1096 | loss(seq) 0.0440 | grad 4.2841 | lr 0.0010 | time_forward 3.9550 | time_backward 5.4070
[2023-09-02 12:50:37,608::train::INFO] [train] Iter 10072 | loss 0.8009 | loss(rot) 0.0416 | loss(pos) 0.7539 | loss(seq) 0.0054 | grad 4.8708 | lr 0.0010 | time_forward 3.2960 | time_backward 4.6350
[2023-09-02 12:50:46,688::train::INFO] [train] Iter 10073 | loss 0.6824 | loss(rot) 0.2337 | loss(pos) 0.3196 | loss(seq) 0.1291 | grad 2.7237 | lr 0.0010 | time_forward 3.7920 | time_backward 5.2790
[2023-09-02 12:50:55,065::train::INFO] [train] Iter 10074 | loss 2.0831 | loss(rot) 2.0118 | loss(pos) 0.0713 | loss(seq) 0.0000 | grad 4.4881 | lr 0.0010 | time_forward 3.4800 | time_backward 4.8940
[2023-09-02 12:50:57,808::train::INFO] [train] Iter 10075 | loss 1.9519 | loss(rot) 0.0679 | loss(pos) 1.6142 | loss(seq) 0.2698 | grad 6.7463 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4730
[2023-09-02 12:51:08,047::train::INFO] [train] Iter 10076 | loss 1.8178 | loss(rot) 1.6979 | loss(pos) 0.1100 | loss(seq) 0.0098 | grad 4.5299 | lr 0.0010 | time_forward 4.0660 | time_backward 6.1360
[2023-09-02 12:51:18,144::train::INFO] [train] Iter 10077 | loss 2.4079 | loss(rot) 0.3253 | loss(pos) 1.7897 | loss(seq) 0.2930 | grad 5.3024 | lr 0.0010 | time_forward 3.9790 | time_backward 6.1140
[2023-09-02 12:51:20,848::train::INFO] [train] Iter 10078 | loss 3.0270 | loss(rot) 2.8431 | loss(pos) 0.1832 | loss(seq) 0.0007 | grad 3.2060 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4600
[2023-09-02 12:51:29,593::train::INFO] [train] Iter 10079 | loss 1.3727 | loss(rot) 0.4541 | loss(pos) 0.5470 | loss(seq) 0.3715 | grad 3.1412 | lr 0.0010 | time_forward 3.7110 | time_backward 5.0300
[2023-09-02 12:51:32,293::train::INFO] [train] Iter 10080 | loss 1.7917 | loss(rot) 1.5743 | loss(pos) 0.1408 | loss(seq) 0.0765 | grad 7.4840 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4410
[2023-09-02 12:51:32,868::train::INFO] [train] Iter 10081 | loss 2.2580 | loss(rot) 1.7120 | loss(pos) 0.3469 | loss(seq) 0.1990 | grad 8.1586 | lr 0.0010 | time_forward 0.2450 | time_backward 0.3270
[2023-09-02 12:51:40,996::train::INFO] [train] Iter 10082 | loss 2.0938 | loss(rot) 1.7251 | loss(pos) 0.1833 | loss(seq) 0.1854 | grad 4.5662 | lr 0.0010 | time_forward 3.3670 | time_backward 4.7580
[2023-09-02 12:51:49,515::train::INFO] [train] Iter 10083 | loss 2.6638 | loss(rot) 2.1029 | loss(pos) 0.1847 | loss(seq) 0.3762 | grad 6.7482 | lr 0.0010 | time_forward 3.5730 | time_backward 4.9420
[2023-09-02 12:51:57,555::train::INFO] [train] Iter 10084 | loss 1.0227 | loss(rot) 0.2163 | loss(pos) 0.7123 | loss(seq) 0.0941 | grad 5.2863 | lr 0.0010 | time_forward 3.3480 | time_backward 4.6880