text
stringlengths
56
1.16k
[2023-09-02 12:17:05,606::train::INFO] [train] Iter 09786 | loss 1.3474 | loss(rot) 1.0473 | loss(pos) 0.0797 | loss(seq) 0.2204 | grad 4.4129 | lr 0.0010 | time_forward 2.8180 | time_backward 3.8180
[2023-09-02 12:17:14,699::train::INFO] [train] Iter 09787 | loss 1.1112 | loss(rot) 0.4183 | loss(pos) 0.2283 | loss(seq) 0.4646 | grad 4.8535 | lr 0.0010 | time_forward 3.8040 | time_backward 5.2870
[2023-09-02 12:17:17,201::train::INFO] [train] Iter 09788 | loss 1.4545 | loss(rot) 1.3303 | loss(pos) 0.1012 | loss(seq) 0.0231 | grad 7.9193 | lr 0.0010 | time_forward 1.1700 | time_backward 1.3270
[2023-09-02 12:17:19,537::train::INFO] [train] Iter 09789 | loss 1.0444 | loss(rot) 0.4140 | loss(pos) 0.2418 | loss(seq) 0.3886 | grad 3.1168 | lr 0.0010 | time_forward 1.0570 | time_backward 1.2510
[2023-09-02 12:17:27,628::train::INFO] [train] Iter 09790 | loss 4.4484 | loss(rot) 0.2141 | loss(pos) 4.2343 | loss(seq) 0.0000 | grad 8.5161 | lr 0.0010 | time_forward 3.3340 | time_backward 4.7530
[2023-09-02 12:17:37,049::train::INFO] [train] Iter 09791 | loss 2.1473 | loss(rot) 1.7047 | loss(pos) 0.0819 | loss(seq) 0.3606 | grad 4.6848 | lr 0.0010 | time_forward 3.9990 | time_backward 5.4180
[2023-09-02 12:17:39,802::train::INFO] [train] Iter 09792 | loss 2.4805 | loss(rot) 1.8598 | loss(pos) 0.2254 | loss(seq) 0.3953 | grad 5.7648 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4620
[2023-09-02 12:17:48,553::train::INFO] [train] Iter 09793 | loss 1.5997 | loss(rot) 1.4091 | loss(pos) 0.1853 | loss(seq) 0.0053 | grad 4.7139 | lr 0.0010 | time_forward 3.7410 | time_backward 4.9900
[2023-09-02 12:17:58,564::train::INFO] [train] Iter 09794 | loss 2.1976 | loss(rot) 1.8062 | loss(pos) 0.1794 | loss(seq) 0.2119 | grad 4.1265 | lr 0.0010 | time_forward 4.0690 | time_backward 5.9390
[2023-09-02 12:18:08,790::train::INFO] [train] Iter 09795 | loss 1.7318 | loss(rot) 1.5687 | loss(pos) 0.1140 | loss(seq) 0.0491 | grad 4.8482 | lr 0.0010 | time_forward 4.1030 | time_backward 6.1180
[2023-09-02 12:18:16,958::train::INFO] [train] Iter 09796 | loss 2.1987 | loss(rot) 1.9340 | loss(pos) 0.2644 | loss(seq) 0.0003 | grad 4.8678 | lr 0.0010 | time_forward 3.4090 | time_backward 4.7560
[2023-09-02 12:18:25,440::train::INFO] [train] Iter 09797 | loss 1.1895 | loss(rot) 0.5672 | loss(pos) 0.2567 | loss(seq) 0.3656 | grad 4.2744 | lr 0.0010 | time_forward 3.5770 | time_backward 4.9010
[2023-09-02 12:18:28,157::train::INFO] [train] Iter 09798 | loss 0.8672 | loss(rot) 0.6611 | loss(pos) 0.1975 | loss(seq) 0.0087 | grad 5.1556 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4550
[2023-09-02 12:18:37,981::train::INFO] [train] Iter 09799 | loss 1.1757 | loss(rot) 0.1327 | loss(pos) 0.9969 | loss(seq) 0.0461 | grad 4.9691 | lr 0.0010 | time_forward 3.9840 | time_backward 5.8370
[2023-09-02 12:18:46,731::train::INFO] [train] Iter 09800 | loss 1.3728 | loss(rot) 0.6567 | loss(pos) 0.2373 | loss(seq) 0.4788 | grad 4.2289 | lr 0.0010 | time_forward 3.6960 | time_backward 5.0500
[2023-09-02 12:18:56,736::train::INFO] [train] Iter 09801 | loss 1.3441 | loss(rot) 1.1925 | loss(pos) 0.0880 | loss(seq) 0.0636 | grad 4.3421 | lr 0.0010 | time_forward 4.0090 | time_backward 5.9920
[2023-09-02 12:19:06,792::train::INFO] [train] Iter 09802 | loss 1.9549 | loss(rot) 1.2332 | loss(pos) 0.1717 | loss(seq) 0.5500 | grad 4.3585 | lr 0.0010 | time_forward 4.0540 | time_backward 5.9990
[2023-09-02 12:19:15,917::train::INFO] [train] Iter 09803 | loss 2.1865 | loss(rot) 1.0731 | loss(pos) 0.3839 | loss(seq) 0.7295 | grad 3.0047 | lr 0.0010 | time_forward 3.7990 | time_backward 5.3220
[2023-09-02 12:19:24,912::train::INFO] [train] Iter 09804 | loss 1.5747 | loss(rot) 0.9816 | loss(pos) 0.1226 | loss(seq) 0.4705 | grad 3.8898 | lr 0.0010 | time_forward 3.7480 | time_backward 5.2430
[2023-09-02 12:19:34,544::train::INFO] [train] Iter 09805 | loss 0.7991 | loss(rot) 0.1079 | loss(pos) 0.6761 | loss(seq) 0.0151 | grad 3.8121 | lr 0.0010 | time_forward 3.8750 | time_backward 5.7540
[2023-09-02 12:19:37,221::train::INFO] [train] Iter 09806 | loss 1.6008 | loss(rot) 1.3058 | loss(pos) 0.0746 | loss(seq) 0.2204 | grad 3.5284 | lr 0.0010 | time_forward 1.2200 | time_backward 1.4530
[2023-09-02 12:19:47,159::train::INFO] [train] Iter 09807 | loss 1.0140 | loss(rot) 0.3719 | loss(pos) 0.3889 | loss(seq) 0.2532 | grad 4.2514 | lr 0.0010 | time_forward 3.9920 | time_backward 5.9420
[2023-09-02 12:19:55,780::train::INFO] [train] Iter 09808 | loss 1.0832 | loss(rot) 0.9897 | loss(pos) 0.0871 | loss(seq) 0.0064 | grad 5.7534 | lr 0.0010 | time_forward 3.6160 | time_backward 5.0010
[2023-09-02 12:20:05,444::train::INFO] [train] Iter 09809 | loss 2.4159 | loss(rot) 1.3447 | loss(pos) 0.4179 | loss(seq) 0.6533 | grad 4.3841 | lr 0.0010 | time_forward 3.8600 | time_backward 5.8010
[2023-09-02 12:20:08,740::train::INFO] [train] Iter 09810 | loss 2.2096 | loss(rot) 1.3340 | loss(pos) 0.2835 | loss(seq) 0.5921 | grad 3.4109 | lr 0.0010 | time_forward 1.4140 | time_backward 1.8780
[2023-09-02 12:20:17,007::train::INFO] [train] Iter 09811 | loss 1.0463 | loss(rot) 0.4110 | loss(pos) 0.3846 | loss(seq) 0.2507 | grad 3.2381 | lr 0.0010 | time_forward 3.4810 | time_backward 4.7830
[2023-09-02 12:20:25,408::train::INFO] [train] Iter 09812 | loss 1.8990 | loss(rot) 1.7711 | loss(pos) 0.0708 | loss(seq) 0.0570 | grad 6.0123 | lr 0.0010 | time_forward 3.4890 | time_backward 4.9080
[2023-09-02 12:20:28,143::train::INFO] [train] Iter 09813 | loss 1.1343 | loss(rot) 0.9062 | loss(pos) 0.1335 | loss(seq) 0.0946 | grad 4.8713 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4360
[2023-09-02 12:20:38,101::train::INFO] [train] Iter 09814 | loss 2.1254 | loss(rot) 1.4186 | loss(pos) 0.1992 | loss(seq) 0.5076 | grad 3.9597 | lr 0.0010 | time_forward 4.1540 | time_backward 5.8020
[2023-09-02 12:20:40,322::train::INFO] [train] Iter 09815 | loss 1.9087 | loss(rot) 1.7434 | loss(pos) 0.1394 | loss(seq) 0.0259 | grad 4.6072 | lr 0.0010 | time_forward 1.0160 | time_backward 1.2010
[2023-09-02 12:20:50,173::train::INFO] [train] Iter 09816 | loss 1.8504 | loss(rot) 1.6187 | loss(pos) 0.2288 | loss(seq) 0.0029 | grad 3.6829 | lr 0.0010 | time_forward 3.9530 | time_backward 5.8940
[2023-09-02 12:20:53,645::train::INFO] [train] Iter 09817 | loss 0.9497 | loss(rot) 0.4580 | loss(pos) 0.3411 | loss(seq) 0.1505 | grad 3.7430 | lr 0.0010 | time_forward 1.4340 | time_backward 2.0350
[2023-09-02 12:21:03,603::train::INFO] [train] Iter 09818 | loss 0.7244 | loss(rot) 0.2352 | loss(pos) 0.4329 | loss(seq) 0.0563 | grad 3.0631 | lr 0.0010 | time_forward 4.0500 | time_backward 5.9040
[2023-09-02 12:21:06,350::train::INFO] [train] Iter 09819 | loss 1.2007 | loss(rot) 0.3630 | loss(pos) 0.8194 | loss(seq) 0.0184 | grad 4.5463 | lr 0.0010 | time_forward 1.2440 | time_backward 1.5000
[2023-09-02 12:21:08,378::train::INFO] [train] Iter 09820 | loss 1.9672 | loss(rot) 1.5622 | loss(pos) 0.3922 | loss(seq) 0.0128 | grad 6.5068 | lr 0.0010 | time_forward 0.9230 | time_backward 1.1020
[2023-09-02 12:21:13,269::train::INFO] [train] Iter 09821 | loss 1.5142 | loss(rot) 0.4602 | loss(pos) 0.5218 | loss(seq) 0.5323 | grad 11.3471 | lr 0.0010 | time_forward 2.0840 | time_backward 2.8040
[2023-09-02 12:21:16,141::train::INFO] [train] Iter 09822 | loss 1.6259 | loss(rot) 0.8645 | loss(pos) 0.1555 | loss(seq) 0.6058 | grad 5.8726 | lr 0.0010 | time_forward 1.2880 | time_backward 1.5380
[2023-09-02 12:21:19,062::train::INFO] [train] Iter 09823 | loss 2.2022 | loss(rot) 1.8169 | loss(pos) 0.3853 | loss(seq) 0.0000 | grad 6.1108 | lr 0.0010 | time_forward 1.3210 | time_backward 1.5970
[2023-09-02 12:21:21,299::train::INFO] [train] Iter 09824 | loss 1.2947 | loss(rot) 0.9551 | loss(pos) 0.1034 | loss(seq) 0.2362 | grad 6.4374 | lr 0.0010 | time_forward 1.0330 | time_backward 1.2000
[2023-09-02 12:21:24,752::train::INFO] [train] Iter 09825 | loss 1.7019 | loss(rot) 0.5490 | loss(pos) 0.6404 | loss(seq) 0.5126 | grad 5.1063 | lr 0.0010 | time_forward 1.4360 | time_backward 1.9970
[2023-09-02 12:21:31,804::train::INFO] [train] Iter 09826 | loss 1.4751 | loss(rot) 1.3332 | loss(pos) 0.1418 | loss(seq) 0.0001 | grad 4.8540 | lr 0.0010 | time_forward 2.9310 | time_backward 4.1170
[2023-09-02 12:21:34,681::train::INFO] [train] Iter 09827 | loss 1.1966 | loss(rot) 0.2913 | loss(pos) 0.3157 | loss(seq) 0.5896 | grad 3.9206 | lr 0.0010 | time_forward 1.2630 | time_backward 1.6100
[2023-09-02 12:21:44,655::train::INFO] [train] Iter 09828 | loss 0.9616 | loss(rot) 0.1213 | loss(pos) 0.8098 | loss(seq) 0.0305 | grad 5.1976 | lr 0.0010 | time_forward 4.1070 | time_backward 5.8630
[2023-09-02 12:21:47,536::train::INFO] [train] Iter 09829 | loss 1.8927 | loss(rot) 1.3148 | loss(pos) 0.2017 | loss(seq) 0.3762 | grad 5.8089 | lr 0.0010 | time_forward 1.2710 | time_backward 1.6060
[2023-09-02 12:21:56,354::train::INFO] [train] Iter 09830 | loss 1.1758 | loss(rot) 0.1988 | loss(pos) 0.5915 | loss(seq) 0.3854 | grad 6.9173 | lr 0.0010 | time_forward 3.7070 | time_backward 5.1080
[2023-09-02 12:22:06,312::train::INFO] [train] Iter 09831 | loss 2.0737 | loss(rot) 1.1891 | loss(pos) 0.3504 | loss(seq) 0.5342 | grad 5.9252 | lr 0.0010 | time_forward 3.9920 | time_backward 5.9630
[2023-09-02 12:22:15,274::train::INFO] [train] Iter 09832 | loss 1.6477 | loss(rot) 1.2672 | loss(pos) 0.1805 | loss(seq) 0.2000 | grad 5.2842 | lr 0.0010 | time_forward 3.7650 | time_backward 5.1930
[2023-09-02 12:22:17,969::train::INFO] [train] Iter 09833 | loss 1.3616 | loss(rot) 0.7637 | loss(pos) 0.1683 | loss(seq) 0.4297 | grad 3.5387 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4450
[2023-09-02 12:22:27,834::train::INFO] [train] Iter 09834 | loss 1.9506 | loss(rot) 1.7683 | loss(pos) 0.1820 | loss(seq) 0.0003 | grad 6.2683 | lr 0.0010 | time_forward 3.9390 | time_backward 5.9230
[2023-09-02 12:22:36,526::train::INFO] [train] Iter 09835 | loss 1.9704 | loss(rot) 1.8217 | loss(pos) 0.1481 | loss(seq) 0.0006 | grad 4.6866 | lr 0.0010 | time_forward 3.6630 | time_backward 5.0120
[2023-09-02 12:22:39,203::train::INFO] [train] Iter 09836 | loss 2.5250 | loss(rot) 2.3776 | loss(pos) 0.1473 | loss(seq) 0.0000 | grad 7.4964 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4450
[2023-09-02 12:22:41,911::train::INFO] [train] Iter 09837 | loss 1.4884 | loss(rot) 0.7882 | loss(pos) 0.1878 | loss(seq) 0.5124 | grad 3.9388 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4530
[2023-09-02 12:22:51,927::train::INFO] [train] Iter 09838 | loss 2.1728 | loss(rot) 1.7927 | loss(pos) 0.1180 | loss(seq) 0.2621 | grad 3.0980 | lr 0.0010 | time_forward 4.0510 | time_backward 5.9630
[2023-09-02 12:23:00,531::train::INFO] [train] Iter 09839 | loss 1.6530 | loss(rot) 1.5599 | loss(pos) 0.0866 | loss(seq) 0.0066 | grad 5.4229 | lr 0.0010 | time_forward 3.5660 | time_backward 5.0350
[2023-09-02 12:23:08,893::train::INFO] [train] Iter 09840 | loss 1.6289 | loss(rot) 1.2081 | loss(pos) 0.1124 | loss(seq) 0.3085 | grad 4.1538 | lr 0.0010 | time_forward 3.4490 | time_backward 4.9090
[2023-09-02 12:23:18,545::train::INFO] [train] Iter 09841 | loss 2.6670 | loss(rot) 1.9568 | loss(pos) 0.3426 | loss(seq) 0.3675 | grad 4.5642 | lr 0.0010 | time_forward 3.9570 | time_backward 5.6920
[2023-09-02 12:23:27,759::train::INFO] [train] Iter 09842 | loss 1.1523 | loss(rot) 0.4297 | loss(pos) 0.2810 | loss(seq) 0.4416 | grad 3.3712 | lr 0.0010 | time_forward 3.8490 | time_backward 5.3420
[2023-09-02 12:23:36,412::train::INFO] [train] Iter 09843 | loss 2.2087 | loss(rot) 1.2793 | loss(pos) 0.3651 | loss(seq) 0.5643 | grad 4.0143 | lr 0.0010 | time_forward 3.6200 | time_backward 5.0290
[2023-09-02 12:23:38,645::train::INFO] [train] Iter 09844 | loss 2.6145 | loss(rot) 0.0393 | loss(pos) 2.5746 | loss(seq) 0.0006 | grad 5.6299 | lr 0.0010 | time_forward 1.0290 | time_backward 1.2000
[2023-09-02 12:23:47,049::train::INFO] [train] Iter 09845 | loss 2.4206 | loss(rot) 1.8149 | loss(pos) 0.2803 | loss(seq) 0.3255 | grad 5.1335 | lr 0.0010 | time_forward 3.4700 | time_backward 4.9300
[2023-09-02 12:23:57,089::train::INFO] [train] Iter 09846 | loss 2.1104 | loss(rot) 1.6837 | loss(pos) 0.0953 | loss(seq) 0.3314 | grad 3.7524 | lr 0.0010 | time_forward 4.0230 | time_backward 6.0140
[2023-09-02 12:23:59,842::train::INFO] [train] Iter 09847 | loss 3.2569 | loss(rot) 3.0642 | loss(pos) 0.1446 | loss(seq) 0.0482 | grad 3.4543 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4310
[2023-09-02 12:24:03,301::train::INFO] [train] Iter 09848 | loss 1.8507 | loss(rot) 1.7193 | loss(pos) 0.1240 | loss(seq) 0.0075 | grad 5.2998 | lr 0.0010 | time_forward 1.4420 | time_backward 2.0150
[2023-09-02 12:24:13,466::train::INFO] [train] Iter 09849 | loss 1.9693 | loss(rot) 1.8068 | loss(pos) 0.1457 | loss(seq) 0.0168 | grad 4.5543 | lr 0.0010 | time_forward 4.2240 | time_backward 5.9380
[2023-09-02 12:24:22,217::train::INFO] [train] Iter 09850 | loss 1.3282 | loss(rot) 1.1601 | loss(pos) 0.1309 | loss(seq) 0.0372 | grad 4.8904 | lr 0.0010 | time_forward 3.6630 | time_backward 5.0840
[2023-09-02 12:24:30,368::train::INFO] [train] Iter 09851 | loss 1.9035 | loss(rot) 1.2266 | loss(pos) 0.2489 | loss(seq) 0.4281 | grad 5.0031 | lr 0.0010 | time_forward 3.4620 | time_backward 4.6850
[2023-09-02 12:24:32,768::train::INFO] [train] Iter 09852 | loss 1.9519 | loss(rot) 0.0502 | loss(pos) 1.9013 | loss(seq) 0.0004 | grad 5.5695 | lr 0.0010 | time_forward 1.1410 | time_backward 1.2540
[2023-09-02 12:24:41,114::train::INFO] [train] Iter 09853 | loss 1.7516 | loss(rot) 0.0136 | loss(pos) 1.7318 | loss(seq) 0.0062 | grad 4.6919 | lr 0.0010 | time_forward 3.5450 | time_backward 4.7770
[2023-09-02 12:24:51,082::train::INFO] [train] Iter 09854 | loss 1.6393 | loss(rot) 1.4354 | loss(pos) 0.0862 | loss(seq) 0.1177 | grad 4.1432 | lr 0.0010 | time_forward 4.0730 | time_backward 5.8910
[2023-09-02 12:25:00,938::train::INFO] [train] Iter 09855 | loss 1.3935 | loss(rot) 0.7236 | loss(pos) 0.1800 | loss(seq) 0.4899 | grad 6.4443 | lr 0.0010 | time_forward 3.9940 | time_backward 5.8590
[2023-09-02 12:25:04,132::train::INFO] [train] Iter 09856 | loss 2.2300 | loss(rot) 2.0447 | loss(pos) 0.1853 | loss(seq) 0.0000 | grad 11.9416 | lr 0.0010 | time_forward 1.3820 | time_backward 1.8090
[2023-09-02 12:25:14,266::train::INFO] [train] Iter 09857 | loss 0.8409 | loss(rot) 0.1120 | loss(pos) 0.6974 | loss(seq) 0.0315 | grad 4.4567 | lr 0.0010 | time_forward 4.1890 | time_backward 5.9410
[2023-09-02 12:25:22,925::train::INFO] [train] Iter 09858 | loss 1.5221 | loss(rot) 0.7039 | loss(pos) 0.4693 | loss(seq) 0.3488 | grad 3.8955 | lr 0.0010 | time_forward 3.6560 | time_backward 5.0000
[2023-09-02 12:25:25,087::train::INFO] [train] Iter 09859 | loss 2.2332 | loss(rot) 2.0310 | loss(pos) 0.1989 | loss(seq) 0.0032 | grad 5.9114 | lr 0.0010 | time_forward 0.9970 | time_backward 1.1620
[2023-09-02 12:25:34,864::train::INFO] [train] Iter 09860 | loss 1.4247 | loss(rot) 0.1793 | loss(pos) 1.2327 | loss(seq) 0.0128 | grad 4.5630 | lr 0.0010 | time_forward 4.0090 | time_backward 5.7650
[2023-09-02 12:25:38,240::train::INFO] [train] Iter 09861 | loss 0.9807 | loss(rot) 0.0698 | loss(pos) 0.8977 | loss(seq) 0.0132 | grad 3.1733 | lr 0.0010 | time_forward 1.4110 | time_backward 1.9450
[2023-09-02 12:25:40,904::train::INFO] [train] Iter 09862 | loss 5.0106 | loss(rot) 0.0564 | loss(pos) 4.9542 | loss(seq) 0.0000 | grad 9.4413 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4300
[2023-09-02 12:25:50,056::train::INFO] [train] Iter 09863 | loss 2.3995 | loss(rot) 1.7822 | loss(pos) 0.2152 | loss(seq) 0.4021 | grad 3.5940 | lr 0.0010 | time_forward 3.8540 | time_backward 5.2940
[2023-09-02 12:25:52,681::train::INFO] [train] Iter 09864 | loss 1.9011 | loss(rot) 1.2854 | loss(pos) 0.1607 | loss(seq) 0.4550 | grad 6.0984 | lr 0.0010 | time_forward 1.2130 | time_backward 1.4080
[2023-09-02 12:26:01,885::train::INFO] [train] Iter 09865 | loss 1.9235 | loss(rot) 0.9461 | loss(pos) 0.3939 | loss(seq) 0.5834 | grad 4.5697 | lr 0.0010 | time_forward 3.8580 | time_backward 5.3420
[2023-09-02 12:26:11,942::train::INFO] [train] Iter 09866 | loss 1.3216 | loss(rot) 0.7869 | loss(pos) 0.2159 | loss(seq) 0.3188 | grad 5.7439 | lr 0.0010 | time_forward 4.0290 | time_backward 6.0240
[2023-09-02 12:26:20,645::train::INFO] [train] Iter 09867 | loss 1.7158 | loss(rot) 0.9103 | loss(pos) 0.1822 | loss(seq) 0.6233 | grad 4.8424 | lr 0.0010 | time_forward 3.6510 | time_backward 5.0480
[2023-09-02 12:26:29,191::train::INFO] [train] Iter 09868 | loss 2.7701 | loss(rot) 2.5669 | loss(pos) 0.1960 | loss(seq) 0.0072 | grad 4.3660 | lr 0.0010 | time_forward 3.5820 | time_backward 4.9610
[2023-09-02 12:26:38,287::train::INFO] [train] Iter 09869 | loss 2.6014 | loss(rot) 1.8851 | loss(pos) 0.3661 | loss(seq) 0.3502 | grad 5.1104 | lr 0.0010 | time_forward 3.8850 | time_backward 5.2090
[2023-09-02 12:26:46,639::train::INFO] [train] Iter 09870 | loss 2.0826 | loss(rot) 1.7262 | loss(pos) 0.3413 | loss(seq) 0.0151 | grad 6.0463 | lr 0.0010 | time_forward 3.5430 | time_backward 4.8030
[2023-09-02 12:26:49,360::train::INFO] [train] Iter 09871 | loss 1.3027 | loss(rot) 0.6771 | loss(pos) 0.1667 | loss(seq) 0.4589 | grad 3.2908 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4710
[2023-09-02 12:26:57,301::train::INFO] [train] Iter 09872 | loss 1.5707 | loss(rot) 0.8085 | loss(pos) 0.2516 | loss(seq) 0.5106 | grad 3.5695 | lr 0.0010 | time_forward 3.3210 | time_backward 4.6170
[2023-09-02 12:27:07,031::train::INFO] [train] Iter 09873 | loss 1.4379 | loss(rot) 1.3163 | loss(pos) 0.0574 | loss(seq) 0.0642 | grad 7.3894 | lr 0.0010 | time_forward 3.9940 | time_backward 5.7320
[2023-09-02 12:27:10,370::train::INFO] [train] Iter 09874 | loss 2.6663 | loss(rot) 1.8156 | loss(pos) 0.3442 | loss(seq) 0.5065 | grad 4.1250 | lr 0.0010 | time_forward 1.3950 | time_backward 1.9260
[2023-09-02 12:27:20,384::train::INFO] [train] Iter 09875 | loss 1.7086 | loss(rot) 1.1668 | loss(pos) 0.1366 | loss(seq) 0.4051 | grad 3.5213 | lr 0.0010 | time_forward 4.0330 | time_backward 5.9770
[2023-09-02 12:27:28,674::train::INFO] [train] Iter 09876 | loss 1.7031 | loss(rot) 1.6186 | loss(pos) 0.0833 | loss(seq) 0.0012 | grad 4.2481 | lr 0.0010 | time_forward 3.4480 | time_backward 4.8400
[2023-09-02 12:27:31,338::train::INFO] [train] Iter 09877 | loss 2.5884 | loss(rot) 1.8420 | loss(pos) 0.2464 | loss(seq) 0.4999 | grad 3.3797 | lr 0.0010 | time_forward 1.2230 | time_backward 1.4380
[2023-09-02 12:27:39,253::train::INFO] [train] Iter 09878 | loss 2.4834 | loss(rot) 2.2612 | loss(pos) 0.1286 | loss(seq) 0.0936 | grad 5.6300 | lr 0.0010 | time_forward 3.2400 | time_backward 4.6720
[2023-09-02 12:27:49,253::train::INFO] [train] Iter 09879 | loss 1.1929 | loss(rot) 0.3031 | loss(pos) 0.3535 | loss(seq) 0.5363 | grad 2.9819 | lr 0.0010 | time_forward 4.1900 | time_backward 5.8060
[2023-09-02 12:27:52,531::train::INFO] [train] Iter 09880 | loss 1.1466 | loss(rot) 0.3085 | loss(pos) 0.6573 | loss(seq) 0.1808 | grad 2.7514 | lr 0.0010 | time_forward 1.3850 | time_backward 1.8890
[2023-09-02 12:28:02,445::train::INFO] [train] Iter 09881 | loss 1.4636 | loss(rot) 0.7963 | loss(pos) 0.1906 | loss(seq) 0.4767 | grad 4.4314 | lr 0.0010 | time_forward 4.0100 | time_backward 5.9000
[2023-09-02 12:28:04,886::train::INFO] [train] Iter 09882 | loss 1.4821 | loss(rot) 1.3744 | loss(pos) 0.0982 | loss(seq) 0.0095 | grad 2.8312 | lr 0.0010 | time_forward 1.1390 | time_backward 1.2980
[2023-09-02 12:28:07,559::train::INFO] [train] Iter 09883 | loss 1.2061 | loss(rot) 1.0374 | loss(pos) 0.1686 | loss(seq) 0.0001 | grad 4.9638 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4190
[2023-09-02 12:28:14,993::train::INFO] [train] Iter 09884 | loss 1.9109 | loss(rot) 0.8671 | loss(pos) 0.6380 | loss(seq) 0.4058 | grad 6.2843 | lr 0.0010 | time_forward 3.1440 | time_backward 4.2860
[2023-09-02 12:28:23,053::train::INFO] [train] Iter 09885 | loss 2.3713 | loss(rot) 1.7339 | loss(pos) 0.2395 | loss(seq) 0.3979 | grad 6.7788 | lr 0.0010 | time_forward 3.3410 | time_backward 4.7160