text
stringlengths 56
1.16k
|
---|
[2023-09-02 11:02:14,279::train::INFO] [train] Iter 09186 | loss 0.7488 | loss(rot) 0.2134 | loss(pos) 0.4042 | loss(seq) 0.1311 | grad 4.2003 | lr 0.0010 | time_forward 4.0100 | time_backward 5.3360 |
[2023-09-02 11:02:25,946::train::INFO] [train] Iter 09187 | loss 2.1473 | loss(rot) 2.0456 | loss(pos) 0.0860 | loss(seq) 0.0156 | grad 3.7630 | lr 0.0010 | time_forward 5.0300 | time_backward 6.6340 |
[2023-09-02 11:02:32,705::train::INFO] [train] Iter 09188 | loss 2.2660 | loss(rot) 2.1478 | loss(pos) 0.1175 | loss(seq) 0.0007 | grad 3.4954 | lr 0.0010 | time_forward 2.8900 | time_backward 3.8530 |
[2023-09-02 11:02:40,341::train::INFO] [train] Iter 09189 | loss 1.7118 | loss(rot) 1.2146 | loss(pos) 0.1462 | loss(seq) 0.3510 | grad 3.6258 | lr 0.0010 | time_forward 3.1640 | time_backward 4.4680 |
[2023-09-02 11:02:43,336::train::INFO] [train] Iter 09190 | loss 1.6589 | loss(rot) 0.8837 | loss(pos) 0.2002 | loss(seq) 0.5751 | grad 5.0832 | lr 0.0010 | time_forward 1.4790 | time_backward 1.5120 |
[2023-09-02 11:02:46,193::train::INFO] [train] Iter 09191 | loss 2.9684 | loss(rot) 2.3189 | loss(pos) 0.3039 | loss(seq) 0.3455 | grad 6.4136 | lr 0.0010 | time_forward 1.3010 | time_backward 1.5540 |
[2023-09-02 11:02:58,199::train::INFO] [train] Iter 09192 | loss 2.0830 | loss(rot) 1.8726 | loss(pos) 0.2091 | loss(seq) 0.0012 | grad 6.3446 | lr 0.0010 | time_forward 4.3750 | time_backward 7.6280 |
[2023-09-02 11:03:14,342::train::INFO] [train] Iter 09193 | loss 1.6856 | loss(rot) 1.3885 | loss(pos) 0.2117 | loss(seq) 0.0854 | grad 5.5721 | lr 0.0010 | time_forward 8.5710 | time_backward 7.5680 |
[2023-09-02 11:03:17,354::train::INFO] [train] Iter 09194 | loss 0.8720 | loss(rot) 0.2549 | loss(pos) 0.5728 | loss(seq) 0.0443 | grad 5.1121 | lr 0.0010 | time_forward 1.3570 | time_backward 1.6510 |
[2023-09-02 11:03:28,045::train::INFO] [train] Iter 09195 | loss 0.6883 | loss(rot) 0.1659 | loss(pos) 0.4492 | loss(seq) 0.0732 | grad 4.0385 | lr 0.0010 | time_forward 4.6090 | time_backward 6.0780 |
[2023-09-02 11:03:38,040::train::INFO] [train] Iter 09196 | loss 2.4556 | loss(rot) 2.2330 | loss(pos) 0.2059 | loss(seq) 0.0168 | grad 3.2707 | lr 0.0010 | time_forward 4.1930 | time_backward 5.7990 |
[2023-09-02 11:03:47,148::train::INFO] [train] Iter 09197 | loss 1.8112 | loss(rot) 1.0625 | loss(pos) 0.1925 | loss(seq) 0.5563 | grad 4.9169 | lr 0.0010 | time_forward 3.7880 | time_backward 5.3160 |
[2023-09-02 11:03:49,492::train::INFO] [train] Iter 09198 | loss 2.4642 | loss(rot) 2.0455 | loss(pos) 0.0909 | loss(seq) 0.3277 | grad 5.5295 | lr 0.0010 | time_forward 1.1160 | time_backward 1.2250 |
[2023-09-02 11:03:51,184::train::INFO] [train] Iter 09199 | loss 2.4190 | loss(rot) 1.9431 | loss(pos) 0.4752 | loss(seq) 0.0007 | grad 5.0105 | lr 0.0010 | time_forward 0.7660 | time_backward 0.9100 |
[2023-09-02 11:04:01,646::train::INFO] [train] Iter 09200 | loss 2.1935 | loss(rot) 2.0587 | loss(pos) 0.1344 | loss(seq) 0.0003 | grad 3.8620 | lr 0.0010 | time_forward 4.5010 | time_backward 5.9570 |
[2023-09-02 11:04:04,093::train::INFO] [train] Iter 09201 | loss 1.2098 | loss(rot) 0.3097 | loss(pos) 0.4323 | loss(seq) 0.4678 | grad 4.8438 | lr 0.0010 | time_forward 1.2030 | time_backward 1.2410 |
[2023-09-02 11:04:06,452::train::INFO] [train] Iter 09202 | loss 1.4234 | loss(rot) 0.4527 | loss(pos) 0.4132 | loss(seq) 0.5574 | grad 4.9243 | lr 0.0010 | time_forward 1.1250 | time_backward 1.2160 |
[2023-09-02 11:04:15,574::train::INFO] [train] Iter 09203 | loss 1.9901 | loss(rot) 1.3835 | loss(pos) 0.1449 | loss(seq) 0.4617 | grad 5.2319 | lr 0.0010 | time_forward 3.9060 | time_backward 5.2130 |
[2023-09-02 11:04:18,882::train::INFO] [train] Iter 09204 | loss 1.8050 | loss(rot) 1.7028 | loss(pos) 0.1022 | loss(seq) 0.0000 | grad 3.7687 | lr 0.0010 | time_forward 1.4680 | time_backward 1.8360 |
[2023-09-02 11:04:29,012::train::INFO] [train] Iter 09205 | loss 2.0624 | loss(rot) 1.8862 | loss(pos) 0.1732 | loss(seq) 0.0031 | grad 3.7919 | lr 0.0010 | time_forward 4.1730 | time_backward 5.9410 |
[2023-09-02 11:04:37,137::train::INFO] [train] Iter 09206 | loss 1.8909 | loss(rot) 0.9481 | loss(pos) 0.4714 | loss(seq) 0.4714 | grad 4.0694 | lr 0.0010 | time_forward 3.5080 | time_backward 4.6130 |
[2023-09-02 11:04:46,071::train::INFO] [train] Iter 09207 | loss 1.0565 | loss(rot) 0.6456 | loss(pos) 0.1059 | loss(seq) 0.3049 | grad 4.3555 | lr 0.0010 | time_forward 3.8430 | time_backward 5.0870 |
[2023-09-02 11:04:56,779::train::INFO] [train] Iter 09208 | loss 1.5064 | loss(rot) 0.2465 | loss(pos) 1.2455 | loss(seq) 0.0144 | grad 4.3949 | lr 0.0010 | time_forward 4.1700 | time_backward 6.5350 |
[2023-09-02 11:05:07,017::train::INFO] [train] Iter 09209 | loss 1.8134 | loss(rot) 1.6450 | loss(pos) 0.1516 | loss(seq) 0.0168 | grad 4.9603 | lr 0.0010 | time_forward 4.2500 | time_backward 5.9690 |
[2023-09-02 11:05:10,361::train::INFO] [train] Iter 09210 | loss 1.6279 | loss(rot) 1.4737 | loss(pos) 0.0901 | loss(seq) 0.0641 | grad 4.0479 | lr 0.0010 | time_forward 1.4270 | time_backward 1.9140 |
[2023-09-02 11:05:13,000::train::INFO] [train] Iter 09211 | loss 1.3682 | loss(rot) 0.5868 | loss(pos) 0.3545 | loss(seq) 0.4269 | grad 4.7099 | lr 0.0010 | time_forward 1.2070 | time_backward 1.4220 |
[2023-09-02 11:05:17,069::train::INFO] [train] Iter 09212 | loss 2.2089 | loss(rot) 2.1557 | loss(pos) 0.0451 | loss(seq) 0.0081 | grad 4.7311 | lr 0.0010 | time_forward 2.6450 | time_backward 1.4210 |
[2023-09-02 11:05:26,900::train::INFO] [train] Iter 09213 | loss 2.5957 | loss(rot) 0.0928 | loss(pos) 2.5008 | loss(seq) 0.0021 | grad 5.7706 | lr 0.0010 | time_forward 4.0380 | time_backward 5.7420 |
[2023-09-02 11:05:29,473::train::INFO] [train] Iter 09214 | loss 1.3798 | loss(rot) 1.0514 | loss(pos) 0.1437 | loss(seq) 0.1848 | grad 4.2975 | lr 0.0010 | time_forward 1.1760 | time_backward 1.3930 |
[2023-09-02 11:05:32,298::train::INFO] [train] Iter 09215 | loss 1.9337 | loss(rot) 0.7330 | loss(pos) 0.9443 | loss(seq) 0.2564 | grad 6.4470 | lr 0.0010 | time_forward 1.3590 | time_backward 1.4630 |
[2023-09-02 11:05:41,926::train::INFO] [train] Iter 09216 | loss 1.9645 | loss(rot) 1.8460 | loss(pos) 0.0599 | loss(seq) 0.0585 | grad 7.1959 | lr 0.0010 | time_forward 4.2590 | time_backward 5.3650 |
[2023-09-02 11:05:52,138::train::INFO] [train] Iter 09217 | loss 2.2811 | loss(rot) 1.7010 | loss(pos) 0.1762 | loss(seq) 0.4039 | grad 4.4988 | lr 0.0010 | time_forward 4.0750 | time_backward 6.1340 |
[2023-09-02 11:05:58,091::train::INFO] [train] Iter 09218 | loss 0.7843 | loss(rot) 0.5459 | loss(pos) 0.0939 | loss(seq) 0.1445 | grad 3.1400 | lr 0.0010 | time_forward 2.5660 | time_backward 3.3830 |
[2023-09-02 11:06:05,527::train::INFO] [train] Iter 09219 | loss 1.7277 | loss(rot) 1.0691 | loss(pos) 0.2226 | loss(seq) 0.4361 | grad 6.0541 | lr 0.0010 | time_forward 3.1440 | time_backward 4.2880 |
[2023-09-02 11:06:08,357::train::INFO] [train] Iter 09220 | loss 0.8845 | loss(rot) 0.7327 | loss(pos) 0.1517 | loss(seq) 0.0000 | grad 4.5793 | lr 0.0010 | time_forward 1.3250 | time_backward 1.5020 |
[2023-09-02 11:06:16,361::train::INFO] [train] Iter 09221 | loss 1.2337 | loss(rot) 0.4696 | loss(pos) 0.4182 | loss(seq) 0.3458 | grad 5.3679 | lr 0.0010 | time_forward 3.5840 | time_backward 4.4160 |
[2023-09-02 11:06:23,440::train::INFO] [train] Iter 09222 | loss 2.5670 | loss(rot) 1.8968 | loss(pos) 0.2087 | loss(seq) 0.4615 | grad 6.0093 | lr 0.0010 | time_forward 3.0140 | time_backward 4.0610 |
[2023-09-02 11:06:26,208::train::INFO] [train] Iter 09223 | loss 0.7612 | loss(rot) 0.0777 | loss(pos) 0.6724 | loss(seq) 0.0111 | grad 5.3704 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4550 |
[2023-09-02 11:06:32,858::train::INFO] [train] Iter 09224 | loss 1.8659 | loss(rot) 0.7535 | loss(pos) 0.5748 | loss(seq) 0.5375 | grad 3.8713 | lr 0.0010 | time_forward 2.7980 | time_backward 3.8120 |
[2023-09-02 11:06:35,594::train::INFO] [train] Iter 09225 | loss 2.2029 | loss(rot) 1.8177 | loss(pos) 0.1908 | loss(seq) 0.1944 | grad 4.6717 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4380 |
[2023-09-02 11:06:45,684::train::INFO] [train] Iter 09226 | loss 2.2346 | loss(rot) 1.6879 | loss(pos) 0.2129 | loss(seq) 0.3338 | grad 4.8079 | lr 0.0010 | time_forward 4.1780 | time_backward 5.9070 |
[2023-09-02 11:06:52,224::train::INFO] [train] Iter 09227 | loss 0.7216 | loss(rot) 0.1954 | loss(pos) 0.3816 | loss(seq) 0.1446 | grad 3.7838 | lr 0.0010 | time_forward 2.7440 | time_backward 3.7930 |
[2023-09-02 11:07:01,144::train::INFO] [train] Iter 09228 | loss 2.6955 | loss(rot) 2.1194 | loss(pos) 0.1556 | loss(seq) 0.4204 | grad 4.7030 | lr 0.0010 | time_forward 3.7850 | time_backward 5.1320 |
[2023-09-02 11:07:10,148::train::INFO] [train] Iter 09229 | loss 2.9816 | loss(rot) 2.3647 | loss(pos) 0.1578 | loss(seq) 0.4591 | grad 8.3182 | lr 0.0010 | time_forward 3.7990 | time_backward 5.2020 |
[2023-09-02 11:07:17,739::train::INFO] [train] Iter 09230 | loss 1.9033 | loss(rot) 1.4681 | loss(pos) 0.1551 | loss(seq) 0.2800 | grad 7.1942 | lr 0.0010 | time_forward 3.2310 | time_backward 4.3570 |
[2023-09-02 11:07:25,960::train::INFO] [train] Iter 09231 | loss 1.9876 | loss(rot) 1.8611 | loss(pos) 0.1264 | loss(seq) 0.0001 | grad 4.4633 | lr 0.0010 | time_forward 3.5070 | time_backward 4.7100 |
[2023-09-02 11:07:36,875::train::INFO] [train] Iter 09232 | loss 1.3415 | loss(rot) 1.1025 | loss(pos) 0.1631 | loss(seq) 0.0759 | grad 5.5016 | lr 0.0010 | time_forward 5.8130 | time_backward 5.0980 |
[2023-09-02 11:07:39,613::train::INFO] [train] Iter 09233 | loss 1.0000 | loss(rot) 0.2503 | loss(pos) 0.3979 | loss(seq) 0.3518 | grad 3.5679 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4480 |
[2023-09-02 11:07:49,008::train::INFO] [train] Iter 09234 | loss 0.6985 | loss(rot) 0.1305 | loss(pos) 0.5297 | loss(seq) 0.0383 | grad 3.4202 | lr 0.0010 | time_forward 3.9780 | time_backward 5.3870 |
[2023-09-02 11:07:58,234::train::INFO] [train] Iter 09235 | loss 3.0916 | loss(rot) 0.0299 | loss(pos) 3.0612 | loss(seq) 0.0005 | grad 7.4592 | lr 0.0010 | time_forward 3.8540 | time_backward 5.3680 |
[2023-09-02 11:08:06,756::train::INFO] [train] Iter 09236 | loss 1.2998 | loss(rot) 0.5200 | loss(pos) 0.3573 | loss(seq) 0.4225 | grad 4.3263 | lr 0.0010 | time_forward 3.5810 | time_backward 4.9370 |
[2023-09-02 11:08:15,130::train::INFO] [train] Iter 09237 | loss 0.7570 | loss(rot) 0.2935 | loss(pos) 0.3787 | loss(seq) 0.0848 | grad 4.0132 | lr 0.0010 | time_forward 3.5120 | time_backward 4.8600 |
[2023-09-02 11:08:17,124::train::INFO] [train] Iter 09238 | loss 1.7443 | loss(rot) 0.6964 | loss(pos) 0.4993 | loss(seq) 0.5485 | grad 5.7202 | lr 0.0010 | time_forward 0.9380 | time_backward 1.0530 |
[2023-09-02 11:08:26,483::train::INFO] [train] Iter 09239 | loss 0.6845 | loss(rot) 0.1073 | loss(pos) 0.5348 | loss(seq) 0.0424 | grad 4.7709 | lr 0.0010 | time_forward 4.0450 | time_backward 5.3100 |
[2023-09-02 11:08:34,875::train::INFO] [train] Iter 09240 | loss 1.1093 | loss(rot) 0.2754 | loss(pos) 0.3603 | loss(seq) 0.4736 | grad 4.6216 | lr 0.0010 | time_forward 3.5200 | time_backward 4.8680 |
[2023-09-02 11:08:43,570::train::INFO] [train] Iter 09241 | loss 1.9573 | loss(rot) 1.5819 | loss(pos) 0.1760 | loss(seq) 0.1995 | grad 3.8770 | lr 0.0010 | time_forward 3.7500 | time_backward 4.9410 |
[2023-09-02 11:08:54,303::train::INFO] [train] Iter 09242 | loss 2.2471 | loss(rot) 1.2203 | loss(pos) 0.5995 | loss(seq) 0.4273 | grad 3.5000 | lr 0.0010 | time_forward 4.4110 | time_backward 6.3180 |
[2023-09-02 11:09:03,815::train::INFO] [train] Iter 09243 | loss 2.4004 | loss(rot) 2.1633 | loss(pos) 0.2127 | loss(seq) 0.0244 | grad 4.4209 | lr 0.0010 | time_forward 4.1570 | time_backward 5.3520 |
[2023-09-02 11:09:06,571::train::INFO] [train] Iter 09244 | loss 1.2817 | loss(rot) 0.7287 | loss(pos) 0.1076 | loss(seq) 0.4454 | grad 5.9787 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4770 |
[2023-09-02 11:09:15,134::train::INFO] [train] Iter 09245 | loss 1.8675 | loss(rot) 1.1299 | loss(pos) 0.2652 | loss(seq) 0.4724 | grad 4.3445 | lr 0.0010 | time_forward 3.6420 | time_backward 4.9170 |
[2023-09-02 11:09:24,990::train::INFO] [train] Iter 09246 | loss 2.0770 | loss(rot) 1.9075 | loss(pos) 0.1687 | loss(seq) 0.0007 | grad 4.6898 | lr 0.0010 | time_forward 4.1390 | time_backward 5.7130 |
[2023-09-02 11:09:35,014::train::INFO] [train] Iter 09247 | loss 1.7887 | loss(rot) 0.7559 | loss(pos) 0.4632 | loss(seq) 0.5696 | grad 4.0146 | lr 0.0010 | time_forward 4.2530 | time_backward 5.7520 |
[2023-09-02 11:09:43,821::train::INFO] [train] Iter 09248 | loss 1.9725 | loss(rot) 1.4261 | loss(pos) 0.2006 | loss(seq) 0.3459 | grad 5.2596 | lr 0.0010 | time_forward 3.7320 | time_backward 5.0710 |
[2023-09-02 11:09:52,108::train::INFO] [train] Iter 09249 | loss 2.8928 | loss(rot) 1.8336 | loss(pos) 0.5443 | loss(seq) 0.5149 | grad 4.9900 | lr 0.0010 | time_forward 3.4560 | time_backward 4.8270 |
[2023-09-02 11:10:02,334::train::INFO] [train] Iter 09250 | loss 1.1134 | loss(rot) 0.3690 | loss(pos) 0.4703 | loss(seq) 0.2741 | grad 4.5177 | lr 0.0010 | time_forward 4.0870 | time_backward 6.1360 |
[2023-09-02 11:10:10,397::train::INFO] [train] Iter 09251 | loss 2.4182 | loss(rot) 0.0137 | loss(pos) 2.4045 | loss(seq) 0.0000 | grad 5.8136 | lr 0.0010 | time_forward 3.4080 | time_backward 4.6510 |
[2023-09-02 11:10:13,147::train::INFO] [train] Iter 09252 | loss 1.4344 | loss(rot) 0.8835 | loss(pos) 0.0911 | loss(seq) 0.4598 | grad 4.6420 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4620 |
[2023-09-02 11:10:21,548::train::INFO] [train] Iter 09253 | loss 2.2129 | loss(rot) 1.8047 | loss(pos) 0.1226 | loss(seq) 0.2855 | grad 5.2929 | lr 0.0010 | time_forward 3.5990 | time_backward 4.7710 |
[2023-09-02 11:10:31,869::train::INFO] [train] Iter 09254 | loss 0.8891 | loss(rot) 0.2195 | loss(pos) 0.6382 | loss(seq) 0.0314 | grad 4.0945 | lr 0.0010 | time_forward 4.3740 | time_backward 5.9450 |
[2023-09-02 11:10:34,815::train::INFO] [train] Iter 09255 | loss 1.3952 | loss(rot) 1.1742 | loss(pos) 0.2146 | loss(seq) 0.0065 | grad 4.6270 | lr 0.0010 | time_forward 1.4340 | time_backward 1.5080 |
[2023-09-02 11:10:43,823::train::INFO] [train] Iter 09256 | loss 0.6784 | loss(rot) 0.1727 | loss(pos) 0.4206 | loss(seq) 0.0851 | grad 2.9250 | lr 0.0010 | time_forward 3.7100 | time_backward 5.2940 |
[2023-09-02 11:10:54,083::train::INFO] [train] Iter 09257 | loss 2.2476 | loss(rot) 0.3155 | loss(pos) 1.9276 | loss(seq) 0.0045 | grad 5.1418 | lr 0.0010 | time_forward 4.1420 | time_backward 6.1150 |
[2023-09-02 11:11:02,921::train::INFO] [train] Iter 09258 | loss 1.1644 | loss(rot) 0.4567 | loss(pos) 0.3162 | loss(seq) 0.3915 | grad 4.4540 | lr 0.0010 | time_forward 3.7250 | time_backward 5.1060 |
[2023-09-02 11:11:05,753::train::INFO] [train] Iter 09259 | loss 1.1557 | loss(rot) 0.4360 | loss(pos) 0.2095 | loss(seq) 0.5103 | grad 3.0966 | lr 0.0010 | time_forward 1.3210 | time_backward 1.5070 |
[2023-09-02 11:11:14,970::train::INFO] [train] Iter 09260 | loss 3.0816 | loss(rot) 2.5997 | loss(pos) 0.0479 | loss(seq) 0.4340 | grad 3.5601 | lr 0.0010 | time_forward 3.9870 | time_backward 5.2260 |
[2023-09-02 11:11:24,905::train::INFO] [train] Iter 09261 | loss 2.0135 | loss(rot) 0.3346 | loss(pos) 1.6759 | loss(seq) 0.0029 | grad 4.5908 | lr 0.0010 | time_forward 8.4300 | time_backward 1.5010 |
[2023-09-02 11:11:33,728::train::INFO] [train] Iter 09262 | loss 1.4123 | loss(rot) 0.0542 | loss(pos) 1.0864 | loss(seq) 0.2717 | grad 7.6538 | lr 0.0010 | time_forward 3.7170 | time_backward 5.1030 |
[2023-09-02 11:11:41,599::train::INFO] [train] Iter 09263 | loss 0.8618 | loss(rot) 0.0816 | loss(pos) 0.7639 | loss(seq) 0.0162 | grad 7.4453 | lr 0.0010 | time_forward 3.2670 | time_backward 4.6000 |
[2023-09-02 11:11:44,398::train::INFO] [train] Iter 09264 | loss 2.2063 | loss(rot) 1.8885 | loss(pos) 0.2562 | loss(seq) 0.0616 | grad 4.5334 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4920 |
[2023-09-02 11:11:54,652::train::INFO] [train] Iter 09265 | loss 2.7501 | loss(rot) 1.9791 | loss(pos) 0.2550 | loss(seq) 0.5161 | grad 3.4639 | lr 0.0010 | time_forward 4.1950 | time_backward 6.0550 |
[2023-09-02 11:11:56,691::train::INFO] [train] Iter 09266 | loss 2.3233 | loss(rot) 2.0864 | loss(pos) 0.2362 | loss(seq) 0.0007 | grad 5.2953 | lr 0.0010 | time_forward 0.9730 | time_backward 1.0630 |
[2023-09-02 11:11:59,490::train::INFO] [train] Iter 09267 | loss 1.7524 | loss(rot) 0.8981 | loss(pos) 0.3959 | loss(seq) 0.4584 | grad 4.3715 | lr 0.0010 | time_forward 1.3360 | time_backward 1.4420 |
[2023-09-02 11:12:09,725::train::INFO] [train] Iter 09268 | loss 1.1655 | loss(rot) 0.5521 | loss(pos) 0.3551 | loss(seq) 0.2582 | grad 4.3099 | lr 0.0010 | time_forward 4.3310 | time_backward 5.9000 |
[2023-09-02 11:12:12,003::train::INFO] [train] Iter 09269 | loss 2.2580 | loss(rot) 1.8966 | loss(pos) 0.2092 | loss(seq) 0.1522 | grad 4.0529 | lr 0.0010 | time_forward 1.0630 | time_backward 1.2120 |
[2023-09-02 11:12:21,414::train::INFO] [train] Iter 09270 | loss 2.3285 | loss(rot) 2.0131 | loss(pos) 0.1176 | loss(seq) 0.1978 | grad 5.4939 | lr 0.0010 | time_forward 3.9930 | time_backward 5.4140 |
[2023-09-02 11:12:24,957::train::INFO] [train] Iter 09271 | loss 2.4909 | loss(rot) 1.5503 | loss(pos) 0.3685 | loss(seq) 0.5721 | grad 4.3463 | lr 0.0010 | time_forward 1.4770 | time_backward 2.0640 |
[2023-09-02 11:12:34,404::train::INFO] [train] Iter 09272 | loss 1.4484 | loss(rot) 0.8505 | loss(pos) 0.1529 | loss(seq) 0.4450 | grad 4.9416 | lr 0.0010 | time_forward 3.9710 | time_backward 5.4490 |
[2023-09-02 11:12:44,403::train::INFO] [train] Iter 09273 | loss 1.1321 | loss(rot) 0.3119 | loss(pos) 0.3160 | loss(seq) 0.5042 | grad 3.4509 | lr 0.0010 | time_forward 4.1940 | time_backward 5.8010 |
[2023-09-02 11:12:53,654::train::INFO] [train] Iter 09274 | loss 0.3775 | loss(rot) 0.1116 | loss(pos) 0.2100 | loss(seq) 0.0558 | grad 4.0613 | lr 0.0010 | time_forward 3.9780 | time_backward 5.2510 |
[2023-09-02 11:12:56,359::train::INFO] [train] Iter 09275 | loss 1.2721 | loss(rot) 1.0379 | loss(pos) 0.0997 | loss(seq) 0.1345 | grad 6.3043 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4230 |
[2023-09-02 11:13:05,598::train::INFO] [train] Iter 09276 | loss 0.7925 | loss(rot) 0.1839 | loss(pos) 0.3727 | loss(seq) 0.2359 | grad 3.8042 | lr 0.0010 | time_forward 3.8500 | time_backward 5.3670 |
[2023-09-02 11:13:14,220::train::INFO] [train] Iter 09277 | loss 0.6926 | loss(rot) 0.0765 | loss(pos) 0.3193 | loss(seq) 0.2968 | grad 4.3461 | lr 0.0010 | time_forward 3.6180 | time_backward 5.0000 |
[2023-09-02 11:13:21,824::train::INFO] [train] Iter 09278 | loss 2.1799 | loss(rot) 1.5021 | loss(pos) 0.1461 | loss(seq) 0.5317 | grad 2.9989 | lr 0.0010 | time_forward 3.2470 | time_backward 4.3530 |
[2023-09-02 11:13:31,948::train::INFO] [train] Iter 09279 | loss 1.6430 | loss(rot) 0.9820 | loss(pos) 0.2642 | loss(seq) 0.3967 | grad 4.3224 | lr 0.0010 | time_forward 4.1580 | time_backward 5.9620 |
[2023-09-02 11:13:42,312::train::INFO] [train] Iter 09280 | loss 2.0536 | loss(rot) 1.1025 | loss(pos) 0.3466 | loss(seq) 0.6046 | grad 4.4214 | lr 0.0010 | time_forward 4.2530 | time_backward 6.1070 |
[2023-09-02 11:13:47,242::train::INFO] [train] Iter 09281 | loss 1.2854 | loss(rot) 0.6850 | loss(pos) 0.1840 | loss(seq) 0.4164 | grad 4.3021 | lr 0.0010 | time_forward 2.0980 | time_backward 2.8210 |
[2023-09-02 11:13:50,742::train::INFO] [train] Iter 09282 | loss 1.2115 | loss(rot) 0.4396 | loss(pos) 0.7457 | loss(seq) 0.0263 | grad 2.7023 | lr 0.0010 | time_forward 1.4860 | time_backward 1.9670 |
[2023-09-02 11:13:53,560::train::INFO] [train] Iter 09283 | loss 2.2579 | loss(rot) 1.4841 | loss(pos) 0.2663 | loss(seq) 0.5075 | grad 4.4515 | lr 0.0010 | time_forward 1.3180 | time_backward 1.4970 |
[2023-09-02 11:13:56,454::train::INFO] [train] Iter 09284 | loss 1.5584 | loss(rot) 1.4145 | loss(pos) 0.1432 | loss(seq) 0.0007 | grad 4.1650 | lr 0.0010 | time_forward 1.3590 | time_backward 1.5300 |
[2023-09-02 11:13:59,212::train::INFO] [train] Iter 09285 | loss 1.6318 | loss(rot) 0.7642 | loss(pos) 0.3674 | loss(seq) 0.5002 | grad 4.2316 | lr 0.0010 | time_forward 1.3140 | time_backward 1.4410 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.