text
stringlengths 56
1.16k
|
---|
[2023-09-02 11:52:16,381::train::INFO] [train] Iter 09586 | loss 2.1812 | loss(rot) 1.5105 | loss(pos) 0.1891 | loss(seq) 0.4816 | grad 3.1659 | lr 0.0010 | time_forward 2.8090 | time_backward 3.7610 |
[2023-09-02 11:52:26,377::train::INFO] [train] Iter 09587 | loss 1.0451 | loss(rot) 0.2370 | loss(pos) 0.6923 | loss(seq) 0.1159 | grad 3.9764 | lr 0.0010 | time_forward 4.0520 | time_backward 5.9410 |
[2023-09-02 11:52:33,863::train::INFO] [train] Iter 09588 | loss 1.2758 | loss(rot) 0.2878 | loss(pos) 0.4235 | loss(seq) 0.5645 | grad 5.6436 | lr 0.0010 | time_forward 3.2300 | time_backward 4.2530 |
[2023-09-02 11:52:40,948::train::INFO] [train] Iter 09589 | loss 1.4093 | loss(rot) 1.1096 | loss(pos) 0.2814 | loss(seq) 0.0183 | grad 5.6752 | lr 0.0010 | time_forward 2.9760 | time_backward 4.1050 |
[2023-09-02 11:52:51,022::train::INFO] [train] Iter 09590 | loss 1.2756 | loss(rot) 1.0341 | loss(pos) 0.1555 | loss(seq) 0.0860 | grad 4.8883 | lr 0.0010 | time_forward 3.9980 | time_backward 6.0720 |
[2023-09-02 11:52:53,765::train::INFO] [train] Iter 09591 | loss 2.2474 | loss(rot) 2.0885 | loss(pos) 0.1588 | loss(seq) 0.0000 | grad 5.0790 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4590 |
[2023-09-02 11:53:03,617::train::INFO] [train] Iter 09592 | loss 2.0516 | loss(rot) 1.1987 | loss(pos) 0.2930 | loss(seq) 0.5599 | grad 3.8748 | lr 0.0010 | time_forward 4.0540 | time_backward 5.7950 |
[2023-09-02 11:53:12,884::train::INFO] [train] Iter 09593 | loss 0.8534 | loss(rot) 0.0330 | loss(pos) 0.8149 | loss(seq) 0.0054 | grad 3.9484 | lr 0.0010 | time_forward 3.9530 | time_backward 5.3110 |
[2023-09-02 11:53:21,378::train::INFO] [train] Iter 09594 | loss 1.0469 | loss(rot) 0.8494 | loss(pos) 0.1614 | loss(seq) 0.0361 | grad 4.5246 | lr 0.0010 | time_forward 3.5440 | time_backward 4.9450 |
[2023-09-02 11:53:28,970::train::INFO] [train] Iter 09595 | loss 2.1890 | loss(rot) 2.0560 | loss(pos) 0.1330 | loss(seq) 0.0001 | grad 4.6703 | lr 0.0010 | time_forward 3.1410 | time_backward 4.4470 |
[2023-09-02 11:53:38,967::train::INFO] [train] Iter 09596 | loss 1.5318 | loss(rot) 0.7002 | loss(pos) 0.1852 | loss(seq) 0.6465 | grad 3.3650 | lr 0.0010 | time_forward 4.0800 | time_backward 5.9130 |
[2023-09-02 11:53:48,777::train::INFO] [train] Iter 09597 | loss 0.7350 | loss(rot) 0.6504 | loss(pos) 0.0779 | loss(seq) 0.0067 | grad 3.7223 | lr 0.0010 | time_forward 3.9950 | time_backward 5.7920 |
[2023-09-02 11:53:58,842::train::INFO] [train] Iter 09598 | loss 2.2095 | loss(rot) 0.9516 | loss(pos) 0.7936 | loss(seq) 0.4643 | grad 4.5456 | lr 0.0010 | time_forward 4.2940 | time_backward 5.7680 |
[2023-09-02 11:54:10,920::train::INFO] [train] Iter 09599 | loss 0.9255 | loss(rot) 0.2350 | loss(pos) 0.5391 | loss(seq) 0.1514 | grad 6.5405 | lr 0.0010 | time_forward 4.8930 | time_backward 7.1820 |
[2023-09-02 11:54:19,697::train::INFO] [train] Iter 09600 | loss 1.7170 | loss(rot) 1.5380 | loss(pos) 0.1187 | loss(seq) 0.0602 | grad 6.2534 | lr 0.0010 | time_forward 3.5350 | time_backward 5.2380 |
[2023-09-02 11:54:30,682::train::INFO] [train] Iter 09601 | loss 1.4490 | loss(rot) 0.6478 | loss(pos) 0.1642 | loss(seq) 0.6370 | grad 4.2931 | lr 0.0010 | time_forward 4.3600 | time_backward 6.6220 |
[2023-09-02 11:54:39,605::train::INFO] [train] Iter 09602 | loss 2.1072 | loss(rot) 1.9172 | loss(pos) 0.0811 | loss(seq) 0.1089 | grad 5.4918 | lr 0.0010 | time_forward 3.8390 | time_backward 5.0810 |
[2023-09-02 11:54:48,273::train::INFO] [train] Iter 09603 | loss 2.1308 | loss(rot) 1.8912 | loss(pos) 0.1405 | loss(seq) 0.0992 | grad 4.2599 | lr 0.0010 | time_forward 3.5690 | time_backward 5.0960 |
[2023-09-02 11:54:51,204::train::INFO] [train] Iter 09604 | loss 1.9089 | loss(rot) 1.6228 | loss(pos) 0.1028 | loss(seq) 0.1833 | grad 4.0133 | lr 0.0010 | time_forward 1.4050 | time_backward 1.5220 |
[2023-09-02 11:55:00,493::train::INFO] [train] Iter 09605 | loss 1.7645 | loss(rot) 1.0704 | loss(pos) 0.1823 | loss(seq) 0.5118 | grad 3.4652 | lr 0.0010 | time_forward 3.8230 | time_backward 5.4620 |
[2023-09-02 11:55:08,917::train::INFO] [train] Iter 09606 | loss 0.8599 | loss(rot) 0.2364 | loss(pos) 0.5435 | loss(seq) 0.0800 | grad 4.7640 | lr 0.0010 | time_forward 3.3850 | time_backward 5.0360 |
[2023-09-02 11:55:18,994::train::INFO] [train] Iter 09607 | loss 1.2243 | loss(rot) 0.4966 | loss(pos) 0.4395 | loss(seq) 0.2883 | grad 3.4847 | lr 0.0010 | time_forward 4.1490 | time_backward 5.9240 |
[2023-09-02 11:55:27,915::train::INFO] [train] Iter 09608 | loss 1.6204 | loss(rot) 0.4089 | loss(pos) 1.1695 | loss(seq) 0.0421 | grad 6.4812 | lr 0.0010 | time_forward 3.7160 | time_backward 5.2010 |
[2023-09-02 11:55:35,889::train::INFO] [train] Iter 09609 | loss 1.2920 | loss(rot) 0.4724 | loss(pos) 0.3797 | loss(seq) 0.4399 | grad 4.0802 | lr 0.0010 | time_forward 3.4660 | time_backward 4.5040 |
[2023-09-02 11:55:46,367::train::INFO] [train] Iter 09610 | loss 1.5463 | loss(rot) 1.4322 | loss(pos) 0.0718 | loss(seq) 0.0423 | grad 3.8996 | lr 0.0010 | time_forward 4.3180 | time_backward 6.1560 |
[2023-09-02 11:55:49,292::train::INFO] [train] Iter 09611 | loss 1.4684 | loss(rot) 0.8691 | loss(pos) 0.1383 | loss(seq) 0.4610 | grad 4.6745 | lr 0.0010 | time_forward 1.3610 | time_backward 1.5600 |
[2023-09-02 11:55:58,858::train::INFO] [train] Iter 09612 | loss 1.2226 | loss(rot) 0.1185 | loss(pos) 0.8860 | loss(seq) 0.2181 | grad 4.3563 | lr 0.0010 | time_forward 4.2330 | time_backward 5.3300 |
[2023-09-02 11:56:01,450::train::INFO] [train] Iter 09613 | loss 2.3608 | loss(rot) 1.8735 | loss(pos) 0.2139 | loss(seq) 0.2734 | grad 4.0991 | lr 0.0010 | time_forward 1.2800 | time_backward 1.3080 |
[2023-09-02 11:56:10,145::train::INFO] [train] Iter 09614 | loss 1.3003 | loss(rot) 0.1016 | loss(pos) 1.1778 | loss(seq) 0.0210 | grad 5.5012 | lr 0.0010 | time_forward 3.3720 | time_backward 5.3200 |
[2023-09-02 11:56:20,267::train::INFO] [train] Iter 09615 | loss 1.8651 | loss(rot) 1.1341 | loss(pos) 0.2401 | loss(seq) 0.4909 | grad 3.9718 | lr 0.0010 | time_forward 4.6240 | time_backward 5.4950 |
[2023-09-02 11:56:31,116::train::INFO] [train] Iter 09616 | loss 1.5757 | loss(rot) 1.0195 | loss(pos) 0.1222 | loss(seq) 0.4340 | grad 4.9365 | lr 0.0010 | time_forward 4.6870 | time_backward 6.1590 |
[2023-09-02 11:56:41,726::train::INFO] [train] Iter 09617 | loss 0.9726 | loss(rot) 0.1084 | loss(pos) 0.8457 | loss(seq) 0.0185 | grad 5.7758 | lr 0.0010 | time_forward 4.1890 | time_backward 6.3750 |
[2023-09-02 11:56:52,286::train::INFO] [train] Iter 09618 | loss 0.7795 | loss(rot) 0.1573 | loss(pos) 0.5729 | loss(seq) 0.0494 | grad 4.4053 | lr 0.0010 | time_forward 4.5600 | time_backward 5.9960 |
[2023-09-02 11:56:55,715::train::INFO] [train] Iter 09619 | loss 2.5703 | loss(rot) 2.0145 | loss(pos) 0.1577 | loss(seq) 0.3982 | grad 3.9378 | lr 0.0010 | time_forward 1.5790 | time_backward 1.8460 |
[2023-09-02 11:57:05,952::train::INFO] [train] Iter 09620 | loss 1.9295 | loss(rot) 0.9544 | loss(pos) 0.4669 | loss(seq) 0.5081 | grad 5.1628 | lr 0.0010 | time_forward 4.2000 | time_backward 6.0350 |
[2023-09-02 11:57:15,786::train::INFO] [train] Iter 09621 | loss 2.7245 | loss(rot) 0.0114 | loss(pos) 2.7131 | loss(seq) 0.0000 | grad 8.1656 | lr 0.0010 | time_forward 4.1570 | time_backward 5.6730 |
[2023-09-02 11:57:18,675::train::INFO] [train] Iter 09622 | loss 1.7611 | loss(rot) 1.0462 | loss(pos) 0.1839 | loss(seq) 0.5311 | grad 4.2071 | lr 0.0010 | time_forward 1.4510 | time_backward 1.4130 |
[2023-09-02 11:57:28,081::train::INFO] [train] Iter 09623 | loss 1.6010 | loss(rot) 1.4910 | loss(pos) 0.0507 | loss(seq) 0.0593 | grad 5.9144 | lr 0.0010 | time_forward 4.4790 | time_backward 4.9240 |
[2023-09-02 11:57:30,911::train::INFO] [train] Iter 09624 | loss 3.6495 | loss(rot) 0.0084 | loss(pos) 3.6411 | loss(seq) 0.0000 | grad 10.1777 | lr 0.0010 | time_forward 1.3910 | time_backward 1.4360 |
[2023-09-02 11:57:40,997::train::INFO] [train] Iter 09625 | loss 0.9277 | loss(rot) 0.3834 | loss(pos) 0.3942 | loss(seq) 0.1501 | grad 3.1197 | lr 0.0010 | time_forward 4.2300 | time_backward 5.8520 |
[2023-09-02 11:57:43,757::train::INFO] [train] Iter 09626 | loss 1.9002 | loss(rot) 0.0279 | loss(pos) 1.8637 | loss(seq) 0.0087 | grad 12.2504 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4750 |
[2023-09-02 11:57:53,851::train::INFO] [train] Iter 09627 | loss 0.9110 | loss(rot) 0.3030 | loss(pos) 0.5444 | loss(seq) 0.0636 | grad 3.4716 | lr 0.0010 | time_forward 4.0740 | time_backward 6.0150 |
[2023-09-02 11:58:02,306::train::INFO] [train] Iter 09628 | loss 1.0667 | loss(rot) 0.0282 | loss(pos) 1.0350 | loss(seq) 0.0036 | grad 5.6859 | lr 0.0010 | time_forward 3.6660 | time_backward 4.7850 |
[2023-09-02 11:58:12,471::train::INFO] [train] Iter 09629 | loss 1.3390 | loss(rot) 0.6361 | loss(pos) 0.2083 | loss(seq) 0.4946 | grad 3.9966 | lr 0.0010 | time_forward 4.3200 | time_backward 5.8430 |
[2023-09-02 11:58:22,856::train::INFO] [train] Iter 09630 | loss 1.2287 | loss(rot) 0.2515 | loss(pos) 0.7143 | loss(seq) 0.2629 | grad 3.4534 | lr 0.0010 | time_forward 4.1970 | time_backward 6.1850 |
[2023-09-02 11:58:31,647::train::INFO] [train] Iter 09631 | loss 1.0854 | loss(rot) 0.5382 | loss(pos) 0.4130 | loss(seq) 0.1342 | grad 4.1235 | lr 0.0010 | time_forward 3.8650 | time_backward 4.9220 |
[2023-09-02 11:58:39,229::train::INFO] [train] Iter 09632 | loss 1.6955 | loss(rot) 0.3800 | loss(pos) 0.9718 | loss(seq) 0.3437 | grad 5.8237 | lr 0.0010 | time_forward 3.3490 | time_backward 4.2290 |
[2023-09-02 11:58:49,660::train::INFO] [train] Iter 09633 | loss 1.9488 | loss(rot) 0.8624 | loss(pos) 0.5070 | loss(seq) 0.5794 | grad 5.4439 | lr 0.0010 | time_forward 4.4310 | time_backward 5.9970 |
[2023-09-02 11:58:58,323::train::INFO] [train] Iter 09634 | loss 1.5020 | loss(rot) 1.3470 | loss(pos) 0.1050 | loss(seq) 0.0500 | grad 6.4452 | lr 0.0010 | time_forward 3.6940 | time_backward 4.9650 |
[2023-09-02 11:59:00,348::train::INFO] [train] Iter 09635 | loss 2.7580 | loss(rot) 1.8455 | loss(pos) 0.4097 | loss(seq) 0.5028 | grad 4.4946 | lr 0.0010 | time_forward 0.9500 | time_backward 1.0710 |
[2023-09-02 11:59:03,845::train::INFO] [train] Iter 09636 | loss 1.7657 | loss(rot) 0.4807 | loss(pos) 0.6868 | loss(seq) 0.5982 | grad 5.7780 | lr 0.0010 | time_forward 1.5210 | time_backward 1.9720 |
[2023-09-02 11:59:13,047::train::INFO] [train] Iter 09637 | loss 2.6440 | loss(rot) 2.2573 | loss(pos) 0.2538 | loss(seq) 0.1328 | grad 5.5339 | lr 0.0010 | time_forward 3.9100 | time_backward 5.2880 |
[2023-09-02 11:59:21,486::train::INFO] [train] Iter 09638 | loss 1.3233 | loss(rot) 0.5931 | loss(pos) 0.3216 | loss(seq) 0.4086 | grad 5.5914 | lr 0.0010 | time_forward 3.5730 | time_backward 4.8620 |
[2023-09-02 11:59:29,786::train::INFO] [train] Iter 09639 | loss 1.4797 | loss(rot) 0.7782 | loss(pos) 0.2356 | loss(seq) 0.4659 | grad 7.7451 | lr 0.0010 | time_forward 3.4990 | time_backward 4.7970 |
[2023-09-02 11:59:33,159::train::INFO] [train] Iter 09640 | loss 1.4322 | loss(rot) 0.7191 | loss(pos) 0.3118 | loss(seq) 0.4013 | grad 3.8378 | lr 0.0010 | time_forward 1.4350 | time_backward 1.9350 |
[2023-09-02 11:59:39,072::train::INFO] [train] Iter 09641 | loss 1.7096 | loss(rot) 0.3646 | loss(pos) 0.7866 | loss(seq) 0.5585 | grad 7.3011 | lr 0.0010 | time_forward 2.4870 | time_backward 3.4170 |
[2023-09-02 11:59:46,594::train::INFO] [train] Iter 09642 | loss 2.6036 | loss(rot) 0.8626 | loss(pos) 1.0073 | loss(seq) 0.7337 | grad 6.1721 | lr 0.0010 | time_forward 3.1740 | time_backward 4.3350 |
[2023-09-02 11:59:49,310::train::INFO] [train] Iter 09643 | loss 2.2703 | loss(rot) 2.0324 | loss(pos) 0.1302 | loss(seq) 0.1077 | grad 4.2129 | lr 0.0010 | time_forward 1.2690 | time_backward 1.4430 |
[2023-09-02 11:59:52,095::train::INFO] [train] Iter 09644 | loss 0.7479 | loss(rot) 0.1850 | loss(pos) 0.5457 | loss(seq) 0.0172 | grad 4.6763 | lr 0.0010 | time_forward 1.3240 | time_backward 1.4580 |
[2023-09-02 12:00:00,963::train::INFO] [train] Iter 09645 | loss 2.3547 | loss(rot) 0.4909 | loss(pos) 1.2295 | loss(seq) 0.6343 | grad 5.7817 | lr 0.0010 | time_forward 3.7330 | time_backward 5.1310 |
[2023-09-02 12:00:09,443::train::INFO] [train] Iter 09646 | loss 1.8163 | loss(rot) 1.5437 | loss(pos) 0.2074 | loss(seq) 0.0653 | grad 7.8946 | lr 0.0010 | time_forward 3.5440 | time_backward 4.9320 |
[2023-09-02 12:00:19,466::train::INFO] [train] Iter 09647 | loss 1.9905 | loss(rot) 1.1285 | loss(pos) 0.3352 | loss(seq) 0.5268 | grad 4.2861 | lr 0.0010 | time_forward 4.0490 | time_backward 5.9700 |
[2023-09-02 12:00:22,203::train::INFO] [train] Iter 09648 | loss 1.9662 | loss(rot) 1.7657 | loss(pos) 0.2004 | loss(seq) 0.0000 | grad 4.7966 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4290 |
[2023-09-02 12:00:32,282::train::INFO] [train] Iter 09649 | loss 2.5034 | loss(rot) 1.8752 | loss(pos) 0.2001 | loss(seq) 0.4281 | grad 5.4289 | lr 0.0010 | time_forward 4.0880 | time_backward 5.9870 |
[2023-09-02 12:00:39,740::train::INFO] [train] Iter 09650 | loss 2.3927 | loss(rot) 1.9454 | loss(pos) 0.4163 | loss(seq) 0.0311 | grad 8.9150 | lr 0.0010 | time_forward 3.2130 | time_backward 4.2420 |
[2023-09-02 12:00:48,956::train::INFO] [train] Iter 09651 | loss 1.7503 | loss(rot) 0.7649 | loss(pos) 0.6639 | loss(seq) 0.3215 | grad 6.4874 | lr 0.0010 | time_forward 3.9710 | time_backward 5.2410 |
[2023-09-02 12:00:51,654::train::INFO] [train] Iter 09652 | loss 0.9562 | loss(rot) 0.0569 | loss(pos) 0.8901 | loss(seq) 0.0092 | grad 5.1264 | lr 0.0010 | time_forward 1.2430 | time_backward 1.4510 |
[2023-09-02 12:01:00,167::train::INFO] [train] Iter 09653 | loss 1.1714 | loss(rot) 0.3809 | loss(pos) 0.4639 | loss(seq) 0.3266 | grad 5.0150 | lr 0.0010 | time_forward 3.5920 | time_backward 4.9180 |
[2023-09-02 12:01:07,310::train::INFO] [train] Iter 09654 | loss 2.3560 | loss(rot) 2.0083 | loss(pos) 0.2210 | loss(seq) 0.1267 | grad 5.1019 | lr 0.0010 | time_forward 3.0880 | time_backward 4.0510 |
[2023-09-02 12:01:09,595::train::INFO] [train] Iter 09655 | loss 1.8623 | loss(rot) 1.4513 | loss(pos) 0.3942 | loss(seq) 0.0168 | grad 8.0480 | lr 0.0010 | time_forward 1.0610 | time_backward 1.2210 |
[2023-09-02 12:01:11,852::train::INFO] [train] Iter 09656 | loss 0.6156 | loss(rot) 0.0644 | loss(pos) 0.5399 | loss(seq) 0.0113 | grad 3.6084 | lr 0.0010 | time_forward 1.0660 | time_backward 1.1880 |
[2023-09-02 12:01:17,775::train::INFO] [train] Iter 09657 | loss 0.9294 | loss(rot) 0.0702 | loss(pos) 0.8285 | loss(seq) 0.0307 | grad 3.6601 | lr 0.0010 | time_forward 2.5450 | time_backward 3.3740 |
[2023-09-02 12:01:20,532::train::INFO] [train] Iter 09658 | loss 2.0053 | loss(rot) 1.6438 | loss(pos) 0.3615 | loss(seq) 0.0000 | grad 5.9968 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4440 |
[2023-09-02 12:01:29,766::train::INFO] [train] Iter 09659 | loss 1.7288 | loss(rot) 1.4856 | loss(pos) 0.2228 | loss(seq) 0.0204 | grad 5.7020 | lr 0.0010 | time_forward 4.1220 | time_backward 5.0840 |
[2023-09-02 12:01:38,520::train::INFO] [train] Iter 09660 | loss 3.2797 | loss(rot) 2.6105 | loss(pos) 0.3159 | loss(seq) 0.3533 | grad 7.2992 | lr 0.0010 | time_forward 3.7770 | time_backward 4.9740 |
[2023-09-02 12:01:47,342::train::INFO] [train] Iter 09661 | loss 2.0105 | loss(rot) 1.8831 | loss(pos) 0.1274 | loss(seq) 0.0000 | grad 5.9161 | lr 0.0010 | time_forward 3.7520 | time_backward 5.0660 |
[2023-09-02 12:01:55,827::train::INFO] [train] Iter 09662 | loss 1.8758 | loss(rot) 1.5402 | loss(pos) 0.0819 | loss(seq) 0.2538 | grad 6.6752 | lr 0.0010 | time_forward 3.6320 | time_backward 4.8490 |
[2023-09-02 12:01:59,165::train::INFO] [train] Iter 09663 | loss 1.1915 | loss(rot) 0.2304 | loss(pos) 0.9094 | loss(seq) 0.0517 | grad 3.1863 | lr 0.0010 | time_forward 1.4940 | time_backward 1.8400 |
[2023-09-02 12:02:07,431::train::INFO] [train] Iter 09664 | loss 1.3282 | loss(rot) 0.7665 | loss(pos) 0.2672 | loss(seq) 0.2944 | grad 4.9601 | lr 0.0010 | time_forward 3.5540 | time_backward 4.7090 |
[2023-09-02 12:02:14,576::train::INFO] [train] Iter 09665 | loss 2.5733 | loss(rot) 1.0455 | loss(pos) 0.6703 | loss(seq) 0.8575 | grad 7.2448 | lr 0.0010 | time_forward 3.0640 | time_backward 4.0770 |
[2023-09-02 12:02:24,628::train::INFO] [train] Iter 09666 | loss 1.9167 | loss(rot) 0.7742 | loss(pos) 0.6680 | loss(seq) 0.4745 | grad 7.1783 | lr 0.0010 | time_forward 4.1200 | time_backward 5.9280 |
[2023-09-02 12:02:27,334::train::INFO] [train] Iter 09667 | loss 0.6299 | loss(rot) 0.1458 | loss(pos) 0.2889 | loss(seq) 0.1953 | grad 3.4253 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4580 |
[2023-09-02 12:02:34,931::train::INFO] [train] Iter 09668 | loss 2.0282 | loss(rot) 0.0177 | loss(pos) 2.0093 | loss(seq) 0.0012 | grad 7.7268 | lr 0.0010 | time_forward 3.1870 | time_backward 4.4010 |
[2023-09-02 12:02:37,181::train::INFO] [train] Iter 09669 | loss 1.3470 | loss(rot) 0.1796 | loss(pos) 1.1434 | loss(seq) 0.0239 | grad 6.8349 | lr 0.0010 | time_forward 1.0640 | time_backward 1.1840 |
[2023-09-02 12:02:44,405::train::INFO] [train] Iter 09670 | loss 1.2571 | loss(rot) 1.1337 | loss(pos) 0.1234 | loss(seq) 0.0000 | grad 5.0919 | lr 0.0010 | time_forward 3.0090 | time_backward 4.2110 |
[2023-09-02 12:02:53,238::train::INFO] [train] Iter 09671 | loss 0.8225 | loss(rot) 0.4203 | loss(pos) 0.3183 | loss(seq) 0.0839 | grad 3.9162 | lr 0.0010 | time_forward 3.7710 | time_backward 5.0590 |
[2023-09-02 12:03:00,148::train::INFO] [train] Iter 09672 | loss 1.7240 | loss(rot) 1.5166 | loss(pos) 0.1804 | loss(seq) 0.0269 | grad 7.1523 | lr 0.0010 | time_forward 2.9150 | time_backward 3.9920 |
[2023-09-02 12:03:09,767::train::INFO] [train] Iter 09673 | loss 2.1021 | loss(rot) 1.6944 | loss(pos) 0.4071 | loss(seq) 0.0007 | grad 5.9100 | lr 0.0010 | time_forward 3.9990 | time_backward 5.6170 |
[2023-09-02 12:03:18,589::train::INFO] [train] Iter 09674 | loss 1.0784 | loss(rot) 0.3352 | loss(pos) 0.7001 | loss(seq) 0.0431 | grad 4.9901 | lr 0.0010 | time_forward 3.6960 | time_backward 5.1230 |
[2023-09-02 12:03:21,386::train::INFO] [train] Iter 09675 | loss 1.1520 | loss(rot) 0.7304 | loss(pos) 0.1215 | loss(seq) 0.3001 | grad 3.4013 | lr 0.0010 | time_forward 1.3410 | time_backward 1.4520 |
[2023-09-02 12:03:31,883::train::INFO] [train] Iter 09676 | loss 1.5011 | loss(rot) 0.2910 | loss(pos) 0.7761 | loss(seq) 0.4340 | grad 6.5908 | lr 0.0010 | time_forward 4.2800 | time_backward 6.2140 |
[2023-09-02 12:03:40,832::train::INFO] [train] Iter 09677 | loss 0.7473 | loss(rot) 0.0906 | loss(pos) 0.6255 | loss(seq) 0.0312 | grad 5.3746 | lr 0.0010 | time_forward 3.9160 | time_backward 5.0290 |
[2023-09-02 12:03:50,544::train::INFO] [train] Iter 09678 | loss 2.3024 | loss(rot) 1.3349 | loss(pos) 0.3760 | loss(seq) 0.5915 | grad 4.3818 | lr 0.0010 | time_forward 4.1220 | time_backward 5.5870 |
[2023-09-02 12:03:59,010::train::INFO] [train] Iter 09679 | loss 0.6649 | loss(rot) 0.0701 | loss(pos) 0.5748 | loss(seq) 0.0200 | grad 3.7284 | lr 0.0010 | time_forward 3.5920 | time_backward 4.8700 |
[2023-09-02 12:04:08,079::train::INFO] [train] Iter 09680 | loss 1.5530 | loss(rot) 0.6746 | loss(pos) 0.2120 | loss(seq) 0.6664 | grad 4.5767 | lr 0.0010 | time_forward 3.8840 | time_backward 5.1820 |
[2023-09-02 12:04:10,750::train::INFO] [train] Iter 09681 | loss 2.5995 | loss(rot) 1.9861 | loss(pos) 0.1908 | loss(seq) 0.4226 | grad 3.4655 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4190 |
[2023-09-02 12:04:19,517::train::INFO] [train] Iter 09682 | loss 0.5800 | loss(rot) 0.1908 | loss(pos) 0.3635 | loss(seq) 0.0257 | grad 3.0858 | lr 0.0010 | time_forward 3.7080 | time_backward 5.0550 |
[2023-09-02 12:04:28,644::train::INFO] [train] Iter 09683 | loss 1.1439 | loss(rot) 0.7923 | loss(pos) 0.0808 | loss(seq) 0.2708 | grad 2.8895 | lr 0.0010 | time_forward 3.8730 | time_backward 5.2500 |
[2023-09-02 12:04:31,957::train::INFO] [train] Iter 09684 | loss 2.0855 | loss(rot) 1.9159 | loss(pos) 0.1271 | loss(seq) 0.0426 | grad 3.1871 | lr 0.0010 | time_forward 1.4520 | time_backward 1.8590 |
[2023-09-02 12:04:40,053::train::INFO] [train] Iter 09685 | loss 1.7085 | loss(rot) 1.5701 | loss(pos) 0.0867 | loss(seq) 0.0517 | grad 6.3163 | lr 0.0010 | time_forward 3.4610 | time_backward 4.6310 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.