text
stringlengths 56
1.16k
|
---|
[2023-09-02 10:37:23,595::train::INFO] [train] Iter 08987 | loss 1.5960 | loss(rot) 0.6216 | loss(pos) 0.4270 | loss(seq) 0.5475 | grad 5.6795 | lr 0.0010 | time_forward 4.0070 | time_backward 5.4320 |
[2023-09-02 10:37:32,552::train::INFO] [train] Iter 08988 | loss 2.2917 | loss(rot) 1.4034 | loss(pos) 0.5202 | loss(seq) 0.3681 | grad 5.8160 | lr 0.0010 | time_forward 3.7290 | time_backward 5.2250 |
[2023-09-02 10:37:39,881::train::INFO] [train] Iter 08989 | loss 1.7932 | loss(rot) 1.5714 | loss(pos) 0.0775 | loss(seq) 0.1444 | grad 6.5051 | lr 0.0010 | time_forward 3.1270 | time_backward 4.1880 |
[2023-09-02 10:37:46,527::train::INFO] [train] Iter 08990 | loss 1.4174 | loss(rot) 0.4355 | loss(pos) 0.7168 | loss(seq) 0.2651 | grad 5.7255 | lr 0.0010 | time_forward 2.8170 | time_backward 3.8260 |
[2023-09-02 10:37:48,790::train::INFO] [train] Iter 08991 | loss 1.6788 | loss(rot) 1.4959 | loss(pos) 0.1825 | loss(seq) 0.0003 | grad 4.6062 | lr 0.0010 | time_forward 1.0520 | time_backward 1.2080 |
[2023-09-02 10:37:58,018::train::INFO] [train] Iter 08992 | loss 1.4605 | loss(rot) 1.0459 | loss(pos) 0.1455 | loss(seq) 0.2690 | grad 8.0380 | lr 0.0010 | time_forward 4.0550 | time_backward 5.1700 |
[2023-09-02 10:38:07,720::train::INFO] [train] Iter 08993 | loss 1.4757 | loss(rot) 1.0881 | loss(pos) 0.1399 | loss(seq) 0.2478 | grad 3.8141 | lr 0.0010 | time_forward 4.0150 | time_backward 5.6840 |
[2023-09-02 10:38:10,459::train::INFO] [train] Iter 08994 | loss 1.6921 | loss(rot) 1.2205 | loss(pos) 0.1259 | loss(seq) 0.3457 | grad 3.8023 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4440 |
[2023-09-02 10:38:18,962::train::INFO] [train] Iter 08995 | loss 2.7111 | loss(rot) 2.2927 | loss(pos) 0.1963 | loss(seq) 0.2220 | grad 3.1517 | lr 0.0010 | time_forward 3.6190 | time_backward 4.8800 |
[2023-09-02 10:38:20,897::train::INFO] [train] Iter 08996 | loss 2.9533 | loss(rot) 2.5044 | loss(pos) 0.4488 | loss(seq) 0.0000 | grad 4.6128 | lr 0.0010 | time_forward 0.9040 | time_backward 1.0280 |
[2023-09-02 10:38:23,602::train::INFO] [train] Iter 08997 | loss 2.0965 | loss(rot) 1.7574 | loss(pos) 0.3035 | loss(seq) 0.0356 | grad 6.8001 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4320 |
[2023-09-02 10:38:32,254::train::INFO] [train] Iter 08998 | loss 1.2767 | loss(rot) 1.0571 | loss(pos) 0.2045 | loss(seq) 0.0151 | grad 7.5664 | lr 0.0010 | time_forward 3.6340 | time_backward 5.0150 |
[2023-09-02 10:38:42,005::train::INFO] [train] Iter 08999 | loss 2.0188 | loss(rot) 1.2847 | loss(pos) 0.2742 | loss(seq) 0.4598 | grad 3.8265 | lr 0.0010 | time_forward 4.0090 | time_backward 5.7390 |
[2023-09-02 10:38:51,775::train::INFO] [train] Iter 09000 | loss 1.5347 | loss(rot) 0.7652 | loss(pos) 0.4408 | loss(seq) 0.3286 | grad 5.0222 | lr 0.0010 | time_forward 4.0460 | time_backward 5.7210 |
[2023-09-02 10:39:28,575::train::INFO] [val] Iter 09000 | loss 1.8348 | loss(rot) 1.1911 | loss(pos) 0.3609 | loss(seq) 0.2828 |
[2023-09-02 10:39:38,854::train::INFO] [train] Iter 09001 | loss 1.0380 | loss(rot) 0.2904 | loss(pos) 0.6906 | loss(seq) 0.0570 | grad 6.0145 | lr 0.0010 | time_forward 4.0200 | time_backward 5.9320 |
[2023-09-02 10:39:48,666::train::INFO] [train] Iter 09002 | loss 1.9705 | loss(rot) 1.3233 | loss(pos) 0.1885 | loss(seq) 0.4587 | grad 4.6561 | lr 0.0010 | time_forward 4.0870 | time_backward 5.7210 |
[2023-09-02 10:39:56,636::train::INFO] [train] Iter 09003 | loss 1.7927 | loss(rot) 0.6045 | loss(pos) 0.3594 | loss(seq) 0.8289 | grad 5.3264 | lr 0.0010 | time_forward 3.3270 | time_backward 4.6390 |
[2023-09-02 10:39:59,440::train::INFO] [train] Iter 09004 | loss 1.1997 | loss(rot) 1.0802 | loss(pos) 0.1195 | loss(seq) 0.0000 | grad 4.9128 | lr 0.0010 | time_forward 1.4290 | time_backward 1.3720 |
[2023-09-02 10:40:07,978::train::INFO] [train] Iter 09005 | loss 1.1342 | loss(rot) 0.4656 | loss(pos) 0.5214 | loss(seq) 0.1472 | grad 6.3437 | lr 0.0010 | time_forward 3.7340 | time_backward 4.7750 |
[2023-09-02 10:40:17,003::train::INFO] [train] Iter 09006 | loss 1.3589 | loss(rot) 0.5199 | loss(pos) 0.5639 | loss(seq) 0.2752 | grad 6.3329 | lr 0.0010 | time_forward 3.8730 | time_backward 5.1490 |
[2023-09-02 10:40:25,911::train::INFO] [train] Iter 09007 | loss 1.5308 | loss(rot) 1.3147 | loss(pos) 0.2009 | loss(seq) 0.0152 | grad 9.0515 | lr 0.0010 | time_forward 3.8800 | time_backward 5.0250 |
[2023-09-02 10:40:28,601::train::INFO] [train] Iter 09008 | loss 1.4006 | loss(rot) 0.4744 | loss(pos) 0.4893 | loss(seq) 0.4369 | grad 4.3665 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4370 |
[2023-09-02 10:40:38,536::train::INFO] [train] Iter 09009 | loss 2.2759 | loss(rot) 0.7390 | loss(pos) 1.1248 | loss(seq) 0.4121 | grad 5.6760 | lr 0.0010 | time_forward 4.4130 | time_backward 5.5190 |
[2023-09-02 10:40:41,476::train::INFO] [train] Iter 09010 | loss 1.6345 | loss(rot) 0.9619 | loss(pos) 0.3796 | loss(seq) 0.2930 | grad 4.6818 | lr 0.0010 | time_forward 1.4650 | time_backward 1.4710 |
[2023-09-02 10:40:52,823::train::INFO] [train] Iter 09011 | loss 1.6657 | loss(rot) 1.5045 | loss(pos) 0.1517 | loss(seq) 0.0096 | grad 5.3000 | lr 0.0010 | time_forward 4.5280 | time_backward 6.8150 |
[2023-09-02 10:40:55,466::train::INFO] [train] Iter 09012 | loss 0.8448 | loss(rot) 0.3830 | loss(pos) 0.3027 | loss(seq) 0.1591 | grad 3.2744 | lr 0.0010 | time_forward 1.2380 | time_backward 1.4020 |
[2023-09-02 10:40:58,931::train::INFO] [train] Iter 09013 | loss 2.0053 | loss(rot) 1.2719 | loss(pos) 0.2396 | loss(seq) 0.4938 | grad 2.8211 | lr 0.0010 | time_forward 1.5700 | time_backward 1.8910 |
[2023-09-02 10:41:01,777::train::INFO] [train] Iter 09014 | loss 2.0560 | loss(rot) 1.9209 | loss(pos) 0.0777 | loss(seq) 0.0575 | grad 5.1318 | lr 0.0010 | time_forward 1.3550 | time_backward 1.4870 |
[2023-09-02 10:41:11,931::train::INFO] [train] Iter 09015 | loss 2.0861 | loss(rot) 1.9047 | loss(pos) 0.1304 | loss(seq) 0.0510 | grad 4.3559 | lr 0.0010 | time_forward 4.5770 | time_backward 5.5150 |
[2023-09-02 10:41:22,706::train::INFO] [train] Iter 09016 | loss 1.3969 | loss(rot) 0.4287 | loss(pos) 0.6140 | loss(seq) 0.3541 | grad 2.7466 | lr 0.0010 | time_forward 4.4170 | time_backward 6.3540 |
[2023-09-02 10:41:30,073::train::INFO] [train] Iter 09017 | loss 1.7104 | loss(rot) 1.5716 | loss(pos) 0.0628 | loss(seq) 0.0760 | grad 5.1293 | lr 0.0010 | time_forward 3.1690 | time_backward 4.1940 |
[2023-09-02 10:41:40,638::train::INFO] [train] Iter 09018 | loss 2.2511 | loss(rot) 2.0198 | loss(pos) 0.1820 | loss(seq) 0.0493 | grad 4.5945 | lr 0.0010 | time_forward 4.4230 | time_backward 6.1380 |
[2023-09-02 10:41:50,707::train::INFO] [train] Iter 09019 | loss 1.4611 | loss(rot) 0.6229 | loss(pos) 0.4978 | loss(seq) 0.3404 | grad 4.2160 | lr 0.0010 | time_forward 4.2220 | time_backward 5.8430 |
[2023-09-02 10:41:54,048::train::INFO] [train] Iter 09020 | loss 1.7121 | loss(rot) 0.6927 | loss(pos) 0.5889 | loss(seq) 0.4305 | grad 4.9274 | lr 0.0010 | time_forward 1.4590 | time_backward 1.8780 |
[2023-09-02 10:42:04,049::train::INFO] [train] Iter 09021 | loss 3.0320 | loss(rot) 2.7524 | loss(pos) 0.2796 | loss(seq) 0.0000 | grad 4.0767 | lr 0.0010 | time_forward 4.0590 | time_backward 5.9390 |
[2023-09-02 10:42:06,264::train::INFO] [train] Iter 09022 | loss 2.0735 | loss(rot) 1.8604 | loss(pos) 0.0897 | loss(seq) 0.1234 | grad 4.7860 | lr 0.0010 | time_forward 1.0520 | time_backward 1.1590 |
[2023-09-02 10:42:16,830::train::INFO] [train] Iter 09023 | loss 2.4866 | loss(rot) 2.2274 | loss(pos) 0.1710 | loss(seq) 0.0881 | grad 7.0160 | lr 0.0010 | time_forward 4.1280 | time_backward 6.4340 |
[2023-09-02 10:42:28,333::train::INFO] [train] Iter 09024 | loss 1.5037 | loss(rot) 0.6700 | loss(pos) 0.2145 | loss(seq) 0.6192 | grad 3.4984 | lr 0.0010 | time_forward 4.3380 | time_backward 7.1610 |
[2023-09-02 10:42:31,181::train::INFO] [train] Iter 09025 | loss 1.9642 | loss(rot) 1.7158 | loss(pos) 0.1219 | loss(seq) 0.1264 | grad 3.9037 | lr 0.0010 | time_forward 1.3130 | time_backward 1.5320 |
[2023-09-02 10:42:41,595::train::INFO] [train] Iter 09026 | loss 2.4403 | loss(rot) 1.8206 | loss(pos) 0.2316 | loss(seq) 0.3881 | grad 6.1709 | lr 0.0010 | time_forward 4.2790 | time_backward 6.1310 |
[2023-09-02 10:42:48,317::train::INFO] [train] Iter 09027 | loss 2.0890 | loss(rot) 0.0330 | loss(pos) 2.0517 | loss(seq) 0.0043 | grad 6.2508 | lr 0.0010 | time_forward 2.9420 | time_backward 3.7770 |
[2023-09-02 10:42:51,295::train::INFO] [train] Iter 09028 | loss 0.5663 | loss(rot) 0.1943 | loss(pos) 0.2701 | loss(seq) 0.1019 | grad 2.0735 | lr 0.0010 | time_forward 1.4690 | time_backward 1.5060 |
[2023-09-02 10:43:02,671::train::INFO] [train] Iter 09029 | loss 2.0229 | loss(rot) 1.7790 | loss(pos) 0.1981 | loss(seq) 0.0457 | grad 5.1219 | lr 0.0010 | time_forward 4.9150 | time_backward 6.4580 |
[2023-09-02 10:43:05,051::train::INFO] [train] Iter 09030 | loss 2.0508 | loss(rot) 1.7680 | loss(pos) 0.1167 | loss(seq) 0.1661 | grad 4.6936 | lr 0.0010 | time_forward 1.1330 | time_backward 1.2200 |
[2023-09-02 10:43:07,980::train::INFO] [train] Iter 09031 | loss 3.5319 | loss(rot) 0.3991 | loss(pos) 3.1321 | loss(seq) 0.0007 | grad 6.7338 | lr 0.0010 | time_forward 1.5050 | time_backward 1.4220 |
[2023-09-02 10:43:10,455::train::INFO] [train] Iter 09032 | loss 0.6528 | loss(rot) 0.0662 | loss(pos) 0.5706 | loss(seq) 0.0160 | grad 4.5945 | lr 0.0010 | time_forward 1.2100 | time_backward 1.2620 |
[2023-09-02 10:43:20,628::train::INFO] [train] Iter 09033 | loss 1.8833 | loss(rot) 1.2645 | loss(pos) 0.1582 | loss(seq) 0.4606 | grad 5.3888 | lr 0.0010 | time_forward 4.2100 | time_backward 5.9400 |
[2023-09-02 10:43:28,223::train::INFO] [train] Iter 09034 | loss 2.3870 | loss(rot) 1.6461 | loss(pos) 0.2483 | loss(seq) 0.4927 | grad 5.1180 | lr 0.0010 | time_forward 3.2650 | time_backward 4.3260 |
[2023-09-02 10:43:38,600::train::INFO] [train] Iter 09035 | loss 1.6337 | loss(rot) 0.4023 | loss(pos) 1.0967 | loss(seq) 0.1347 | grad 4.5710 | lr 0.0010 | time_forward 4.5500 | time_backward 5.8240 |
[2023-09-02 10:43:47,136::train::INFO] [train] Iter 09036 | loss 1.0651 | loss(rot) 0.7419 | loss(pos) 0.2618 | loss(seq) 0.0614 | grad 5.0401 | lr 0.0010 | time_forward 3.7030 | time_backward 4.8290 |
[2023-09-02 10:43:55,798::train::INFO] [train] Iter 09037 | loss 0.7460 | loss(rot) 0.1892 | loss(pos) 0.5169 | loss(seq) 0.0399 | grad 3.6398 | lr 0.0010 | time_forward 3.6800 | time_backward 4.9800 |
[2023-09-02 10:44:05,991::train::INFO] [train] Iter 09038 | loss 0.7373 | loss(rot) 0.1659 | loss(pos) 0.4893 | loss(seq) 0.0820 | grad 4.2497 | lr 0.0010 | time_forward 4.3070 | time_backward 5.8830 |
[2023-09-02 10:44:16,358::train::INFO] [train] Iter 09039 | loss 1.2478 | loss(rot) 0.1549 | loss(pos) 0.7410 | loss(seq) 0.3519 | grad 3.4475 | lr 0.0010 | time_forward 4.3090 | time_backward 6.0350 |
[2023-09-02 10:44:26,359::train::INFO] [train] Iter 09040 | loss 2.7508 | loss(rot) 0.1358 | loss(pos) 2.6145 | loss(seq) 0.0004 | grad 5.8792 | lr 0.0010 | time_forward 4.8180 | time_backward 5.1790 |
[2023-09-02 10:44:36,869::train::INFO] [train] Iter 09041 | loss 2.7948 | loss(rot) 2.5164 | loss(pos) 0.2352 | loss(seq) 0.0432 | grad 10.4688 | lr 0.0010 | time_forward 4.6040 | time_backward 5.9040 |
[2023-09-02 10:44:39,781::train::INFO] [train] Iter 09042 | loss 1.4379 | loss(rot) 0.2618 | loss(pos) 0.8091 | loss(seq) 0.3669 | grad 3.8596 | lr 0.0010 | time_forward 1.4260 | time_backward 1.4830 |
[2023-09-02 10:44:42,442::train::INFO] [train] Iter 09043 | loss 1.7343 | loss(rot) 1.5263 | loss(pos) 0.1800 | loss(seq) 0.0280 | grad 5.5237 | lr 0.0010 | time_forward 1.2660 | time_backward 1.3910 |
[2023-09-02 10:44:52,538::train::INFO] [train] Iter 09044 | loss 1.3106 | loss(rot) 1.2034 | loss(pos) 0.0615 | loss(seq) 0.0457 | grad 4.2226 | lr 0.0010 | time_forward 4.0810 | time_backward 6.0120 |
[2023-09-02 10:44:54,954::train::INFO] [train] Iter 09045 | loss 1.3826 | loss(rot) 1.2400 | loss(pos) 0.0960 | loss(seq) 0.0466 | grad 3.6566 | lr 0.0010 | time_forward 1.1980 | time_backward 1.2160 |
[2023-09-02 10:45:04,864::train::INFO] [train] Iter 09046 | loss 2.0685 | loss(rot) 0.2169 | loss(pos) 1.0022 | loss(seq) 0.8494 | grad 5.4028 | lr 0.0010 | time_forward 3.9290 | time_backward 5.9770 |
[2023-09-02 10:45:14,854::train::INFO] [train] Iter 09047 | loss 1.8638 | loss(rot) 1.7121 | loss(pos) 0.1517 | loss(seq) 0.0000 | grad 4.4107 | lr 0.0010 | time_forward 3.9650 | time_backward 6.0210 |
[2023-09-02 10:45:22,946::train::INFO] [train] Iter 09048 | loss 0.9112 | loss(rot) 0.4704 | loss(pos) 0.0986 | loss(seq) 0.3421 | grad 4.1713 | lr 0.0010 | time_forward 3.3590 | time_backward 4.7300 |
[2023-09-02 10:45:32,279::train::INFO] [train] Iter 09049 | loss 1.8163 | loss(rot) 1.4225 | loss(pos) 0.1188 | loss(seq) 0.2750 | grad 5.2701 | lr 0.0010 | time_forward 4.3380 | time_backward 4.9920 |
[2023-09-02 10:45:41,493::train::INFO] [train] Iter 09050 | loss 1.7890 | loss(rot) 1.6999 | loss(pos) 0.0891 | loss(seq) 0.0000 | grad 3.9150 | lr 0.0010 | time_forward 3.8260 | time_backward 5.3850 |
[2023-09-02 10:45:44,357::train::INFO] [train] Iter 09051 | loss 2.7022 | loss(rot) 1.9396 | loss(pos) 0.2605 | loss(seq) 0.5021 | grad 4.7965 | lr 0.0010 | time_forward 1.4010 | time_backward 1.4590 |
[2023-09-02 10:45:54,619::train::INFO] [train] Iter 09052 | loss 2.8191 | loss(rot) 2.6661 | loss(pos) 0.1313 | loss(seq) 0.0217 | grad 3.6582 | lr 0.0010 | time_forward 4.2800 | time_backward 5.9410 |
[2023-09-02 10:46:04,579::train::INFO] [train] Iter 09053 | loss 0.9059 | loss(rot) 0.1715 | loss(pos) 0.6676 | loss(seq) 0.0667 | grad 4.2131 | lr 0.0010 | time_forward 4.0800 | time_backward 5.8770 |
[2023-09-02 10:46:13,038::train::INFO] [train] Iter 09054 | loss 1.7041 | loss(rot) 0.7608 | loss(pos) 0.4318 | loss(seq) 0.5114 | grad 6.2070 | lr 0.0010 | time_forward 3.6350 | time_backward 4.8190 |
[2023-09-02 10:46:15,799::train::INFO] [train] Iter 09055 | loss 2.0997 | loss(rot) 1.9662 | loss(pos) 0.0915 | loss(seq) 0.0420 | grad 4.9079 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4660 |
[2023-09-02 10:46:21,216::train::INFO] [train] Iter 09056 | loss 2.2894 | loss(rot) 2.1218 | loss(pos) 0.1664 | loss(seq) 0.0012 | grad 4.3270 | lr 0.0010 | time_forward 3.5150 | time_backward 1.8990 |
[2023-09-02 10:46:23,938::train::INFO] [train] Iter 09057 | loss 2.2049 | loss(rot) 1.1679 | loss(pos) 0.5424 | loss(seq) 0.4945 | grad 6.1948 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4530 |
[2023-09-02 10:46:26,680::train::INFO] [train] Iter 09058 | loss 1.4500 | loss(rot) 1.1282 | loss(pos) 0.2267 | loss(seq) 0.0950 | grad 4.7582 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4480 |
[2023-09-02 10:46:29,403::train::INFO] [train] Iter 09059 | loss 1.6377 | loss(rot) 1.4546 | loss(pos) 0.1652 | loss(seq) 0.0178 | grad 5.4174 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4420 |
[2023-09-02 10:46:38,053::train::INFO] [train] Iter 09060 | loss 1.3434 | loss(rot) 1.0050 | loss(pos) 0.1886 | loss(seq) 0.1497 | grad 5.3172 | lr 0.0010 | time_forward 3.7010 | time_backward 4.9470 |
[2023-09-02 10:46:40,787::train::INFO] [train] Iter 09061 | loss 2.2926 | loss(rot) 1.9380 | loss(pos) 0.3478 | loss(seq) 0.0067 | grad 6.1067 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4430 |
[2023-09-02 10:46:50,829::train::INFO] [train] Iter 09062 | loss 2.0349 | loss(rot) 1.8157 | loss(pos) 0.1572 | loss(seq) 0.0620 | grad 4.9305 | lr 0.0010 | time_forward 4.1440 | time_backward 5.8940 |
[2023-09-02 10:47:00,520::train::INFO] [train] Iter 09063 | loss 1.0593 | loss(rot) 0.9019 | loss(pos) 0.0712 | loss(seq) 0.0861 | grad 8.0784 | lr 0.0010 | time_forward 3.9740 | time_backward 5.7130 |
[2023-09-02 10:47:08,900::train::INFO] [train] Iter 09064 | loss 2.0490 | loss(rot) 0.9880 | loss(pos) 0.6769 | loss(seq) 0.3842 | grad 4.4951 | lr 0.0010 | time_forward 3.5430 | time_backward 4.8330 |
[2023-09-02 10:47:19,525::train::INFO] [train] Iter 09065 | loss 2.0813 | loss(rot) 1.9095 | loss(pos) 0.0828 | loss(seq) 0.0889 | grad 4.4795 | lr 0.0010 | time_forward 4.5450 | time_backward 6.0760 |
[2023-09-02 10:47:29,645::train::INFO] [train] Iter 09066 | loss 1.0604 | loss(rot) 0.3878 | loss(pos) 0.6177 | loss(seq) 0.0550 | grad 3.3360 | lr 0.0010 | time_forward 4.2410 | time_backward 5.8750 |
[2023-09-02 10:47:37,701::train::INFO] [train] Iter 09067 | loss 2.6362 | loss(rot) 2.3823 | loss(pos) 0.1819 | loss(seq) 0.0719 | grad 4.3078 | lr 0.0010 | time_forward 3.3670 | time_backward 4.6850 |
[2023-09-02 10:47:46,160::train::INFO] [train] Iter 09068 | loss 2.1505 | loss(rot) 2.0357 | loss(pos) 0.0600 | loss(seq) 0.0548 | grad 5.9312 | lr 0.0010 | time_forward 3.6200 | time_backward 4.8350 |
[2023-09-02 10:47:50,486::train::INFO] [train] Iter 09069 | loss 1.5976 | loss(rot) 0.4351 | loss(pos) 0.6251 | loss(seq) 0.5374 | grad 4.1141 | lr 0.0010 | time_forward 1.6360 | time_backward 2.0100 |
[2023-09-02 10:48:00,484::train::INFO] [train] Iter 09070 | loss 2.2520 | loss(rot) 1.6159 | loss(pos) 0.1695 | loss(seq) 0.4666 | grad 3.9488 | lr 0.0010 | time_forward 3.9640 | time_backward 6.0320 |
[2023-09-02 10:48:07,754::train::INFO] [train] Iter 09071 | loss 2.4633 | loss(rot) 2.2514 | loss(pos) 0.2120 | loss(seq) 0.0000 | grad 5.3316 | lr 0.0010 | time_forward 3.0970 | time_backward 4.1690 |
[2023-09-02 10:48:10,458::train::INFO] [train] Iter 09072 | loss 2.4524 | loss(rot) 2.2645 | loss(pos) 0.1878 | loss(seq) 0.0000 | grad 6.0953 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4530 |
[2023-09-02 10:48:20,983::train::INFO] [train] Iter 09073 | loss 2.2735 | loss(rot) 1.6080 | loss(pos) 0.2054 | loss(seq) 0.4602 | grad 6.3205 | lr 0.0010 | time_forward 4.2120 | time_backward 6.3100 |
[2023-09-02 10:48:31,121::train::INFO] [train] Iter 09074 | loss 0.8725 | loss(rot) 0.2905 | loss(pos) 0.3865 | loss(seq) 0.1955 | grad 3.5399 | lr 0.0010 | time_forward 4.1170 | time_backward 6.0160 |
[2023-09-02 10:48:41,060::train::INFO] [train] Iter 09075 | loss 2.2207 | loss(rot) 1.9353 | loss(pos) 0.2805 | loss(seq) 0.0049 | grad 5.0225 | lr 0.0010 | time_forward 4.0050 | time_backward 5.9120 |
[2023-09-02 10:48:48,552::train::INFO] [train] Iter 09076 | loss 1.1493 | loss(rot) 0.3065 | loss(pos) 0.6384 | loss(seq) 0.2044 | grad 5.2075 | lr 0.0010 | time_forward 3.1930 | time_backward 4.2940 |
[2023-09-02 10:48:58,269::train::INFO] [train] Iter 09077 | loss 1.2636 | loss(rot) 0.2972 | loss(pos) 0.5965 | loss(seq) 0.3699 | grad 3.8895 | lr 0.0010 | time_forward 4.0300 | time_backward 5.6840 |
[2023-09-02 10:49:00,934::train::INFO] [train] Iter 09078 | loss 1.7149 | loss(rot) 0.8390 | loss(pos) 0.3167 | loss(seq) 0.5591 | grad 4.5643 | lr 0.0010 | time_forward 1.2630 | time_backward 1.3980 |
[2023-09-02 10:49:10,736::train::INFO] [train] Iter 09079 | loss 2.2216 | loss(rot) 2.0251 | loss(pos) 0.1959 | loss(seq) 0.0006 | grad 4.5632 | lr 0.0010 | time_forward 3.9940 | time_backward 5.8050 |
[2023-09-02 10:49:19,435::train::INFO] [train] Iter 09080 | loss 0.4986 | loss(rot) 0.0328 | loss(pos) 0.4551 | loss(seq) 0.0106 | grad 4.5344 | lr 0.0010 | time_forward 3.6830 | time_backward 5.0130 |
[2023-09-02 10:49:25,345::train::INFO] [train] Iter 09081 | loss 2.0709 | loss(rot) 1.3306 | loss(pos) 0.2105 | loss(seq) 0.5299 | grad 3.4485 | lr 0.0010 | time_forward 2.5340 | time_backward 3.3730 |
[2023-09-02 10:49:35,006::train::INFO] [train] Iter 09082 | loss 2.5024 | loss(rot) 1.9155 | loss(pos) 0.1620 | loss(seq) 0.4249 | grad 4.9205 | lr 0.0010 | time_forward 3.9740 | time_backward 5.6840 |
[2023-09-02 10:49:37,724::train::INFO] [train] Iter 09083 | loss 1.1647 | loss(rot) 0.4211 | loss(pos) 0.3549 | loss(seq) 0.3887 | grad 3.9367 | lr 0.0010 | time_forward 1.2830 | time_backward 1.4160 |
[2023-09-02 10:49:46,568::train::INFO] [train] Iter 09084 | loss 1.8742 | loss(rot) 1.7198 | loss(pos) 0.1531 | loss(seq) 0.0013 | grad 4.8690 | lr 0.0010 | time_forward 3.7240 | time_backward 5.1160 |
[2023-09-02 10:49:55,574::train::INFO] [train] Iter 09085 | loss 1.5295 | loss(rot) 1.0830 | loss(pos) 0.1207 | loss(seq) 0.3258 | grad 4.7129 | lr 0.0010 | time_forward 3.8250 | time_backward 5.1770 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.