Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define rep(i, x, y) for (int i = x; i <= y; i++) using namespace std; int x, y, z; multiset<string> s; int main() { cin >> x >> y >> z; rep(i, 1, x) s.insert("a"); rep(i, 1, y) s.insert("b"); rep(i, 1, z) s.insert("c"); while (s.size() > 1) { string ss = *s.begin() + *--s.end(); s.erase(s.begin()); s.erase(--s.end()); s.insert(ss); } cout << *s.begin() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstring> #include <cstdio> #include <algorithm> #include <string> #include <set> using namespace std; multiset<string> S; multiset<string>::iterator itL, itR; int X, Y, Z; int main() { scanf("%d%d%d", &X, &Y, &Z); while(X--) S.insert("a"); while(Y--) S.insert("b"); while(Z--) S.insert("c"); while(S.size() > 1) { itL = S.begin(); itR = S.end(); itR--; S.insert((*itL) + (*itR)); S.erase(itL); S.erase(itR); } printf("%s", S.begin()->c_str()); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <set> #include <iostream> #include <cstdio> #include <string> #include <cstring> using namespace std; multiset <string> s; int main() { int X,Y,Z; scanf("%d%d%d",&X,&Y,&Z); for(int i = 1;i <= X; ++ i) s.insert("a"); for(int i = 1;i <= Y; ++ i) s.insert("b"); for(int i = 1;i <= Z; ++ i) s.insert("c"); multiset <string>::iterator it; it = s.end(); it--; while(s.size() > 1) { it = s.begin(); string a = *it; s.erase(it); it = s.end(); it--; string b = *it; s.erase(it); string c = a + b; s.insert(c); } cout<<*s.begin()<<endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <stdio.h> #include <algorithm> #include <assert.h> #include <bitset> #include <cmath> #include <complex> #include <deque> #include <functional> #include <iostream> #include <limits.h> #include <map> #include <math.h> #include <queue> #include <set> #include <stdlib.h> #include <string.h> #include <string> #include <time.h> #include <unordered_map> #include <unordered_set> #include <vector> using namespace std; typedef tuple<int, int, int> t3; typedef long long ll; typedef unsigned long long ull; typedef double db; typedef long double ldb; typedef pair <int, int> pii; typedef pair <ll, ll> pll; typedef pair <ll, int> pli; typedef pair <db, db> pdd; const db PI = acos(-1); const db ERR = 1e-12; const int MX = 2005; const int MM = 1000000007; int main() { int A, B, C; multiset<string> L; scanf("%d%d%d", &A, &B, &C); for(int i = 1; i <= A; i++) L.insert((string)"a"); for(int i = 1; i <= B; i++) L.insert((string)"b"); for(int i = 1; i <= C; i++) L.insert((string)"c"); while(L.size() > 1){ string P = *L.begin(); while(*L.begin() == P){ L.erase(L.begin()); auto it = L.end(); --it; string tmp = P + *it; L.erase(it); L.insert(tmp); } } cout << *L.begin() << "\n"; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; multiset<string > s; int a,b,c; int main() { scanf("%d%d%d",&a,&b,&c); while (a--)s.insert("a"); while (b--)s.insert("b"); while (c--)s.insert("c"); while (s.size()>1) { string t=*s.begin()+ *--s.end(); s.erase(s.begin()); s.erase(--s.end()); s.insert(t); } cout<<*s.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <set> #include <iostream> using std::string; std::multiset<string> s; int main() { int n; scanf("%d", &n); for(int i = 1; i <= n; i++) { s.insert("a"); } scanf("%d", &n); for(int i = 1; i <= n; i++) { s.insert("b"); } scanf("%d", &n); for(int i = 1; i <= n; i++) { s.insert("c"); } while(s.size() > 1) { string a = *s.begin(); string b = *(--s.end()); s.erase(s.begin()); s.erase(--s.end()); s.insert((string)(a + b)); } std::cout << *s.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; multiset <string> s; int x,y,z; int main(){ cin>>x>>y>>z; while(x--)s.insert("a"); while(y--)s.insert("b"); while(z--)s.insert("c"); while(s.size()>1){ string a=*s.begin(); string b=*s.rbegin(); s.erase(s.begin()); s.erase(--s.end()); s.insert(a+b); } cout<<*s.begin()<<endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<iostream> #include<algorithm> using namespace std; const int maxn=200+2; int tmp,cnt; string str[maxn]; int main(){ for (char ch='a';ch<='c';ch++){ cin>>tmp; while (tmp--) str[cnt++]+=ch; } while (cnt>1){ sort(str,str+cnt); str[0]+=str[--cnt]; } cout<<str[0]; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; multiset<string> s; int x,y,z; int main() { cin>>x>>y>>z; for(int i=1;i<=x;i++) s.insert("a"); for(int i=1;i<=y;i++) s.insert("b"); for(int i=1;i<=z;i++) s.insert("c"); while(s.size()>1) { string t=*s.begin()+*--s.end(); s.erase(s.begin()); s.erase(--s.end()); s.insert(t); } cout<<*s.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int r,b,g; multiset<string> st; int main() { // freopen("beargguy.in","r",stdin); // freopen("beargguy.out","w",stdout); scanf("%d%d%d",&r,&b,&g); for(int i=1;i<=r;i++) st.insert("a"); for(int i=1;i<=b;i++) st.insert("b"); for(int i=1;i<=g;i++) st.insert("c"); while(st.size()>1) { string s=*st.begin(),t=*st.rbegin(); st.erase(st.lower_bound(s)); st.erase(st.lower_bound(t)); st.insert(s+t); } puts((*st.begin()).c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<set> #include<cstdio> #include<cctype> #include<string> inline int getint() { register char ch; while(!isdigit(ch=getchar())); register int x=ch^'0'; while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0'); return x; } int main() { std::multiset<std::string> set; for(register int i=getint();i;i--) set.insert("a"); for(register int i=getint();i;i--) set.insert("b"); for(register int i=getint();i;i--) set.insert("c"); while(set.size()>1) { std::string s=*set.begin(),t=*set.rbegin(); set.erase(set.lower_bound(s)); set.erase(set.lower_bound(t)); set.insert(s+t); } printf("%s\n",(*set.begin()).c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; template<class T> inline bool chkmax(T& a,T b){return a<b?a=b,1:0;} template<class T> inline bool chkmin(T& a,T b){return a>b?a=b,1:0;} template<typename T> inline T& read(T& x){ static char c; bool flag=0; while(!isdigit(c=getchar())) if(c=='-') flag=1; for(x=c-'0';isdigit(c=getchar());(x*=10)+=c-'0'); if(flag) x=-x; return x; } int x,y,z; multiset<string> s; int main(){ #ifdef xffyjq freopen("exec.in","r",stdin); freopen("exec.out","w",stdout); #endif read(x); read(y); read(z); for(int i=1;i<=x;i++) s.insert("a"); for(int i=1;i<=y;i++) s.insert("b"); for(int i=1;i<=z;i++) s.insert("c"); for(int i=1;i<x+y+z;i++){ auto it1=s.begin(),it2=s.end(); --it2; s.insert(*it1+*it2); s.erase(it1); s.erase(it2); } cout<<*s.begin()<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int a,b,c; multiset<string>s; int main(){ scanf("%d%d%d",&a,&b,&c); for(int i=1;i<=a;++i)s.insert("a"); for(int i=1;i<=b;++i)s.insert("b"); for(int i=1;i<=c;++i)s.insert("c"); while(s.size()>1){ string ss=*s.begin()+*--s.end(); s.erase(s.begin()); s.erase(--s.end()); s.insert(ss); } cout<<*s.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define up(i,j,k) for (int i = (j); i <= (k); i++) #define down(i,j,k) for (int i = (j); i >= (k); i--) #define DEBUG printf("Passing [%s] in LINE %d\n", __FUNCTION__, __LINE__) #define lb long double #define ll long long #define ull unsigned long long #define mp std::make_pair #define pb push_back #define all(x) (x).begin(), (x).end() #define mem(a) memset((a), 0, sizeof(a)) #define File(x) \ freopen("" #x ".in", "r", stdin); \ freopen("" #x ".out", "w", stdout); #define int long long inline int read() { int data = 0, w = 1; char ch = 0; while (ch != '-' && (ch > '9' || ch < '0')) ch = getchar(); if (ch == '-') w = -1, ch = getchar(); while (ch >= '0' && ch <= '9') { data = data * 10 + ch - '0'; ch = getchar(); } return data * w; } inline void print (int v) { if (v < 0) { putchar('-'); v = -v; } if (v > 9) print(v / 10); putchar(v % 10 + '0'); } std::multiset <std::string> s; signed main () { int x, y, z; x = read(); y = read(); z = read(); up (i, 1, x) s.insert("a"); up (i, 1, y) s.insert("b"); up (i, 1, z) s.insert("c"); while (s.size() ^ 1) { auto l = *s.begin(), r = *s.rbegin(); s.erase(s.lower_bound(l)); s.erase(s.lower_bound(r)); s.insert(l + r); } std::cout << *s.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
python3
a,b,c = map(int,input().split()) L = [[0] for _ in range(a)] + [[1] for _ in range(b)] + [[2] for _ in range(c)] while len(L) > 1: L[0] += L.pop() L.sort() print(''.join(('a','b','c')[i] for i in L[0]))
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<cstdio> #include<algorithm> using namespace std; int X, Y, Z, n; int D[51][51][51][51], LCP[51], oto[51]; char p[60], q[110]; bool Pos(int pv){ int i, j, k, l; for(i=1;i<=pv;i++){ for(j=0;j<=pv-i;j++){ if(p[j]!=p[i+j]){ if(p[j] > p[i+j])return false; else break; } } } oto[0] = -1; for(i=0;i<=pv;i++){ int t = oto[i]; while(t!=-1 && p[i]!=p[t])t=oto[t]; oto[i+1] = t+1; } int tt = oto[pv+1]; for(i=pv+1;i<n;i++){ p[i] = p[tt]; tt++; oto[i+1]=oto[i]+1; } LCP[0] = 0; for(i=1;i<=pv;i++){ if(p[LCP[i-1]] > p[i])return false; int t = LCP[i-1]; while(t!=-1 && p[t]!=p[i])t = oto[t]; LCP[i] = t+1; } int c1 = 0, c2 = 0, c3 = 0; for(i=0;i<=pv;i++){ if(p[i]=='a')c1++; if(p[i]=='b')c2++; if(p[i]=='c')c3++; } for(i=0;i<=X;i++)for(j=0;j<=Y;j++)for(k=0;k<=Z;k++)for(l=0;l<=n;l++)D[i][j][k][l]=0; D[c1][c2][c3][pv+1] = 1; //printf("%s\n",p); for(i=c1;i<=X;i++){ for(j=c2;j<=Y;j++){ for(k=c3;k<=Z;k++){ for(l=0;l<=n;l++){ if(!D[i][j][k][l])continue; //printf("%d %d %d %d\n",i,j,k,l); int tp = l; if(i!=X && p[tp] <= 'a'){ int t = tp; while(t!=-1 && p[t]!='a')t = oto[t]; D[i+1][j][k][t+1] = 1; } if(j!=Y && p[tp] <= 'b'){ int t = tp; while(t!=-1 && p[t]!='b')t = oto[t]; D[i][j+1][k][t+1] = 1; } if(k!=Z && p[tp] <= 'c'){ int t = tp; while(t!=-1 && p[t]!='c')t = oto[t]; D[i][j][k+1][t+1] = 1; } } } } } for(i=0;i<=n;i++){ if(!D[X][Y][Z][i])continue; //printf("%d\n",i); for(j=0;j<i;j++)q[j] = p[j]; for(j=0;j<n;j++)q[i+j] = p[j]; int ck = 0; for(j=0;j<=i;j++){ for(k=0;k<n;k++){ if(p[k]!=q[j+k]){ if(p[k] > q[j+k])ck = 1; else break; } } } if(!ck){ return true; } } return false; } int main(){ int i, j, c1 = 0, c2 = 0, c3 = 0; scanf("%d%d%d",&X,&Y,&Z); n = X+Y+Z; for(i=0;i<n;i++){ p[i] = 'c'; c3++; if(c3 <= Z && Pos(i)){ if(i!=0 || (!X&&!Y))continue; } c3--,c2++; p[i] = 'b'; if(c2 <= Y && Pos(i)){ if(i!=0 || !X)continue; } c2--,c1++; p[i] = 'a'; } printf("%s\n",p); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx") using namespace std; using ll = long long; using ull = unsigned long long; using ld = long double; #define forn(i, a, n) for (int i = (int)(a); i < (int)(n); ++i) #define ford(i, a, n) for (int i = (int)(n - 1); i >= (int)(a); --i) #define fore(i, a, n) for (int i = (int)(a); i <= (int)(n); ++i) #define all(a) (a).begin(), (a).end() #define fs first #define sn second #define trace(a)\ for (auto i : a) cerr << i << ' ';\ cerr << '\n' #define eb emplace_back #ifndef M_PI const ld M_PI = acos(-1.0); #endif template<typename T> inline void setmax(T& a, T b) { if (a < b) a = b; } template<typename T> inline void setmin(T& a, T b) { if (a > b) a = b; } const ld eps = 1e-9; const int INF = 2000000000; const ll LINF = 1ll * INF * INF; const ll MOD = 1000000007; string min_cyclic_shift (string s) { s += s; int n = (int) s.length(); int i=0, ans=0; while (i < n/2) { ans = i; int j=i+1, k=i; while (j < n && s[k] <= s[j]) { if (s[k] < s[j]) k = i; else ++k; ++j; } while (i <= k) i += j - k; } return s.substr (ans, n/2); } vector<string> gen(int x, int y, int z) { if (x == 0 && y == 0 && z == 0) { return {""}; } vector<string> ans; if (x) for (string s : gen(x - 1, y, z)) ans.eb(s + "a"); if (y) for (string s : gen(x, y - 1, z)) ans.eb(s + "b"); if (z) for (string s : gen(x, y, z - 1)) ans.eb(s + "c"); return ans; } string brute(int x, int y, int z) { vector<string> ss = gen(x, y, z); string ans = min_cyclic_shift(ss[0]); for (string s : ss) setmax(ans, min_cyclic_shift(s)); return ans; } const int N = 52; //string glob[N][N][N]; string solve(int x, int y, int z) { if (x + y + z <= 4) return brute(x, y, z); //cerr << "SOLVE: " << x << ' ' << y << ' ' << z << '\n'; //if (!glob[x][y][z].empty()) return glob[x][y][z]; if (y == 0 && z == 0) { string ans; forn(i, 0, x) ans += "a"; return ans; //forn(i, 0, x) glob[x][y][z] += "a"; //return glob[x][y][z]; } if (x == 0) { string s = solve(y, z, 0); for (char& c : s) ++c; //glob[x][y][z] = s; return s; } if (y == 0) { string s = solve(x, z, 0); for (char& c : s) if (c == 'b') c = 'c'; //glob[x][y][z] = s; return s; } vector<string> lets(3); lets[0] = "a"; while (z >= x) { lets[0] += "c"; z -= x; } string ans, s; if (z + y >= x) { lets[1] = lets[0]; lets[0] += "b"; lets[1] += "c"; lets[2] = "b"; x -= z; y -= x; s = solve(x, z, y); } else { lets[1] = lets[0]; lets[2] = lets[0]; lets[1] += "b"; lets[2] += "c"; s = solve(x - y - z, y, z); } for (char c : s) ans += lets[c - 'a']; //glob[x][y][z] = ans; return ans; } int main() { ios::sync_with_stdio(false); cin.tie(0); srand((unsigned)chrono::high_resolution_clock::now().time_since_epoch().count()); int x, y, z; cin >> x >> y >> z; cout << solve(x, y, z) << '\n'; /* forn(x, 0, 6) forn(y, 0, 6) forn(z, 0, 6) { string s1 = solve(x, y, z), s2 = brute(x, y, z); if (s1 != s2) { cout << "ERROR!: " << x << ' ' << y << ' ' << z << '\n'; cout << s1 << ' ' << s2 << '\n'; return 0; } }*/ //int x = 4, y = 2, z = 3; //cout << solve(x, y, z) << '\n'; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
/* Stay hungry, stay foolish. */ /* Copyright by HenryLi */ #include<iostream> #include<algorithm> #include<queue> #include<string> #include<map> #include<vector> #include<set> #include<sstream> #include<stack> #include<ctime> #include<cmath> #include<cctype> #include<climits> #include<cstring> #include<cstdio> #include<cstdlib> #include<iomanip> #include<bitset> #include<complex> using namespace std; template <class _T> inline void read(_T &_x) { int _t; bool _flag=false; while((_t=getchar())!='-'&&(_t<'0'||_t>'9')) ; if(_t=='-') _flag=true,_t=getchar(); _x=_t-'0'; while((_t=getchar())>='0'&&_t<='9') _x=_x*10+_t-'0'; if(_flag) _x=-_x; } typedef long long LL; int main() { //freopen("fuck.in","r",stdin); //freopen("fuck.out","w",stdout); multiset<string> s; int a, b, c; read(a), read(b), read(c); for (int i = 1; i <= a; ++i) s.insert("a"); for (int i = 1; i <= b; ++i) s.insert("b"); for (int i = 1; i <= c; ++i) s.insert("c"); while (s.size() > 1) { string t = *s.begin() + *--s.end(); s.erase(s.begin()), s.erase(--s.end()); s.insert(t); } cout << *s.begin() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
java
// package other2017.codefestival2017.qualb; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class Main { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int x = in.nextInt(); int y = in.nextInt(); int z = in.nextInt(); int n = x + y + z; String ans = ""; for (int i = 0; i < n ; i++) { if (z >= 1 && isOK(ans + "c", x, y, z-1)) { z--; ans += "c"; } else if (y >= 1 && isOK(ans + "b", x, y-1, z)) { y--; ans += "b"; } else { x--; ans += "a"; } } out.println(ans); out.flush(); } static boolean isOK(String prefix, int x, int y, int z) { int prefixState = 0; for (int i = 1 ; i< prefix.length() ; i++) { String l = prefix.substring(i, prefix.length()); if (prefix.startsWith(l)) { prefixState = Math.max(prefixState, l.length()); } else { if (l.compareTo(prefix) < 0) { // muri return false; } } } int n = prefix.length(); int[][] stateTable = new int[n][3]; for (int i = 0; i < n ; i++) { for (int j = 0; j < 3 ; j++) { String s = prefix.substring(0, i) + (char)('a' + j); if (prefix.startsWith(s)) { stateTable[i][j] = (s.length() == n) ? 0 : s.length(); } else if (s.compareTo(prefix) < 0) { stateTable[i][j] = -1; } else { stateTable[i][j] = 0; } } } int L = x+y+z; int[][][][] dp = new int[L+1][y+1][z+1][n+1]; dp[L][y][z][prefixState] = 1; for (int i = L ; i >= 1 ; i--) { for (int b = 0 ; b <= y ; b++) { for (int c = 0 ; c <= z ; c++) { int a = i-b-c; int[] left = {a, b, c}; for (int s = 0 ; s <= n ; s++) { if (dp[i][b][c][s] == 0) { continue; } for (int u = 0 ; u <= 2 ; u++) { if (stateTable[s][u] == -1 || left[u] == 0) { continue; } dp[i-1][b-((u==1)?1:0)][c-((u==2)?1:0)][stateTable[s][u]] = 1; } } } } } for (int i = 0 ; i <= n ; i++) { String pref = prefix.substring(0, i) + prefix; if ((i == 0 || pref.compareTo(prefix) > 0) && dp[0][0][0][i] == 1) { return true; } } return false; } public static void debug(Object... o) { System.err.println(Arrays.deepToString(o)); } public static class InputReader { private static final int BUFFER_LENGTH = 1 << 12; private InputStream stream; private byte[] buf = new byte[BUFFER_LENGTH]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int next() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public char nextChar() { return (char) skipWhileSpace(); } public String nextToken() { int c = skipWhileSpace(); StringBuilder res = new StringBuilder(); do { res.append((char) c); c = next(); } while (!isSpaceChar(c)); return res.toString(); } public int nextInt() { return (int) nextLong(); } public long nextLong() { int c = skipWhileSpace(); long sgn = 1; if (c == '-') { sgn = -1; c = next(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = next(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { return Double.valueOf(nextToken()); } int skipWhileSpace() { int c = next(); while (isSpaceChar(c)) { c = next(); } return c; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <algorithm> #include <set> template<typename T> inline void read(T &x) { x = 0; char c = getchar(); bool flag = false; while (!isdigit(c)) { if (c == '-') flag = true; c = getchar(); } while (isdigit(c)) { x = (x << 1 ) + (x << 3) + (c ^ 48); c = getchar(); } if (flag) x = -x; } using namespace std; multiset<string> st; int main() { int A, B, C; read(A), read(B), read(C); while (A) st.insert("a"), --A; while (B) st.insert("b"), --B; while (C) st.insert("c"), --C; while (st.size() != 1) { string smal = *(st.begin()), larg = *(--st.end()); st.erase(st.find(smal)); st.erase(st.find(larg)); st.insert(smal + larg); } cout << *st.begin() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #include<set> using namespace std; int x,y,z; multiset<string> s; int main(){ scanf("%d %d %d",&x,&y,&z); for(int i=1;i<=x;i++) s.insert("a"); for(int i=1;i<=y;i++) s.insert("b"); for(int i=1;i<=z;i++) s.insert("c"); multiset<string>::iterator it; while(s.size()>1){ it=s.begin(); string s1=*it; s.erase(it); it=s.end(); it--; string s2=*it; s.erase(it); s.insert(s1+s2); } it=s.begin(); cout<<*it<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<stdio.h> #include<vector> #include<algorithm> #include<string> #include<iostream> using namespace std; string get(int a, int b, int c) { string s; if (b == 0 && c == 0) { for (int i = 0; i < a; i++)s.push_back('a'); return s; } if (a == 0) { s = get(b, c, 0); for (int i = 0; i < s.size(); i++)s[i]++; return s; } string sa, sb, sc; if (c%a == 0) { s = get(0, a - b%a, b%a); sb.push_back('a'); for (int i = 0; i < c / a; i++)sb.push_back('c'); for (int i = 0; i < b / a; i++)sb.push_back('b'); sc = sb; sc.push_back('b'); } else { s = get(a - c%a - b % (a - c%a), b % (a - c%a), c%a); sa.push_back('a'); for (int i = 0; i < c / a; i++)sa.push_back('c'); sc = sa; sc.push_back('c'); for (int i = 0; i < b / (a - c%a); i++)sa.push_back('b'); sb = sa; sb.push_back('b'); } string r; for (int i = 0; i < s.size(); i++) { if (s[i] == 'a')r += sa; if (s[i] == 'b')r += sb; if (s[i] == 'c')r += sc; } return r; } int main() { int a, b, c; scanf("%d%d%d", &a, &b, &c); cout << get(a, b, c) << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; string s[233]; int t,n; int main(){ for (char c='a';c<='c';c++) for (cin>>t;t--;) s[n++]+=c; for (;n>1;){ sort(s,s+n); s[0]+=s[--n]; } cout<<s[0]; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <set> #include <string> #include <iostream> int X,Y,Z; std::multiset<std::string> s; int main() { std::ios::sync_with_stdio(false); std::cin.tie(0),std::cout.tie(0); std::cin>>X>>Y>>Z; while(X--)s.insert(std::string("a")); while(Y--)s.insert(std::string("b")); while(Z--)s.insert(std::string("c")); while((int)s.size()>1) { std::string s1=*s.begin(),s2=*--s.end(); s.erase(s.begin()),s.erase(--s.end()); s.insert(s1+s2); } std::cout<<*s.begin()<<std::endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<cstdio> #include<cstring> #include<set> using namespace std; int a,b,c; char s[155][155]; struct str { int ID; bool friend operator < (str a,str b) { return strcmp(s[a.ID],s[b.ID])<0; } }t1,t2; multiset<str> m; multiset<str>::iterator it; int main() { scanf("%d%d%d",&a,&b,&c); int cnt=0; while(a--) s[++cnt][0]='a',m.insert((str){cnt}); while(b--) s[++cnt][0]='b',m.insert((str){cnt}); while(c--) s[++cnt][0]='c',m.insert((str){cnt}); while(m.size()>1) { it=m.begin();t1=*it;m.erase(it); it=m.end();it--;t2=*it;m.erase(it); strcat(s[t1.ID],s[t2.ID]); m.insert((str){t1.ID}); } it=m.begin(); t1=*it; printf("%s\n",s[t1.ID]); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
//Wrong answer on test inf. #include<bits/stdc++.h> #define rep(i,x,y) for (int i=(x);i<=(y);i++) #define ll long long #define inf 1000000001 #define y1 y1___ using namespace std; ll read(){ char ch=getchar();ll x=0;int op=1; for (;!isdigit(ch);ch=getchar()) if (ch=='-') op=-1; for (;isdigit(ch);ch=getchar()) x=(x<<1)+(x<<3)+ch-'0'; return x*op; } #define N 55 int x,y,z; multiset<string> s; int main(){ cin>>x>>y>>z; rep (i,1,x) s.insert("a"); rep (i,1,y) s.insert("b"); rep (i,1,z) s.insert("c"); while ((int)s.size()>1){ string tmp=*s.begin()+*--s.end(); s.erase(s.begin()); s.erase(--s.end()); s.insert(tmp); } cout<<*s.begin()<<'\n'; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <algorithm> #include <iostream> #include <sstream> #include <string> #include <cstring> #include <vector> #include <queue> #include <set> #include <map> #include <cstdio> #include <cstdlib> #include <cctype> #include <cmath> #include <list> #include <cassert> #include <ctime> #include <climits> using namespace std; #define PB push_back #define MP make_pair #define SZ(v) ((int)(v).size()) #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define REP(i,n) FOR(i,0,n) #define FORE(i,a,b) for(int i=(a);i<=(b);++i) #define REPE(i,n) FORE(i,0,n) #define FORSZ(i,a,v) FOR(i,a,SZ(v)) #define REPSZ(i,v) REP(i,SZ(v)) typedef long long ll; typedef unsigned long long ull; ll gcd(ll a,ll b) { return b==0?a:gcd(b,a%b); } string solve(int na, int nb, int nc) { if (na == 0 && nb == 0 && nc == 0) return ""; if (na == 0) { string ret = solve(nb, nc, 0); REPSZ(i, ret) ++ret[i]; return ret; } vector<string> parts; string cur = "a"; int curcnt = na; na = 0; while (na+nb+nc>0) { if (nc >= curcnt) { cur += "c"; nc -= curcnt; continue; } while (nc > 0) parts.PB(cur + "c"), --curcnt, --nc; if (nb >= curcnt) { cur += "b"; nb -= curcnt; continue; } while (nb > 0) parts.PB(cur + "b"), --curcnt, --nb; } while (SZ(parts) > 0) { int rep = curcnt / SZ(parts), rem = curcnt%SZ(parts); if (rem == 0) --rep, rem = SZ(parts); string pref; REP(i, rep) pref += cur; string nxt = pref + cur + parts[rem - 1]; int nxtcnt = 1; while (nxtcnt < rem&&parts[rem - 1] == parts[rem - 1 - nxtcnt]) ++nxtcnt; vector<string> nparts; FORSZ(i, rem, parts) nparts.PB(pref + parts[i]); REP(i, rem - nxtcnt) nparts.PB(pref + cur + parts[i]); parts = nparts; cur = nxt; curcnt = nxtcnt; } string ret; REP(i, curcnt) ret += cur; return ret; } void run() { int na, nb, nc; scanf("%d%d%d", &na, &nb, &nc); string s = solve(na, nb, nc); printf("%s\n", s.c_str()); } string other(int a,int b,int c) { multiset<string> s; while (a--) s.insert("a"); while (b--) s.insert("b"); while (c--) s.insert("c"); while ((int)s.size() > 1) { string t = *s.begin() + *--s.end(); s.erase(s.begin()); s.erase(--s.end()); s.insert(t); } return *s.begin(); } int main() { run(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
// Copyright (C) 2017 Sayutin Dmitry. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; version 3 // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; If not, see <http://www.gnu.org/licenses/>. #include <bits/stdc++.h> using namespace std; // solve problem when a != 0. string solve(int a, int b, int c) { if (b == 0 and c == 0) { // it is clear, that answer is 'aaa...'. string res = ""; for (int t = 0; t != a; ++t) res += 'a'; return res; } // lets build our cyclical string. // we have (a) parts equal to 'a', and b + c other parts. // clearly, resulting cyclical string has substring of num=ceil(a/(b+c)) symbols 'a'. // // if we want to minimize answer, than we shouldn't make it any larger (since it will be start of the minimal cyclical shift) // so we will have parts of length num and num-1. int num = (a + (b + c - 1)) / (b + c); int cnt_short = num * (b + c) - a; // how much parts of "num - 1" string tmp = ""; for (int i = 0; i != num - 1; ++i) tmp += 'a'; vector<string> parts; for (int i = 0; i != (b + c - cnt_short); ++i) parts.push_back(tmp + 'a'); // put long parts of num "a" for (int i = 0; i != cnt_short; ++i) parts.push_back(tmp); // put short parts of (num - 1) "a". // let's distribute B's and C's. // // We can notice, that minimal cyclical shift will start with num "a"s. // So it is always better to put C's to "long" parts, they are conveniently at the beginning of parts // array. for (int i = 0; i != c; ++i) parts[i] += 'c'; for (int i = 0; i != b; ++i) parts[c + i] += 'b'; // Now we want to put all parts together to minimize answer, and we are sure, // that the answer will be smaller than possible, if we try to split parts. // funny thing: there are no more, than 3 different types of parts, because // part uniquely defined by whether it has (num) or (num - 1) A's, and whether it has B or C at the end. // but it is not possible for types (num, B) and (num - 1, C) to exist together. // so count number of each and call recursion. sort(parts.begin(), parts.end()); vector<string> cparts = parts; cparts.resize(std::unique(cparts.begin(), cparts.end()) - cparts.begin()); while (cparts.size() < 3) cparts.push_back(""); assert(cparts.size() == 3); string zzans = solve(std::count(parts.begin(), parts.end(), cparts[0]), std::count(parts.begin(), parts.end(), cparts[1]), std::count(parts.begin(), parts.end(), cparts[2])); string ans = ""; for (char ch: zzans) ans += cparts[ch - 'a']; return ans; } // Time: T(x, y, z) = (x + y + z) + T(a, b, c), where a + b + c = x. // since X in T(x, y, z) is decreasing in recursion, there are O(N) levels and each is O(N) => O(N^2) // (actually implementation above is O(N^2 log) due to sort, but one can write without it). int main() { int a, b, c; cin >> a >> b >> c; // remap 'a', 'b', 'c' in such way, that // num of 'a' is not zeros. map<char, char> back; if (a == 0 and b == 0) { back['a'] = 'c'; a = c; b = 0; c = 0; } else if (a == 0) { back['a'] = 'b'; back['b'] = 'c'; a = b; b = c; c = 0; } else { back['a'] = 'a'; back['b'] = 'b'; back['c'] = 'c'; } // solve problem when a != 0. string ans = solve(a, b, c); for (int i = 0; i != int(ans.size()); ++i) cout << back[ans[i]]; cout << "\n"; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <string> #include <vector> #include <algorithm> using namespace std; int A, B, C; string getans(string S) { int ca = 0, cb = 0, cc = 0; for (int i = 0; i < S.size(); i++) { if (S[i] == 'a') ca++; if (S[i] == 'b') cb++; if (S[i] == 'c') cc++; } if (cb == 0) return S; vector<string>vec; for (int i = 0; i < ca; i++) vec.push_back("a"); for (int i = 0; i < cc; i++) vec[i%ca] += "c"; sort(vec.begin(), vec.end()); int Z = 1; for (int i = 1; i < vec.size(); i++) { if (vec[i] == vec[i - 1])Z = i + 1; else break; } for (int i = 0; i < cb; i++) vec[i%Z] += "b"; sort(vec.begin(), vec.end()); string G = "a"; int I = 0; for (int i = 1; i < vec.size(); i++) { if (vec[i] != vec[i - 1]) I++; G += ('a' + I); } vector<string>A = vec; A.erase(unique(A.begin(), A.end()), A.end()); string V = getans(G), U = ""; for (int i = 0; i < V.size(); i++) { U += A[V[i] - 'a']; } return U; } string F; int main() { cin >> A >> B >> C; if (A >= 1) F += "a"; if (B >= 1) F += "b"; if (C >= 1) F += "c"; int P = 0; while (A == 0) { A = B; B = C; C = 0; } while (B == 0 && C >= 1) { B = C; C = 0; } string G = ""; for (int i = 0; i < A; i++) G += "a"; for (int i = 0; i < B; i++) G += "b"; for (int i = 0; i < C; i++) G += "c"; string ret = getans(G); for (int i = 0; i < ret.size(); i++) ret[i] = F[ret[i] - 'a']; cout << ret << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int a,b,c; multiset<string>s; int main() { scanf("%d%d%d",&a,&b,&c); for(int i = 1;i<=a;i++)s.insert("a"); for(int i = 1;i<=b;i++)s.insert("b"); for(int i = 1;i<=c;i++)s.insert("c"); for(int i = 1;i<a+b+c;i++) { string x = *s.begin(),y = *(--s.end()); s.erase(s.lower_bound(x)),s.erase(s.lower_bound(y)); s.insert(x+y); }cout<<*s.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include "bits/stdc++.h" using namespace std; const int maxn = 55; string res; bool vis[maxn][maxn][maxn][maxn]; int failure[maxn], link[maxn][3], final_ok[maxn]; void push(){ memset(failure, 0, sizeof(failure)); for(int s = 2; s <= res.size(); s++){ failure[s] = failure[s-1]; while(failure[s] > 0 && res[failure[s]] != res[s-1]) failure[s] = failure[failure[s]]; if(res[failure[s]] == res[s-1]) ++failure[s]; } for(int s = 0; s < res.size(); s++){ for(int e = 0; e < 3; e++){ int pos = s; if(res[s] > 'a' + e) link[s][e] = -1; else{ while(pos > 0 && res[pos] != 'a' + e) pos = failure[pos]; if(res[pos] == 'a' + e) pos++; link[s][e] = pos; } } } for(int s = 0; s < res.size(); s++){ int pos = s; final_ok[pos] = 1; for(int e = 0; e < res.size(); e++){ pos = link[pos][res[e] - 'a']; if(pos == -1){ final_ok[s] = 0; break; } } } } bool solve(int x, int y, int z, int px){ if(px == res.size()) px = failure[px]; if(x + y + z == 0) return final_ok[px]; if(vis[x][y][z][px]) return false; vis[x][y][z][px] = true; if(link[px][0] != -1 && x && solve(x - 1, y, z, link[px][0])) return true; if(link[px][1] != -1 && y && solve(x, y - 1, z, link[px][1])) return true; if(link[px][2] != -1 && z && solve(x, y, z - 1, link[px][2])) return true; return false; } int M(){ int x, y, z; if(!(cin >> x >> y >> z)) return 0; int len = x + y + z; res.clear(); for(int e = 0; e < len; e++){ res.push_back('c'); push(); memset(vis, 0, sizeof(vis)); if(solve(x, y, z, 0)) continue; res.back() = 'b'; push(); memset(vis, 0, sizeof(vis)); if(solve(x, y, z, 0)) continue; res.back() = 'a'; } cout << res << endl; return 1; } int main(){ while(M()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <set> #include <cstring> #include <cassert> #include <algorithm> #include <vector> #include <iostream> #include <ctime> #include <unistd.h> using namespace std; #define TRACE(x) cerr << #x << " = " << x << endl #define _ << " " << #define FOR(i, a, b) for (int i=(a); i<(b); i++) #define REP(i, n) FOR(i, 0, n) #define X first #define Y second typedef pair<int, int> P; typedef long long ll; int cnt[3]; string rek(vector <pair<string, int> > V) { // TRACE(V.size()); if (V.size() == 1) { string ret = ""; REP(i, V[0].Y) ret += V[0].X; return ret; } multiset <string> S; REP(i, V[0].Y) S.insert(V[0].X); for (int i=(int) V.size()-1; i; i--) { REP(j, V[i].Y) { auto it = S.begin(); string tmp = *it; S.erase(it); tmp += V[i].X; S.insert(tmp); } } // TRACE(S.size()); vector <pair<string, int> > T; for (multiset <string> :: iterator it = S.begin(); it != S.end(); ) { int kol = 0; multiset <string> :: iterator it2 = it; for (; it2 != S.end() && *it2 == *it; it2++, kol++); T.push_back({*it, kol}); it = it2; } return rek(T); } int main() { int n=0; REP(i, 3) { scanf("%d", &cnt[i]); n += cnt[i]; } vector <pair<string, int> > V; REP(i, 3) { if (cnt[i]) { string tmp = ""; tmp.push_back((char) ('a' + i)); V.push_back({tmp, cnt[i]}); } } cout << rek(V) << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<set> #include<cstdio> #include<cctype> #include<string> inline int Read(){ char a; int b; while(!isdigit(a=getchar())); b=a^'0'; while(isdigit(a=getchar()))b=(((b<<2)+b)<<1)+(a^'0'); return b; } int main() { std::multiset<std::string> set; for(int i=Read();i;i--)set.insert("a"); for(int i=Read();i;i--)set.insert("b"); for(int i=Read();i;i--)set.insert("c"); while(set.size()>1){ std::string s=*set.begin(),t=*set.rbegin(); set.erase(set.lower_bound(s)); set.erase(set.lower_bound(t)); set.insert(s+t); } printf("%s\n",(*set.begin()).c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int main() { multiset <string> s; int a,b,c; cin>>a>>b>>c; for(int i=1;i<=a;i++) s.insert("a"); for(int i=1;i<=b;i++) s.insert("b"); for(int i=1;i<=c;i++) s.insert("c"); while(s.size()>1) { string x=*s.begin(); string y=*s.rbegin(); s.erase(s.lower_bound(x)); s.erase(s.lower_bound(y)); s.insert(x+y); } cout<<*s.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <string> #include <set> using namespace std; int a_num, b_num, c_num; multiset<string> st; int main() { cin >> a_num >> b_num >> c_num; for (int i = 1; i <= a_num; i++) st.insert("a"); for (int i = 1; i <= b_num; i++) st.insert("b"); for (int i = 1; i <= c_num; i++) st.insert("c"); while (st.size() > 1) { string s = *st.begin(), t = *st.rbegin(); st.erase(st.lower_bound(s)), st.erase(st.lower_bound(t)); st.insert(s + t); } cout << *st.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> typedef unsigned int uint; typedef long long ll; typedef unsigned long long ull; typedef double lf; typedef long double llf; typedef std::pair<int,int> pii; #define xx first #define yy second template<typename T> inline T max(T a,T b){return a>b?a:b;} template<typename T> inline T min(T a,T b){return a<b?a:b;} template<typename T> inline T abs(T a){return a>0?a:-a;} template<typename T> inline bool repr(T &a,T b){return a<b?a=b,1:0;} template<typename T> inline bool repl(T &a,T b){return a>b?a=b,1:0;} template<typename T> inline T gcd(T a,T b){T t;if(a<b){while(a){t=a;a=b%a;b=t;}return b;}else{while(b){t=b;b=a%b;a=t;}return a;}} template<typename T> inline T sqr(T x){return x*x;} #define mp(a,b) std::make_pair(a,b) #define pb push_back #define I inline #define mset(a,b) memset(a,b,sizeof(a)) #define mcpy(a,b) memcpy(a,b,sizeof(a)) #define fo0(i,n) for(int i=0,i##end=n;i<i##end;i++) #define fo1(i,n) for(int i=1,i##end=n;i<=i##end;i++) #define fo(i,a,b) for(int i=a,i##end=b;i<=i##end;i++) #define fd0(i,n) for(int i=(n)-1;~i;i--) #define fd1(i,n) for(int i=n;i;i--) #define fd(i,a,b) for(int i=a,i##end=b;i>=i##end;i--) #define foe(i,x)for(__typeof(x.end())i=x.begin();i!=x.end();++i) struct Cg{I char operator()(){return getchar();}}; struct Cp{I void operator()(char x){putchar(x);}}; #define OP operator #define RT return *this; #define RX x=0;char t=P();while((t<'0'||t>'9')&&t!='-')t=P();bool f=0;\ if(t=='-')t=P(),f=1;x=t-'0';for(t=P();t>='0'&&t<='9';t=P())x=x*10+t-'0' #define RL if(t=='.'){lf u=0.1;for(t=P();t>='0'&&t<='9';t=P(),u*=0.1)x+=u*(t-'0');}if(f)x=-x #define RU x=0;char t=P();while(t<'0'||t>'9')t=P();x=t-'0';for(t=P();t>='0'&&t<='9';t=P())x=x*10+t-'0' #define TR *this,x;return x; I bool IS(char x){return x==10||x==13||x==' ';}template<typename T>struct Fr{T P;I Fr&OP,(int &x) {RX;if(f)x=-x;RT}I OP int(){int x;TR}I Fr&OP,(ll &x){RX;if(f)x=-x;RT}I OP ll(){ll x;TR}I Fr&OP,(char &x) {for(x=P();IS(x);x=P());RT}I OP char(){char x;TR}I Fr&OP,(char *x){char t=P();for(;IS(t);t=P());if(~t){for(;!IS (t)&&~t;t=P())*x++=t;}*x++=0;RT}I Fr&OP,(lf &x){RX;RL;RT}I OP lf(){lf x;TR}I Fr&OP,(llf &x){RX;RL;RT}I OP llf() {llf x;TR}I Fr&OP,(uint &x){RU;RT}I OP uint(){uint x;TR}I Fr&OP,(ull &x){RU;RT}I OP ull(){ull x;TR}};Fr<Cg>in; #define WI(S) if(x){if(x<0)P('-'),x=-x;char s[S],c=0;while(x)s[c++]=x%10+'0',x/=10;while(c--)P(s[c]);}else P('0') #define WL if(y){lf t=0.5;for(int i=y;i--;)t*=0.1;if(x>=0)x+=t;else x-=t,P('-');*this,(ll)(abs(x));P('.');if(x<0)\ x=-x;while(y--){x*=10;x-=floor(x*0.1)*10;P(((int)x)%10+'0');}}else if(x>=0)*this,(ll)(x+0.5);else *this,(ll)(x-0.5); #define WU(S) if(x){char s[S],c=0;while(x)s[c++]=x%10+'0',x/=10;while(c--)P(s[c]);}else P('0') template<typename T>struct Fw{T P;I Fw&OP,(int x){WI(10);RT}I Fw&OP()(int x){WI(10);RT}I Fw&OP,(uint x){WU(10);RT} I Fw&OP()(uint x){WU(10);RT}I Fw&OP,(ll x){WI(19);RT}I Fw&OP()(ll x){WI(19);RT}I Fw&OP,(ull x){WU(20);RT}I Fw&OP() (ull x){WU(20);RT}I Fw&OP,(char x){P(x);RT}I Fw&OP()(char x){P(x);RT}I Fw&OP,(const char *x){while(*x)P(*x++);RT} I Fw&OP()(const char *x){while(*x)P(*x++);RT}I Fw&OP()(lf x,int y){WL;RT}I Fw&OP()(llf x,int y){WL;RT}};Fw<Cp>out; const int N=53; char s[N],f[N][N][N][N]; int p[N],n,nxt[N][3]; inline bool dfs2(int a,int b,int c,int i) { if(!a&&!b&&!c) { fo0(j,n) { if(s[i]>s[j])return 0; i=nxt[i][s[j]-97]; } return 1; } if(~f[a][b][c][i])return f[a][b][c][i]; bool res=0; if(a&&s[i]<='a')res|=dfs2(a-1,b,c,nxt[i][0]); if(b&&s[i]<='b')res|=dfs2(a,b-1,c,nxt[i][1]); if(c&&s[i]<='c')res|=dfs2(a,b,c-1,nxt[i][2]); return f[a][b][c][i]=res; } inline bool chk(int n,int a,int b,int c) { //out,"chk:",n,' ',a,' ',b,' ',c,'\n'; ::n=n; p[0]=-1; fo1(i,n-1) { int t=p[i-1]; for(;t!=-1&&s[t+1]!=s[i];t=p[t]); if(s[t+1]==s[i])p[i]=t+1; else p[i]=-1; } fo(i,0,n)fo0(j,3) { int t=i==n?p[i-1]:i-1; for(;t!=-1&&s[t+1]!=j+97;t=p[t]); if(t+2==n)t=p[t+1]-1; if(s[t+1]==j+97)nxt[i][j]=t+2; else nxt[i][j]=0; } //fo(i,0,n)fo0(j,3)out,'/',i,' ',j,' ',nxt[i][j],'\n'; fo(i,0,a)fo(j,0,b)fo(k,0,c)fo0(d,n)f[i][j][k][d]=-1; return dfs2(a,b,c,0); } inline void dfs(int a,int b,int c,int i) { //out,a,' ',b,' ',c,' ',i,'\n'; if(!a&&!b&&!c)return; if(c){s[i]='c';if(chk(i+1,a,b,c-1))return dfs(a,b,c-1,i+1);} if(b){s[i]='b';if(chk(i+1,a,b-1,c))return dfs(a,b-1,c,i+1);} if(a){s[i]='a';if(chk(i+1,a-1,b,c))return dfs(a-1,b,c,i+1);} } int main() { int a,b,c; in,a,b,c; dfs(a,b,c,0); out,s,'\n'; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; #define ll long long #define si(x) scanf("%d",&x) #define sl(x) scanf("%lld",&x) #define pi(x) printf("%d",x) #define pl(x) printf("%lld",x) #define pb push_back #define mkp make_pair #define fi first #define se second #define re register #define rep(i,m,n) for(int i=m;i<=n;i++) #define per(i,n,m) for(int i=m;i>=n;i--) #define rrep(i,m,n) for(register int i=m;i<=n;i++) #define rper(i,n,m) for(register int i=m;i>=n;i--) const int N = 5e6 + 10; const ll mod = 1e9 + 7; multiset<string> s; signed main(){ int a,b,c; cin>>a>>b>>c; rep(i,1,a)s.insert("a"); rep(i,1,b)s.insert("b"); rep(i,1,c)s.insert("c"); while (s.size()>1){ auto i=s.begin(),j=s.end(); j--; string tmp=(*i)+(*j); s.erase(i);s.erase(j); s.insert(tmp); } cout<<(*s.begin()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define dump(...) do{print_vars(cout<<"# "<<#__VA_ARGS__<<'=',__VA_ARGS__);cout<<endl;}while(0) #define repi(i,a,b) for(int i=int(a);i<int(b);i++) #define peri(i,a,b) for(int i=int(b);i-->int(a);) #define rep(i,n) repi(i,0,n) #define per(i,n) peri(i,0,n) #define all(c) begin(c),end(c) #define mp make_pair #define mt make_tuple using uint=unsigned; using ll=long long; using ull=unsigned long long; using vi=vector<int>; using vvi=vector<vi>; using vl=vector<ll>; using vvl=vector<vl>; using vd=vector<double>; using vvd=vector<vd>; using vs=vector<string>; void print_vars(ostream&){} template<typename Car,typename... Cdr> void print_vars(ostream& os,const Car& car,const Cdr&... cdr){ print_vars(os<<car<<(sizeof...(cdr)?",":""),cdr...); } template<typename T1,typename T2> ostream& operator<<(ostream& os,const pair<T1,T2>& p){ return os<<'('<<p.first<<','<<p.second<<')'; } template<int I,typename Tuple> void print_tuple(ostream&,const Tuple&){} template<int I,typename Car,typename... Cdr,typename Tuple> void print_tuple(ostream& os,const Tuple& t){ os<<get<I>(t)<<(sizeof...(Cdr)?",":""); print_tuple<I+1,Cdr...>(os,t); } template<typename... Args> ostream& operator<<(ostream& os,const tuple<Args...>& t){ print_tuple<0,Args...>(os<<'(',t); return os<<')'; } template<typename Ch,typename Tr,typename C> basic_ostream<Ch,Tr>& operator<<(basic_ostream<Ch,Tr>& os,const C& c){ os<<'['; for(auto i=begin(c);i!=end(c);++i) os<<(i==begin(c)?"":" ")<<*i; return os<<']'; } constexpr int INF=1e9; constexpr int MOD=1e9+7; constexpr double EPS=1e-9; int main() { #ifndef _GLIBCXX_DEBUG ios_base::sync_with_stdio(false); cin.tie(nullptr); constexpr char endl='\n'; #endif for(int x,y,z;cin>>x>>y>>z&&x|y|z;){ multiset<string> s; rep(_,x) s.insert("a"); rep(_,y) s.insert("b"); rep(_,z) s.insert("c"); while(s.size()>1){ auto i=begin(s),j=--end(s); s.insert(*i+*j); s.erase(i); s.erase(j); } cout<<*begin(s)<<endl; } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define maxn 100086 using namespace std; int x, y, z; multiset<string> st; int main(){ scanf("%d%d%d", &x, &y, &z); for(int i = 1;i <= x;i++) st.insert("a"); for(int i = 1;i <= y;i++) st.insert("b"); for(int i = 1;i <= z;i++) st.insert("c"); while(st.size() > 1){ string s = *st.begin(), t = *st.rbegin(); st.erase(st.find(s)), st.erase(st.find(t)); st.insert(s + t); } printf("%s", st.begin()->c_str()); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<iostream> #include<algorithm> #include<vector> using namespace std; string f(vector<pair<string,int> >A) { if(A.size()==1) { string ret=""; for(int i=0;i<A[0].second;i++)ret+=A[0].first; return ret; } sort(A.begin(),A.end()); int sum=0; for(pair<string,int>p:A) { sum+=p.second; } vector<string>ret; if(A[0].second*2<=sum) { for(int i=0;i<A[0].second;i++)ret.push_back(A[0].first); int cnt=A[0].second; A[0].second=0; int id=A.size()-1; while(0<id) { for(int i=0;i<cnt;i++) { while(0<id&&A[id].second==0)id--; if(id==0)break; else { A[id].second--; ret[i]+=A[id].first; } } sort(ret.begin(),ret.end()); int ncnt=0; for(int i=0;i<cnt;i++)if(ret[0]==ret[i])ncnt++; cnt=ncnt; } } else { int cnt=sum-A[0].second; for(int i=0;i<cnt;i++) { ret.push_back(""); for(int j=0;j<A[0].second/cnt+(i<A[0].second%cnt);j++) { ret.back()+=A[0].first; } } int id=A.size()-1; for(string&s:ret) { while(A[id].second==0)id--; A[id].second--; s+=A[id].first; } } sort(ret.begin(),ret.end()); vector<pair<string,int> >nxt; nxt.push_back(make_pair(ret[0],1)); for(int i=1;i<ret.size();i++) { if(nxt.back().first==ret[i])nxt.back().second+=1; else nxt.push_back(make_pair(ret[i],1)); } return f(nxt); } int main() { int X,Y,Z; cin>>X>>Y>>Z; vector<pair<string,int> >A; if(X>0)A.push_back(make_pair("a",X)); if(Y>0)A.push_back(make_pair("b",Y)); if(Z>0)A.push_back(make_pair("c",Z)); cout<<f(A)<<endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long int ll; typedef unsigned int uint; typedef unsigned char uchar; typedef unsigned long long ull; typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef vector<int> vi; #define REP(i,x) for(int i=0;i<(int)(x);i++) #define REPS(i,x) for(int i=1;i<=(int)(x);i++) #define RREP(i,x) for(int i=((int)(x)-1);i>=0;i--) #define RREPS(i,x) for(int i=((int)(x));i>0;i--) #define FOR(i,c) for(__typeof((c).begin())i=(c).begin();i!=(c).end();i++) #define RFOR(i,c) for(__typeof((c).rbegin())i=(c).rbegin();i!=(c).rend();i++) #define ALL(container) (container).begin(), (container).end() #define RALL(container) (container).rbegin(), (container).rend() #define SZ(container) ((int)container.size()) #define mp(a,b) make_pair(a, b) #define pb push_back #define eb emplace_back #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() ); #define __builtin_popcount __builtin_popcountll template<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; } template<class T> ostream& operator<<(ostream &os, const vector<T> &t) { os<<"["; FOR(it,t) {if(it!=t.begin()) os<<","; os<<*it;} os<<"]"; return os; } template<class T> ostream& operator<<(ostream &os, const set<T> &t) { os<<"{"; FOR(it,t) {if(it!=t.begin()) os<<","; os<<*it;} os<<"}"; return os; } template<class S, class T> ostream& operator<<(ostream &os, const pair<S,T> &t) { return os<<"("<<t.first<<","<<t.second<<")";} template<class S, class T> pair<S,T> operator+(const pair<S,T> &s, const pair<S,T> &t){ return pair<S,T>(s.first+t.first, s.second+t.second);} template<class S, class T> pair<S,T> operator-(const pair<S,T> &s, const pair<S,T> &t){ return pair<S,T>(s.first-t.first, s.second-t.second);} const int INF = 1<<28; const double EPS = 1e-8; const int MOD = 1000000007; int T, n, m; string solve(int x, const string a) { string ans = ""; REP(i, x) ans += a; return ans; } string solve(int x, int y, const string a, const string b) { if (x == 0) return solve(y, b); if (y == 0) return solve(x, a); if (x <= y) return solve(x, y - x, a + b, b); return solve(x - y, y, a, a + b); } string solve(int x, int y, int z, const string a, const string b, const string c) { if(x == 0) return solve(y, z, b, c); if(y == 0) return solve(x, z, a, c); if(z == 0) return solve(x, y, a, b); if(x <= z) return solve(x, y, z - x, a + c, b, c); if(x <= z + y) return solve(x - z, z, y - (x - z), a + b, a + c, b); return solve(x - y - z, y, z, a, a + b, a + c); } int main(int argc, char *argv[]){ ios::sync_with_stdio(false); int x, y, z; cin >> x >> y >> z; cout << solve(x, y, z, "a", "b", "c") << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<cstdio> #include<algorithm> #include<iostream> #include<cstring> #include<vector> #include<set> using namespace std; typedef long long LL; multiset<string> s; multiset<string> :: iterator it,it1; int main() { int x,y,z; scanf("%d%d%d",&x,&y,&z); for (int u=1;u<=x;u++) s.insert("a"); for (int u=1;u<=y;u++) s.insert("b"); for (int u=1;u<=z;u++) s.insert("c"); while (s.size()>1) { it=s.begin(); it1=(--s.end()); s.insert((*it)+(*it1)); s.erase(it);s.erase(it1); } cout<<(*s.begin()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int a,b,c; multiset<string>s; int main() { cin>>a>>b>>c; for(int i=1;i<=a;i++)s.insert("a"); for(int i=1;i<=b;i++)s.insert("b"); for(int i=1;i<=c;i++)s.insert("c"); while(s.size()>1) { string ss=(*s.begin())+(*s.rbegin()); s.erase(s.begin()); s.erase(--s.end()); s.insert(ss); } cout<<(*s.begin()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
python2
x, y, z = map(int, raw_input().split()) a = ['a'] * x + ['b'] * y + ['c'] * z while len(a) > 1: a = sorted(a[1:-1] + [a[0] + a[-1]]) print a[0]
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define che #define debug(...) fprintf(stderr,__VA_ARGS__) using namespace std; typedef long long LL; multiset<string> S; int main(){ int n; scanf("%d", &n);for (int i=0; i<n; i++) S.insert("a"); scanf("%d", &n);for (int i=0; i<n; i++) S.insert("b"); scanf("%d", &n);for (int i=0; i<n; i++) S.insert("c"); while ( S.size() >1){ string s1= *S.begin(), s2= *(--S.end()); string t= s1+s2; S.erase(S.begin());S.erase(--S.end()); S.insert(t); } printf("%s\n", S.begin()->c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i = (a); i < (b); i++) #define RFOR(i,b,a) for(int i = (b) - 1; i >= (a); i--) #define ITER(it, a) for(typeof(a.begin()) it = a.begin(); it != a.end(); it++) #define FILL(a, value) memset(a, value, sizeof(a)) #define SZ(a) (int) a.size() #define ALL(a) a.begin(),a.end() #define PB push_back #define MP make_pair typedef long long LL; typedef vector<int> VI; typedef pair<int, int> PII; const double PI = acos(-1.0); const int INF = 1000 * 1000 * 1000 + 7; const LL LINF = INF * (LL)INF; string minShift(string s) { string res = s; FOR (it, 0, SZ(s)) { s += s[0]; s.erase(s.begin()); res = min(res, s); } return res; } string getString(vector<string> v) { string res; FOR (i, 0, SZ(v)) { res += v[i]; } return res; } string solveSmall(int a, int b, int c, string A, string B, string C) { vector<string> v; FOR (i, 0, a) { v.PB(A); } FOR (i, 0, b) { v.PB(B); } FOR (i, 0, c) { v.PB(C); } sort(ALL(v)); string res = getString(v); do { res = max(res, minShift(getString(v))); }while(next_permutation(ALL(v))); return res; } string getString(int cnt, string s) { string res; FOR (i, 0, cnt) { res += s; } return res; } string solveLarge(int a, int b, int c, string A, string B, string C) { if (a + b + c <= 3) return solveSmall(a, b, c, A, B, C); if (a == 0) { a = b; A = B; b = c; B = C; c = 0; C = ""; } if (b == 0) { b = c; B = C; c = 0; C = ""; } if (b == 0 && c == 0) { return getString(a, A); } if (c >= a) { c -= a; A += C; return solveLarge(a, b, c, A, B, C); } C = A + C; a -= c; if (b >= a) { A += B; b -= a; swap(b, c); swap(B, C); } else { a -= b; B = A + B; } return solveLarge(a, b, c, A, B, C); } int main() { //freopen("in.txt", "r", stdin); //ios::sync_with_stdio(false); cin.tie(0); int x, y, z; cin>>x>>y>>z; string res = solveLarge(x, y, z, "a", "b", "c"); cout<<res<<endl; // FOR (a, 0, 5) // { // FOR (b, 0, 5) // { // FOR (c, 0, 5) // { // string r = solveSmall(a, b, c, "a", "b", "c"); // string s = solveLarge(a, b, c, "a", "b", "c"); // cout<<r<<endl<<s<<endl; // if (r != s) // { // cout<<"!! "<<endl; // cout<<a<<' '<<b<<' '<<c<<endl; // throw -1; // } // } // } // } // // cout<<"Done"<<endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; multiset< string > S; int main() { int x,y,z; scanf("%d%d%d",&x,&y,&z); while(x--) S.insert("a"); while(y--) S.insert("b"); while(z--) S.insert("c"); while(S.size()>1) { string a=*S.begin(),b=*S.rbegin(); S.erase(S.begin()); S.erase(--S.end()); S.insert(a+b); } cout << *S.begin() <<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; public class Main { private FastScanner in; private PrintWriter out; int cnt = 0; class T implements Comparable<T> { String s; int id = cnt++; public T(String s) { this.s = s; } @Override public int compareTo(T o) { int c = s.compareTo(o.s); if (c != 0) { return c; } return Integer.compare(id, o.id); } } String getMin(String s) { String res = s; for (int i = 1; i < s.length(); i++) { String t = s.substring(i) + s.substring(0, i); if (t.compareTo(res) < 0) { res = t; } } return res; } void check(String s) { ArrayList<Character> a = new ArrayList<>(); for (char c : s.toCharArray()) { a.add(c); } char[] tmp = new char[s.length()]; for (int it = 0; it < 1231; it++) { Collections.shuffle(a); int z = 0; for (char c : a) { tmp[z++] = c; } String xx = new String(tmp); if (getMin(xx).compareTo(s) > 0) { throw new AssertionError(); } } } String solve(int x, int y, int z) { if (x + y + z == 0) { return ""; } TreeSet<T> ts = new TreeSet<>(); for (int i = 0; i < x; i++) { ts.add(new T("a")); } for (int i = 0; i < y; i++) { ts.add(new T("b")); } for (int i = 0; i < z; i++) { ts.add(new T("c")); } while (ts.size() > 1) { T first = ts.pollFirst(); T last = ts.pollLast(); ts.add(new T(first.s + last.s)); } String res = (ts.first().s); check(res); return res; } void solve123() { final int M = 10; for (int x = 0; x < M; x++) { for (int y = 0; y < M; y++) { for (int z = 0; z < M; z++) { solve(x, y, z); System.err.println(x + " " + y + " "+ z); } } } } void solve() { int x = in.nextInt(); int y = in.nextInt(); int z = in.nextInt(); out.println(solve(x, y, z)); } private void run() { try { in = new FastScanner(new File("Main.in")); out = new PrintWriter(new File("Main.out")); solve(); out.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } private void runIO() { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } private class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static void main(String[] args) { new Main().runIO(); } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int, int> pii; #define fst first #define snd second #define pb push_back #define REP(i, a, b) for(int i = (a), i##end = (b); i < i##end; ++i) #define DREP(i, a, b) for(int i=(a-1), i##end = (b); i >=i##end; --i) template <typename T> bool chkmax(T& a, T b) { return a < b ? a = b, 1 : 0; } template <typename T> bool chkmin(T& a, T b) { return a > b ? a = b, 1 : 0; } const int N = 100000; const int oo = 0x3f3f3f3f; template<typename T> T read() { T n(0), f(1); char ch = getchar(); for( ;!isdigit(ch); ch = getchar()) if(ch == '-') f = -1; for( ; isdigit(ch); ch = getchar()) n = n * 10 + ch - 48; return n * f; } string solve(int a, int b, int c) { bool flag = false; if(!a) { flag = true; a = b; b = c; c = 0; } string res; if(!a) { res = string(b, 'b'); }else { if(!b && !c) { res = string(a, 'a'); }else { vector<string> ans(a, "a"); for(int i = 0; i < c; ++i) ans[i % a] += 'c'; int pos = c % a; for(int i = 0; i < b; ++i) { ans[pos] += 'b'; if(++ pos == a) pos = c % a; } map<string, int> mp; vector< pair<string, int> > sub; for(const auto& x : ans) { ++ mp[x]; } for(const auto& x : mp) { sub.pb(x); } while(sub.size() < 3) sub.pb(make_pair("", 0)); string tmp = solve(sub[0].snd, sub[1].snd, sub[2].snd); for(const auto& x : tmp) { res += sub[x - 'a'].fst; } } } if(flag) { for(auto& ch : res) ++ ch; } return res; } int a, b, c; int main() { #ifdef Wearry freopen("data.txt", "r", stdin); freopen("ans.txt", "w", stdout); #endif cin >> a >> b >> c; cout << solve(a, b, c) << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.ArrayList; import java.util.Collections; import java.util.List; public class Main { private static void solve() { int[] a = na(3); List<String> list = new ArrayList<>(); for (int j = 0; j < 3; j ++) { for (int i = 0; i < a[j]; i ++) list.add("" + (char)('a' + j)); } while (list.size() > 1) { Collections.sort(list); int last = list.size() - 1; String s = list.get(0) + list.get(last); list.set(0, s); list.remove(last); } System.out.println(list.get(0)); } public static void main(String[] args) { new Thread(null, new Runnable() { @Override public void run() { long start = System.currentTimeMillis(); String debug = System.getProperty("debug"); if (debug != null) { try { is = java.nio.file.Files.newInputStream(java.nio.file.Paths.get(debug)); } catch (Exception e) { throw new RuntimeException(e); } } reader = new java.io.BufferedReader(new java.io.InputStreamReader(is), 32768); solve(); out.flush(); tr((System.currentTimeMillis() - start) + "ms"); } }, "", 64000000).start(); } private static java.io.InputStream is = System.in; private static java.io.PrintWriter out = new java.io.PrintWriter(System.out); private static java.util.StringTokenizer tokenizer = null; private static java.io.BufferedReader reader; public static String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new java.util.StringTokenizer(reader.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } private static double nd() { return Double.parseDouble(next()); } private static long nl() { return Long.parseLong(next()); } private static int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private static char[] ns() { return next().toCharArray(); } private static long[] nal(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nl(); return a; } private static int[][] ntable(int n, int m) { int[][] table = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { table[i][j] = ni(); } } return table; } private static int[][] nlist(int n, int m) { int[][] table = new int[m][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { table[j][i] = ni(); } } return table; } private static int ni() { return Integer.parseInt(next()); } private static void tr(Object... o) { if (is != System.in) System.out.println(java.util.Arrays.deepToString(o)); } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
python2
def work(a,b,c,A,B,C): if A==0: return work(b,c,'',B,C,0) if B==0: if C==0: return a*A else: return work(a,c,'',A,C,0) if C==0: return work(a+b*(B/A),a+b*(B/A+1),'',A-B%A,B%A,0) cmod = C%A if B <= A-cmod: return work(a+c*(C/A),a+c*(C/A)+b,a+c*(C/A+1),A-cmod-B,B,cmod) else: bmod = B%(A-cmod) return work(a+c*(C/A)+b*(B/(A-cmod)),a+c*(C/A)+b*(B/(A-cmod)+1),a+c*(C/A+1),A-bmod-cmod,bmod,cmod) if __name__ == '__main__': s = raw_input() a,b,c = [int(i) for i in s.split()] print(work('a','b','c',a,b,c))
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using ll = int64_t; using ld = long double; using namespace std; const int MAXN = 51; using val = vector<int>; string ans[MAXN]; string solve(int x, int y, int z) { int n = x + y + z; if (!x) { string ans = solve(y, z, 0); for (char& c : ans) { c++; } return ans; } if (y + z == 0) { string ans = ""; for (int i = 0; i < n; i++) ans += 'a'; return ans; } string vala; string valb; string valc; int nx, ny, nz; if (x <= z) { nx = x; ny = y; nz = z - x; vala = "ac"; valb = "b"; valc = "c"; } else { if (x - z < y) { vala = "ab"; valb = "ac"; valc = "b"; nx = x - z; ny = z; nz = y - (x - z); } else { vala = "a"; valb = "ab"; valc = "ac"; nx = x - y - z; ny = y; nz = z; } } string ans = solve(nx, ny, nz); string vl = ""; for (char c : ans) { if (c == 'a') vl += vala; else if (c == 'b') vl += valb; else vl += valc; } return vl; } int main() { #ifdef PAUNSVOKNO freopen("input.txt", "r", stdin); freopen("output.txt", "w", stdout); #endif ios_base::sync_with_stdio(false); cout.setf(ios::fixed); cout.precision(20); int x, y, z; cin >> x >> y >> z; string ans = solve(x, y, z); cout << ans << "\n"; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 101; int x, y, z; string a, b, c; int main() { scanf("%d%d%d", &x, &y, &z); a = "a"; b = "b"; c = "c"; while(1) { if(!x) { x = y; a = b; y = z; b = c; z = 0; } if(!x) { x = y; a = b; y = 0; } if(z) { if(x <= z) { for( ; z >= x; z -= x) a = a + c; } else { for( ; x >= y + z; x -= y + z) { b = a + b; c = a + c; } if(x >= z) { swap(y, z); swap(b, c); b = a + b; x -= y; } } } else if(y) { if(x <= y) { for( ; y >= x; y -= x) a = a + b; } else { for( ; x >= y; x -= y) b = a + b; } } else { break; } } b = a; for(int i = 1; i < x; ++i) a = a + b; puts(a.c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include "bits/stdc++.h" using namespace std; #define fi first #define se second #define ll long long #define dbg(v) cerr<<#v<<" = "<<v<<'\n' #define vi vector<int> #define vl vector <ll> #define pii pair<int,int> #define mp make_pair #define db long double #define pb push_back #define all(s) s.begin(),s.end() int main(void) { int a,b,c; cin>>a>>b>>c; multiset < string > s; for (int i = 0;i < a;++i) s.insert("a"); for (int i = 0;i < b;++i) s.insert("b"); for (int i = 0;i < c;++i) s.insert("c"); while (s.size() > 1) { string str = *s.begin(); str += *s.rbegin(); s.erase(s.begin()); auto it = s.end();--it; s.erase(it); s.insert(str); } cout << (*s.begin()) << '\n'; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef signed long long ll; #undef _P #define _P(...) (void)printf(__VA_ARGS__) #define FOR(x,to) for(x=0;x<(to);x++) #define FORR(x,arr) for(auto& x:arr) #define ITR(x,c) for(__typeof(c.begin()) x=c.begin();x!=c.end();x++) #define ALL(a) (a.begin()),(a.end()) #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) //------------------------------------------------------- int A,B,C; /* string hoge(map<string,int> M) { if(M.size()==1) { string s=""; while(M.begin()->second--) s+=M.begin()->first; return s; } string s=M.begin()->first; string t=M.rbegin()->first; int a=M.begin()->second; int b=rM.begin()->second; if(a<=b) { } } */ void solve() { int i,j,k,l,r,x,y; string s; cin>>A>>B>>C; vector<string> V; FOR(i,A) V.push_back("a"); FOR(i,B) V.push_back("b"); FOR(i,C) V.push_back("c"); while(V.size()>1) { sort(ALL(V)); V[0]+=V.back(); V.pop_back(); } cout<<V[0]<<endl; /* map<string,int> M; if(A) M["a"]=A; if(B) M["b"]=B; if(C) M["c"]=C; cout<<hoge(M)<<endl; */ } int main(int argc,char** argv){ string s;int i; if(argc==1) ios::sync_with_stdio(false), cin.tie(0); FOR(i,argc-1) s+=argv[i+1],s+='\n'; FOR(i,s.size()) ungetc(s[s.size()-1-i],stdin); cout.tie(0); solve(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int X, Y, Z, S, K; static inline void exap(string &src, string s, long long int t){ for(int i = 0; i < t; ++i)src += s; } void twoletter(long long X, long long Y, string xc, string yc){ while(X && Y){ if(X > Y){ X -= Y; yc = xc + yc; }else{ K = Y / X; Y %= X; X -= Y; exap(xc, yc, K); yc = xc + yc; } } for(int i = 0; i < X; ++i)cout << xc; for(int i = 0; i < Y; ++i)cout << yc; cout << endl; return; } int main(){ scanf("%lld%lld%lld", &X, &Y, &Z); S = X + Y + Z; if(S == X || S == Y || S == Z){ for(int i = 0; i < X; ++i)cout << "a"; for(int i = 0; i < Y; ++i)cout << "b"; for(int i = 0; i < Z; ++i)cout << "c"; cout << endl; return 0; } string A = "a", B = "b", C = "c"; while(1){ //cout << A << X << " " << B << Y << " " << C << Z << endl; if(X == 0){ twoletter(Y, Z, B, C); return 0; } if(Y == 0){ twoletter(X, Z, A, C); return 0; } if(Z == 0){ twoletter(X, Y, A, B); return 0; } if(X > Z){ X -= Z; C = A + C; }else{ K = Z / X; Z %= X; X -= Z; exap(A, C, K); C = A + C; } swap(B, C); swap(Y, Z); } return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
// Copyright (C) 2017 Sayutin Dmitry. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; version 3 // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; If not, see <http://www.gnu.org/licenses/>. #include <iostream> #include <vector> #include <stdint.h> #include <algorithm> #include <set> #include <map> #include <array> #include <queue> #include <stack> #include <functional> #include <utility> #include <string> #include <assert.h> #include <iterator> #include <cstdint> #include <cinttypes> #include <string.h> #include <random> #include <numeric> #include <tuple> using std::cin; using std::cout; using std::cerr; using std::vector; using std::map; using std::array; using std::set; using std::string; using std::pair; using std::make_pair; using std::min; using std::abs; using std::max; using std::unique; using std::sort; using std::generate; using std::reverse; using std::min_element; using std::max_element; #ifdef LOCAL #define LASSERT(X) assert(X) #else #define LASSERT(X) {} #endif template <typename T> T input() { T res; cin >> res; LASSERT(cin); return res; } template <typename IT> void input_seq(IT b, IT e) { std::generate(b, e, input<typename std::remove_reference<decltype(*b)>::type>); } #define SZ(vec) int((vec).size()) #define ALL(data) data.begin(),data.end() #define RALL(data) data.rbegin(),data.rend() #define TYPEMAX(type) std::numeric_limits<type>::max() #define TYPEMIN(type) std::numeric_limits<type>::min() #define pb push_back #define eb emplace_back // solve problem when a != 0. string solve(int a, int b, int c) { if (b == 0 and c == 0) { // it is clear, that answer is 'aaa...'. string res = ""; for (int t = 0; t != a; ++t) res += 'a'; return res; } // lets build our cyclical string. // we have a parts equal to 'a', and b + c other parts. // clearly, resulting cyclical string has substring of num=ceil(a/(b+c)) symbols 'a'. // // if we want to minimize answer, than we shouldn't make it any larger (since it will be the minimal cyclical shift) // so we will have parts of length num and num-1. int num = (a + (b + c - 1)) / (b + c); int cnt_short = num * (b + c) - a; // how much parts of "num - 1" string tmp = ""; for (int i = 0; i != num - 1; ++i) tmp += 'a'; vector<string> parts; for (int i = 0; i != (b + c - cnt_short); ++i) parts.push_back(tmp + 'a'); // put long parts of num "a" for (int i = 0; i != cnt_short; ++i) parts.push_back(tmp); // put short parts of (num - 1) "a". // let's distribute B's and C's. // // We can notice, that minimal cyclical shift will start with num "a"s. // So it is always better to put C's to "long" parts, they are conveniently at the beginning of parts // array. for (int i = 0; i != c; ++i) parts[i] += 'c'; for (int i = 0; i != b; ++i) parts[c + i] += 'b'; // Now we want to put all parts together to minimize answer, and we are sure, // that the answer will be smaller than possible, if we try to split parts. // funny thing: there are no more, than 3 different types of parts, because // part uniquely defined by whether it has (num) or (num - 1) A's, and whether it has B or C at the end. // but it is not possible for types (num, B) and (num - 1, C) to exist together. // so count number of each and call recursion. std::sort(ALL(parts)); vector<string> cparts = parts; cparts.resize(std::unique(ALL(cparts)) - cparts.begin()); while (cparts.size() < 3) cparts.push_back(""); assert(SZ(cparts) == 3); string zzans = solve(std::count(ALL(parts), cparts[0]), std::count(ALL(parts), cparts[1]), std::count(ALL(parts), cparts[2])); string ans = ""; for (char ch: zzans) ans += cparts[ch - 'a']; return ans; } // Time: T(x, y, z) = (x + y + z) + T(a, b, c), where a + b + c = x. // since X in T(x, y, z) is decreasing in recursion, there are O(N) levels and each is O(N) => O(N^2) // (actually implementation above is O(N^2 log) due to sort, but one can write without it). int main() { std::iostream::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int a = input<int>(); int b = input<int>(); int c = input<int>(); // remap 'a', 'b', 'c' in such way, that // num of 'a' is not zeros. std::map<char, char> back; if (a == 0 and b == 0) { back['a'] = 'c'; a = c; b = 0; c = 0; } else if (a == 0) { back['a'] = 'b'; back['b'] = 'c'; a = b; b = c; c = 0; } else { back['a'] = 'a'; back['b'] = 'b'; back['c'] = 'c'; } // solve problem when a != 0. string ans = solve(a, b, c); for (int i = 0; i != SZ(ans); ++i) cout << back[ans[i]]; cout << "\n"; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int X,Y,Z; multiset<string>S; int main(){ scanf("%d%d%d",&X,&Y,&Z); while (X--) S.insert("a"); while (Y--) S.insert("b"); while (Z--) S.insert("c"); while (S.size()>1){ string t=*S.begin()+*(--S.end()); S.erase(S.begin());S.erase(--S.end()); S.insert(t); } cout<<*S.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <stdio.h> #include <algorithm> #include <assert.h> #include <bitset> #include <cmath> #include <complex> #include <deque> #include <functional> #include <iostream> #include <limits.h> #include <map> #include <math.h> #include <queue> #include <set> #include <stdlib.h> #include <string.h> #include <string> #include <time.h> #include <unordered_map> #include <unordered_set> #include <vector> #pragma warning(disable:4996) #pragma comment(linker, "/STACK:336777216") using namespace std; #define mp make_pair #define Fi first #define Se second #define pb(x) push_back(x) #define szz(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define ldb ldouble typedef tuple<int, int, int> t3; typedef long long ll; typedef unsigned long long ull; typedef double db; typedef long double ldb; typedef pair <int, int> pii; typedef pair <ll, ll> pll; typedef pair <ll, int> pli; typedef pair <db, db> pdd; #define rep(i, n) for(int i=0;i<n;i++) int IT_MAX = 1 << 17; const ll MOD = 1000000007; const int INF = 0x3f3f3f3f; const ll LL_INF = 0x1f3f3f3f3f3f3f3f; const db PI = acos(-1); const db ERR = 1e-12; string getstr(string sa, string sb, int A, int B) { if (A == 0 || B == 0) { string rv; for (int i = 1; i <= A; i++) rv += sa; for (int i = 1; i <= B; i++) rv += sb; return rv; } int c = B / A; string s1 = sa; string s2 = sa; for (int i = 1; i <= c; i++) s1 += sb; for (int i = 1; i <= c + 1; i++) s2 += sb; return getstr(s1, s2, A - B%A, B%A); } string getstr(string sa, string sb, string sc, int A, int B, int C) { if (A == 0) return getstr(sb, sc, B, C); if (B == 0) return getstr(sa, sc, A, C); if (C == 0) return getstr(sa, sb, A, B); string s1 = sa; string s2 = sa; string s3 = sa; int c1 = C / A, c2 = c1 + 1; if (A*c1 == C) { for (int i = 1; i <= c1; i++) { s1 += sc; s2 += sc; } int b1 = B / A, b2 = b1 + 1; for (int i = 1; i <= b1; i++) s1 += sb; for (int i = 1; i <= b2; i++) s2 += sb; return getstr(s1, s2, A - B%A, B%A); } else { for (int i = 1; i <= c1; i++) { s1 += sc; s2 += sc; } for (int i = 1; i <= c2; i++) s3 += sc; int x = A - C%A, y = C%A; int b1 = B / x, b2 = b1 + 1; for (int i = 1; i <= b1; i++) s1 += sb; for (int i = 1; i <= b2; i++) s2 += sb; return getstr(s1, s2, s3, x - B%x, B%x, y); } } int main() { int A, B, C; scanf("%d %d %d", &A, &B, &C); string ans = getstr(string("a"), string("b"), string("c"), A, B, C); return !printf("%s\n", ans.c_str()); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <string> using namespace std; string solve(string a, string b, string c, int x, int y, int z) { if (y + z == 0) { string res = ""; for (int i = 0; i < x; ++i) res += a; return res; } if (x == 0) return solve(b, c, "", y, z, 0); int p = x / (y + z); int r = x % (y + z); string A = ""; for (int i = 0; i < p; ++i) A += a; if (z >= r) return solve(A + a + c, A + b, A + c, r, y, z - r); else return solve(A + a + b, A + a + c, A + b, r - z, z, y + z - r); } int main() { int x, y, z; while (cin >> x >> y >> z) { cout << solve("a", "b", "c", x, y, z) << endl; } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <string> #include <iostream> #include <algorithm> using namespace std; string eval(string s) { int n = s.size(); s += s; string ans = "~"; for (int i = 0; i < n; ++i) { ans = min(ans, s.substr(i, n)); } return ans; } int main() { int X, Y, Z; cin >> X >> Y >> Z; int N = X + Y + Z; string ans = string(X, 'a') + string(Y, 'b') + string(Z, 'c'); string cur_ev = eval(ans); while (true) { // 2-opt bool found = false; for (int i = 0; i < N && !found; ++i) { for (int j = 1; j < N && !found; ++j) { for (int k = 0; k <= N - j; ++k) { string cyclic = ans.substr(i) + ans.substr(0, i); string nxt = cyclic.substr(j, k) + cyclic.substr(0, j) + cyclic.substr(j + k); string ev = eval(nxt); if (ev > cur_ev) { cur_ev = ev; ans = nxt; found = true; break; } } } } if (!found) break; } cout << cur_ev << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef pair<int,int> P; typedef pair<int,P> P1; typedef pair<P,P> P2; typedef pair<double,int>Q; #define pu push #define pb push_back #define mp make_pair #define eps 1e-7 #define INF 1000000000 #define mod 1000000007 #define fi first #define sc second #define rep(i,x) for(int i=0;i<x;i++) #define repn(i,x) for(int i=1;i<=x;i++) #define SORT(x) sort(x.begin(),x.end()) #define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end()) #define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin()) #define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin()) int a,b,c; string rec(int x,int y,int z,string X,string Y,string Z){ if(x==0&&y==0&&z==0) return ""; if(x==0&&y==0) return rec(z,0,0,Z,"",""); if(x==0) return rec(y,z,0,Y,Z,""); if(y==0&&z==0){ string ret=""; rep(i,x) ret += X; return ret; } if(z==0) return rec(x,z,y,X,Z,Y); if(x >= z){ return rec(x-z,z,y,X,X+Z,Y); } else{ return rec(x,y,z-x,X+Z,Y,Z); } } int main(){ cin >> a >> b >> c; cout << rec(a,b,c,"a","b","c") << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string s[55]; int n,a,b,c; int main(){ scanf("%d%d%d",&a,&b,&c); while(a--)s[++n]="a"; while(b--)s[++n]="b"; while(c--)s[++n]="c"; s[51]="cgz ak ioi"; s[52]="ABS ak ioi"; while(n>1){ int mi=51,mx=52; for(int i=1;i<=n;++i){ if(s[i]<s[mi])mi=i; if(s[i]>=s[mx])mx=i; } s[mi]+=s[mx]; swap(s[mx],s[n--]); } cout << s[1] << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <vector> #include <stack> #include <iostream> #include <string> #include <tuple> #include <random> #include <map> #include <queue> #include <set> #include <complex> #include <algorithm> #include <cassert> #include <tuple> #include <iterator> using namespace std; typedef long long ll; typedef pair<ll,ll> P; typedef tuple<ll, ll, ll> T; int main(){ ll X, Y, Z; cin >> X >> Y >> Z; vector<string> v; for(int i=0;i<X;i++) v.push_back("a"); for(int i=0;i<Y;i++) v.push_back("b"); for(int i=0;i<Z;i++) v.push_back("c"); while(v.size()>1){ v[0] = v[0] + v.back(); v.pop_back(); sort(v.begin(), v.end()); } cout << v[0] << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> inline int getint() { register char ch; while(!isdigit(ch=getchar())); register int x=ch^'0'; while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0'); return x; } int main() { std::multiset<std::string> set; for(register int i=getint();i;i--) set.insert("a"); for(register int i=getint();i;i--) set.insert("b"); for(register int i=getint();i;i--) set.insert("c"); while(set.size()>1){ std::string s=*set.begin(),t=*set.rbegin(); set.erase(set.lower_bound(s)); set.erase(set.lower_bound(t)); set.insert(s+t); } std::cout<<*set.begin(); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <cstdio> #include <cstring> #include <queue> #include <math.h> #include <algorithm> #include <map> #include <set> using namespace std; // std::ios::sync_with_stdio(false); typedef long long LL; const LL N = 107; const int M = 2000005; const int INF = 0x3f3f3f3f; const double Pi = acos(-1); int n,m; int t[5]; multiset <string> st; string ch(int x) { if (x==0) return "a"; if (x==1) return "b"; return "c"; } int main() { cin.tie(0); std::ios::sync_with_stdio(false); while (cin>>t[0]>>t[1]>>t[2]) { st.clear(); for (int i=0;i<3;i++) for (int j=0;j<t[i];j++) st.insert(ch(i)); while (st.size()>1) { multiset <string>::iterator l = st.begin(); multiset <string>::iterator r = --st.end(); st.insert(*l+*r); st.erase(l); st.erase(r); } cout<<*st.begin()<<endl; } return 0; } /* */
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; multiset<string> s; int main() { int a, b, c, all = 0; scanf("%d %d %d", &a, &b, &c); all = a + b + c; while(a--) s.insert("a"); while(b--) s.insert("b"); while(c--) s.insert("c"); while(1) { if(s.size() == 1) break; string str = (*s.begin()) + *(--s.end()); s.erase(s.begin()); s.erase(--s.end()); s.insert(str); } cout << *s.begin() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define forn(i, n) for (int i = 0; i < int(n); i++) #define re return #define fi first #define mp make_pair #define se second #define sz(a) (int)a.size() #define prev previ #define tm tmmm #define div divv typedef long long ll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; const int ma = 1024 * 1024; const ll mod = int(1e9) + 7; int x = 4, y = 5, z = 8; string s; int main() { iostream::sync_with_stdio(0), cin.tie(0); cin >> x >> y >> z; s = ""; vector<string> ss; forn (i, x) { string t = "a"; ss.push_back(t); } forn (i, y) { string t = "b"; ss.push_back(t); } forn (i, z) { string t = "c"; ss.push_back(t); } while (sz(ss) > 1) { int k = 0; forn (i, sz(ss)) if (ss[i] == ss[0]) k++; if (k == sz(ss)) break; for (int i = 0; i < k && sz(ss) > k; i++) { ss[i] += ss[sz(ss) - 1]; ss.pop_back(); } sort(ss.begin(), ss.end()); } forn (i, sz(ss)) cout << ss[i]; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<cstdio> #include<cstring> #include<set> #include<algorithm> using namespace std; char s[100][100]; struct shion { int x; shion(){} shion(int x):x(x){} bool operator < (const shion &a)const{return strcmp(s[x],s[a.x])<0;} }s1,s2; int pa; multiset<shion>se; multiset<shion>::iterator it; int xi; int main() { scanf("%d",&xi);while(xi--)s[++pa][0]='a',se.insert(shion(pa)); scanf("%d",&xi);while(xi--)s[++pa][0]='b',se.insert(shion(pa)); scanf("%d",&xi);while(xi--)s[++pa][0]='c',se.insert(shion(pa)); while(se.size()>1) { it=se.begin(),s1=*it,se.erase(it); it=se.end(),it--,s2=*it,se.erase(it); int x=s1.x,y=s2.x; strcat(s[x],s[y]); se.insert(shion(x)); } it=se.begin(); s1=*it; int x=s1.x; printf("%s\n",s[x]); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; char a[55],b[55]; int A,B,C,n,m; bool f; void dfs(int x,int y,int z){ memset(b,0,sizeof(b)); int k=0; if(!y&&!z){ k=x;for(int i=0;i<x;i++)b[i]='a'; }else if(!x){ dfs(y,z,0); k=m; for(int i=0;i<m;i++)if(a[i]=='a')b[i]='b';else if(a[i]=='b')b[i]='c'; }else if(x<=z){ dfs(x,y,z-x); for(int i=0;i<m;i++)if(a[i]=='a')b[k++]='a',b[k++]='c';else b[k++]=a[i]; }else if(x<=y+z){ dfs(x-z,z,y-x+z); for(int i=0;i<m;i++)if(a[i]=='a')b[k++]='a',b[k++]='b';else if(a[i]=='b')b[k++]='a',b[k++]='c';else b[k++]='b'; }else{ dfs(x-y-z,y,z); for(int i=0;i<m;i++)if(a[i]=='a')b[k++]='a';else if(a[i]=='b')b[k++]='a',b[k++]='b';else b[k++]='a',b[k++]='c'; } memcpy(a,b,sizeof(a));m=k; } int main(){ scanf("%d%d%d",&A,&B,&C);n=A+B+C; dfs(A,B,C); printf("%s\n",a); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define SZ(v) ((int)(v).size()) #define ALL(v) (v).begin(),(v).end() #define one first #define two second typedef long long ll; typedef unsigned long long ull; typedef pair<double, double> pd; typedef pair<int, int> pi; typedef pair<ll, int> pli; typedef pair<ll, ll> pll; typedef pair<ll, pi> plp; typedef pair<int, pi> pip; typedef tuple<int, int, int> ti; const int INF = 0x3f2f1f0f; const ll LINF = 1ll * INF * INF; int A, B, C; int main() { cin >> A >> B >> C; multiset<string> S; for(int i=0; i<A; i++) S.insert("a"); for(int i=0; i<B; i++) S.insert("b"); for(int i=0; i<C; i++) S.insert("c"); for(int k=0; k<A+B+C-1; k++) { string l = *S.begin(); auto it = S.end(); it--; string r = *it; S.erase(S.begin()); S.erase(it); S.insert(l+r); } cout << *S.begin() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
// start fold #include<iostream> #include<cstdio> #include<cstdlib> #include<algorithm> #include<vector> #include<cstring> #include<set> #include<map> #include<cmath> #include<queue> #include<bitset> using namespace std; #define ri register int #define il inline #define LL long long #define ull unsigned long long #define pb push_back #define mp make_pair #define pii pair<int,int> #define fi first #define se second #define enter putchar('\n') #define size(x) ((int)x.size()) #define mem0(x) memset(x,0,sizeof(x)) template<class T>il void in(T &x) { x=0; short f=1; char c=getchar(); while(c<'0'||c>'9') { if(c=='-') f=-1; c=getchar(); } while(c>='0'&&c<='9') x=x*10+(c^'0'),c=getchar(); x*=f; } template <typename T,typename ...Args>il void in(T &x, Args &...args) { in(x); in(args...); } template<class T>il void out(T x,const char c='\n') { static short st[30]; short m=0; if(x<0) putchar('-'),x=-x; do st[++m]=x%10,x/=10; while(x); while(m) putchar(st[m--]|'0'); putchar(c); } template <typename T,typename ...Args>il void out(const T &x,const Args &...args) { out(x,' '); out(args...); } template<class T>il void print(T a[],int n) { if(n<=0) return; for(ri i=0; i<n; ++i) out(a[i],' '); enter; } namespace i207M { // end fold int a,b,c; multiset<string>s; signed main() { #ifdef M207 freopen("in.in","r",stdin); // freopen("out.out","w",stdout); #endif in(a,b,c); for(ri i=1; i<=a; ++i) s.insert("a"); for(ri i=1; i<=b; ++i) s.insert("b"); for(ri i=1; i<=c; ++i) s.insert("c"); while(size(s)>1) { string t=*s.begin()+*s.rbegin(); s.erase(s.begin()),s.erase(--s.end()); s.insert(t); } cout<<*s.begin(); return 0; } // start fold } signed main() { i207M::main(); return 0; } // end fold
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#pragma GCC optimize(3,"Ofast","inline") #define R register #include<iostream> #include<set> #include<cstring> std::multiset <std::string> M; std::multiset <std::string> :: iterator del; int X,Y,Z; int main(void){ std::cin>>X>>Y>>Z; for(R int i=X;i>0;i--) M.insert("a"); for(R int i=Y;i>0;i--) M.insert("b"); for(R int i=Z;i>0;i--) M.insert("c"); while(M.size()>=2){ std::string start=*M.begin(),ending=*M.rbegin(); del=M.lower_bound(start); M.erase(del); del=M.lower_bound(ending); M.erase(del); M.insert(start+ending); } std::cout<<*M.begin()<<std::endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <iostream> #include <algorithm> #include <vector> #include <set> #include <map> #include <string> #include <cstring> #include <stack> #include <queue> #include <cmath> #include <ctime> #include <bitset> #include <utility> #include <assert.h> using namespace std; #define rank rankk #define mp make_pair #define pb push_back #define xo(a,b) ((b)&1?(a):0) #define tm tmp //#pragma comment(linker, "/STACK:1024000000,1024000000")  //#define LL ll typedef unsigned long long ull; typedef pair<int,int> pii; typedef long long ll; typedef pair<ll,int> pli; typedef pair<ll,ll> pll; const int INF=0x3f3f3f3f; const ll INFF=0x3f3f3f3f3f3f3f3fll; const int MAX=5e5+10; //const ll MAXN=2e8; //const int MAX_N=MAX; const ll MOD=1e9+7; //const long double pi=acos(-1.0); //const double eps=0.00000001; ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} template<typename T>inline T abs(T a) {return a>0?a:-a;} template<class T> inline void read(T& num) { bool start=false,neg=false; char c; num=0; while((c=getchar())!=EOF) { if(c=='-') start=neg=true; else if(c>='0' && c<='9') { start=true; num=num*10+c-'0'; } else if(start) break; } if(neg) num=-num; } inline ll powMM(ll a,ll b,ll M){ ll ret=1; a%=M; // b%=M; while (b){ if (b&1) ret=ret*a%M; b>>=1; a=a*a%M; } return ret; } void open() { // freopen("1009.in","r",stdin); freopen("out.txt","w",stdout); } int x,y,z; vector<string>s; int main() { scanf("%d%d%d",&x,&y,&z); for(int i=0;i<x;i++)s.pb("a"); for(int i=0;i<y;i++)s.pb("b"); for(int j=0;j<z;j++)s.pb("c"); while(s.size()>1) { sort(s.begin(),s.end()); s[0]+=s[s.size()-1]; s.pop_back(); } cout<<s[0]<<"\n"; } /* 8 11011011 */
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<iostream> #include<algorithm> #include<iomanip> #include<cstring> #include<cstdio> #include<cmath> #include<set> #include<cctype> using namespace std; const int N=1e3+50; multiset <string> v; int a,b,c; int main() { cin>>a>>b>>c; for(int i=1;i<=a;i++) v.insert("a"); for(int i=1;i<=b;i++) v.insert("b"); for(int i=1;i<=c;i++) v.insert("c"); while(v.size()>1) { string x=*v.begin(); string y=*v.rbegin(); v.erase(v.lower_bound(x)); v.erase(v.lower_bound(y)); v.insert(x+y); } cout<<*v.begin(); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<iostream> #include<cmath> #include<cstring> #include<cstdio> #include<algorithm> using namespace std; string A[3],B[10]; int x[3],y[10]; string solve(){ if (x[1]==0&&x[2]==0){ string ans=""; for (int i=1;i<=x[0];i++) ans=ans+A[0]; return ans; } memset(y,0x00,sizeof y); int num=x[2]/x[0]; for (int i=1;i<=num;i++) A[0]=A[0]+A[2]; A[2]=A[0]+A[2]; int ne=x[2]%x[0]; x[0]-=ne; x[2]=ne; num=x[1]/x[0]; for (int i=1;i<=num;i++) A[0]=A[0]+A[1]; A[1]=A[0]+A[1]; ne=x[1]%x[0]; x[0]-=ne; x[1]=ne; return solve(); } int main(){ for (int i=0;i<3;i++) scanf("%d",&x[i]); A[0]='a'; A[1]='b'; A[2]='c'; if (x[0]==0){ x[0]=x[1]; x[1]=x[2]; A[0]=A[1]; A[1]=A[2]; x[2]=0; } if (x[0]==0){ x[0]=x[1]; x[1]=x[2]; A[0]=A[1]; A[1]=A[2]; x[2]=0; } cout<<solve()<<endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#ifndef BZ #pragma GCC optimize "-O3" #endif #include <bits/stdc++.h> #define FASTIO #ifdef FASTIO #define scanf abacaba #define printf abacaba #endif typedef long long ll; typedef long long llong; typedef long double ld; typedef unsigned long long ull; using namespace std; /* ll pw(ll a, ll b) { ll ans = 1; while (b) { while (!(b & 1)) b >>= 1, a = (a * a) % MOD; ans = (ans * a) % MOD, --b; } return ans; } */ string solve(string sa, int a, string sb, int b, string sc, int c) { if (a == 0) { return solve(sb, b, sc, c, "", 0); } if (a <= b + c) { vector<string> vv(a, sa); int g = c / a; for (int i = 0; i < vv.size(); ++i) for (int j = 0; j < g; ++j) vv[i] += sc; g = a - c % a; for (int i = g; i < a; ++i) vv[i] += sc; for (int i = 0; i < b; ++i) vv[i % g] += sb; sort(vv.begin(), vv.end()); vector<pair<string, int> > go; int cur = 0; for (int i = 0; i < vv.size(); ++i) { ++cur; if (i == vv.size() - 1 || vv[i + 1] != vv[i]) { go.push_back(make_pair(vv[i], cur)); cur = 0; } } while (go.size() < 3) go.push_back(make_pair("", 0)); return solve(go[0].first, go[0].second, go[1].first, go[1].second, go[2].first, go[2].second); } else { if (b + c == 0) { string ans; for (int i = 0; i < a; ++i) ans += sa; return ans; } vector<string> vv(b + c); for (int i = 0; i < a; ++i) vv[i % (b + c)] += sa; for (int i = 0; i < c; ++i) vv[i] += sc; for (int i = 0; i < b; ++i) vv[c + i] += sb; sort(vv.begin(), vv.end()); vector<pair<string, int> > go; int cur = 0; for (int i = 0; i < vv.size(); ++i) { ++cur; if (i == vv.size() - 1 || vv[i + 1] != vv[i]) { go.push_back(make_pair(vv[i], cur)); cur = 0; } } while (go.size() < 3) go.push_back(make_pair("", 0)); return solve(go[0].first, go[0].second, go[1].first, go[1].second, go[2].first, go[2].second); } } int main() { #ifdef FASTIO ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); #endif int a, b, c; cin >> a >> b >> c; cout << solve("a", a, "b", b, "c", c) << "\n"; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <algorithm> #include <iostream> #include <string> #include <cstring> #include <vector> #include <set> #include <map> using namespace std; int a, b, c, xa, xb, xc; string AA, BB, CC, ss[110]; void iter() { for (int i = 0; i < a; i++) ss[i] = AA; // int now = 0; for (int i = 0; i < c; i++) { ss[i % a] += CC; } int ll = 0; if (c % a == 0) ll = 0; else ll = (c - 1) % a + 1; int now = ll; for (int i = 0; i < b; i++) { ss[now] += BB; now += 1; if (now >= a) now = ll; } sort(ss, ss + a); // for () int cnt = 0; xa = xb = xc = 0; for (int i = 0; i < a; i++) { if (i == 0 || ss[i] != ss[i - 1]) { cnt += 1; if (cnt == 1) AA = ss[i]; else if (cnt == 2) BB = ss[i]; else CC = ss[i]; } if (cnt == 1) xa += 1; else if (cnt == 2) xb += 1; else xc += 1; } a = xa; b = xb; c = xc; } string solve() { AA = "a"; BB = "b"; CC = "c"; if (a == 0) { a = b; b = c; c = 0; AA = BB; BB = CC; } string ans = ""; if (a == 0) { for (int i = 0; i < c; i++) ans += "c"; // printf("\n"); // return 0; return ans; } while (b + c > 0) { iter(); } while (a--) { // cout << AA; ans += AA; // return } return ans; // cout << endl; } int main() { scanf("%d%d%d", &a, &b, &c); // for (int aa = 0; aa <= 50; aa++) // for (int bb = 0; bb <= 50; bb++) // for (int cc = 0; cc <= 50; cc++) // if (aa + bb + cc > 0 && aa + bb + cc <= 50) { // // int aa = a, bb = b, cc = c; // a = aa; // b = bb; // c = cc; // cout << aa << ' ' << bb << ' ' << cc << ' '<< solve() << endl;; // } string ans = solve(); cout << ans << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <stdio.h> #include <fstream> #include <algorithm> #include <string> #include <map> #include <set> #include <queue> #include <stack> #include <vector> #include <limits.h> #include <math.h> #include <functional> #include <bitset> #include <iomanip> #define repeat(i,n) for (long long i = 0; (i) < (n); ++ (i)) #define debug(x) cerr << #x << ": " << x << '\n' #define debugArray(x,n) for(long long i = 0; (i) < (n); ++ (i)) cerr << #x << "[" << i << "]: " << x[i] << '\n' #define debugArrayP(x,n) for(long long i = 0; (i) < (n); ++ (i)) cerr << #x << "[" << i << "]: " << x[i].first<< " " << x[i].second << '\n' using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> Pii; typedef vector<int> vint; typedef vector<ll> vll; const ll INF = INT_MAX; const ll MOD = 1e9+7; int main(){ int X,Y,Z;cin>>X>>Y>>Z; vector<string> v(X+Y+Z); repeat(i,X)v[i]="a"; repeat(i,Y)v[X+i]="b"; repeat(i,Z)v[X+Y+i]="c"; while(v.size()>1){ sort(v.begin(),v.end()); v[0]+=v.back(); v.pop_back(); } cout<<v[0]<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<cstdio> #include<set> #include<string> using namespace std; multiset<string>s; int main(){ int aa,bb,cc,p=0; scanf("%d%d%d",&aa,&bb,&cc); p=aa+bb+cc; for(;aa--;)s.insert("a"); for(;bb--;)s.insert("b"); while(cc--)s.insert("c"); while(--p){ auto st=(*s.begin())+*(--s.end()); s.erase(s.begin()); s.erase(--s.end()); s.insert(st); } puts((*s.begin()).c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<deque> #include<queue> #include<vector> #include<algorithm> #include<iostream> #include<set> #include<cmath> #include<tuple> #include<string> #include<chrono> #include<functional> #include<iterator> #include<random> #include<unordered_set> #include<array> #include<map> #include<iomanip> #include<assert.h> #include<bitset> #include<stack> #include<memory> using namespace std; typedef long long int llint; typedef long double lldo; #define mp make_pair #define mt make_tuple #define pub push_back #define puf push_front #define pob pop_back #define pof pop_front #define fir first #define sec second #define res resize #define ins insert #define era erase /* cout<<setprecision(20); cin.tie(0); ios::sync_with_stdio(false); */ const llint mod=1000000007; const llint big=2.19e15+1; const long double pai=3.141592653589793238462643383279502884197; const long double eps=1e-15; template <class T,class U>bool mineq(T& a,U b){if(a>b){a=b;return true;}return false;} template <class T,class U>bool maxeq(T& a,U b){if(a<b){a=b;return true;}return false;} llint gcd(llint a,llint b){if(a%b==0){return b;}else return gcd(b,a%b);} llint lcm(llint a,llint b){if(a==0){return b;}return a/gcd(a,b)*b;} template<class T> void SO(T& ve){sort(ve.begin(),ve.end());} template<class T> void REV(T& ve){reverse(ve.begin(),ve.end());} template<class T>llint LBI(vector<T>&ar,T in){return lower_bound(ar.begin(),ar.end(),in)-ar.begin();} template<class T>llint UBI(vector<T>&ar,T in){return upper_bound(ar.begin(),ar.end(),in)-ar.begin();} int main(void){ //最小に最大をつなげる vector<string>sts; int a,b,c,i;cin>>a>>b>>c; while(a--){sts.pub("a");} while(b--){sts.pub("b");} while(c--){sts.pub("c");} while(sts.size()>1){ int syox=0; int daix=0; for(i=1;i<sts.size();i++){ if(sts[syox]>sts[i]){syox=i;} else if(sts[daix]<sts[i]){daix=i;} else if(syox==daix&&sts[daix]==sts[i]){daix=i;} } sts[syox]+=sts[daix]; sts[daix]=sts.back(); sts.pob(); //for(auto it:sts){cout<<it<<" ";}cout<<endl; } cout<<sts[0]<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a,b,c; multiset<string> S; string s1,s2,t; int main() { scanf("%d%d%d",&a,&b,&c); for (int i=1;i<=a;i++) S.insert("a"); for (int i=1;i<=b;i++) S.insert("b"); for (int i=1;i<=c;i++) S.insert("c"); for (int i=1;i<a+b+c;i++) { t=*S.begin()+*(--S.end()); S.erase(S.begin()); S.erase(--S.end()); S.insert(t); } cout << *S.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a,b,c; multiset<string> s; int main() { scanf("%d%d%d",&a,&b,&c); for (int i=1;i<=a;++i) s.insert("a"); for (int i=1;i<=b;++i) s.insert("b"); for (int i=1;i<=c;++i) s.insert("c"); for (int i=1;i<a+b+c;++i) { auto l=s.begin(),r=s.end();r--; s.insert(*l+*r); s.erase(l);s.erase(r); } printf("%s\n",s.begin()->c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#define _USE_MATH_DEFINES #include <cassert> #include <cstdio> #include <cstring> #include <iostream> #include <string> #include <sstream> #include <vector> #include <queue> #include <stack> #include <list> #include <set> #include <map> #include <unordered_set> #include <unordered_map> #include <algorithm> #include <complex> #include <cmath> #include <numeric> #include <bitset> using namespace std; #define trace(...) __f(#__VA_ARGS__, __VA_ARGS__) template <typename Arg1> void __f(const char* name, Arg1&& arg1){ cerr << name << ": " << arg1 << endl; } template <typename Arg1, typename... Args> void __f(const char* names, Arg1&& arg1, Args&&... args){ const char* comma = strchr(names + 1, ','); cerr.write(names, comma - names) << ": " << arg1 << " |"; __f(comma + 1, args...); } typedef long long int64; typedef pair<int, int> ii; const int INF = 1 << 30; const int MOD = 1e9 + 7; int main() { int x, y, z; cin >> x >> y >> z; multiset<string> A; for (int i = 0; i < x; ++i) A.insert("a"); for (int i = 0; i < y; ++i) A.insert("b"); for (int i = 0; i < z; ++i) A.insert("c"); for (int k = 1; k < x + y + z; ++k) { auto it1 = A.begin(); auto it2 = prev(A.end()); auto s = *it1 + *it2; A.erase(it1); A.erase(it2); A.insert(s); } cout << *A.begin() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <set> using namespace std; #define rint register int #define gc() getchar() inline int read(rint ans = 0, rint sgn = ' ', rint ch = gc()) { for(; ch < '0' || ch > '9'; sgn = ch, ch = gc()); for(; ch >='0' && ch <='9';(ans*=10)+=ch-'0', ch = gc()); return sgn-'-'?ans:-ans; } multiset<string> s; int X, Y, Z; string L, T = "\0"; int main() { X = read(), Y = read(), Z = read(); for(rint i = 1; i <= X; s.insert("a"), i++); for(rint i = 1; i <= Y; s.insert("b"), i++); for(rint i = 1; i <= Z; s.insert("c"), i++); for(; s.size() >= 2; L = *s.begin()+*--s.end(), s.erase(s.begin()), s.erase(--s.end()), s.insert(L)); if(s.size()) T = *s.begin(); cout << T << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<set> #include<map> #include<list> #include<queue> #include<stack> #include<string> #include<math.h> #include<time.h> #include<vector> #include<bitset> #include<memory> #include<utility> #include<fstream> #include<stdio.h> #include<sstream> #include<iostream> #include<stdlib.h> #include<string.h> #include<algorithm> using namespace std; string ans; void dfs(int a,int b,int c,string aa,string bb,string cc) { string nowa,nowb,nowc; if (a==0) { dfs(b,c,0,bb,cc,""); return; } if ((b==0)&&(c==0)) { int i; for (i=0;i<a;i++) { ans+=aa; } return; } nowa=aa; int j; for (j=0;j<c/a;j++) { nowa+=cc; } int newc=c%a; nowc=nowa+cc; a-=newc; for (j=0;j<b/a;j++) { nowa+=bb; } int newb=b%a; nowb=nowa+bb; a-=newb; dfs(a,newb,newc,nowa,nowb,nowc); } int main() { #ifdef absi2011 freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); #endif int a,b,c; scanf("%d%d%d",&a,&b,&c); dfs(a,b,c,"a","b","c"); cout<<ans<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<cmath> #include<math.h> #include<ctype.h> #include<algorithm> #include<bitset> #include<cassert> #include<cctype> #include<cerrno> #include<cfloat> #include<ciso646> #include<climits> #include<clocale> #include<complex> #include<csetjmp> #include<csignal> #include<cstdarg> #include<cstddef> #include<cstdio> #include<cstdlib> #include<cstring> #include<ctime> #include<cwchar> #include<cwctype> #include<deque> #include<exception> #include<fstream> #include<functional> #include<iomanip> #include<ios> #include<iosfwd> #include<iostream> #include<istream> #include<iterator> #include<limits> #include<list> #include<locale> #include<map> #include<memory> #include<new> #include<numeric> #include<ostream> #include<queue> #include<set> #include<sstream> #include<stack> #include<stdexcept> #include<streambuf> #include<string> #include<typeinfo> #include<utility> #include<valarray> #include<vector> #include<string.h> #include<stdlib.h> #include<stdio.h> using namespace std; int a,b,c; multiset<string> s; int main() { scanf("%d%d%d",&a,&b,&c); for (int i=0;i<a;i++) { s.insert("a"); } for (int i=0;i<b;i++) { s.insert("b"); } for (int i=0;i<c;i++) { s.insert("c"); } multiset<string>::iterator it; while (s.size()!=1) { string x=*s.begin(); string y=*s.rbegin(); it=s.find(x); s.erase(it); it=s.find(y); s.erase(it); s.insert(x+y); } cout<<*s.begin()<<endl; return 0; } //直道相思了无益,未妨惆怅是清狂。 //——李商隐《无题》
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll=long long; #define int ll #define rng(i,a,b) for(int i=int(a);i<int(b);i++) #define rep(i,b) rng(i,0,b) #define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--) #define per(i,b) gnr(i,0,b) #define pb push_back #define eb emplace_back #define a first #define b second #define bg begin() #define ed end() #define all(x) x.bg,x.ed #ifdef LOCAL #define dmp(x) cerr<<__LINE__<<" "<<#x<<" "<<x<<endl #else #define dmp(x) void(0) #endif template<class t,class u> void chmax(t&a,u b){if(a<b)a=b;} template<class t,class u> void chmin(t&a,u b){if(b<a)a=b;} template<class t> using vc=vector<t>; template<class t> using vvc=vc<vc<t>>; using pi=pair<int,int>; using vi=vc<int>; template<class t,class u> ostream& operator<<(ostream& os,const pair<t,u>& p){ return os<<"{"<<p.a<<","<<p.b<<"}"; } template<class t> ostream& operator<<(ostream& os,const vc<t>& v){ os<<"{"; for(auto e:v)os<<e<<","; return os<<"}"; } #define mp make_pair #define mt make_tuple #define one(x) memset(x,-1,sizeof(x)) #define zero(x) memset(x,0,sizeof(x)) #ifdef LOCAL void dmpr(ostream&os){os<<endl;} template<class T,class... Args> void dmpr(ostream&os,const T&t,const Args&... args){ os<<t<<" "; dmpr(os,args...); } #define dmp2(...) dmpr(cerr,"Line:",__LINE__,##__VA_ARGS__) #else #define dmp2(...) void(0) #endif using uint=unsigned; using ull=unsigned long long; template<int i,class T> void print_tuple(ostream&,const T&){ } template<int i,class T,class H,class ...Args> void print_tuple(ostream&os,const T&t){ if(i)os<<","; os<<get<i>(t); print_tuple<i+1,T,Args...>(os,t); } template<class ...Args> ostream& operator<<(ostream&os,const tuple<Args...>&t){ os<<"{"; print_tuple<0,tuple<Args...>,Args...>(os,t); return os<<"}"; } void print(ll x,int suc=1){ cout<<x; if(suc==1) cout<<"\n"; if(suc==2) cout<<" "; } ll read(){ ll i; cin>>i; return i; } vi readvi(int n,int off=0){ vi v(n); rep(i,n)v[i]=read()+off; return v; } template<class T> void print(const vector<T>&v,int suc=1){ rep(i,v.size()) print(v[i],i==int(v.size())-1?suc:2); } string readString(){ string s; cin>>s; return s; } template<class T> T sq(const T& t){ return t*t; } //#define CAPITAL void yes(bool ex=true){ #ifdef CAPITAL cout<<"YES"<<endl; #else cout<<"Yes"<<endl; #endif if(ex)exit(0); } void no(bool ex=true){ #ifdef CAPITAL cout<<"NO"<<endl; #else cout<<"No"<<endl; #endif if(ex)exit(0); } constexpr ll ten(int n){ return n==0?1:ten(n-1)*10; } const ll infLL=LLONG_MAX/3; #ifdef int const int inf=infLL; #else const int inf=INT_MAX/2-100; #endif int topbit(signed t){ return t==0?-1:31-__builtin_clz(t); } int topbit(ll t){ return t==0?-1:63-__builtin_clzll(t); } int botbit(signed a){ return a==0?32:__builtin_ctz(a); } int botbit(ll a){ return a==0?64:__builtin_ctzll(a); } int popcount(signed t){ return __builtin_popcount(t); } int popcount(ll t){ return __builtin_popcountll(t); } bool ispow2(int i){ return i&&(i&-i)==i; } int mask(int i){ return (int(1)<<i)-1; } bool inc(int a,int b,int c){ return a<=b&&b<=c; } template<class t> void mkuni(vc<t>&v){ sort(all(v)); v.erase(unique(all(v)),v.ed); } ll rand_int(ll l, ll r) { //[l, r] #ifdef LOCAL static mt19937_64 gen; #else static random_device rd; static mt19937_64 gen(rd()); #endif return uniform_int_distribution<ll>(l, r)(gen); } template<class t> int lwb(const vc<t>&v,const t&a){ return lower_bound(all(v),a)-v.bg; } signed main(){ cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(20); int x,y,z;cin>>x>>y>>z; multiset<string> s; rep(i,x)s.insert("a"); rep(i,y)s.insert("b"); rep(i,z)s.insert("c"); while(s.size()>1){ auto itr=s.bg; string a=*itr; s.erase(itr); itr=prev(s.ed); a+=*itr; s.erase(itr); s.insert(a); } cout<<*s.bg<<endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
// This amazing code is by Eric Sunli Chen. #include <algorithm> #include <bitset> #include <cmath> #include <cstring> #include <cstdio> #include <cstdlib> #include <ctime> #include <iomanip> #include <iostream> #include <map> #include <queue> #include <set> #include <string> #include <utility> #include <vector> using namespace std; template<typename T> void get_int(T &x) { char t=getchar(); bool neg=false; x=0; for(; (t>'9'||t<'0')&&t!='-'; t=getchar()); if(t=='-')neg=true,t=getchar(); for(; t<='9'&&t>='0'; t=getchar())x=x*10+t-'0'; if(neg)x=-x; } template<typename T> void print_int(T x) { if(x<0)putchar('-'),x=-x; short a[20]= {},sz=0; while(x>0)a[sz++]=x%10,x/=10; if(sz==0)putchar('0'); for(int i=sz-1; i>=0; i--)putchar('0'+a[i]); } #define ff first #define ss second #define pb push_back #define mp make_pair #define get1(a) get_int(a) #define get2(a,b) get1(a),get1(b) #define get3(a,b,c) get1(a),get2(b,c) #define printendl(a) print_int(a),puts("") typedef long long LL; typedef unsigned long long uLL; typedef pair<int,int> pii; const int inf=0x3f3f3f3f; const LL Linf=1ll<<61; const double pi=acos(-1.0); int a,b,c; string now,dp[55][55][55]; bool ok[55][55][55]; void update(int i,int j,int k,const string&s) { if(s+now>=now+now.substr(0,s.size())) { if(!ok[i][j][k]) { ok[i][j][k]=1; dp[i][j][k]=s; } else if(dp[i][j][k]<s)dp[i][j][k]=s; } } bool check() { memset(ok,0,sizeof(ok)); ok[0][0][0]=1;dp[0][0][0]=""; for(int i=0;i<=a;i++)for(int j=0;j<=b;j++)for(int k=0;k<=c;k++) { if(!ok[i][j][k])continue; if(i<a)update(i+1,j,k,'a'+dp[i][j][k]); if(j<b)update(i,j+1,k,'b'+dp[i][j][k]); if(k<c)update(i,j,k+1,'c'+dp[i][j][k]); } return ok[a][b][c]; } int main() { cin>>a>>b>>c; for(int i=0;i<a+b+c;i++)now+='a'; for(int i=0,j;i<a+b+c;i++) { for(j='b';j<='c';j++) { now[i]=j; if(!check())break; } now[i]=j-1; } cout<<now<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> inline int getint() { register char ch; while(!isdigit(ch=getchar())); register int x=ch^'0'; while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0'); return x; } int main() { std::multiset<std::string> set; for(register int i=getint();i;i--) set.insert("a"); for(register int i=getint();i;i--) set.insert("b"); for(register int i=getint();i;i--) set.insert("c"); while(set.size()>1) { std::string s=*set.begin(),t=*set.rbegin(); set.erase(set.lower_bound(s)); set.erase(set.lower_bound(t)); set.insert(s+t); } printf("%s\n",(*set.begin()).c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include "bits/stdc++.h" using namespace std; multiset < string > s; int a , b , c; int main(){ cin >> a >> b >> c; for(int i = 0 ; i < a ; ++i){ s.insert("a"); } for(int i = 0 ; i < b ; ++i){ s.insert("b"); } for(int i = 0 ; i < c ; ++i){ s.insert("c"); } while(s.size() > 1){ string str = (*s.begin()) + (*prev(s.end())); s.erase(s.begin()); s.erase(prev(s.end())); s.insert(str); } cout << *(s.begin()) << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include "bits/stdc++.h" using namespace std; const int maxn = 55; string res; int M(){ int x, y, z; if(!(cin >> x >> y >> z)) return 0; multiset<string> v; for(int e = 0; e < x; e++) v.insert("a"); for(int e = 0; e < y; e++) v.insert("b"); for(int e = 0; e < z; e++) v.insert("c"); while(v.size() > 1){ string fi = *(v.begin()); string se = *(--v.end()); v.erase(v.begin()); v.erase(--v.end()); v.insert(fi + se); } cout << *(v.begin()) << endl; return 1; } int main(){ while(M()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
python3
import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools sys.setrecursionlimit(10**7) inf = 10**20 eps = 1.0 / 10**15 mod = 10**9+7 def LI(): return [int(x) for x in sys.stdin.readline().split()] def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()] def LF(): return [float(x) for x in sys.stdin.readline().split()] def LS(): return sys.stdin.readline().split() def I(): return int(sys.stdin.readline()) def F(): return float(sys.stdin.readline()) def S(): return input() def main(): x,y,z = LI() a = ['a' for _ in range(x)] + ['b' for _ in range(y)] + ['c' for _ in range(z)] while len(a) > 1: a.sort() a[0] += a[-1] a = a[:-1] return a[0] print(main())
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 101; multiset<string> sp; int main() { int x, y, z; scanf("%d%d%d", &x, &y, &z); while(x--) sp.insert("a"); while(y--) sp.insert("b"); while(z--) sp.insert("c"); while(sp.size() > 1) { string fir = *sp.begin(); sp.erase(sp.begin()); string las = *sp.rbegin(); sp.erase(sp.find(las)); sp.insert(fir + las); } puts(sp.begin() -> c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; #define int long long #define rep(i,n) for(int i=0;i<(n);i++) #define pb push_back #define all(v) (v).begin(),(v).end() #define fi first #define se second typedef vector<int>vint; typedef pair<int,int>pint; typedef vector<pint>vpint; template<typename A,typename B>inline void chmin(A &a,B b){if(a>b)a=b;} template<typename A,typename B>inline void chmax(A &a,B b){if(a<b)a=b;} string solve(int x,int y,int z){ if(x==0){ string s=solve(y,z,0); rep(i,s.size()){ if(s[i]=='a')s[i]='b'; else if(s[i]=='b')s[i]='c'; } return s; } if(y==0&&z){ string s=solve(x,z,0); rep(i,s.size()){ if(s[i]=='b')s[i]='c'; } return s; } if(y==0)return string(x,'a'); if(z==0){ if(x<=y){ string s=solve(x,y%x,0); string t; rep(i,s.size()){ if(s[i]=='a'){ t+="a"; t+=string(y/x,'b'); } else{ t+="b"; } } return t; } string s=solve(x-y,y,0); string t; rep(i,s.size()){ if(s[i]=='a'){ t+="a"; } else{ t+="ab"; } } return t; } if(x<=z){ string s=solve(x,y,z%x); string t; rep(i,s.size()){ if(s[i]=='a'){ t+="a"; t+=string(z/x,'c'); } else if(s[i]=='b'){ t+="b"; } else{ t+="c"; } } return t; } int q=y%(x-z); int p=x-z-q; int r=z; string s=solve(p,q,r); string t; rep(i,s.size()){ if(s[i]=='a'){ t+="a"; t+=string(y/(x-z),'b'); } else if(s[i]=='b'){ t+="a"; t+=string(y/(x-z)+1,'b'); } else{ t+="ac"; } } return t; } signed main(){ int X,Y,Z; cin>>X>>Y>>Z; cout<<solve(X,Y,Z)<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string a; multiset <string> se; int main() { // cin >> a; // for(int i=0;i<a.length();i++) // se.insert(a.substr(i,1)); int x,y,z; cin >> x >> y >> z; for(int i=1;i<=x;i++) se.insert("a"); for(int i=1;i<=y;i++) se.insert("b"); for(int i=1;i<=z;i++) se.insert("c"); while(se.size()>1) { string tem=*se.begin()+*--se.end(); se.erase(se.begin()); se.erase(--se.end()); se.insert(tem); } cout << *se.begin() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int main() { multiset<std::string> set; int i; for(cin>>i; i; i--) set.insert("a"); for(cin>>i; i; i--) set.insert("b"); for(cin>>i; i; i--) set.insert("c"); while(set.size()>1) { std::string s=*set.begin(),t=*set.rbegin(); set.erase(set.lower_bound(s)); set.erase(set.lower_bound(t)); set.insert(s+t); } printf("%s\n",(*set.begin()).c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<(int)(n);i++) #define rep1(i,n) for(int i=1;i<=(int)(n);i++) #define all(c) c.begin(),c.end() #define pb push_back #define fs first #define sc second #define show(x) cout << #x << " = " << x << endl #define chmin(x,y) x=min(x,y) #define chmax(x,y) x=max(x,y) using namespace std; template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){return o<<"("<<p.fs<<","<<p.sc<<")";} template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){o<<"sz = "<<vc.size()<<endl<<"[";for(const T& v:vc) o<<v<<",";o<<"]";return o;} string operator*(string a,int k){ string s; rep(i,k) s += a; return s; } string solve(int A,int B,int C,string a,string b,string c){ // puts("-------------"); // printf("A,B,C = %d,%d,%d\n",A,B,C); // show(a); // show(b); // show(c); // puts("-------------"); if(B+C==0){ return a*A; } if(A+C==0){ return b*B; } if(B+A==0){ return c*C; } if(A==0){ return solve(B,C,0,b,c,""); } //aaa.aaa.aaa.aa.aa. int q = A/(B+C); int r = A%(B+C); string o = a*q; if(r<=C){ return solve(r,B,C-r,o+a+c,o+b,o+c); }else{ return solve(r-C,C,B-(r-C),o+a+b,o+a+c,o+b); } } int main(){ int A,B,C; cin>>A>>B>>C; cout<<solve(A,B,C,"a","b","c")<<endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
// ※※※ 解答不能 ※※※ // snuke氏. // https://atcoder.jp/contests/code-festival-2017-qualb/submissions/1636517 #include <bits/stdc++.h> using namespace std; #define repex(i, a, b, c) for(int i = a; i < b; i += c) #define repx(i, a, b) repex(i, a, b, 1) #define rep(i, n) repx(i, 0, n) #define repr(i, a, b) for(int i = a; i >= b; i--) int main(){ multiset<string> s; rep(i, 3){ int n; scanf("%d", &n); rep(j, n) s.insert(string(1, 'a' + i)); } while(s.size() > 1){ auto it = s.end(); --it; string x = *(s.begin()) + *it; s.erase(it); s.erase(s.begin()); s.insert(x); } string ans = *(s.begin()); printf("%s\n", ans.c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <iostream> #include <set> using namespace std; inline char nc() { static char buf[100000], *l = buf, *r = buf; return l==r&&(r=(l=buf)+fread(buf,1,100000,stdin),l==r)?EOF:*l++; } template<class T> void read(T &x) { x = 0; int f = 1, ch = nc(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=nc();} while(ch>='0'&&ch<='9'){x=x*10-'0'+ch;ch=nc();} x *= f; } int X, Y, Z; multiset<string> s; int main() { // freopen("testdata.in", "r", stdin); read(X), read(Y), read(Z); for(int i = 1; i <= X; ++i) { s.insert("a"); } for(int i = 1; i <= Y; ++i) { s.insert("b"); } for(int i = 1; i <= Z; ++i) { s.insert("c"); } set<string> :: iterator it; while(s.size() > 1) { string a, b; it = s.begin(); a = *it; s.erase(it); it = s.end(); b = *(--it); s.erase(it); s.insert(a + b); } cout << *s.begin() << endl; return 0; }