text
stringlengths
56
1.16k
[2023-09-02 11:26:45,384::train::INFO] [train] Iter 09386 | loss 1.5622 | loss(rot) 1.4029 | loss(pos) 0.1111 | loss(seq) 0.0481 | grad 6.0474 | lr 0.0010 | time_forward 1.1500 | time_backward 1.2310
[2023-09-02 11:26:55,264::train::INFO] [train] Iter 09387 | loss 0.7418 | loss(rot) 0.1584 | loss(pos) 0.5555 | loss(seq) 0.0280 | grad 3.8500 | lr 0.0010 | time_forward 4.1070 | time_backward 5.7690
[2023-09-02 11:27:04,926::train::INFO] [train] Iter 09388 | loss 1.9189 | loss(rot) 1.4555 | loss(pos) 0.1669 | loss(seq) 0.2965 | grad 5.5667 | lr 0.0010 | time_forward 4.2200 | time_backward 5.4380
[2023-09-02 11:27:07,742::train::INFO] [train] Iter 09389 | loss 1.1461 | loss(rot) 0.3257 | loss(pos) 0.2133 | loss(seq) 0.6072 | grad 17.8406 | lr 0.0010 | time_forward 1.3250 | time_backward 1.4870
[2023-09-02 11:27:17,975::train::INFO] [train] Iter 09390 | loss 1.8749 | loss(rot) 1.6061 | loss(pos) 0.2141 | loss(seq) 0.0547 | grad 7.4191 | lr 0.0010 | time_forward 4.1440 | time_backward 6.0870
[2023-09-02 11:27:21,423::train::INFO] [train] Iter 09391 | loss 1.6740 | loss(rot) 0.9153 | loss(pos) 0.2829 | loss(seq) 0.4758 | grad 3.6367 | lr 0.0010 | time_forward 1.4620 | time_backward 1.9820
[2023-09-02 11:27:23,737::train::INFO] [train] Iter 09392 | loss 1.4851 | loss(rot) 0.8385 | loss(pos) 0.1961 | loss(seq) 0.4504 | grad 4.1022 | lr 0.0010 | time_forward 1.0760 | time_backward 1.2350
[2023-09-02 11:27:27,175::train::INFO] [train] Iter 09393 | loss 2.4383 | loss(rot) 1.9264 | loss(pos) 0.2210 | loss(seq) 0.2909 | grad 4.1209 | lr 0.0010 | time_forward 1.4710 | time_backward 1.9630
[2023-09-02 11:27:29,869::train::INFO] [train] Iter 09394 | loss 1.8424 | loss(rot) 1.4802 | loss(pos) 0.2002 | loss(seq) 0.1620 | grad 5.0002 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4190
[2023-09-02 11:27:39,674::train::INFO] [train] Iter 09395 | loss 2.2501 | loss(rot) 1.2265 | loss(pos) 0.5999 | loss(seq) 0.4237 | grad 6.5832 | lr 0.0010 | time_forward 4.0490 | time_backward 5.7530
[2023-09-02 11:27:48,633::train::INFO] [train] Iter 09396 | loss 5.3889 | loss(rot) 0.3010 | loss(pos) 5.0879 | loss(seq) 0.0000 | grad 9.8005 | lr 0.0010 | time_forward 3.8600 | time_backward 5.0960
[2023-09-02 11:27:59,338::train::INFO] [train] Iter 09397 | loss 1.7939 | loss(rot) 0.6865 | loss(pos) 0.9120 | loss(seq) 0.1955 | grad 4.1597 | lr 0.0010 | time_forward 4.5230 | time_backward 6.1780
[2023-09-02 11:28:09,397::train::INFO] [train] Iter 09398 | loss 2.1181 | loss(rot) 1.7934 | loss(pos) 0.3081 | loss(seq) 0.0166 | grad 10.9870 | lr 0.0010 | time_forward 4.0040 | time_backward 6.0520
[2023-09-02 11:28:12,955::train::INFO] [train] Iter 09399 | loss 1.4839 | loss(rot) 0.5574 | loss(pos) 0.4627 | loss(seq) 0.4638 | grad 3.6805 | lr 0.0010 | time_forward 1.5320 | time_backward 2.0210
[2023-09-02 11:28:15,738::train::INFO] [train] Iter 09400 | loss 1.6213 | loss(rot) 1.3420 | loss(pos) 0.1589 | loss(seq) 0.1204 | grad 5.2891 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4820
[2023-09-02 11:28:26,040::train::INFO] [train] Iter 09401 | loss 3.3649 | loss(rot) 2.9481 | loss(pos) 0.4122 | loss(seq) 0.0046 | grad 5.2154 | lr 0.0010 | time_forward 4.2680 | time_backward 6.0300
[2023-09-02 11:28:34,170::train::INFO] [train] Iter 09402 | loss 2.5079 | loss(rot) 2.2367 | loss(pos) 0.2708 | loss(seq) 0.0003 | grad 5.6227 | lr 0.0010 | time_forward 3.4560 | time_backward 4.6710
[2023-09-02 11:28:36,478::train::INFO] [train] Iter 09403 | loss 1.5964 | loss(rot) 0.3013 | loss(pos) 1.1917 | loss(seq) 0.1035 | grad 7.5774 | lr 0.0010 | time_forward 1.1190 | time_backward 1.1860
[2023-09-02 11:28:45,159::train::INFO] [train] Iter 09404 | loss 2.5402 | loss(rot) 2.2453 | loss(pos) 0.2929 | loss(seq) 0.0021 | grad 7.4240 | lr 0.0010 | time_forward 3.5530 | time_backward 5.1080
[2023-09-02 11:28:47,527::train::INFO] [train] Iter 09405 | loss 2.4254 | loss(rot) 1.4138 | loss(pos) 0.4258 | loss(seq) 0.5858 | grad 4.3157 | lr 0.0010 | time_forward 1.2200 | time_backward 1.1440
[2023-09-02 11:28:58,111::train::INFO] [train] Iter 09406 | loss 2.0310 | loss(rot) 0.2055 | loss(pos) 1.5739 | loss(seq) 0.2516 | grad 4.9574 | lr 0.0010 | time_forward 4.1780 | time_backward 6.4030
[2023-09-02 11:29:07,488::train::INFO] [train] Iter 09407 | loss 2.6391 | loss(rot) 2.3263 | loss(pos) 0.3095 | loss(seq) 0.0033 | grad 3.6233 | lr 0.0010 | time_forward 3.9470 | time_backward 5.4260
[2023-09-02 11:29:17,748::train::INFO] [train] Iter 09408 | loss 2.4828 | loss(rot) 1.4130 | loss(pos) 0.5040 | loss(seq) 0.5658 | grad 4.9523 | lr 0.0010 | time_forward 4.2700 | time_backward 5.9870
[2023-09-02 11:29:27,761::train::INFO] [train] Iter 09409 | loss 2.6958 | loss(rot) 0.0960 | loss(pos) 2.5979 | loss(seq) 0.0019 | grad 9.7318 | lr 0.0010 | time_forward 4.1550 | time_backward 5.8560
[2023-09-02 11:29:37,966::train::INFO] [train] Iter 09410 | loss 1.7168 | loss(rot) 1.1196 | loss(pos) 0.1672 | loss(seq) 0.4301 | grad 6.3521 | lr 0.0010 | time_forward 4.1250 | time_backward 6.0760
[2023-09-02 11:29:45,591::train::INFO] [train] Iter 09411 | loss 0.5731 | loss(rot) 0.1544 | loss(pos) 0.3759 | loss(seq) 0.0428 | grad 3.8018 | lr 0.0010 | time_forward 3.1930 | time_backward 4.4280
[2023-09-02 11:29:54,505::train::INFO] [train] Iter 09412 | loss 3.7772 | loss(rot) 0.0385 | loss(pos) 3.7386 | loss(seq) 0.0000 | grad 9.6766 | lr 0.0010 | time_forward 3.6280 | time_backward 5.2820
[2023-09-02 11:29:57,231::train::INFO] [train] Iter 09413 | loss 1.1268 | loss(rot) 0.4559 | loss(pos) 0.5980 | loss(seq) 0.0729 | grad 4.9834 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4410
[2023-09-02 11:30:07,347::train::INFO] [train] Iter 09414 | loss 1.9863 | loss(rot) 0.8996 | loss(pos) 0.4028 | loss(seq) 0.6839 | grad 4.9444 | lr 0.0010 | time_forward 4.1760 | time_backward 5.9370
[2023-09-02 11:30:16,590::train::INFO] [train] Iter 09415 | loss 1.3103 | loss(rot) 0.6137 | loss(pos) 0.2918 | loss(seq) 0.4048 | grad 5.3052 | lr 0.0010 | time_forward 3.9190 | time_backward 5.3200
[2023-09-02 11:30:26,813::train::INFO] [train] Iter 09416 | loss 1.8919 | loss(rot) 0.7449 | loss(pos) 0.6912 | loss(seq) 0.4557 | grad 5.5496 | lr 0.0010 | time_forward 4.1140 | time_backward 6.1060
[2023-09-02 11:30:38,017::train::INFO] [train] Iter 09417 | loss 1.2711 | loss(rot) 0.5499 | loss(pos) 0.4400 | loss(seq) 0.2813 | grad 3.5094 | lr 0.0010 | time_forward 4.8960 | time_backward 6.3050
[2023-09-02 11:30:45,576::train::INFO] [train] Iter 09418 | loss 2.2791 | loss(rot) 1.2240 | loss(pos) 0.5066 | loss(seq) 0.5485 | grad 5.9998 | lr 0.0010 | time_forward 3.2350 | time_backward 4.3210
[2023-09-02 11:30:48,442::train::INFO] [train] Iter 09419 | loss 3.4995 | loss(rot) 0.0242 | loss(pos) 3.4722 | loss(seq) 0.0031 | grad 11.6478 | lr 0.0010 | time_forward 1.4100 | time_backward 1.4530
[2023-09-02 11:30:58,827::train::INFO] [train] Iter 09420 | loss 1.6754 | loss(rot) 1.4496 | loss(pos) 0.1618 | loss(seq) 0.0640 | grad 4.1148 | lr 0.0010 | time_forward 4.1730 | time_backward 6.2090
[2023-09-02 11:31:09,030::train::INFO] [train] Iter 09421 | loss 2.0357 | loss(rot) 1.4199 | loss(pos) 0.2355 | loss(seq) 0.3803 | grad 5.8210 | lr 0.0010 | time_forward 4.2380 | time_backward 5.9610
[2023-09-02 11:31:18,150::train::INFO] [train] Iter 09422 | loss 1.7398 | loss(rot) 0.6391 | loss(pos) 0.4474 | loss(seq) 0.6533 | grad 5.7705 | lr 0.0010 | time_forward 3.8020 | time_backward 5.2990
[2023-09-02 11:31:20,736::train::INFO] [train] Iter 09423 | loss 1.9995 | loss(rot) 1.2331 | loss(pos) 0.2961 | loss(seq) 0.4703 | grad 2.9557 | lr 0.0010 | time_forward 1.2900 | time_backward 1.2920
[2023-09-02 11:31:29,635::train::INFO] [train] Iter 09424 | loss 1.7427 | loss(rot) 1.5791 | loss(pos) 0.0934 | loss(seq) 0.0702 | grad 4.7621 | lr 0.0010 | time_forward 3.7980 | time_backward 5.0980
[2023-09-02 11:31:32,389::train::INFO] [train] Iter 09425 | loss 0.9457 | loss(rot) 0.2459 | loss(pos) 0.6341 | loss(seq) 0.0656 | grad 5.2492 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4780
[2023-09-02 11:31:41,704::train::INFO] [train] Iter 09426 | loss 1.7141 | loss(rot) 0.7537 | loss(pos) 0.4888 | loss(seq) 0.4716 | grad 4.1972 | lr 0.0010 | time_forward 4.0060 | time_backward 5.3050
[2023-09-02 11:31:52,536::train::INFO] [train] Iter 09427 | loss 2.0062 | loss(rot) 0.0404 | loss(pos) 1.9587 | loss(seq) 0.0071 | grad 7.6960 | lr 0.0010 | time_forward 4.7500 | time_backward 6.0800
[2023-09-02 11:32:00,746::train::INFO] [train] Iter 09428 | loss 1.2226 | loss(rot) 0.0589 | loss(pos) 0.9166 | loss(seq) 0.2472 | grad 3.7151 | lr 0.0010 | time_forward 3.4140 | time_backward 4.7910
[2023-09-02 11:32:11,707::train::INFO] [train] Iter 09429 | loss 2.0486 | loss(rot) 0.0498 | loss(pos) 1.9946 | loss(seq) 0.0042 | grad 5.6325 | lr 0.0010 | time_forward 4.3480 | time_backward 6.6100
[2023-09-02 11:32:22,073::train::INFO] [train] Iter 09430 | loss 2.3216 | loss(rot) 0.1593 | loss(pos) 2.1614 | loss(seq) 0.0008 | grad 4.3619 | lr 0.0010 | time_forward 4.2530 | time_backward 6.1090
[2023-09-02 11:32:24,908::train::INFO] [train] Iter 09431 | loss 1.3549 | loss(rot) 0.7297 | loss(pos) 0.1452 | loss(seq) 0.4800 | grad 4.6972 | lr 0.0010 | time_forward 1.3500 | time_backward 1.4810
[2023-09-02 11:32:27,797::train::INFO] [train] Iter 09432 | loss 3.0179 | loss(rot) 0.5520 | loss(pos) 2.4431 | loss(seq) 0.0229 | grad 11.4299 | lr 0.0010 | time_forward 1.4050 | time_backward 1.4800
[2023-09-02 11:32:37,980::train::INFO] [train] Iter 09433 | loss 1.3714 | loss(rot) 0.4810 | loss(pos) 0.6008 | loss(seq) 0.2895 | grad 3.1520 | lr 0.0010 | time_forward 4.3030 | time_backward 5.8760
[2023-09-02 11:32:46,921::train::INFO] [train] Iter 09434 | loss 1.1951 | loss(rot) 0.8718 | loss(pos) 0.3233 | loss(seq) 0.0000 | grad 5.3707 | lr 0.0010 | time_forward 3.8190 | time_backward 5.1190
[2023-09-02 11:32:55,376::train::INFO] [train] Iter 09435 | loss 1.7074 | loss(rot) 0.0373 | loss(pos) 1.6616 | loss(seq) 0.0085 | grad 4.4552 | lr 0.0010 | time_forward 3.5150 | time_backward 4.9370
[2023-09-02 11:33:02,137::train::INFO] [train] Iter 09436 | loss 2.3226 | loss(rot) 2.0967 | loss(pos) 0.2084 | loss(seq) 0.0175 | grad 4.3482 | lr 0.0010 | time_forward 2.8640 | time_backward 3.8940
[2023-09-02 11:33:09,610::train::INFO] [train] Iter 09437 | loss 1.6737 | loss(rot) 1.0906 | loss(pos) 0.3655 | loss(seq) 0.2177 | grad 7.0897 | lr 0.0010 | time_forward 3.1920 | time_backward 4.2780
[2023-09-02 11:33:12,371::train::INFO] [train] Iter 09438 | loss 2.1430 | loss(rot) 1.2170 | loss(pos) 0.1917 | loss(seq) 0.7344 | grad 3.6574 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4820
[2023-09-02 11:33:21,095::train::INFO] [train] Iter 09439 | loss 1.7543 | loss(rot) 1.1130 | loss(pos) 0.1973 | loss(seq) 0.4439 | grad 5.4219 | lr 0.0010 | time_forward 3.8160 | time_backward 4.9040
[2023-09-02 11:33:23,846::train::INFO] [train] Iter 09440 | loss 1.0807 | loss(rot) 0.7970 | loss(pos) 0.1783 | loss(seq) 0.1054 | grad 4.6561 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4650
[2023-09-02 11:33:33,134::train::INFO] [train] Iter 09441 | loss 2.3703 | loss(rot) 1.6422 | loss(pos) 0.2577 | loss(seq) 0.4705 | grad 4.9305 | lr 0.0010 | time_forward 4.0330 | time_backward 5.2210
[2023-09-02 11:33:40,679::train::INFO] [train] Iter 09442 | loss 1.2637 | loss(rot) 0.1699 | loss(pos) 1.0833 | loss(seq) 0.0105 | grad 4.7506 | lr 0.0010 | time_forward 3.2320 | time_backward 4.3100
[2023-09-02 11:33:50,724::train::INFO] [train] Iter 09443 | loss 1.5401 | loss(rot) 0.9022 | loss(pos) 0.4170 | loss(seq) 0.2209 | grad 4.1687 | lr 0.0010 | time_forward 4.0160 | time_backward 6.0250
[2023-09-02 11:34:00,635::train::INFO] [train] Iter 09444 | loss 1.5547 | loss(rot) 0.7354 | loss(pos) 0.2670 | loss(seq) 0.5523 | grad 4.9781 | lr 0.0010 | time_forward 4.0090 | time_backward 5.8980
[2023-09-02 11:34:03,032::train::INFO] [train] Iter 09445 | loss 1.7447 | loss(rot) 0.7297 | loss(pos) 0.5285 | loss(seq) 0.4865 | grad 4.0710 | lr 0.0010 | time_forward 1.1500 | time_backward 1.2430
[2023-09-02 11:34:12,274::train::INFO] [train] Iter 09446 | loss 1.7864 | loss(rot) 1.6193 | loss(pos) 0.1664 | loss(seq) 0.0007 | grad 5.4000 | lr 0.0010 | time_forward 3.9170 | time_backward 5.3220
[2023-09-02 11:34:20,764::train::INFO] [train] Iter 09447 | loss 1.6874 | loss(rot) 0.5598 | loss(pos) 0.6144 | loss(seq) 0.5132 | grad 4.5271 | lr 0.0010 | time_forward 3.5320 | time_backward 4.9530
[2023-09-02 11:34:29,418::train::INFO] [train] Iter 09448 | loss 2.2023 | loss(rot) 1.7941 | loss(pos) 0.3076 | loss(seq) 0.1006 | grad 5.7196 | lr 0.0010 | time_forward 3.6060 | time_backward 5.0450
[2023-09-02 11:34:39,336::train::INFO] [train] Iter 09449 | loss 1.5448 | loss(rot) 1.2830 | loss(pos) 0.2365 | loss(seq) 0.0253 | grad 4.3381 | lr 0.0010 | time_forward 4.1870 | time_backward 5.7270
[2023-09-02 11:34:49,243::train::INFO] [train] Iter 09450 | loss 1.7598 | loss(rot) 1.2378 | loss(pos) 0.2039 | loss(seq) 0.3182 | grad 4.7173 | lr 0.0010 | time_forward 4.1270 | time_backward 5.7770
[2023-09-02 11:34:59,430::train::INFO] [train] Iter 09451 | loss 1.4879 | loss(rot) 0.7675 | loss(pos) 0.5467 | loss(seq) 0.1737 | grad 4.3847 | lr 0.0010 | time_forward 4.0910 | time_backward 6.0920
[2023-09-02 11:35:09,268::train::INFO] [train] Iter 09452 | loss 1.2970 | loss(rot) 0.4880 | loss(pos) 0.4242 | loss(seq) 0.3848 | grad 3.7773 | lr 0.0010 | time_forward 4.0780 | time_backward 5.7450
[2023-09-02 11:35:12,007::train::INFO] [train] Iter 09453 | loss 1.1862 | loss(rot) 0.0680 | loss(pos) 1.1105 | loss(seq) 0.0077 | grad 5.0630 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4540
[2023-09-02 11:35:22,074::train::INFO] [train] Iter 09454 | loss 2.7811 | loss(rot) 2.3837 | loss(pos) 0.2350 | loss(seq) 0.1624 | grad 3.9500 | lr 0.0010 | time_forward 4.0650 | time_backward 5.9990
[2023-09-02 11:35:31,448::train::INFO] [train] Iter 09455 | loss 3.3247 | loss(rot) 0.2102 | loss(pos) 3.1140 | loss(seq) 0.0005 | grad 8.4897 | lr 0.0010 | time_forward 3.9610 | time_backward 5.4090
[2023-09-02 11:35:40,193::train::INFO] [train] Iter 09456 | loss 1.5528 | loss(rot) 0.9985 | loss(pos) 0.1635 | loss(seq) 0.3908 | grad 3.3545 | lr 0.0010 | time_forward 3.7400 | time_backward 5.0000
[2023-09-02 11:35:48,649::train::INFO] [train] Iter 09457 | loss 1.5727 | loss(rot) 1.3877 | loss(pos) 0.1488 | loss(seq) 0.0362 | grad 7.7720 | lr 0.0010 | time_forward 3.6130 | time_backward 4.8400
[2023-09-02 11:35:58,872::train::INFO] [train] Iter 09458 | loss 2.3496 | loss(rot) 2.1251 | loss(pos) 0.1546 | loss(seq) 0.0699 | grad 3.3852 | lr 0.0010 | time_forward 4.2330 | time_backward 5.9860
[2023-09-02 11:36:07,103::train::INFO] [train] Iter 09459 | loss 1.0240 | loss(rot) 0.8969 | loss(pos) 0.1036 | loss(seq) 0.0235 | grad 4.5775 | lr 0.0010 | time_forward 3.4900 | time_backward 4.7370
[2023-09-02 11:36:15,337::train::INFO] [train] Iter 09460 | loss 2.2916 | loss(rot) 1.7432 | loss(pos) 0.1439 | loss(seq) 0.4046 | grad 5.6148 | lr 0.0010 | time_forward 3.4890 | time_backward 4.7420
[2023-09-02 11:36:23,751::train::INFO] [train] Iter 09461 | loss 1.9013 | loss(rot) 0.8505 | loss(pos) 0.2718 | loss(seq) 0.7790 | grad 4.7174 | lr 0.0010 | time_forward 3.5710 | time_backward 4.8390
[2023-09-02 11:36:33,821::train::INFO] [train] Iter 09462 | loss 1.7219 | loss(rot) 1.1287 | loss(pos) 0.1896 | loss(seq) 0.4036 | grad 5.1894 | lr 0.0010 | time_forward 4.2410 | time_backward 5.8260
[2023-09-02 11:36:46,260::train::INFO] [train] Iter 09463 | loss 2.0238 | loss(rot) 1.8125 | loss(pos) 0.1951 | loss(seq) 0.0162 | grad 3.4800 | lr 0.0010 | time_forward 4.3350 | time_backward 8.1000
[2023-09-02 11:36:57,925::train::INFO] [train] Iter 09464 | loss 2.9900 | loss(rot) 2.2267 | loss(pos) 0.3422 | loss(seq) 0.4211 | grad 3.8647 | lr 0.0010 | time_forward 5.5710 | time_backward 6.0900
[2023-09-02 11:37:00,597::train::INFO] [train] Iter 09465 | loss 1.8897 | loss(rot) 1.6800 | loss(pos) 0.0861 | loss(seq) 0.1237 | grad 6.0796 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4220
[2023-09-02 11:37:09,220::train::INFO] [train] Iter 09466 | loss 2.3983 | loss(rot) 2.2109 | loss(pos) 0.1862 | loss(seq) 0.0012 | grad 4.5967 | lr 0.0010 | time_forward 3.7120 | time_backward 4.9090
[2023-09-02 11:37:12,579::train::INFO] [train] Iter 09467 | loss 2.6841 | loss(rot) 2.5476 | loss(pos) 0.1271 | loss(seq) 0.0094 | grad 4.3787 | lr 0.0010 | time_forward 1.4220 | time_backward 1.9330
[2023-09-02 11:37:21,305::train::INFO] [train] Iter 09468 | loss 2.7655 | loss(rot) 2.5875 | loss(pos) 0.1591 | loss(seq) 0.0189 | grad 5.5981 | lr 0.0010 | time_forward 3.7210 | time_backward 5.0030
[2023-09-02 11:37:30,600::train::INFO] [train] Iter 09469 | loss 1.5421 | loss(rot) 0.3617 | loss(pos) 1.1407 | loss(seq) 0.0397 | grad 7.1410 | lr 0.0010 | time_forward 3.8840 | time_backward 5.4080
[2023-09-02 11:37:37,739::train::INFO] [train] Iter 09470 | loss 1.5681 | loss(rot) 1.2793 | loss(pos) 0.0902 | loss(seq) 0.1986 | grad 5.6106 | lr 0.0010 | time_forward 3.0520 | time_backward 4.0790
[2023-09-02 11:37:40,432::train::INFO] [train] Iter 09471 | loss 1.7411 | loss(rot) 1.3872 | loss(pos) 0.1545 | loss(seq) 0.1994 | grad 4.9427 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4070
[2023-09-02 11:37:50,783::train::INFO] [train] Iter 09472 | loss 2.2065 | loss(rot) 0.9203 | loss(pos) 0.7315 | loss(seq) 0.5548 | grad 4.4866 | lr 0.0010 | time_forward 4.4340 | time_backward 5.9140
[2023-09-02 11:38:01,380::train::INFO] [train] Iter 09473 | loss 1.7202 | loss(rot) 1.1832 | loss(pos) 0.0848 | loss(seq) 0.4521 | grad 5.1636 | lr 0.0010 | time_forward 4.4440 | time_backward 6.1500
[2023-09-02 11:38:11,595::train::INFO] [train] Iter 09474 | loss 1.6087 | loss(rot) 0.6239 | loss(pos) 0.9407 | loss(seq) 0.0442 | grad 7.0334 | lr 0.0010 | time_forward 4.2290 | time_backward 5.9660
[2023-09-02 11:38:21,900::train::INFO] [train] Iter 09475 | loss 2.0590 | loss(rot) 1.9093 | loss(pos) 0.1305 | loss(seq) 0.0191 | grad 5.2912 | lr 0.0010 | time_forward 4.1920 | time_backward 6.1090
[2023-09-02 11:38:31,950::train::INFO] [train] Iter 09476 | loss 1.6300 | loss(rot) 0.5765 | loss(pos) 0.6928 | loss(seq) 0.3608 | grad 3.0271 | lr 0.0010 | time_forward 4.0630 | time_backward 5.9830
[2023-09-02 11:38:41,779::train::INFO] [train] Iter 09477 | loss 1.2153 | loss(rot) 0.2236 | loss(pos) 0.7459 | loss(seq) 0.2459 | grad 4.1923 | lr 0.0010 | time_forward 4.0440 | time_backward 5.7820
[2023-09-02 11:38:50,285::train::INFO] [train] Iter 09478 | loss 2.6414 | loss(rot) 2.2507 | loss(pos) 0.1913 | loss(seq) 0.1994 | grad 6.4306 | lr 0.0010 | time_forward 3.5590 | time_backward 4.9430
[2023-09-02 11:38:53,025::train::INFO] [train] Iter 09479 | loss 2.2324 | loss(rot) 2.1063 | loss(pos) 0.1009 | loss(seq) 0.0252 | grad 5.0510 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4240
[2023-09-02 11:38:55,739::train::INFO] [train] Iter 09480 | loss 2.3677 | loss(rot) 1.7091 | loss(pos) 0.2276 | loss(seq) 0.4311 | grad 6.9063 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4250
[2023-09-02 11:39:05,709::train::INFO] [train] Iter 09481 | loss 2.2505 | loss(rot) 1.7988 | loss(pos) 0.4514 | loss(seq) 0.0003 | grad 4.1862 | lr 0.0010 | time_forward 4.0780 | time_backward 5.8880
[2023-09-02 11:39:08,464::train::INFO] [train] Iter 09482 | loss 2.3889 | loss(rot) 2.1203 | loss(pos) 0.2680 | loss(seq) 0.0006 | grad 7.3259 | lr 0.0010 | time_forward 1.3440 | time_backward 1.4070
[2023-09-02 11:39:16,825::train::INFO] [train] Iter 09483 | loss 1.1496 | loss(rot) 0.6804 | loss(pos) 0.3394 | loss(seq) 0.1299 | grad 4.4340 | lr 0.0010 | time_forward 3.7400 | time_backward 4.6180
[2023-09-02 11:39:24,874::train::INFO] [train] Iter 09484 | loss 3.3352 | loss(rot) 0.1535 | loss(pos) 3.1812 | loss(seq) 0.0005 | grad 8.6670 | lr 0.0010 | time_forward 3.4230 | time_backward 4.6230
[2023-09-02 11:39:27,604::train::INFO] [train] Iter 09485 | loss 3.1014 | loss(rot) 1.9556 | loss(pos) 0.6661 | loss(seq) 0.4797 | grad 20.0078 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4400