text
stringlengths
56
1.16k
[2023-09-02 11:39:36,880::train::INFO] [train] Iter 09486 | loss 1.3300 | loss(rot) 0.5592 | loss(pos) 0.4378 | loss(seq) 0.3329 | grad 5.0990 | lr 0.0010 | time_forward 3.9060 | time_backward 5.3670
[2023-09-02 11:39:46,879::train::INFO] [train] Iter 09487 | loss 4.3836 | loss(rot) 0.0147 | loss(pos) 4.3682 | loss(seq) 0.0007 | grad 13.8761 | lr 0.0010 | time_forward 4.1600 | time_backward 5.8350
[2023-09-02 11:39:49,576::train::INFO] [train] Iter 09488 | loss 2.6193 | loss(rot) 0.6004 | loss(pos) 1.9944 | loss(seq) 0.0245 | grad 11.2017 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4050
[2023-09-02 11:39:52,485::train::INFO] [train] Iter 09489 | loss 1.6314 | loss(rot) 1.5156 | loss(pos) 0.0889 | loss(seq) 0.0269 | grad 6.5783 | lr 0.0010 | time_forward 1.4360 | time_backward 1.4690
[2023-09-02 11:40:02,480::train::INFO] [train] Iter 09490 | loss 2.4099 | loss(rot) 2.2878 | loss(pos) 0.1158 | loss(seq) 0.0063 | grad 4.7206 | lr 0.0010 | time_forward 4.1610 | time_backward 5.8310
[2023-09-02 11:40:11,238::train::INFO] [train] Iter 09491 | loss 2.0619 | loss(rot) 1.3378 | loss(pos) 0.3065 | loss(seq) 0.4175 | grad 5.8204 | lr 0.0010 | time_forward 3.7770 | time_backward 4.9770
[2023-09-02 11:40:20,738::train::INFO] [train] Iter 09492 | loss 1.7881 | loss(rot) 0.9067 | loss(pos) 0.2868 | loss(seq) 0.5946 | grad 6.5529 | lr 0.0010 | time_forward 4.0150 | time_backward 5.4810
[2023-09-02 11:40:31,417::train::INFO] [train] Iter 09493 | loss 2.1935 | loss(rot) 1.5384 | loss(pos) 0.1895 | loss(seq) 0.4657 | grad 3.6687 | lr 0.0010 | time_forward 4.4680 | time_backward 6.2080
[2023-09-02 11:40:40,936::train::INFO] [train] Iter 09494 | loss 1.3269 | loss(rot) 1.0849 | loss(pos) 0.1241 | loss(seq) 0.1179 | grad 5.9863 | lr 0.0010 | time_forward 4.2300 | time_backward 5.2850
[2023-09-02 11:40:43,061::train::INFO] [train] Iter 09495 | loss 2.3518 | loss(rot) 1.9932 | loss(pos) 0.3346 | loss(seq) 0.0241 | grad 6.5396 | lr 0.0010 | time_forward 1.0390 | time_backward 1.0820
[2023-09-02 11:40:51,634::train::INFO] [train] Iter 09496 | loss 1.8299 | loss(rot) 1.6778 | loss(pos) 0.1521 | loss(seq) 0.0000 | grad 6.7510 | lr 0.0010 | time_forward 3.7600 | time_backward 4.8100
[2023-09-02 11:40:59,835::train::INFO] [train] Iter 09497 | loss 3.9145 | loss(rot) 0.0822 | loss(pos) 3.8323 | loss(seq) 0.0000 | grad 10.5444 | lr 0.0010 | time_forward 3.3780 | time_backward 4.8190
[2023-09-02 11:41:07,461::train::INFO] [train] Iter 09498 | loss 2.4788 | loss(rot) 1.0733 | loss(pos) 0.6606 | loss(seq) 0.7450 | grad 6.7380 | lr 0.0010 | time_forward 3.1960 | time_backward 4.4270
[2023-09-02 11:41:16,911::train::INFO] [train] Iter 09499 | loss 1.6757 | loss(rot) 1.3629 | loss(pos) 0.1035 | loss(seq) 0.2093 | grad 3.7437 | lr 0.0010 | time_forward 3.8930 | time_backward 5.5510
[2023-09-02 11:41:27,192::train::INFO] [train] Iter 09500 | loss 2.3499 | loss(rot) 1.7135 | loss(pos) 0.3173 | loss(seq) 0.3191 | grad 5.5675 | lr 0.0010 | time_forward 4.1570 | time_backward 6.1210
[2023-09-02 11:41:35,795::train::INFO] [train] Iter 09501 | loss 1.8074 | loss(rot) 1.5262 | loss(pos) 0.1585 | loss(seq) 0.1227 | grad 13.9240 | lr 0.0010 | time_forward 3.5450 | time_backward 5.0550
[2023-09-02 11:41:38,665::train::INFO] [train] Iter 09502 | loss 0.9653 | loss(rot) 0.3710 | loss(pos) 0.2948 | loss(seq) 0.2995 | grad 3.8978 | lr 0.0010 | time_forward 1.2800 | time_backward 1.5860
[2023-09-02 11:41:46,949::train::INFO] [train] Iter 09503 | loss 0.7466 | loss(rot) 0.2027 | loss(pos) 0.4535 | loss(seq) 0.0904 | grad 3.5168 | lr 0.0010 | time_forward 3.5660 | time_backward 4.7140
[2023-09-02 11:41:55,617::train::INFO] [train] Iter 09504 | loss 0.8725 | loss(rot) 0.5462 | loss(pos) 0.3263 | loss(seq) 0.0000 | grad 5.2464 | lr 0.0010 | time_forward 3.6890 | time_backward 4.9740
[2023-09-02 11:42:04,104::train::INFO] [train] Iter 09505 | loss 1.4506 | loss(rot) 0.7095 | loss(pos) 0.3738 | loss(seq) 0.3673 | grad 5.3149 | lr 0.0010 | time_forward 3.5630 | time_backward 4.9200
[2023-09-02 11:42:14,226::train::INFO] [train] Iter 09506 | loss 0.8511 | loss(rot) 0.1745 | loss(pos) 0.6125 | loss(seq) 0.0641 | grad 2.9710 | lr 0.0010 | time_forward 4.2580 | time_backward 5.8600
[2023-09-02 11:42:22,992::train::INFO] [train] Iter 09507 | loss 1.1160 | loss(rot) 0.4429 | loss(pos) 0.1670 | loss(seq) 0.5062 | grad 3.7263 | lr 0.0010 | time_forward 3.6990 | time_backward 5.0630
[2023-09-02 11:42:31,219::train::INFO] [train] Iter 09508 | loss 1.2462 | loss(rot) 1.0656 | loss(pos) 0.1806 | loss(seq) 0.0000 | grad 3.5191 | lr 0.0010 | time_forward 3.4930 | time_backward 4.7300
[2023-09-02 11:42:34,036::train::INFO] [train] Iter 09509 | loss 0.6040 | loss(rot) 0.1623 | loss(pos) 0.2022 | loss(seq) 0.2395 | grad 2.4861 | lr 0.0010 | time_forward 1.3430 | time_backward 1.4690
[2023-09-02 11:42:44,267::train::INFO] [train] Iter 09510 | loss 2.7950 | loss(rot) 2.0706 | loss(pos) 0.3336 | loss(seq) 0.3908 | grad 5.3812 | lr 0.0010 | time_forward 4.3510 | time_backward 5.8770
[2023-09-02 11:42:47,061::train::INFO] [train] Iter 09511 | loss 1.6920 | loss(rot) 1.1358 | loss(pos) 0.2218 | loss(seq) 0.3344 | grad 5.6768 | lr 0.0010 | time_forward 1.3450 | time_backward 1.4440
[2023-09-02 11:42:55,913::train::INFO] [train] Iter 09512 | loss 1.2101 | loss(rot) 0.3013 | loss(pos) 0.4761 | loss(seq) 0.4327 | grad 4.6429 | lr 0.0010 | time_forward 3.7130 | time_backward 5.1350
[2023-09-02 11:43:04,711::train::INFO] [train] Iter 09513 | loss 1.1519 | loss(rot) 0.6098 | loss(pos) 0.4249 | loss(seq) 0.1172 | grad 4.7619 | lr 0.0010 | time_forward 3.7350 | time_backward 5.0590
[2023-09-02 11:43:14,771::train::INFO] [train] Iter 09514 | loss 0.8817 | loss(rot) 0.2451 | loss(pos) 0.3729 | loss(seq) 0.2637 | grad 3.0407 | lr 0.0010 | time_forward 4.0610 | time_backward 5.9950
[2023-09-02 11:43:24,714::train::INFO] [train] Iter 09515 | loss 2.2250 | loss(rot) 1.6766 | loss(pos) 0.2483 | loss(seq) 0.3001 | grad 5.4060 | lr 0.0010 | time_forward 4.0500 | time_backward 5.8900
[2023-09-02 11:43:27,028::train::INFO] [train] Iter 09516 | loss 1.4109 | loss(rot) 1.2148 | loss(pos) 0.1185 | loss(seq) 0.0776 | grad 4.5217 | lr 0.0010 | time_forward 1.0520 | time_backward 1.2590
[2023-09-02 11:43:29,900::train::INFO] [train] Iter 09517 | loss 1.2006 | loss(rot) 0.2106 | loss(pos) 0.5455 | loss(seq) 0.4445 | grad 2.6426 | lr 0.0010 | time_forward 1.3910 | time_backward 1.4770
[2023-09-02 11:43:38,821::train::INFO] [train] Iter 09518 | loss 1.8477 | loss(rot) 1.2304 | loss(pos) 0.2050 | loss(seq) 0.4124 | grad 4.0643 | lr 0.0010 | time_forward 3.8070 | time_backward 5.1090
[2023-09-02 11:43:48,535::train::INFO] [train] Iter 09519 | loss 1.7255 | loss(rot) 1.0357 | loss(pos) 0.2030 | loss(seq) 0.4868 | grad 4.5861 | lr 0.0010 | time_forward 4.3250 | time_backward 5.3850
[2023-09-02 11:43:55,932::train::INFO] [train] Iter 09520 | loss 1.6995 | loss(rot) 1.0165 | loss(pos) 0.1955 | loss(seq) 0.4874 | grad 5.9160 | lr 0.0010 | time_forward 3.1420 | time_backward 4.2530
[2023-09-02 11:44:06,169::train::INFO] [train] Iter 09521 | loss 1.6971 | loss(rot) 1.0233 | loss(pos) 0.2889 | loss(seq) 0.3849 | grad 4.5339 | lr 0.0010 | time_forward 4.1760 | time_backward 6.0570
[2023-09-02 11:44:16,386::train::INFO] [train] Iter 09522 | loss 1.9252 | loss(rot) 1.5995 | loss(pos) 0.1674 | loss(seq) 0.1583 | grad 5.0361 | lr 0.0010 | time_forward 4.2560 | time_backward 5.9580
[2023-09-02 11:44:24,659::train::INFO] [train] Iter 09523 | loss 2.3688 | loss(rot) 2.1476 | loss(pos) 0.2211 | loss(seq) 0.0000 | grad 4.1059 | lr 0.0010 | time_forward 3.3740 | time_backward 4.8950
[2023-09-02 11:44:34,788::train::INFO] [train] Iter 09524 | loss 2.3395 | loss(rot) 1.9539 | loss(pos) 0.2272 | loss(seq) 0.1584 | grad 4.4329 | lr 0.0010 | time_forward 4.1150 | time_backward 6.0110
[2023-09-02 11:44:44,788::train::INFO] [train] Iter 09525 | loss 1.2821 | loss(rot) 0.4350 | loss(pos) 0.7679 | loss(seq) 0.0791 | grad 3.7828 | lr 0.0010 | time_forward 4.2660 | time_backward 5.7300
[2023-09-02 11:44:54,266::train::INFO] [train] Iter 09526 | loss 1.3058 | loss(rot) 0.5316 | loss(pos) 0.2415 | loss(seq) 0.5327 | grad 2.8113 | lr 0.0010 | time_forward 4.0630 | time_backward 5.4110
[2023-09-02 11:44:57,578::train::INFO] [train] Iter 09527 | loss 1.8214 | loss(rot) 0.1382 | loss(pos) 1.6824 | loss(seq) 0.0007 | grad 3.1020 | lr 0.0010 | time_forward 1.4480 | time_backward 1.8610
[2023-09-02 11:45:00,271::train::INFO] [train] Iter 09528 | loss 2.0912 | loss(rot) 2.0312 | loss(pos) 0.0600 | loss(seq) 0.0000 | grad 10.2841 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4380
[2023-09-02 11:45:08,656::train::INFO] [train] Iter 09529 | loss 1.6124 | loss(rot) 0.5459 | loss(pos) 0.7805 | loss(seq) 0.2860 | grad 4.4547 | lr 0.0010 | time_forward 3.5980 | time_backward 4.7840
[2023-09-02 11:45:18,572::train::INFO] [train] Iter 09530 | loss 0.9245 | loss(rot) 0.1914 | loss(pos) 0.5099 | loss(seq) 0.2231 | grad 3.0873 | lr 0.0010 | time_forward 4.0830 | time_backward 5.8300
[2023-09-02 11:45:28,756::train::INFO] [train] Iter 09531 | loss 1.2347 | loss(rot) 0.5961 | loss(pos) 0.2912 | loss(seq) 0.3474 | grad 4.6909 | lr 0.0010 | time_forward 4.2010 | time_backward 5.9790
[2023-09-02 11:45:31,425::train::INFO] [train] Iter 09532 | loss 1.8683 | loss(rot) 1.4162 | loss(pos) 0.2113 | loss(seq) 0.2408 | grad 5.4219 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4010
[2023-09-02 11:45:41,397::train::INFO] [train] Iter 09533 | loss 2.2368 | loss(rot) 2.0300 | loss(pos) 0.2049 | loss(seq) 0.0019 | grad 4.5652 | lr 0.0010 | time_forward 4.0470 | time_backward 5.9220
[2023-09-02 11:45:49,844::train::INFO] [train] Iter 09534 | loss 2.3926 | loss(rot) 0.0438 | loss(pos) 2.3465 | loss(seq) 0.0023 | grad 4.7845 | lr 0.0010 | time_forward 3.5950 | time_backward 4.8480
[2023-09-02 11:45:57,076::train::INFO] [train] Iter 09535 | loss 0.9604 | loss(rot) 0.1514 | loss(pos) 0.7879 | loss(seq) 0.0212 | grad 4.2719 | lr 0.0010 | time_forward 3.0590 | time_backward 4.1690
[2023-09-02 11:46:06,435::train::INFO] [train] Iter 09536 | loss 1.9676 | loss(rot) 0.0380 | loss(pos) 1.9277 | loss(seq) 0.0019 | grad 5.4644 | lr 0.0010 | time_forward 3.9310 | time_backward 5.4240
[2023-09-02 11:46:16,311::train::INFO] [train] Iter 09537 | loss 1.0665 | loss(rot) 0.4896 | loss(pos) 0.3776 | loss(seq) 0.1993 | grad 3.8519 | lr 0.0010 | time_forward 4.1290 | time_backward 5.7430
[2023-09-02 11:46:19,058::train::INFO] [train] Iter 09538 | loss 0.9073 | loss(rot) 0.2617 | loss(pos) 0.1809 | loss(seq) 0.4647 | grad 2.5597 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4330
[2023-09-02 11:46:21,364::train::INFO] [train] Iter 09539 | loss 1.7527 | loss(rot) 1.5763 | loss(pos) 0.1163 | loss(seq) 0.0601 | grad 5.9121 | lr 0.0010 | time_forward 1.0840 | time_backward 1.2180
[2023-09-02 11:46:24,118::train::INFO] [train] Iter 09540 | loss 2.0565 | loss(rot) 1.3250 | loss(pos) 0.2450 | loss(seq) 0.4865 | grad 4.2192 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4650
[2023-09-02 11:46:26,415::train::INFO] [train] Iter 09541 | loss 2.1030 | loss(rot) 1.8140 | loss(pos) 0.2685 | loss(seq) 0.0205 | grad 5.7063 | lr 0.0010 | time_forward 1.0720 | time_backward 1.2200
[2023-09-02 11:46:36,341::train::INFO] [train] Iter 09542 | loss 2.0214 | loss(rot) 1.1218 | loss(pos) 0.3609 | loss(seq) 0.5387 | grad 3.7498 | lr 0.0010 | time_forward 8.0310 | time_backward 1.8910
[2023-09-02 11:46:46,515::train::INFO] [train] Iter 09543 | loss 2.0697 | loss(rot) 1.0920 | loss(pos) 0.4080 | loss(seq) 0.5698 | grad 4.3811 | lr 0.0010 | time_forward 4.2090 | time_backward 5.9610
[2023-09-02 11:46:53,950::train::INFO] [train] Iter 09544 | loss 2.1331 | loss(rot) 1.4023 | loss(pos) 0.5144 | loss(seq) 0.2164 | grad 9.4958 | lr 0.0010 | time_forward 3.1380 | time_backward 4.2930
[2023-09-02 11:47:03,657::train::INFO] [train] Iter 09545 | loss 1.5090 | loss(rot) 0.9990 | loss(pos) 0.2676 | loss(seq) 0.2424 | grad 6.0038 | lr 0.0010 | time_forward 4.0450 | time_backward 5.6580
[2023-09-02 11:47:12,063::train::INFO] [train] Iter 09546 | loss 1.1296 | loss(rot) 0.3223 | loss(pos) 0.2426 | loss(seq) 0.5647 | grad 3.8320 | lr 0.0010 | time_forward 3.6000 | time_backward 4.7690
[2023-09-02 11:47:20,643::train::INFO] [train] Iter 09547 | loss 1.3401 | loss(rot) 0.7168 | loss(pos) 0.1427 | loss(seq) 0.4807 | grad 4.3274 | lr 0.0010 | time_forward 3.6610 | time_backward 4.9150
[2023-09-02 11:47:29,173::train::INFO] [train] Iter 09548 | loss 1.6506 | loss(rot) 1.2530 | loss(pos) 0.0974 | loss(seq) 0.3002 | grad 5.8790 | lr 0.0010 | time_forward 3.5880 | time_backward 4.9380
[2023-09-02 11:47:38,501::train::INFO] [train] Iter 09549 | loss 1.9376 | loss(rot) 0.8550 | loss(pos) 0.7063 | loss(seq) 0.3762 | grad 5.1247 | lr 0.0010 | time_forward 4.0600 | time_backward 5.2640
[2023-09-02 11:47:49,065::train::INFO] [train] Iter 09550 | loss 2.0618 | loss(rot) 1.4530 | loss(pos) 0.1306 | loss(seq) 0.4782 | grad 3.0016 | lr 0.0010 | time_forward 4.3140 | time_backward 6.2470
[2023-09-02 11:47:57,984::train::INFO] [train] Iter 09551 | loss 1.2058 | loss(rot) 0.1098 | loss(pos) 1.0818 | loss(seq) 0.0142 | grad 5.3107 | lr 0.0010 | time_forward 3.8930 | time_backward 5.0220
[2023-09-02 11:48:00,712::train::INFO] [train] Iter 09552 | loss 0.5890 | loss(rot) 0.1208 | loss(pos) 0.4365 | loss(seq) 0.0316 | grad 3.1841 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4370
[2023-09-02 11:48:03,019::train::INFO] [train] Iter 09553 | loss 3.0150 | loss(rot) 0.0214 | loss(pos) 2.9917 | loss(seq) 0.0019 | grad 7.8142 | lr 0.0010 | time_forward 1.1010 | time_backward 1.2030
[2023-09-02 11:48:11,002::train::INFO] [train] Iter 09554 | loss 2.3226 | loss(rot) 1.6765 | loss(pos) 0.1789 | loss(seq) 0.4673 | grad 6.3144 | lr 0.0010 | time_forward 3.4280 | time_backward 4.5510
[2023-09-02 11:48:19,230::train::INFO] [train] Iter 09555 | loss 1.8433 | loss(rot) 1.6561 | loss(pos) 0.1771 | loss(seq) 0.0101 | grad 6.4399 | lr 0.0010 | time_forward 3.5070 | time_backward 4.7170
[2023-09-02 11:48:27,111::train::INFO] [train] Iter 09556 | loss 1.8737 | loss(rot) 0.4110 | loss(pos) 0.2938 | loss(seq) 1.1689 | grad 7.1687 | lr 0.0010 | time_forward 3.3120 | time_backward 4.5650
[2023-09-02 11:48:35,686::train::INFO] [train] Iter 09557 | loss 2.2342 | loss(rot) 2.0093 | loss(pos) 0.2137 | loss(seq) 0.0112 | grad 4.7591 | lr 0.0010 | time_forward 3.6250 | time_backward 4.9470
[2023-09-02 11:48:38,362::train::INFO] [train] Iter 09558 | loss 1.0716 | loss(rot) 0.5100 | loss(pos) 0.2205 | loss(seq) 0.3411 | grad 3.0068 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4190
[2023-09-02 11:48:48,335::train::INFO] [train] Iter 09559 | loss 1.0299 | loss(rot) 0.3400 | loss(pos) 0.6171 | loss(seq) 0.0727 | grad 5.2632 | lr 0.0010 | time_forward 4.0440 | time_backward 5.9250
[2023-09-02 11:48:51,066::train::INFO] [train] Iter 09560 | loss 1.8473 | loss(rot) 1.6415 | loss(pos) 0.1209 | loss(seq) 0.0849 | grad 5.5126 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4490
[2023-09-02 11:48:58,642::train::INFO] [train] Iter 09561 | loss 1.1044 | loss(rot) 0.3282 | loss(pos) 0.5302 | loss(seq) 0.2459 | grad 3.9598 | lr 0.0010 | time_forward 3.1890 | time_backward 4.3830
[2023-09-02 11:49:08,691::train::INFO] [train] Iter 09562 | loss 1.8856 | loss(rot) 1.4548 | loss(pos) 0.1821 | loss(seq) 0.2487 | grad 4.9851 | lr 0.0010 | time_forward 4.0560 | time_backward 5.9890
[2023-09-02 11:49:12,134::train::INFO] [train] Iter 09563 | loss 1.3585 | loss(rot) 0.5102 | loss(pos) 0.2545 | loss(seq) 0.5939 | grad 2.9619 | lr 0.0010 | time_forward 1.4360 | time_backward 2.0030
[2023-09-02 11:49:22,189::train::INFO] [train] Iter 09564 | loss 1.1850 | loss(rot) 0.2973 | loss(pos) 0.5139 | loss(seq) 0.3738 | grad 3.4651 | lr 0.0010 | time_forward 4.1120 | time_backward 5.9390
[2023-09-02 11:49:33,439::train::INFO] [train] Iter 09565 | loss 1.5657 | loss(rot) 0.6285 | loss(pos) 0.6076 | loss(seq) 0.3296 | grad 4.2981 | lr 0.0010 | time_forward 4.8830 | time_backward 6.3630
[2023-09-02 11:49:41,887::train::INFO] [train] Iter 09566 | loss 0.7666 | loss(rot) 0.1316 | loss(pos) 0.3639 | loss(seq) 0.2711 | grad 3.9335 | lr 0.0010 | time_forward 3.4990 | time_backward 4.9450
[2023-09-02 11:49:52,022::train::INFO] [train] Iter 09567 | loss 1.0635 | loss(rot) 0.2794 | loss(pos) 0.2879 | loss(seq) 0.4962 | grad 3.0509 | lr 0.0010 | time_forward 4.1850 | time_backward 5.9460
[2023-09-02 11:49:54,329::train::INFO] [train] Iter 09568 | loss 1.4210 | loss(rot) 0.9719 | loss(pos) 0.0889 | loss(seq) 0.3602 | grad 5.6765 | lr 0.0010 | time_forward 1.1150 | time_backward 1.1890
[2023-09-02 11:50:02,497::train::INFO] [train] Iter 09569 | loss 0.6350 | loss(rot) 0.1235 | loss(pos) 0.4629 | loss(seq) 0.0487 | grad 2.9314 | lr 0.0010 | time_forward 3.4060 | time_backward 4.7580
[2023-09-02 11:50:05,009::train::INFO] [train] Iter 09570 | loss 2.3983 | loss(rot) 1.7132 | loss(pos) 0.1950 | loss(seq) 0.4901 | grad 4.9906 | lr 0.0010 | time_forward 1.2270 | time_backward 1.2810
[2023-09-02 11:50:14,250::train::INFO] [train] Iter 09571 | loss 1.5514 | loss(rot) 0.1510 | loss(pos) 1.3771 | loss(seq) 0.0233 | grad 5.8975 | lr 0.0010 | time_forward 3.9010 | time_backward 5.3160
[2023-09-02 11:50:16,992::train::INFO] [train] Iter 09572 | loss 1.0533 | loss(rot) 0.1944 | loss(pos) 0.7719 | loss(seq) 0.0870 | grad 4.2977 | lr 0.0010 | time_forward 1.3240 | time_backward 1.4150
[2023-09-02 11:50:27,156::train::INFO] [train] Iter 09573 | loss 1.6069 | loss(rot) 1.3008 | loss(pos) 0.2244 | loss(seq) 0.0817 | grad 4.9523 | lr 0.0010 | time_forward 4.3050 | time_backward 5.8540
[2023-09-02 11:50:35,793::train::INFO] [train] Iter 09574 | loss 1.6063 | loss(rot) 0.8655 | loss(pos) 0.3203 | loss(seq) 0.4205 | grad 5.0825 | lr 0.0010 | time_forward 3.6990 | time_backward 4.9350
[2023-09-02 11:50:45,906::train::INFO] [train] Iter 09575 | loss 1.0603 | loss(rot) 0.2885 | loss(pos) 0.5146 | loss(seq) 0.2572 | grad 3.6772 | lr 0.0010 | time_forward 4.1660 | time_backward 5.9440
[2023-09-02 11:50:56,000::train::INFO] [train] Iter 09576 | loss 1.7867 | loss(rot) 1.4023 | loss(pos) 0.1199 | loss(seq) 0.2645 | grad 5.0608 | lr 0.0010 | time_forward 4.1730 | time_backward 5.9180
[2023-09-02 11:51:06,071::train::INFO] [train] Iter 09577 | loss 2.4380 | loss(rot) 0.3187 | loss(pos) 1.8603 | loss(seq) 0.2589 | grad 5.2955 | lr 0.0010 | time_forward 4.0180 | time_backward 6.0490
[2023-09-02 11:51:15,114::train::INFO] [train] Iter 09578 | loss 1.9176 | loss(rot) 1.2096 | loss(pos) 0.1933 | loss(seq) 0.5147 | grad 5.1609 | lr 0.0010 | time_forward 3.7740 | time_backward 5.2650
[2023-09-02 11:51:23,447::train::INFO] [train] Iter 09579 | loss 1.3961 | loss(rot) 0.0169 | loss(pos) 1.3780 | loss(seq) 0.0012 | grad 4.9014 | lr 0.0010 | time_forward 3.5190 | time_backward 4.8100
[2023-09-02 11:51:32,084::train::INFO] [train] Iter 09580 | loss 2.6060 | loss(rot) 1.7871 | loss(pos) 0.3189 | loss(seq) 0.4999 | grad 3.9785 | lr 0.0010 | time_forward 3.6980 | time_backward 4.9360
[2023-09-02 11:51:40,799::train::INFO] [train] Iter 09581 | loss 2.7431 | loss(rot) 2.5197 | loss(pos) 0.1506 | loss(seq) 0.0728 | grad 5.3541 | lr 0.0010 | time_forward 3.6740 | time_backward 5.0370
[2023-09-02 11:51:48,822::train::INFO] [train] Iter 09582 | loss 1.6931 | loss(rot) 1.5247 | loss(pos) 0.1540 | loss(seq) 0.0144 | grad 6.4611 | lr 0.0010 | time_forward 3.3030 | time_backward 4.7160
[2023-09-02 11:51:51,743::train::INFO] [train] Iter 09583 | loss 1.0690 | loss(rot) 0.5647 | loss(pos) 0.1373 | loss(seq) 0.3669 | grad 4.2822 | lr 0.0010 | time_forward 1.4300 | time_backward 1.4870
[2023-09-02 11:52:01,374::train::INFO] [train] Iter 09584 | loss 1.1915 | loss(rot) 0.4793 | loss(pos) 0.3592 | loss(seq) 0.3530 | grad 4.3545 | lr 0.0010 | time_forward 3.9810 | time_backward 5.6460
[2023-09-02 11:52:09,807::train::INFO] [train] Iter 09585 | loss 0.7211 | loss(rot) 0.2526 | loss(pos) 0.3668 | loss(seq) 0.1016 | grad 4.6231 | lr 0.0010 | time_forward 3.6080 | time_backward 4.8000