text
stringlengths
56
1.16k
[2023-09-02 11:14:07,430::train::INFO] [train] Iter 09286 | loss 1.5911 | loss(rot) 0.5561 | loss(pos) 0.6431 | loss(seq) 0.3919 | grad 2.7704 | lr 0.0010 | time_forward 3.4850 | time_backward 4.7260
[2023-09-02 11:14:15,766::train::INFO] [train] Iter 09287 | loss 2.8475 | loss(rot) 2.0693 | loss(pos) 0.2938 | loss(seq) 0.4844 | grad 2.7949 | lr 0.0010 | time_forward 3.6710 | time_backward 4.6630
[2023-09-02 11:14:23,101::train::INFO] [train] Iter 09288 | loss 2.1946 | loss(rot) 1.7530 | loss(pos) 0.1311 | loss(seq) 0.3105 | grad 5.7595 | lr 0.0010 | time_forward 3.2150 | time_backward 4.1170
[2023-09-02 11:14:33,810::train::INFO] [train] Iter 09289 | loss 1.9207 | loss(rot) 1.4770 | loss(pos) 0.1865 | loss(seq) 0.2572 | grad 3.8133 | lr 0.0010 | time_forward 4.8950 | time_backward 5.8100
[2023-09-02 11:14:42,004::train::INFO] [train] Iter 09290 | loss 1.9810 | loss(rot) 1.5920 | loss(pos) 0.3890 | loss(seq) 0.0000 | grad 6.4279 | lr 0.0010 | time_forward 3.4060 | time_backward 4.7840
[2023-09-02 11:14:52,201::train::INFO] [train] Iter 09291 | loss 2.4395 | loss(rot) 2.2124 | loss(pos) 0.0851 | loss(seq) 0.1420 | grad 4.5683 | lr 0.0010 | time_forward 4.0810 | time_backward 6.1120
[2023-09-02 11:15:01,960::train::INFO] [train] Iter 09292 | loss 1.7752 | loss(rot) 0.9991 | loss(pos) 0.3974 | loss(seq) 0.3787 | grad 6.0361 | lr 0.0010 | time_forward 3.9920 | time_backward 5.7640
[2023-09-02 11:15:12,222::train::INFO] [train] Iter 09293 | loss 0.9317 | loss(rot) 0.0761 | loss(pos) 0.8410 | loss(seq) 0.0147 | grad 3.4195 | lr 0.0010 | time_forward 4.4460 | time_backward 5.8130
[2023-09-02 11:15:15,037::train::INFO] [train] Iter 09294 | loss 1.7662 | loss(rot) 1.5422 | loss(pos) 0.0985 | loss(seq) 0.1256 | grad 4.3490 | lr 0.0010 | time_forward 1.2990 | time_backward 1.5130
[2023-09-02 11:15:17,548::train::INFO] [train] Iter 09295 | loss 2.6894 | loss(rot) 2.5797 | loss(pos) 0.0971 | loss(seq) 0.0126 | grad 4.3844 | lr 0.0010 | time_forward 1.1740 | time_backward 1.3330
[2023-09-02 11:15:20,423::train::INFO] [train] Iter 09296 | loss 1.6222 | loss(rot) 0.8739 | loss(pos) 0.4423 | loss(seq) 0.3061 | grad 5.5072 | lr 0.0010 | time_forward 1.3540 | time_backward 1.4950
[2023-09-02 11:15:23,318::train::INFO] [train] Iter 09297 | loss 2.6616 | loss(rot) 2.2460 | loss(pos) 0.1158 | loss(seq) 0.2998 | grad 5.7489 | lr 0.0010 | time_forward 1.3900 | time_backward 1.5020
[2023-09-02 11:15:33,351::train::INFO] [train] Iter 09298 | loss 0.7756 | loss(rot) 0.0937 | loss(pos) 0.6383 | loss(seq) 0.0436 | grad 4.2054 | lr 0.0010 | time_forward 4.1280 | time_backward 5.9020
[2023-09-02 11:15:36,119::train::INFO] [train] Iter 09299 | loss 1.8035 | loss(rot) 1.2019 | loss(pos) 0.2196 | loss(seq) 0.3820 | grad 6.7806 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4740
[2023-09-02 11:15:38,648::train::INFO] [train] Iter 09300 | loss 2.7337 | loss(rot) 2.5192 | loss(pos) 0.2080 | loss(seq) 0.0065 | grad 4.8371 | lr 0.0010 | time_forward 1.2150 | time_backward 1.3120
[2023-09-02 11:15:45,450::train::INFO] [train] Iter 09301 | loss 1.1987 | loss(rot) 0.4193 | loss(pos) 0.2489 | loss(seq) 0.5306 | grad 3.9053 | lr 0.0010 | time_forward 2.8830 | time_backward 3.9160
[2023-09-02 11:15:55,524::train::INFO] [train] Iter 09302 | loss 1.6477 | loss(rot) 1.0208 | loss(pos) 0.1998 | loss(seq) 0.4271 | grad 4.6560 | lr 0.0010 | time_forward 4.0420 | time_backward 6.0280
[2023-09-02 11:16:04,870::train::INFO] [train] Iter 09303 | loss 1.1074 | loss(rot) 0.5334 | loss(pos) 0.4901 | loss(seq) 0.0840 | grad 4.6679 | lr 0.0010 | time_forward 3.8860 | time_backward 5.4570
[2023-09-02 11:16:07,635::train::INFO] [train] Iter 09304 | loss 1.4100 | loss(rot) 0.1033 | loss(pos) 1.2969 | loss(seq) 0.0098 | grad 5.8279 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4660
[2023-09-02 11:16:16,944::train::INFO] [train] Iter 09305 | loss 1.9660 | loss(rot) 1.5819 | loss(pos) 0.0781 | loss(seq) 0.3060 | grad 3.6671 | lr 0.0010 | time_forward 3.9850 | time_backward 5.3210
[2023-09-02 11:16:27,051::train::INFO] [train] Iter 09306 | loss 1.9881 | loss(rot) 1.5001 | loss(pos) 0.1334 | loss(seq) 0.3546 | grad 7.6825 | lr 0.0010 | time_forward 4.0710 | time_backward 6.0320
[2023-09-02 11:16:36,092::train::INFO] [train] Iter 09307 | loss 1.1025 | loss(rot) 0.4010 | loss(pos) 0.2245 | loss(seq) 0.4771 | grad 3.3885 | lr 0.0010 | time_forward 3.8690 | time_backward 5.1680
[2023-09-02 11:16:45,589::train::INFO] [train] Iter 09308 | loss 1.5299 | loss(rot) 1.0159 | loss(pos) 0.1061 | loss(seq) 0.4078 | grad 5.9248 | lr 0.0010 | time_forward 4.0580 | time_backward 5.4350
[2023-09-02 11:16:55,624::train::INFO] [train] Iter 09309 | loss 2.0533 | loss(rot) 1.8260 | loss(pos) 0.2273 | loss(seq) 0.0000 | grad 3.9101 | lr 0.0010 | time_forward 4.0910 | time_backward 5.9400
[2023-09-02 11:17:04,151::train::INFO] [train] Iter 09310 | loss 1.2915 | loss(rot) 1.1027 | loss(pos) 0.1594 | loss(seq) 0.0294 | grad 4.8553 | lr 0.0010 | time_forward 3.5760 | time_backward 4.9470
[2023-09-02 11:17:07,222::train::INFO] [train] Iter 09311 | loss 1.7580 | loss(rot) 1.5642 | loss(pos) 0.1849 | loss(seq) 0.0090 | grad 6.2676 | lr 0.0010 | time_forward 1.5450 | time_backward 1.5080
[2023-09-02 11:17:16,127::train::INFO] [train] Iter 09312 | loss 1.7014 | loss(rot) 0.0379 | loss(pos) 1.6621 | loss(seq) 0.0015 | grad 7.7367 | lr 0.0010 | time_forward 3.8610 | time_backward 5.0390
[2023-09-02 11:17:26,562::train::INFO] [train] Iter 09313 | loss 2.2459 | loss(rot) 2.0762 | loss(pos) 0.1691 | loss(seq) 0.0007 | grad 4.0984 | lr 0.0010 | time_forward 4.3950 | time_backward 6.0360
[2023-09-02 11:17:35,520::train::INFO] [train] Iter 09314 | loss 0.4857 | loss(rot) 0.2286 | loss(pos) 0.1961 | loss(seq) 0.0610 | grad 2.9949 | lr 0.0010 | time_forward 3.7680 | time_backward 5.1880
[2023-09-02 11:17:47,759::train::INFO] [train] Iter 09315 | loss 1.2634 | loss(rot) 0.5322 | loss(pos) 0.3740 | loss(seq) 0.3571 | grad 2.3599 | lr 0.0010 | time_forward 6.2850 | time_backward 5.9500
[2023-09-02 11:17:51,319::train::INFO] [train] Iter 09316 | loss 1.5297 | loss(rot) 0.7396 | loss(pos) 0.3231 | loss(seq) 0.4669 | grad 3.0942 | lr 0.0010 | time_forward 1.5830 | time_backward 1.9750
[2023-09-02 11:17:59,986::train::INFO] [train] Iter 09317 | loss 1.9824 | loss(rot) 1.8007 | loss(pos) 0.1798 | loss(seq) 0.0020 | grad 5.1297 | lr 0.0010 | time_forward 3.7050 | time_backward 4.9590
[2023-09-02 11:18:10,022::train::INFO] [train] Iter 09318 | loss 2.0305 | loss(rot) 1.1992 | loss(pos) 0.2574 | loss(seq) 0.5740 | grad 4.0121 | lr 0.0010 | time_forward 4.0820 | time_backward 5.9500
[2023-09-02 11:18:12,743::train::INFO] [train] Iter 09319 | loss 1.4792 | loss(rot) 1.3888 | loss(pos) 0.0885 | loss(seq) 0.0019 | grad 3.9317 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4210
[2023-09-02 11:18:20,852::train::INFO] [train] Iter 09320 | loss 1.4665 | loss(rot) 1.2934 | loss(pos) 0.1209 | loss(seq) 0.0522 | grad 3.6109 | lr 0.0010 | time_forward 3.4650 | time_backward 4.6410
[2023-09-02 11:18:31,003::train::INFO] [train] Iter 09321 | loss 1.7221 | loss(rot) 1.2183 | loss(pos) 0.1550 | loss(seq) 0.3487 | grad 3.3979 | lr 0.0010 | time_forward 4.0960 | time_backward 6.0500
[2023-09-02 11:18:40,807::train::INFO] [train] Iter 09322 | loss 1.0853 | loss(rot) 0.3353 | loss(pos) 0.1925 | loss(seq) 0.5575 | grad 3.6923 | lr 0.0010 | time_forward 4.0600 | time_backward 5.7400
[2023-09-02 11:18:43,605::train::INFO] [train] Iter 09323 | loss 2.2421 | loss(rot) 1.9740 | loss(pos) 0.1639 | loss(seq) 0.1042 | grad 4.5253 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4840
[2023-09-02 11:18:53,828::train::INFO] [train] Iter 09324 | loss 2.0517 | loss(rot) 1.2266 | loss(pos) 0.3263 | loss(seq) 0.4988 | grad 4.3611 | lr 0.0010 | time_forward 4.3520 | time_backward 5.8670
[2023-09-02 11:18:56,551::train::INFO] [train] Iter 09325 | loss 2.0279 | loss(rot) 1.8718 | loss(pos) 0.0941 | loss(seq) 0.0620 | grad 10.3321 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4370
[2023-09-02 11:19:06,922::train::INFO] [train] Iter 09326 | loss 1.6322 | loss(rot) 1.5410 | loss(pos) 0.0848 | loss(seq) 0.0065 | grad 3.9079 | lr 0.0010 | time_forward 4.3970 | time_backward 5.9710
[2023-09-02 11:19:16,730::train::INFO] [train] Iter 09327 | loss 1.5555 | loss(rot) 0.8989 | loss(pos) 0.1976 | loss(seq) 0.4591 | grad 4.6210 | lr 0.0010 | time_forward 4.0930 | time_backward 5.7110
[2023-09-02 11:19:27,006::train::INFO] [train] Iter 09328 | loss 2.0789 | loss(rot) 1.5209 | loss(pos) 0.1270 | loss(seq) 0.4310 | grad 5.7531 | lr 0.0010 | time_forward 4.1300 | time_backward 6.1390
[2023-09-02 11:19:35,554::train::INFO] [train] Iter 09329 | loss 2.9821 | loss(rot) 2.7437 | loss(pos) 0.0689 | loss(seq) 0.1694 | grad 5.3431 | lr 0.0010 | time_forward 3.6650 | time_backward 4.8800
[2023-09-02 11:19:38,310::train::INFO] [train] Iter 09330 | loss 1.7116 | loss(rot) 0.9028 | loss(pos) 0.3623 | loss(seq) 0.4465 | grad 3.9247 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4700
[2023-09-02 11:19:47,237::train::INFO] [train] Iter 09331 | loss 1.4641 | loss(rot) 1.1759 | loss(pos) 0.1581 | loss(seq) 0.1301 | grad 4.4688 | lr 0.0010 | time_forward 3.7540 | time_backward 5.1690
[2023-09-02 11:19:49,980::train::INFO] [train] Iter 09332 | loss 2.1671 | loss(rot) 0.1056 | loss(pos) 2.0605 | loss(seq) 0.0010 | grad 8.5305 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4390
[2023-09-02 11:19:52,717::train::INFO] [train] Iter 09333 | loss 3.0347 | loss(rot) 0.0738 | loss(pos) 2.9604 | loss(seq) 0.0006 | grad 10.3558 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4140
[2023-09-02 11:20:03,056::train::INFO] [train] Iter 09334 | loss 2.0737 | loss(rot) 1.8013 | loss(pos) 0.2273 | loss(seq) 0.0452 | grad 5.8672 | lr 0.0010 | time_forward 4.2730 | time_backward 6.0550
[2023-09-02 11:20:13,332::train::INFO] [train] Iter 09335 | loss 2.3909 | loss(rot) 2.1497 | loss(pos) 0.1772 | loss(seq) 0.0640 | grad 5.3716 | lr 0.0010 | time_forward 4.2380 | time_backward 6.0350
[2023-09-02 11:20:22,133::train::INFO] [train] Iter 09336 | loss 1.5166 | loss(rot) 0.6963 | loss(pos) 0.4851 | loss(seq) 0.3352 | grad 4.2201 | lr 0.0010 | time_forward 3.7900 | time_backward 5.0080
[2023-09-02 11:20:30,994::train::INFO] [train] Iter 09337 | loss 1.2294 | loss(rot) 1.0474 | loss(pos) 0.1774 | loss(seq) 0.0045 | grad 9.2808 | lr 0.0010 | time_forward 3.7940 | time_backward 5.0640
[2023-09-02 11:20:39,846::train::INFO] [train] Iter 09338 | loss 1.7514 | loss(rot) 1.5253 | loss(pos) 0.0784 | loss(seq) 0.1476 | grad 4.2060 | lr 0.0010 | time_forward 3.6930 | time_backward 5.1540
[2023-09-02 11:20:42,650::train::INFO] [train] Iter 09339 | loss 2.0359 | loss(rot) 1.3538 | loss(pos) 0.2144 | loss(seq) 0.4677 | grad 4.8053 | lr 0.0010 | time_forward 1.2890 | time_backward 1.5110
[2023-09-02 11:20:52,473::train::INFO] [train] Iter 09340 | loss 2.8745 | loss(rot) 2.7489 | loss(pos) 0.1254 | loss(seq) 0.0001 | grad 2.9141 | lr 0.0010 | time_forward 4.8180 | time_backward 5.0010
[2023-09-02 11:20:55,295::train::INFO] [train] Iter 09341 | loss 2.3950 | loss(rot) 2.2887 | loss(pos) 0.0618 | loss(seq) 0.0445 | grad 7.3401 | lr 0.0010 | time_forward 1.3170 | time_backward 1.5010
[2023-09-02 11:21:03,460::train::INFO] [train] Iter 09342 | loss 2.2670 | loss(rot) 1.7781 | loss(pos) 0.1046 | loss(seq) 0.3843 | grad 5.7696 | lr 0.0010 | time_forward 3.5160 | time_backward 4.6460
[2023-09-02 11:21:12,902::train::INFO] [train] Iter 09343 | loss 0.9448 | loss(rot) 0.2212 | loss(pos) 0.4918 | loss(seq) 0.2319 | grad 4.7871 | lr 0.0010 | time_forward 4.1280 | time_backward 5.3100
[2023-09-02 11:21:20,993::train::INFO] [train] Iter 09344 | loss 1.1997 | loss(rot) 0.4012 | loss(pos) 0.2925 | loss(seq) 0.5061 | grad 4.2780 | lr 0.0010 | time_forward 3.4180 | time_backward 4.6700
[2023-09-02 11:21:31,086::train::INFO] [train] Iter 09345 | loss 1.8902 | loss(rot) 0.0177 | loss(pos) 1.8687 | loss(seq) 0.0038 | grad 10.1960 | lr 0.0010 | time_forward 4.0800 | time_backward 6.0090
[2023-09-02 11:21:40,335::train::INFO] [train] Iter 09346 | loss 1.6846 | loss(rot) 1.5434 | loss(pos) 0.1153 | loss(seq) 0.0259 | grad 6.7941 | lr 0.0010 | time_forward 3.9610 | time_backward 5.2850
[2023-09-02 11:21:48,982::train::INFO] [train] Iter 09347 | loss 1.5816 | loss(rot) 1.4381 | loss(pos) 0.1263 | loss(seq) 0.0172 | grad 4.0894 | lr 0.0010 | time_forward 3.7500 | time_backward 4.8940
[2023-09-02 11:21:59,042::train::INFO] [train] Iter 09348 | loss 1.6937 | loss(rot) 0.8389 | loss(pos) 0.2623 | loss(seq) 0.5925 | grad 4.6569 | lr 0.0010 | time_forward 4.0400 | time_backward 6.0170
[2023-09-02 11:22:02,905::train::INFO] [train] Iter 09349 | loss 3.0940 | loss(rot) 2.6931 | loss(pos) 0.3055 | loss(seq) 0.0953 | grad 4.9288 | lr 0.0010 | time_forward 1.8610 | time_backward 1.9990
[2023-09-02 11:22:12,128::train::INFO] [train] Iter 09350 | loss 1.7290 | loss(rot) 1.2661 | loss(pos) 0.2611 | loss(seq) 0.2018 | grad 7.9120 | lr 0.0010 | time_forward 3.9470 | time_backward 5.2730
[2023-09-02 11:22:20,333::train::INFO] [train] Iter 09351 | loss 2.5944 | loss(rot) 1.9743 | loss(pos) 0.2371 | loss(seq) 0.3830 | grad 6.5668 | lr 0.0010 | time_forward 3.4810 | time_backward 4.7210
[2023-09-02 11:22:30,611::train::INFO] [train] Iter 09352 | loss 1.9910 | loss(rot) 0.0135 | loss(pos) 1.9767 | loss(seq) 0.0009 | grad 6.1930 | lr 0.0010 | time_forward 4.3580 | time_backward 5.9170
[2023-09-02 11:22:39,617::train::INFO] [train] Iter 09353 | loss 1.7285 | loss(rot) 0.9303 | loss(pos) 0.2869 | loss(seq) 0.5112 | grad 5.3943 | lr 0.0010 | time_forward 3.7840 | time_backward 5.2150
[2023-09-02 11:22:48,618::train::INFO] [train] Iter 09354 | loss 1.4512 | loss(rot) 0.7140 | loss(pos) 0.5051 | loss(seq) 0.2321 | grad 5.2355 | lr 0.0010 | time_forward 3.8160 | time_backward 5.1820
[2023-09-02 11:22:57,651::train::INFO] [train] Iter 09355 | loss 2.9959 | loss(rot) 0.0112 | loss(pos) 2.9831 | loss(seq) 0.0016 | grad 13.3393 | lr 0.0010 | time_forward 3.8960 | time_backward 5.1330
[2023-09-02 11:23:06,197::train::INFO] [train] Iter 09356 | loss 1.9816 | loss(rot) 1.8676 | loss(pos) 0.0578 | loss(seq) 0.0562 | grad 6.2933 | lr 0.0010 | time_forward 3.6230 | time_backward 4.9190
[2023-09-02 11:23:16,275::train::INFO] [train] Iter 09357 | loss 1.9074 | loss(rot) 1.2990 | loss(pos) 0.0968 | loss(seq) 0.5116 | grad 3.7926 | lr 0.0010 | time_forward 4.1170 | time_backward 5.9570
[2023-09-02 11:23:25,155::train::INFO] [train] Iter 09358 | loss 1.3649 | loss(rot) 0.5379 | loss(pos) 0.5489 | loss(seq) 0.2781 | grad 6.2077 | lr 0.0010 | time_forward 3.8100 | time_backward 5.0660
[2023-09-02 11:23:31,844::train::INFO] [train] Iter 09359 | loss 1.9554 | loss(rot) 0.9117 | loss(pos) 0.4553 | loss(seq) 0.5885 | grad 3.9930 | lr 0.0010 | time_forward 2.8600 | time_backward 3.8250
[2023-09-02 11:23:41,059::train::INFO] [train] Iter 09360 | loss 1.3100 | loss(rot) 0.7837 | loss(pos) 0.3762 | loss(seq) 0.1500 | grad 4.8051 | lr 0.0010 | time_forward 3.9180 | time_backward 5.2930
[2023-09-02 11:23:48,387::train::INFO] [train] Iter 09361 | loss 1.2591 | loss(rot) 0.1670 | loss(pos) 0.8902 | loss(seq) 0.2020 | grad 4.9620 | lr 0.0010 | time_forward 3.1240 | time_backward 4.2000
[2023-09-02 11:23:55,619::train::INFO] [train] Iter 09362 | loss 3.3130 | loss(rot) 3.1370 | loss(pos) 0.1517 | loss(seq) 0.0243 | grad 5.0066 | lr 0.0010 | time_forward 3.0530 | time_backward 4.1760
[2023-09-02 11:24:04,430::train::INFO] [train] Iter 09363 | loss 1.5009 | loss(rot) 1.3555 | loss(pos) 0.0886 | loss(seq) 0.0567 | grad 3.5055 | lr 0.0010 | time_forward 3.7660 | time_backward 5.0420
[2023-09-02 11:24:13,250::train::INFO] [train] Iter 09364 | loss 1.7543 | loss(rot) 1.6435 | loss(pos) 0.1107 | loss(seq) 0.0000 | grad 4.8098 | lr 0.0010 | time_forward 3.7340 | time_backward 5.0830
[2023-09-02 11:24:22,562::train::INFO] [train] Iter 09365 | loss 1.9141 | loss(rot) 1.6613 | loss(pos) 0.2345 | loss(seq) 0.0183 | grad 13.2434 | lr 0.0010 | time_forward 3.9520 | time_backward 5.3570
[2023-09-02 11:24:31,392::train::INFO] [train] Iter 09366 | loss 0.7722 | loss(rot) 0.0465 | loss(pos) 0.7058 | loss(seq) 0.0199 | grad 6.3234 | lr 0.0010 | time_forward 3.7720 | time_backward 5.0540
[2023-09-02 11:24:41,635::train::INFO] [train] Iter 09367 | loss 1.7700 | loss(rot) 1.5550 | loss(pos) 0.1937 | loss(seq) 0.0214 | grad 5.7369 | lr 0.0010 | time_forward 4.2510 | time_backward 5.9890
[2023-09-02 11:24:51,488::train::INFO] [train] Iter 09368 | loss 1.4238 | loss(rot) 1.1759 | loss(pos) 0.1313 | loss(seq) 0.1166 | grad 7.3422 | lr 0.0010 | time_forward 4.0660 | time_backward 5.7850
[2023-09-02 11:25:01,566::train::INFO] [train] Iter 09369 | loss 1.7653 | loss(rot) 1.5522 | loss(pos) 0.0741 | loss(seq) 0.1389 | grad 6.4904 | lr 0.0010 | time_forward 4.0180 | time_backward 6.0430
[2023-09-02 11:25:04,612::train::INFO] [train] Iter 09370 | loss 1.4415 | loss(rot) 0.1611 | loss(pos) 1.1237 | loss(seq) 0.1566 | grad 5.7607 | lr 0.0010 | time_forward 1.5340 | time_backward 1.5090
[2023-09-02 11:25:14,379::train::INFO] [train] Iter 09371 | loss 2.4624 | loss(rot) 0.9470 | loss(pos) 0.9514 | loss(seq) 0.5640 | grad 6.4115 | lr 0.0010 | time_forward 4.1150 | time_backward 5.6480
[2023-09-02 11:25:18,180::train::INFO] [train] Iter 09372 | loss 3.0165 | loss(rot) 2.6624 | loss(pos) 0.2472 | loss(seq) 0.1069 | grad 4.4002 | lr 0.0010 | time_forward 1.6170 | time_backward 2.1800
[2023-09-02 11:25:21,080::train::INFO] [train] Iter 09373 | loss 0.6479 | loss(rot) 0.1108 | loss(pos) 0.5059 | loss(seq) 0.0311 | grad 3.0701 | lr 0.0010 | time_forward 1.3520 | time_backward 1.5350
[2023-09-02 11:25:28,743::train::INFO] [train] Iter 09374 | loss 2.5120 | loss(rot) 1.9942 | loss(pos) 0.1927 | loss(seq) 0.3252 | grad 4.0248 | lr 0.0010 | time_forward 3.3120 | time_backward 4.3470
[2023-09-02 11:25:37,579::train::INFO] [train] Iter 09375 | loss 1.2794 | loss(rot) 0.6265 | loss(pos) 0.2391 | loss(seq) 0.4139 | grad 3.7043 | lr 0.0010 | time_forward 3.7250 | time_backward 5.1080
[2023-09-02 11:25:46,352::train::INFO] [train] Iter 09376 | loss 2.2781 | loss(rot) 1.7418 | loss(pos) 0.2097 | loss(seq) 0.3266 | grad 8.1365 | lr 0.0010 | time_forward 3.7100 | time_backward 5.0590
[2023-09-02 11:25:55,362::train::INFO] [train] Iter 09377 | loss 1.4587 | loss(rot) 0.4514 | loss(pos) 0.6704 | loss(seq) 0.3368 | grad 5.3978 | lr 0.0010 | time_forward 3.9920 | time_backward 5.0140
[2023-09-02 11:26:04,796::train::INFO] [train] Iter 09378 | loss 1.4233 | loss(rot) 0.6071 | loss(pos) 0.3260 | loss(seq) 0.4902 | grad 4.1450 | lr 0.0010 | time_forward 4.0020 | time_backward 5.4290
[2023-09-02 11:26:07,512::train::INFO] [train] Iter 09379 | loss 1.2080 | loss(rot) 0.2801 | loss(pos) 0.8744 | loss(seq) 0.0535 | grad 5.6575 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4140
[2023-09-02 11:26:17,299::train::INFO] [train] Iter 09380 | loss 2.7811 | loss(rot) 2.0716 | loss(pos) 0.2014 | loss(seq) 0.5081 | grad 6.9790 | lr 0.0010 | time_forward 4.0490 | time_backward 5.6990
[2023-09-02 11:26:27,463::train::INFO] [train] Iter 09381 | loss 1.1872 | loss(rot) 0.1820 | loss(pos) 0.9695 | loss(seq) 0.0357 | grad 3.5862 | lr 0.0010 | time_forward 4.1270 | time_backward 6.0340
[2023-09-02 11:26:30,135::train::INFO] [train] Iter 09382 | loss 2.4400 | loss(rot) 0.2922 | loss(pos) 2.1391 | loss(seq) 0.0087 | grad 7.1537 | lr 0.0010 | time_forward 1.3370 | time_backward 1.3310
[2023-09-02 11:26:32,612::train::INFO] [train] Iter 09383 | loss 1.4932 | loss(rot) 1.2637 | loss(pos) 0.1189 | loss(seq) 0.1106 | grad 4.0194 | lr 0.0010 | time_forward 1.1500 | time_backward 1.3240
[2023-09-02 11:26:40,221::train::INFO] [train] Iter 09384 | loss 0.8908 | loss(rot) 0.0609 | loss(pos) 0.5651 | loss(seq) 0.2648 | grad 2.6908 | lr 0.0010 | time_forward 3.1690 | time_backward 4.4220
[2023-09-02 11:26:43,000::train::INFO] [train] Iter 09385 | loss 2.4684 | loss(rot) 1.9805 | loss(pos) 0.1562 | loss(seq) 0.3317 | grad 4.5169 | lr 0.0010 | time_forward 1.3300 | time_backward 1.4460