text
stringlengths
56
1.16k
[2023-09-02 10:49:57,803::train::INFO] [train] Iter 09086 | loss 1.6116 | loss(rot) 0.8286 | loss(pos) 0.3185 | loss(seq) 0.4645 | grad 4.3197 | lr 0.0010 | time_forward 1.0680 | time_backward 1.1570
[2023-09-02 10:50:07,630::train::INFO] [train] Iter 09087 | loss 1.6571 | loss(rot) 1.4768 | loss(pos) 0.1790 | loss(seq) 0.0013 | grad 5.0136 | lr 0.0010 | time_forward 4.0430 | time_backward 5.7480
[2023-09-02 10:50:09,930::train::INFO] [train] Iter 09088 | loss 1.3235 | loss(rot) 0.7252 | loss(pos) 0.2051 | loss(seq) 0.3932 | grad 3.4899 | lr 0.0010 | time_forward 1.1430 | time_backward 1.1530
[2023-09-02 10:50:17,097::train::INFO] [train] Iter 09089 | loss 1.0518 | loss(rot) 0.3156 | loss(pos) 0.4838 | loss(seq) 0.2524 | grad 4.8189 | lr 0.0010 | time_forward 3.0080 | time_backward 4.1550
[2023-09-02 10:50:26,424::train::INFO] [train] Iter 09090 | loss 1.6983 | loss(rot) 1.5188 | loss(pos) 0.1794 | loss(seq) 0.0001 | grad 4.9620 | lr 0.0010 | time_forward 3.9310 | time_backward 5.3920
[2023-09-02 10:50:36,499::train::INFO] [train] Iter 09091 | loss 1.4943 | loss(rot) 0.9135 | loss(pos) 0.2327 | loss(seq) 0.3481 | grad 4.4759 | lr 0.0010 | time_forward 4.0610 | time_backward 6.0100
[2023-09-02 10:50:39,199::train::INFO] [train] Iter 09092 | loss 1.9365 | loss(rot) 1.6978 | loss(pos) 0.0779 | loss(seq) 0.1608 | grad 4.6335 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4220
[2023-09-02 10:50:45,749::train::INFO] [train] Iter 09093 | loss 1.3866 | loss(rot) 0.8703 | loss(pos) 0.1569 | loss(seq) 0.3594 | grad 3.6117 | lr 0.0010 | time_forward 2.6960 | time_backward 3.8370
[2023-09-02 10:50:47,969::train::INFO] [train] Iter 09094 | loss 2.4538 | loss(rot) 2.2262 | loss(pos) 0.2264 | loss(seq) 0.0013 | grad 4.8522 | lr 0.0010 | time_forward 1.0520 | time_backward 1.1650
[2023-09-02 10:50:50,735::train::INFO] [train] Iter 09095 | loss 1.9783 | loss(rot) 1.7412 | loss(pos) 0.2368 | loss(seq) 0.0003 | grad 4.1223 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4520
[2023-09-02 10:51:00,741::train::INFO] [train] Iter 09096 | loss 2.2344 | loss(rot) 1.8443 | loss(pos) 0.0911 | loss(seq) 0.2990 | grad 4.7784 | lr 0.0010 | time_forward 4.5650 | time_backward 5.4380
[2023-09-02 10:51:08,760::train::INFO] [train] Iter 09097 | loss 0.9529 | loss(rot) 0.1227 | loss(pos) 0.7934 | loss(seq) 0.0367 | grad 4.5157 | lr 0.0010 | time_forward 3.3660 | time_backward 4.6500
[2023-09-02 10:51:18,604::train::INFO] [train] Iter 09098 | loss 2.5217 | loss(rot) 0.0448 | loss(pos) 2.4730 | loss(seq) 0.0039 | grad 11.5521 | lr 0.0010 | time_forward 4.0500 | time_backward 5.7790
[2023-09-02 10:51:22,051::train::INFO] [train] Iter 09099 | loss 2.8619 | loss(rot) 2.1395 | loss(pos) 0.3578 | loss(seq) 0.3645 | grad 4.8860 | lr 0.0010 | time_forward 1.4470 | time_backward 1.9800
[2023-09-02 10:51:32,145::train::INFO] [train] Iter 09100 | loss 1.3633 | loss(rot) 0.2260 | loss(pos) 0.8589 | loss(seq) 0.2784 | grad 7.6663 | lr 0.0010 | time_forward 4.1230 | time_backward 5.9680
[2023-09-02 10:51:41,020::train::INFO] [train] Iter 09101 | loss 1.8220 | loss(rot) 1.6488 | loss(pos) 0.0883 | loss(seq) 0.0849 | grad 7.1450 | lr 0.0010 | time_forward 3.7540 | time_backward 5.1170
[2023-09-02 10:51:51,111::train::INFO] [train] Iter 09102 | loss 1.7679 | loss(rot) 1.3137 | loss(pos) 0.1006 | loss(seq) 0.3536 | grad 4.4292 | lr 0.0010 | time_forward 4.0540 | time_backward 6.0330
[2023-09-02 10:51:59,738::train::INFO] [train] Iter 09103 | loss 0.9893 | loss(rot) 0.2558 | loss(pos) 0.5786 | loss(seq) 0.1549 | grad 4.6583 | lr 0.0010 | time_forward 3.6160 | time_backward 5.0070
[2023-09-02 10:52:08,379::train::INFO] [train] Iter 09104 | loss 1.6809 | loss(rot) 1.5737 | loss(pos) 0.1053 | loss(seq) 0.0020 | grad 5.4212 | lr 0.0010 | time_forward 3.6150 | time_backward 5.0220
[2023-09-02 10:52:18,601::train::INFO] [train] Iter 09105 | loss 0.9792 | loss(rot) 0.2289 | loss(pos) 0.5862 | loss(seq) 0.1642 | grad 6.7547 | lr 0.0010 | time_forward 4.1860 | time_backward 6.0310
[2023-09-02 10:52:27,442::train::INFO] [train] Iter 09106 | loss 0.9279 | loss(rot) 0.1818 | loss(pos) 0.4967 | loss(seq) 0.2495 | grad 5.4988 | lr 0.0010 | time_forward 3.7400 | time_backward 5.0970
[2023-09-02 10:52:35,458::train::INFO] [train] Iter 09107 | loss 1.9537 | loss(rot) 1.6620 | loss(pos) 0.2917 | loss(seq) 0.0000 | grad 8.6086 | lr 0.0010 | time_forward 3.4140 | time_backward 4.5980
[2023-09-02 10:52:38,130::train::INFO] [train] Iter 09108 | loss 1.0795 | loss(rot) 0.4151 | loss(pos) 0.1457 | loss(seq) 0.5187 | grad 3.4446 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4090
[2023-09-02 10:52:46,864::train::INFO] [train] Iter 09109 | loss 1.7744 | loss(rot) 1.6271 | loss(pos) 0.1473 | loss(seq) 0.0000 | grad 3.9575 | lr 0.0010 | time_forward 3.6870 | time_backward 5.0440
[2023-09-02 10:52:49,549::train::INFO] [train] Iter 09110 | loss 2.4619 | loss(rot) 2.2652 | loss(pos) 0.1967 | loss(seq) 0.0000 | grad 4.8046 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4090
[2023-09-02 10:52:57,989::train::INFO] [train] Iter 09111 | loss 3.0986 | loss(rot) 2.9292 | loss(pos) 0.1687 | loss(seq) 0.0007 | grad 3.5632 | lr 0.0010 | time_forward 3.6310 | time_backward 4.8060
[2023-09-02 10:53:04,602::train::INFO] [train] Iter 09112 | loss 2.2654 | loss(rot) 0.6204 | loss(pos) 0.9511 | loss(seq) 0.6939 | grad 7.8744 | lr 0.0010 | time_forward 2.8460 | time_backward 3.7650
[2023-09-02 10:53:09,295::train::INFO] [train] Iter 09113 | loss 2.4846 | loss(rot) 2.0143 | loss(pos) 0.1081 | loss(seq) 0.3621 | grad 6.3862 | lr 0.0010 | time_forward 2.0740 | time_backward 2.6160
[2023-09-02 10:53:18,626::train::INFO] [train] Iter 09114 | loss 2.1795 | loss(rot) 1.3891 | loss(pos) 0.3090 | loss(seq) 0.4813 | grad 4.4656 | lr 0.0010 | time_forward 3.8530 | time_backward 5.4250
[2023-09-02 10:53:21,327::train::INFO] [train] Iter 09115 | loss 1.5331 | loss(rot) 0.1427 | loss(pos) 1.1670 | loss(seq) 0.2233 | grad 6.0106 | lr 0.0010 | time_forward 1.2650 | time_backward 1.4330
[2023-09-02 10:53:31,361::train::INFO] [train] Iter 09116 | loss 1.0207 | loss(rot) 0.0759 | loss(pos) 0.7819 | loss(seq) 0.1629 | grad 3.8901 | lr 0.0010 | time_forward 4.2340 | time_backward 5.7980
[2023-09-02 10:53:39,370::train::INFO] [train] Iter 09117 | loss 1.2851 | loss(rot) 0.4624 | loss(pos) 0.5652 | loss(seq) 0.2574 | grad 3.1907 | lr 0.0010 | time_forward 3.4570 | time_backward 4.5480
[2023-09-02 10:53:49,578::train::INFO] [train] Iter 09118 | loss 2.2340 | loss(rot) 1.5488 | loss(pos) 0.2312 | loss(seq) 0.4540 | grad 4.1129 | lr 0.0010 | time_forward 4.2190 | time_backward 5.9860
[2023-09-02 10:53:56,990::train::INFO] [train] Iter 09119 | loss 0.7439 | loss(rot) 0.1748 | loss(pos) 0.2766 | loss(seq) 0.2925 | grad 3.4588 | lr 0.0010 | time_forward 3.1040 | time_backward 4.3040
[2023-09-02 10:54:04,107::train::INFO] [train] Iter 09120 | loss 1.7697 | loss(rot) 0.9442 | loss(pos) 0.2938 | loss(seq) 0.5318 | grad 4.5829 | lr 0.0010 | time_forward 2.9720 | time_backward 4.1420
[2023-09-02 10:54:07,483::train::INFO] [train] Iter 09121 | loss 1.3785 | loss(rot) 0.3897 | loss(pos) 0.6960 | loss(seq) 0.2929 | grad 3.7696 | lr 0.0010 | time_forward 1.4960 | time_backward 1.8770
[2023-09-02 10:54:10,239::train::INFO] [train] Iter 09122 | loss 2.1019 | loss(rot) 1.5614 | loss(pos) 0.2072 | loss(seq) 0.3334 | grad 4.6008 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4480
[2023-09-02 10:54:12,931::train::INFO] [train] Iter 09123 | loss 1.0449 | loss(rot) 0.3500 | loss(pos) 0.6056 | loss(seq) 0.0894 | grad 3.8033 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4330
[2023-09-02 10:54:22,317::train::INFO] [train] Iter 09124 | loss 2.7254 | loss(rot) 2.5267 | loss(pos) 0.1987 | loss(seq) 0.0000 | grad 4.3985 | lr 0.0010 | time_forward 4.0360 | time_backward 5.3460
[2023-09-02 10:54:32,325::train::INFO] [train] Iter 09125 | loss 1.4839 | loss(rot) 0.6975 | loss(pos) 0.2417 | loss(seq) 0.5447 | grad 3.6168 | lr 0.0010 | time_forward 4.0620 | time_backward 5.9420
[2023-09-02 10:54:41,687::train::INFO] [train] Iter 09126 | loss 1.3284 | loss(rot) 0.0348 | loss(pos) 1.2912 | loss(seq) 0.0024 | grad 4.5387 | lr 0.0010 | time_forward 4.1030 | time_backward 5.2560
[2023-09-02 10:54:50,591::train::INFO] [train] Iter 09127 | loss 1.2258 | loss(rot) 0.6298 | loss(pos) 0.1582 | loss(seq) 0.4378 | grad 4.2204 | lr 0.0010 | time_forward 3.7520 | time_backward 5.1490
[2023-09-02 10:55:00,509::train::INFO] [train] Iter 09128 | loss 1.5121 | loss(rot) 0.0915 | loss(pos) 1.1480 | loss(seq) 0.2726 | grad 5.9170 | lr 0.0010 | time_forward 4.1340 | time_backward 5.7800
[2023-09-02 10:55:03,174::train::INFO] [train] Iter 09129 | loss 2.1015 | loss(rot) 1.8207 | loss(pos) 0.2807 | loss(seq) 0.0000 | grad 5.9886 | lr 0.0010 | time_forward 1.2700 | time_backward 1.3930
[2023-09-02 10:55:12,870::train::INFO] [train] Iter 09130 | loss 2.4694 | loss(rot) 2.2000 | loss(pos) 0.2571 | loss(seq) 0.0123 | grad 7.6731 | lr 0.0010 | time_forward 4.0550 | time_backward 5.6370
[2023-09-02 10:55:21,586::train::INFO] [train] Iter 09131 | loss 1.5287 | loss(rot) 0.8216 | loss(pos) 0.1247 | loss(seq) 0.5825 | grad 4.3293 | lr 0.0010 | time_forward 4.0550 | time_backward 4.6580
[2023-09-02 10:55:31,468::train::INFO] [train] Iter 09132 | loss 1.2811 | loss(rot) 0.0764 | loss(pos) 1.1969 | loss(seq) 0.0078 | grad 3.8771 | lr 0.0010 | time_forward 4.0700 | time_backward 5.8090
[2023-09-02 10:55:39,706::train::INFO] [train] Iter 09133 | loss 1.5836 | loss(rot) 1.5253 | loss(pos) 0.0583 | loss(seq) 0.0000 | grad 4.9648 | lr 0.0010 | time_forward 3.5270 | time_backward 4.7070
[2023-09-02 10:55:42,441::train::INFO] [train] Iter 09134 | loss 1.5479 | loss(rot) 0.6799 | loss(pos) 0.5870 | loss(seq) 0.2810 | grad 3.5679 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4610
[2023-09-02 10:55:52,499::train::INFO] [train] Iter 09135 | loss 1.9934 | loss(rot) 1.8138 | loss(pos) 0.1624 | loss(seq) 0.0172 | grad 4.4385 | lr 0.0010 | time_forward 4.1560 | time_backward 5.8990
[2023-09-02 10:56:01,367::train::INFO] [train] Iter 09136 | loss 1.9086 | loss(rot) 1.2694 | loss(pos) 0.1757 | loss(seq) 0.4634 | grad 3.4810 | lr 0.0010 | time_forward 3.7700 | time_backward 5.0940
[2023-09-02 10:56:10,666::train::INFO] [train] Iter 09137 | loss 2.0766 | loss(rot) 1.8652 | loss(pos) 0.1748 | loss(seq) 0.0366 | grad 8.4014 | lr 0.0010 | time_forward 3.8510 | time_backward 5.4440
[2023-09-02 10:56:20,732::train::INFO] [train] Iter 09138 | loss 2.1071 | loss(rot) 1.4059 | loss(pos) 0.1621 | loss(seq) 0.5391 | grad 3.5565 | lr 0.0010 | time_forward 4.1000 | time_backward 5.9630
[2023-09-02 10:56:30,245::train::INFO] [train] Iter 09139 | loss 1.8401 | loss(rot) 1.4539 | loss(pos) 0.1116 | loss(seq) 0.2746 | grad 6.5385 | lr 0.0010 | time_forward 4.1380 | time_backward 5.3710
[2023-09-02 10:56:39,632::train::INFO] [train] Iter 09140 | loss 0.7723 | loss(rot) 0.2696 | loss(pos) 0.4046 | loss(seq) 0.0981 | grad 3.4319 | lr 0.0010 | time_forward 3.9970 | time_backward 5.3870
[2023-09-02 10:56:49,835::train::INFO] [train] Iter 09141 | loss 1.4055 | loss(rot) 0.5873 | loss(pos) 0.5524 | loss(seq) 0.2659 | grad 5.4308 | lr 0.0010 | time_forward 4.1770 | time_backward 6.0220
[2023-09-02 10:56:59,227::train::INFO] [train] Iter 09142 | loss 0.9729 | loss(rot) 0.0600 | loss(pos) 0.7288 | loss(seq) 0.1841 | grad 4.6910 | lr 0.0010 | time_forward 3.9860 | time_backward 5.4020
[2023-09-02 10:57:01,517::train::INFO] [train] Iter 09143 | loss 2.5300 | loss(rot) 2.1688 | loss(pos) 0.1468 | loss(seq) 0.2144 | grad 4.2343 | lr 0.0010 | time_forward 1.0700 | time_backward 1.2160
[2023-09-02 10:57:10,049::train::INFO] [train] Iter 09144 | loss 1.5196 | loss(rot) 1.1909 | loss(pos) 0.1220 | loss(seq) 0.2068 | grad 5.8255 | lr 0.0010 | time_forward 3.6810 | time_backward 4.8320
[2023-09-02 10:57:17,388::train::INFO] [train] Iter 09145 | loss 1.6499 | loss(rot) 1.0251 | loss(pos) 0.2112 | loss(seq) 0.4136 | grad 5.0376 | lr 0.0010 | time_forward 3.4240 | time_backward 3.9110
[2023-09-02 10:57:27,753::train::INFO] [train] Iter 09146 | loss 1.8945 | loss(rot) 1.7552 | loss(pos) 0.0702 | loss(seq) 0.0691 | grad 5.0586 | lr 0.0010 | time_forward 4.1220 | time_backward 6.2400
[2023-09-02 10:57:36,624::train::INFO] [train] Iter 09147 | loss 2.8247 | loss(rot) 1.9481 | loss(pos) 0.4774 | loss(seq) 0.3992 | grad 6.5067 | lr 0.0010 | time_forward 3.7640 | time_backward 5.1030
[2023-09-02 10:57:39,412::train::INFO] [train] Iter 09148 | loss 2.8750 | loss(rot) 2.2050 | loss(pos) 0.1759 | loss(seq) 0.4940 | grad 4.3081 | lr 0.0010 | time_forward 1.3350 | time_backward 1.4500
[2023-09-02 10:57:49,383::train::INFO] [train] Iter 09149 | loss 0.7331 | loss(rot) 0.2284 | loss(pos) 0.4005 | loss(seq) 0.1042 | grad 3.2072 | lr 0.0010 | time_forward 4.0720 | time_backward 5.8960
[2023-09-02 10:58:00,045::train::INFO] [train] Iter 09150 | loss 2.7979 | loss(rot) 2.1756 | loss(pos) 0.2390 | loss(seq) 0.3833 | grad 3.6519 | lr 0.0010 | time_forward 4.3660 | time_backward 6.2930
[2023-09-02 10:58:02,984::train::INFO] [train] Iter 09151 | loss 1.3338 | loss(rot) 1.2423 | loss(pos) 0.0726 | loss(seq) 0.0189 | grad 14.5203 | lr 0.0010 | time_forward 1.4920 | time_backward 1.4340
[2023-09-02 10:58:11,776::train::INFO] [train] Iter 09152 | loss 2.2318 | loss(rot) 2.0682 | loss(pos) 0.1533 | loss(seq) 0.0104 | grad 5.3485 | lr 0.0010 | time_forward 3.8340 | time_backward 4.9540
[2023-09-02 10:58:18,582::train::INFO] [train] Iter 09153 | loss 1.4456 | loss(rot) 0.0615 | loss(pos) 1.1003 | loss(seq) 0.2839 | grad 5.3549 | lr 0.0010 | time_forward 2.9090 | time_backward 3.8930
[2023-09-02 10:58:27,866::train::INFO] [train] Iter 09154 | loss 1.9521 | loss(rot) 1.1294 | loss(pos) 0.2198 | loss(seq) 0.6029 | grad 3.8980 | lr 0.0010 | time_forward 3.8760 | time_backward 5.4060
[2023-09-02 10:58:30,615::train::INFO] [train] Iter 09155 | loss 1.7512 | loss(rot) 1.1639 | loss(pos) 0.1376 | loss(seq) 0.4497 | grad 5.5730 | lr 0.0010 | time_forward 1.2990 | time_backward 1.4470
[2023-09-02 10:58:37,096::train::INFO] [train] Iter 09156 | loss 3.0545 | loss(rot) 1.9546 | loss(pos) 0.4573 | loss(seq) 0.6426 | grad 4.5950 | lr 0.0010 | time_forward 2.7870 | time_backward 3.6910
[2023-09-02 10:58:39,789::train::INFO] [train] Iter 09157 | loss 1.9254 | loss(rot) 1.7145 | loss(pos) 0.1771 | loss(seq) 0.0338 | grad 9.1859 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4120
[2023-09-02 10:58:48,825::train::INFO] [train] Iter 09158 | loss 2.6609 | loss(rot) 2.0520 | loss(pos) 0.1363 | loss(seq) 0.4726 | grad 5.2895 | lr 0.0010 | time_forward 3.7430 | time_backward 5.2900
[2023-09-02 10:58:59,040::train::INFO] [train] Iter 09159 | loss 1.3600 | loss(rot) 1.1578 | loss(pos) 0.1676 | loss(seq) 0.0347 | grad 4.6040 | lr 0.0010 | time_forward 4.1490 | time_backward 6.0620
[2023-09-02 10:59:07,558::train::INFO] [train] Iter 09160 | loss 2.9813 | loss(rot) 1.9362 | loss(pos) 0.3981 | loss(seq) 0.6471 | grad 4.7699 | lr 0.0010 | time_forward 3.5730 | time_backward 4.9410
[2023-09-02 10:59:10,413::train::INFO] [train] Iter 09161 | loss 1.2693 | loss(rot) 1.0980 | loss(pos) 0.1671 | loss(seq) 0.0042 | grad 6.1268 | lr 0.0010 | time_forward 1.4470 | time_backward 1.4040
[2023-09-02 10:59:13,195::train::INFO] [train] Iter 09162 | loss 0.8514 | loss(rot) 0.0579 | loss(pos) 0.7831 | loss(seq) 0.0103 | grad 5.7952 | lr 0.0010 | time_forward 1.3090 | time_backward 1.4700
[2023-09-02 10:59:16,147::train::INFO] [train] Iter 09163 | loss 2.1330 | loss(rot) 1.4141 | loss(pos) 0.2356 | loss(seq) 0.4833 | grad 4.8900 | lr 0.0010 | time_forward 1.4350 | time_backward 1.5140
[2023-09-02 10:59:25,149::train::INFO] [train] Iter 09164 | loss 1.6386 | loss(rot) 0.7576 | loss(pos) 0.4221 | loss(seq) 0.4589 | grad 4.7834 | lr 0.0010 | time_forward 4.0240 | time_backward 4.9740
[2023-09-02 10:59:34,272::train::INFO] [train] Iter 09165 | loss 2.8564 | loss(rot) 2.7074 | loss(pos) 0.1074 | loss(seq) 0.0415 | grad 4.1796 | lr 0.0010 | time_forward 4.1770 | time_backward 4.9430
[2023-09-02 10:59:37,069::train::INFO] [train] Iter 09166 | loss 2.8110 | loss(rot) 2.6025 | loss(pos) 0.2042 | loss(seq) 0.0043 | grad 5.5726 | lr 0.0010 | time_forward 1.3530 | time_backward 1.4410
[2023-09-02 10:59:46,008::train::INFO] [train] Iter 09167 | loss 0.7493 | loss(rot) 0.1644 | loss(pos) 0.5638 | loss(seq) 0.0211 | grad 4.0709 | lr 0.0010 | time_forward 3.8870 | time_backward 5.0490
[2023-09-02 10:59:55,022::train::INFO] [train] Iter 09168 | loss 0.9161 | loss(rot) 0.2695 | loss(pos) 0.2144 | loss(seq) 0.4322 | grad 2.8665 | lr 0.0010 | time_forward 3.8280 | time_backward 5.1820
[2023-09-02 11:00:04,600::train::INFO] [train] Iter 09169 | loss 1.2034 | loss(rot) 0.7146 | loss(pos) 0.1203 | loss(seq) 0.3685 | grad 3.8429 | lr 0.0010 | time_forward 4.0960 | time_backward 5.4790
[2023-09-02 11:00:14,342::train::INFO] [train] Iter 09170 | loss 0.7350 | loss(rot) 0.1282 | loss(pos) 0.5483 | loss(seq) 0.0585 | grad 4.6608 | lr 0.0010 | time_forward 4.0100 | time_backward 5.7280
[2023-09-02 11:00:24,730::train::INFO] [train] Iter 09171 | loss 1.0772 | loss(rot) 0.1195 | loss(pos) 0.9405 | loss(seq) 0.0172 | grad 4.9464 | lr 0.0010 | time_forward 4.7180 | time_backward 5.6670
[2023-09-02 11:00:34,613::train::INFO] [train] Iter 09172 | loss 1.6904 | loss(rot) 1.5403 | loss(pos) 0.0591 | loss(seq) 0.0910 | grad 5.0658 | lr 0.0010 | time_forward 4.1200 | time_backward 5.7580
[2023-09-02 11:00:37,742::train::INFO] [train] Iter 09173 | loss 2.0740 | loss(rot) 0.3193 | loss(pos) 1.3599 | loss(seq) 0.3948 | grad 4.9173 | lr 0.0010 | time_forward 1.6080 | time_backward 1.5160
[2023-09-02 11:00:48,157::train::INFO] [train] Iter 09174 | loss 1.4578 | loss(rot) 0.5656 | loss(pos) 0.6100 | loss(seq) 0.2822 | grad 3.1259 | lr 0.0010 | time_forward 4.4450 | time_backward 5.9670
[2023-09-02 11:00:50,671::train::INFO] [train] Iter 09175 | loss 1.1300 | loss(rot) 0.3536 | loss(pos) 0.6716 | loss(seq) 0.1048 | grad 5.7591 | lr 0.0010 | time_forward 1.2710 | time_backward 1.2390
[2023-09-02 11:01:01,665::train::INFO] [train] Iter 09176 | loss 1.1290 | loss(rot) 0.1615 | loss(pos) 0.9410 | loss(seq) 0.0266 | grad 4.2814 | lr 0.0010 | time_forward 4.6910 | time_backward 6.2830
[2023-09-02 11:01:11,366::train::INFO] [train] Iter 09177 | loss 1.7602 | loss(rot) 0.9051 | loss(pos) 0.4474 | loss(seq) 0.4078 | grad 3.4026 | lr 0.0010 | time_forward 4.1280 | time_backward 5.5690
[2023-09-02 11:01:14,109::train::INFO] [train] Iter 09178 | loss 2.0724 | loss(rot) 1.9704 | loss(pos) 0.1008 | loss(seq) 0.0012 | grad 5.4026 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4480
[2023-09-02 11:01:22,922::train::INFO] [train] Iter 09179 | loss 1.8100 | loss(rot) 1.6056 | loss(pos) 0.1453 | loss(seq) 0.0590 | grad 4.7590 | lr 0.0010 | time_forward 3.7840 | time_backward 5.0260
[2023-09-02 11:01:31,321::train::INFO] [train] Iter 09180 | loss 3.2155 | loss(rot) 2.1373 | loss(pos) 0.5224 | loss(seq) 0.5559 | grad 3.6099 | lr 0.0010 | time_forward 3.4230 | time_backward 4.9730
[2023-09-02 11:01:41,562::train::INFO] [train] Iter 09181 | loss 1.6566 | loss(rot) 0.4437 | loss(pos) 0.7278 | loss(seq) 0.4851 | grad 5.9429 | lr 0.0010 | time_forward 4.1080 | time_backward 6.1290
[2023-09-02 11:01:44,324::train::INFO] [train] Iter 09182 | loss 1.8585 | loss(rot) 1.1372 | loss(pos) 0.1795 | loss(seq) 0.5419 | grad 3.9439 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4510
[2023-09-02 11:01:53,879::train::INFO] [train] Iter 09183 | loss 2.6548 | loss(rot) 2.4377 | loss(pos) 0.2152 | loss(seq) 0.0019 | grad 5.8239 | lr 0.0010 | time_forward 4.5430 | time_backward 4.9940
[2023-09-02 11:02:02,036::train::INFO] [train] Iter 09184 | loss 0.9297 | loss(rot) 0.2440 | loss(pos) 0.4605 | loss(seq) 0.2253 | grad 4.0395 | lr 0.0010 | time_forward 3.3720 | time_backward 4.7810
[2023-09-02 11:02:04,900::train::INFO] [train] Iter 09185 | loss 2.1074 | loss(rot) 0.0295 | loss(pos) 2.0775 | loss(seq) 0.0005 | grad 4.4361 | lr 0.0010 | time_forward 1.3310 | time_backward 1.5290