text
stringlengths
56
1.16k
[2023-09-02 12:28:32,963::train::INFO] [train] Iter 09886 | loss 1.2324 | loss(rot) 0.7280 | loss(pos) 0.3134 | loss(seq) 0.1910 | grad 3.9662 | lr 0.0010 | time_forward 3.9670 | time_backward 5.9390
[2023-09-02 12:28:41,841::train::INFO] [train] Iter 09887 | loss 1.5458 | loss(rot) 0.9791 | loss(pos) 0.1315 | loss(seq) 0.4352 | grad 4.1321 | lr 0.0010 | time_forward 3.6930 | time_backward 5.1810
[2023-09-02 12:28:51,500::train::INFO] [train] Iter 09888 | loss 1.3504 | loss(rot) 0.2278 | loss(pos) 0.8868 | loss(seq) 0.2358 | grad 4.3460 | lr 0.0010 | time_forward 4.0340 | time_backward 5.6220
[2023-09-02 12:28:58,069::train::INFO] [train] Iter 09889 | loss 1.7425 | loss(rot) 1.4960 | loss(pos) 0.1626 | loss(seq) 0.0839 | grad 6.4006 | lr 0.0010 | time_forward 2.7720 | time_backward 3.7950
[2023-09-02 12:29:06,052::train::INFO] [train] Iter 09890 | loss 2.9651 | loss(rot) 2.7066 | loss(pos) 0.2573 | loss(seq) 0.0012 | grad 4.9328 | lr 0.0010 | time_forward 3.3030 | time_backward 4.6770
[2023-09-02 12:29:14,599::train::INFO] [train] Iter 09891 | loss 2.8654 | loss(rot) 2.4727 | loss(pos) 0.2412 | loss(seq) 0.1516 | grad 5.3666 | lr 0.0010 | time_forward 3.5780 | time_backward 4.9660
[2023-09-02 12:29:16,800::train::INFO] [train] Iter 09892 | loss 1.6555 | loss(rot) 1.2783 | loss(pos) 0.1540 | loss(seq) 0.2232 | grad 4.1749 | lr 0.0010 | time_forward 1.0050 | time_backward 1.1920
[2023-09-02 12:29:25,437::train::INFO] [train] Iter 09893 | loss 1.0805 | loss(rot) 0.1365 | loss(pos) 0.6669 | loss(seq) 0.2772 | grad 4.1222 | lr 0.0010 | time_forward 3.6480 | time_backward 4.9850
[2023-09-02 12:29:34,432::train::INFO] [train] Iter 09894 | loss 1.2813 | loss(rot) 0.1991 | loss(pos) 0.8194 | loss(seq) 0.2628 | grad 4.0324 | lr 0.0010 | time_forward 3.7950 | time_backward 5.1960
[2023-09-02 12:29:40,952::train::INFO] [train] Iter 09895 | loss 0.9580 | loss(rot) 0.1585 | loss(pos) 0.7446 | loss(seq) 0.0549 | grad 4.0925 | lr 0.0010 | time_forward 2.7320 | time_backward 3.7850
[2023-09-02 12:29:49,518::train::INFO] [train] Iter 09896 | loss 1.7875 | loss(rot) 1.6209 | loss(pos) 0.1576 | loss(seq) 0.0089 | grad 4.7225 | lr 0.0010 | time_forward 3.6010 | time_backward 4.9620
[2023-09-02 12:29:58,011::train::INFO] [train] Iter 09897 | loss 2.4622 | loss(rot) 2.2526 | loss(pos) 0.2084 | loss(seq) 0.0012 | grad 3.3581 | lr 0.0010 | time_forward 3.5530 | time_backward 4.9360
[2023-09-02 12:30:06,017::train::INFO] [train] Iter 09898 | loss 1.3475 | loss(rot) 0.1190 | loss(pos) 0.8035 | loss(seq) 0.4250 | grad 6.5707 | lr 0.0010 | time_forward 3.3280 | time_backward 4.6740
[2023-09-02 12:30:15,937::train::INFO] [train] Iter 09899 | loss 1.3579 | loss(rot) 0.4249 | loss(pos) 0.3131 | loss(seq) 0.6199 | grad 3.3168 | lr 0.0010 | time_forward 3.9760 | time_backward 5.9400
[2023-09-02 12:30:25,084::train::INFO] [train] Iter 09900 | loss 1.3463 | loss(rot) 1.1657 | loss(pos) 0.1556 | loss(seq) 0.0250 | grad 5.0942 | lr 0.0010 | time_forward 3.8890 | time_backward 5.2550
[2023-09-02 12:30:34,208::train::INFO] [train] Iter 09901 | loss 1.2852 | loss(rot) 1.0604 | loss(pos) 0.1478 | loss(seq) 0.0770 | grad 5.3370 | lr 0.0010 | time_forward 3.8930 | time_backward 5.2270
[2023-09-02 12:30:42,151::train::INFO] [train] Iter 09902 | loss 2.1985 | loss(rot) 1.9886 | loss(pos) 0.2092 | loss(seq) 0.0006 | grad 4.5280 | lr 0.0010 | time_forward 3.3510 | time_backward 4.5890
[2023-09-02 12:30:52,061::train::INFO] [train] Iter 09903 | loss 1.6941 | loss(rot) 1.5046 | loss(pos) 0.1662 | loss(seq) 0.0233 | grad 4.7921 | lr 0.0010 | time_forward 4.1610 | time_backward 5.7460
[2023-09-02 12:31:01,930::train::INFO] [train] Iter 09904 | loss 1.5304 | loss(rot) 1.1095 | loss(pos) 0.0856 | loss(seq) 0.3353 | grad 2.6671 | lr 0.0010 | time_forward 3.9180 | time_backward 5.9470
[2023-09-02 12:31:04,614::train::INFO] [train] Iter 09905 | loss 1.5036 | loss(rot) 1.3841 | loss(pos) 0.0939 | loss(seq) 0.0256 | grad 6.1524 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4510
[2023-09-02 12:31:13,060::train::INFO] [train] Iter 09906 | loss 1.6054 | loss(rot) 1.4870 | loss(pos) 0.1162 | loss(seq) 0.0023 | grad 5.5266 | lr 0.0010 | time_forward 3.6140 | time_backward 4.8290
[2023-09-02 12:31:19,466::train::INFO] [train] Iter 09907 | loss 2.3320 | loss(rot) 2.0367 | loss(pos) 0.0996 | loss(seq) 0.1957 | grad 3.9654 | lr 0.0010 | time_forward 2.6970 | time_backward 3.7050
[2023-09-02 12:31:29,231::train::INFO] [train] Iter 09908 | loss 1.5198 | loss(rot) 1.3760 | loss(pos) 0.0802 | loss(seq) 0.0636 | grad 3.8039 | lr 0.0010 | time_forward 3.9170 | time_backward 5.8450
[2023-09-02 12:31:37,939::train::INFO] [train] Iter 09909 | loss 1.2834 | loss(rot) 0.1885 | loss(pos) 0.6441 | loss(seq) 0.4508 | grad 5.0733 | lr 0.0010 | time_forward 3.6520 | time_backward 5.0520
[2023-09-02 12:31:40,611::train::INFO] [train] Iter 09910 | loss 1.2919 | loss(rot) 0.3174 | loss(pos) 0.9296 | loss(seq) 0.0449 | grad 10.4458 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4200
[2023-09-02 12:31:43,921::train::INFO] [train] Iter 09911 | loss 1.9946 | loss(rot) 1.7802 | loss(pos) 0.0958 | loss(seq) 0.1185 | grad 3.7586 | lr 0.0010 | time_forward 1.4250 | time_backward 1.8820
[2023-09-02 12:31:53,982::train::INFO] [train] Iter 09912 | loss 2.1985 | loss(rot) 1.8692 | loss(pos) 0.1702 | loss(seq) 0.1591 | grad 4.3316 | lr 0.0010 | time_forward 4.2160 | time_backward 5.8420
[2023-09-02 12:32:03,957::train::INFO] [train] Iter 09913 | loss 1.5109 | loss(rot) 0.6464 | loss(pos) 0.4461 | loss(seq) 0.4184 | grad 4.7580 | lr 0.0010 | time_forward 4.1170 | time_backward 5.8550
[2023-09-02 12:32:13,996::train::INFO] [train] Iter 09914 | loss 2.2428 | loss(rot) 1.0863 | loss(pos) 0.6742 | loss(seq) 0.4823 | grad 3.9022 | lr 0.0010 | time_forward 4.1930 | time_backward 5.8420
[2023-09-02 12:32:23,207::train::INFO] [train] Iter 09915 | loss 1.9430 | loss(rot) 1.5603 | loss(pos) 0.1850 | loss(seq) 0.1977 | grad 4.4530 | lr 0.0010 | time_forward 3.8160 | time_backward 5.3910
[2023-09-02 12:32:25,897::train::INFO] [train] Iter 09916 | loss 1.4023 | loss(rot) 0.3180 | loss(pos) 0.4603 | loss(seq) 0.6240 | grad 6.2435 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4400
[2023-09-02 12:32:28,396::train::INFO] [train] Iter 09917 | loss 1.6579 | loss(rot) 0.8715 | loss(pos) 0.2538 | loss(seq) 0.5326 | grad 7.2084 | lr 0.0010 | time_forward 1.2040 | time_backward 1.2920
[2023-09-02 12:32:37,727::train::INFO] [train] Iter 09918 | loss 1.1550 | loss(rot) 0.3903 | loss(pos) 0.6569 | loss(seq) 0.1078 | grad 4.0746 | lr 0.0010 | time_forward 3.8570 | time_backward 5.4490
[2023-09-02 12:32:46,067::train::INFO] [train] Iter 09919 | loss 1.3025 | loss(rot) 0.0724 | loss(pos) 0.8822 | loss(seq) 0.3479 | grad 6.5750 | lr 0.0010 | time_forward 3.4870 | time_backward 4.8500
[2023-09-02 12:32:53,625::train::INFO] [train] Iter 09920 | loss 0.9071 | loss(rot) 0.2594 | loss(pos) 0.2385 | loss(seq) 0.4092 | grad 3.1967 | lr 0.0010 | time_forward 3.0790 | time_backward 4.4770
[2023-09-02 12:32:55,877::train::INFO] [train] Iter 09921 | loss 1.6378 | loss(rot) 0.5521 | loss(pos) 0.4096 | loss(seq) 0.6761 | grad 3.6534 | lr 0.0010 | time_forward 1.0450 | time_backward 1.2030
[2023-09-02 12:33:04,692::train::INFO] [train] Iter 09922 | loss 2.7674 | loss(rot) 0.0322 | loss(pos) 2.7353 | loss(seq) 0.0000 | grad 4.7508 | lr 0.0010 | time_forward 3.7040 | time_backward 5.1090
[2023-09-02 12:33:13,107::train::INFO] [train] Iter 09923 | loss 1.0380 | loss(rot) 0.5867 | loss(pos) 0.2835 | loss(seq) 0.1677 | grad 3.8817 | lr 0.0010 | time_forward 3.5260 | time_backward 4.8860
[2023-09-02 12:33:15,819::train::INFO] [train] Iter 09924 | loss 1.8672 | loss(rot) 1.1324 | loss(pos) 0.2186 | loss(seq) 0.5162 | grad 3.9610 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4480
[2023-09-02 12:33:18,089::train::INFO] [train] Iter 09925 | loss 1.0196 | loss(rot) 0.2864 | loss(pos) 0.6792 | loss(seq) 0.0540 | grad 3.3552 | lr 0.0010 | time_forward 1.0560 | time_backward 1.1960
[2023-09-02 12:33:28,163::train::INFO] [train] Iter 09926 | loss 2.1458 | loss(rot) 1.2236 | loss(pos) 0.3467 | loss(seq) 0.5755 | grad 5.1919 | lr 0.0010 | time_forward 4.0030 | time_backward 6.0670
[2023-09-02 12:33:36,340::train::INFO] [train] Iter 09927 | loss 0.8435 | loss(rot) 0.0858 | loss(pos) 0.7431 | loss(seq) 0.0146 | grad 3.4430 | lr 0.0010 | time_forward 3.3450 | time_backward 4.8150
[2023-09-02 12:33:45,714::train::INFO] [train] Iter 09928 | loss 2.3809 | loss(rot) 2.1920 | loss(pos) 0.1504 | loss(seq) 0.0385 | grad 3.1566 | lr 0.0010 | time_forward 3.8830 | time_backward 5.4870
[2023-09-02 12:33:55,797::train::INFO] [train] Iter 09929 | loss 1.8680 | loss(rot) 0.2468 | loss(pos) 1.6065 | loss(seq) 0.0147 | grad 3.3060 | lr 0.0010 | time_forward 4.2160 | time_backward 5.8630
[2023-09-02 12:33:58,513::train::INFO] [train] Iter 09930 | loss 0.9572 | loss(rot) 0.3522 | loss(pos) 0.2451 | loss(seq) 0.3599 | grad 2.9176 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4690
[2023-09-02 12:34:03,349::train::INFO] [train] Iter 09931 | loss 1.8214 | loss(rot) 0.8492 | loss(pos) 0.4435 | loss(seq) 0.5288 | grad 5.8912 | lr 0.0010 | time_forward 2.1640 | time_backward 2.6700
[2023-09-02 12:34:05,859::train::INFO] [train] Iter 09932 | loss 2.7965 | loss(rot) 2.6771 | loss(pos) 0.1149 | loss(seq) 0.0045 | grad 3.2957 | lr 0.0010 | time_forward 1.1220 | time_backward 1.3840
[2023-09-02 12:34:08,190::train::INFO] [train] Iter 09933 | loss 1.8730 | loss(rot) 1.3555 | loss(pos) 0.1362 | loss(seq) 0.3814 | grad 3.5188 | lr 0.0010 | time_forward 1.1020 | time_backward 1.2250
[2023-09-02 12:34:15,475::train::INFO] [train] Iter 09934 | loss 1.7865 | loss(rot) 1.2506 | loss(pos) 0.1271 | loss(seq) 0.4088 | grad 3.8099 | lr 0.0010 | time_forward 3.0610 | time_backward 4.2200
[2023-09-02 12:34:25,182::train::INFO] [train] Iter 09935 | loss 1.5186 | loss(rot) 0.0357 | loss(pos) 1.4801 | loss(seq) 0.0028 | grad 5.3595 | lr 0.0010 | time_forward 3.9490 | time_backward 5.7550
[2023-09-02 12:34:33,937::train::INFO] [train] Iter 09936 | loss 1.7735 | loss(rot) 1.6436 | loss(pos) 0.1293 | loss(seq) 0.0006 | grad 5.3149 | lr 0.0010 | time_forward 3.6620 | time_backward 5.0890
[2023-09-02 12:34:36,595::train::INFO] [train] Iter 09937 | loss 2.0154 | loss(rot) 1.4240 | loss(pos) 0.1415 | loss(seq) 0.4499 | grad 3.6955 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4200
[2023-09-02 12:34:45,136::train::INFO] [train] Iter 09938 | loss 1.6915 | loss(rot) 1.5581 | loss(pos) 0.1313 | loss(seq) 0.0021 | grad 3.7574 | lr 0.0010 | time_forward 3.6870 | time_backward 4.8500
[2023-09-02 12:34:47,758::train::INFO] [train] Iter 09939 | loss 2.9498 | loss(rot) 2.2991 | loss(pos) 0.1867 | loss(seq) 0.4640 | grad 5.1537 | lr 0.0010 | time_forward 1.2190 | time_backward 1.4000
[2023-09-02 12:34:56,323::train::INFO] [train] Iter 09940 | loss 1.5282 | loss(rot) 0.1200 | loss(pos) 1.4035 | loss(seq) 0.0047 | grad 4.2581 | lr 0.0010 | time_forward 3.5720 | time_backward 4.9900
[2023-09-02 12:35:06,282::train::INFO] [train] Iter 09941 | loss 1.2764 | loss(rot) 0.8486 | loss(pos) 0.2090 | loss(seq) 0.2189 | grad 3.7066 | lr 0.0010 | time_forward 4.1180 | time_backward 5.8370
[2023-09-02 12:35:13,704::train::INFO] [train] Iter 09942 | loss 0.8678 | loss(rot) 0.1055 | loss(pos) 0.7390 | loss(seq) 0.0233 | grad 5.2163 | lr 0.0010 | time_forward 3.1110 | time_backward 4.3080
[2023-09-02 12:35:16,360::train::INFO] [train] Iter 09943 | loss 1.2890 | loss(rot) 0.4135 | loss(pos) 0.3014 | loss(seq) 0.5741 | grad 4.2347 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4100
[2023-09-02 12:35:25,447::train::INFO] [train] Iter 09944 | loss 1.3574 | loss(rot) 0.7484 | loss(pos) 0.1468 | loss(seq) 0.4623 | grad 4.4210 | lr 0.0010 | time_forward 3.7960 | time_backward 5.2880
[2023-09-02 12:35:30,180::train::INFO] [train] Iter 09945 | loss 1.6983 | loss(rot) 0.1397 | loss(pos) 1.5522 | loss(seq) 0.0064 | grad 10.8388 | lr 0.0010 | time_forward 2.0330 | time_backward 2.6980
[2023-09-02 12:35:40,171::train::INFO] [train] Iter 09946 | loss 2.0209 | loss(rot) 1.0698 | loss(pos) 0.3173 | loss(seq) 0.6339 | grad 5.1482 | lr 0.0010 | time_forward 4.0480 | time_backward 5.9390
[2023-09-02 12:35:50,146::train::INFO] [train] Iter 09947 | loss 2.1912 | loss(rot) 0.0773 | loss(pos) 2.1125 | loss(seq) 0.0015 | grad 7.4726 | lr 0.0010 | time_forward 4.0570 | time_backward 5.9150
[2023-09-02 12:35:58,264::train::INFO] [train] Iter 09948 | loss 2.1835 | loss(rot) 1.3878 | loss(pos) 0.2196 | loss(seq) 0.5761 | grad 3.9301 | lr 0.0010 | time_forward 3.3900 | time_backward 4.7240
[2023-09-02 12:36:01,045::train::INFO] [train] Iter 09949 | loss 1.4093 | loss(rot) 1.2042 | loss(pos) 0.0625 | loss(seq) 0.1426 | grad 5.1755 | lr 0.0010 | time_forward 1.2530 | time_backward 1.5240
[2023-09-02 12:36:03,819::train::INFO] [train] Iter 09950 | loss 1.6727 | loss(rot) 1.0727 | loss(pos) 0.2374 | loss(seq) 0.3626 | grad 3.7109 | lr 0.0010 | time_forward 1.2640 | time_backward 1.5070
[2023-09-02 12:36:06,549::train::INFO] [train] Iter 09951 | loss 2.1986 | loss(rot) 1.2111 | loss(pos) 0.3209 | loss(seq) 0.6665 | grad 4.1461 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4700
[2023-09-02 12:36:15,078::train::INFO] [train] Iter 09952 | loss 1.5955 | loss(rot) 1.1542 | loss(pos) 0.0836 | loss(seq) 0.3578 | grad 4.0561 | lr 0.0010 | time_forward 3.5680 | time_backward 4.9440
[2023-09-02 12:36:17,768::train::INFO] [train] Iter 09953 | loss 0.5458 | loss(rot) 0.0299 | loss(pos) 0.5089 | loss(seq) 0.0069 | grad 4.1583 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4540
[2023-09-02 12:36:26,167::train::INFO] [train] Iter 09954 | loss 1.7821 | loss(rot) 1.3491 | loss(pos) 0.0997 | loss(seq) 0.3332 | grad 2.4601 | lr 0.0010 | time_forward 3.5500 | time_backward 4.8130
[2023-09-02 12:36:28,900::train::INFO] [train] Iter 09955 | loss 1.9139 | loss(rot) 1.6434 | loss(pos) 0.2705 | loss(seq) 0.0000 | grad 4.1039 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4740
[2023-09-02 12:36:31,663::train::INFO] [train] Iter 09956 | loss 2.9990 | loss(rot) 0.6694 | loss(pos) 1.8003 | loss(seq) 0.5293 | grad 9.3236 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4520
[2023-09-02 12:36:41,401::train::INFO] [train] Iter 09957 | loss 3.7750 | loss(rot) 0.0275 | loss(pos) 3.7475 | loss(seq) 0.0000 | grad 12.7441 | lr 0.0010 | time_forward 4.0380 | time_backward 5.6970
[2023-09-02 12:36:50,620::train::INFO] [train] Iter 09958 | loss 0.8850 | loss(rot) 0.2462 | loss(pos) 0.4242 | loss(seq) 0.2146 | grad 3.9978 | lr 0.0010 | time_forward 3.8520 | time_backward 5.3430
[2023-09-02 12:36:57,055::train::INFO] [train] Iter 09959 | loss 1.5747 | loss(rot) 1.3940 | loss(pos) 0.1535 | loss(seq) 0.0273 | grad 3.8435 | lr 0.0010 | time_forward 2.6920 | time_backward 3.7390
[2023-09-02 12:37:06,713::train::INFO] [train] Iter 09960 | loss 1.8634 | loss(rot) 1.3873 | loss(pos) 0.1291 | loss(seq) 0.3470 | grad 4.2354 | lr 0.0010 | time_forward 3.9580 | time_backward 5.6970
[2023-09-02 12:37:09,425::train::INFO] [train] Iter 09961 | loss 1.8395 | loss(rot) 0.8711 | loss(pos) 0.4671 | loss(seq) 0.5014 | grad 4.4254 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4500
[2023-09-02 12:37:17,373::train::INFO] [train] Iter 09962 | loss 0.9051 | loss(rot) 0.2383 | loss(pos) 0.3751 | loss(seq) 0.2917 | grad 3.2578 | lr 0.0010 | time_forward 3.3170 | time_backward 4.6270
[2023-09-02 12:37:19,675::train::INFO] [train] Iter 09963 | loss 1.9063 | loss(rot) 0.8999 | loss(pos) 0.3153 | loss(seq) 0.6910 | grad 6.0378 | lr 0.0010 | time_forward 1.0710 | time_backward 1.2280
[2023-09-02 12:37:28,380::train::INFO] [train] Iter 09964 | loss 0.5906 | loss(rot) 0.2109 | loss(pos) 0.2131 | loss(seq) 0.1666 | grad 4.2104 | lr 0.0010 | time_forward 3.7620 | time_backward 4.9390
[2023-09-02 12:37:31,047::train::INFO] [train] Iter 09965 | loss 0.9869 | loss(rot) 0.0899 | loss(pos) 0.8855 | loss(seq) 0.0115 | grad 5.9334 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4210
[2023-09-02 12:37:33,722::train::INFO] [train] Iter 09966 | loss 1.6672 | loss(rot) 0.0882 | loss(pos) 1.5733 | loss(seq) 0.0056 | grad 6.6722 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4400
[2023-09-02 12:37:41,219::train::INFO] [train] Iter 09967 | loss 1.4284 | loss(rot) 0.8782 | loss(pos) 0.1252 | loss(seq) 0.4250 | grad 4.3667 | lr 0.0010 | time_forward 3.1750 | time_backward 4.3180
[2023-09-02 12:37:51,085::train::INFO] [train] Iter 09968 | loss 2.4782 | loss(rot) 1.8349 | loss(pos) 0.1646 | loss(seq) 0.4787 | grad 4.0860 | lr 0.0010 | time_forward 4.1170 | time_backward 5.7450
[2023-09-02 12:37:59,277::train::INFO] [train] Iter 09969 | loss 1.7676 | loss(rot) 0.0193 | loss(pos) 1.7465 | loss(seq) 0.0018 | grad 6.1961 | lr 0.0010 | time_forward 3.4360 | time_backward 4.7520
[2023-09-02 12:38:09,337::train::INFO] [train] Iter 09970 | loss 1.5938 | loss(rot) 1.4873 | loss(pos) 0.0396 | loss(seq) 0.0669 | grad 5.8189 | lr 0.0010 | time_forward 4.0500 | time_backward 6.0070
[2023-09-02 12:38:16,350::train::INFO] [train] Iter 09971 | loss 1.7314 | loss(rot) 1.6488 | loss(pos) 0.0590 | loss(seq) 0.0237 | grad 5.3347 | lr 0.0010 | time_forward 2.9540 | time_backward 4.0560
[2023-09-02 12:38:24,347::train::INFO] [train] Iter 09972 | loss 1.4652 | loss(rot) 0.8979 | loss(pos) 0.2077 | loss(seq) 0.3595 | grad 5.3432 | lr 0.0010 | time_forward 3.3350 | time_backward 4.6580
[2023-09-02 12:38:32,889::train::INFO] [train] Iter 09973 | loss 1.6842 | loss(rot) 0.7071 | loss(pos) 0.4387 | loss(seq) 0.5384 | grad 6.9873 | lr 0.0010 | time_forward 3.5800 | time_backward 4.9600
[2023-09-02 12:38:42,300::train::INFO] [train] Iter 09974 | loss 1.0379 | loss(rot) 0.1426 | loss(pos) 0.8585 | loss(seq) 0.0368 | grad 3.6111 | lr 0.0010 | time_forward 3.9010 | time_backward 5.5070
[2023-09-02 12:38:51,110::train::INFO] [train] Iter 09975 | loss 2.1622 | loss(rot) 1.8151 | loss(pos) 0.1570 | loss(seq) 0.1901 | grad 5.7149 | lr 0.0010 | time_forward 3.6900 | time_backward 5.1170
[2023-09-02 12:38:53,921::train::INFO] [train] Iter 09976 | loss 1.6574 | loss(rot) 1.5733 | loss(pos) 0.0827 | loss(seq) 0.0013 | grad 4.2469 | lr 0.0010 | time_forward 1.2620 | time_backward 1.5450
[2023-09-02 12:39:02,496::train::INFO] [train] Iter 09977 | loss 1.3223 | loss(rot) 0.7568 | loss(pos) 0.1733 | loss(seq) 0.3921 | grad 4.4979 | lr 0.0010 | time_forward 3.5760 | time_backward 4.9960
[2023-09-02 12:39:05,218::train::INFO] [train] Iter 09978 | loss 1.5347 | loss(rot) 0.0445 | loss(pos) 1.4858 | loss(seq) 0.0044 | grad 6.4473 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4630
[2023-09-02 12:39:13,642::train::INFO] [train] Iter 09979 | loss 1.3799 | loss(rot) 0.9835 | loss(pos) 0.1363 | loss(seq) 0.2600 | grad 4.6007 | lr 0.0010 | time_forward 3.6220 | time_backward 4.7980
[2023-09-02 12:39:18,359::train::INFO] [train] Iter 09980 | loss 1.8733 | loss(rot) 1.0299 | loss(pos) 0.4525 | loss(seq) 0.3909 | grad 5.6839 | lr 0.0010 | time_forward 2.0520 | time_backward 2.6610
[2023-09-02 12:39:20,791::train::INFO] [train] Iter 09981 | loss 1.5197 | loss(rot) 0.8718 | loss(pos) 0.2201 | loss(seq) 0.4278 | grad 5.4575 | lr 0.0010 | time_forward 1.1030 | time_backward 1.3260
[2023-09-02 12:39:30,800::train::INFO] [train] Iter 09982 | loss 1.8372 | loss(rot) 1.6218 | loss(pos) 0.2086 | loss(seq) 0.0069 | grad 4.8807 | lr 0.0010 | time_forward 4.0570 | time_backward 5.9200
[2023-09-02 12:39:39,431::train::INFO] [train] Iter 09983 | loss 0.5244 | loss(rot) 0.1830 | loss(pos) 0.2871 | loss(seq) 0.0544 | grad 2.5130 | lr 0.0010 | time_forward 3.7310 | time_backward 4.8960
[2023-09-02 12:39:49,314::train::INFO] [train] Iter 09984 | loss 0.8690 | loss(rot) 0.3118 | loss(pos) 0.2326 | loss(seq) 0.3246 | grad 3.4131 | lr 0.0010 | time_forward 4.0210 | time_backward 5.8580
[2023-09-02 12:39:58,464::train::INFO] [train] Iter 09985 | loss 1.4594 | loss(rot) 0.9753 | loss(pos) 0.1228 | loss(seq) 0.3614 | grad 6.7898 | lr 0.0010 | time_forward 3.8960 | time_backward 5.2510