Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
struct dice {
mt19937 mt;
dice() {
random_device rd;
mt = mt19937(rd());
}
int operator()(int x) { return this->operator()(0, x - 1); }
int operator()(int x, int y) {
uniform_int_distribution<int> dist(x, y);
return dist(mt);
}
} dc;
string f(string s) {
int N = s.length();
string mi = "z";
for (int t = 0; t < N; t++) {
mi = min(mi, s);
rotate(s.begin(), s.begin() + 1, s.end());
}
return mi;
}
string solve(int A, int B, int C) {
string s;
for (int t = 0; t < A; t++) s.push_back('a');
for (int t = 0; t < B; t++) s.push_back('b');
for (int t = 0; t < C; t++) s.push_back('c');
shuffle(s.begin(), s.end(), dc.mt);
int N = s.length();
string ma = f(s);
for (int t = 0; t < 50000; t++) {
int i = dc(N), j = dc(N);
swap(s[i], s[j]);
string mi = f(s);
if (mi < ma)
swap(s[i], s[j]);
else
ma = mi;
}
return ma;
}
int main() {
int A, B, C;
cin >> A >> B >> C;
string ma = "";
for (int t = 0; t < 10; t++) ma = max(ma, solve(A, B, C));
cout << ma << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string eval(string s) {
int n = s.size();
s += s;
string ans = "~";
for (int i = 0; i < n; ++i) {
ans = min(ans, s.substr(i, n));
}
return ans;
}
int main() {
int X, Y, Z;
cin >> X >> Y >> Z;
int N = X + Y + Z;
string ans = string(X, 'a') + string(Y, 'b') + string(Z, 'c');
string cur_ev = eval(ans);
while (true) {
bool found = false;
for (int i = 0; i < N; ++i) {
string nxt = ans;
swap(nxt[i], nxt[(i + 1) % N]);
string ev = eval(nxt);
if (ev > cur_ev) {
cur_ev = ev;
ans = nxt;
found = true;
break;
}
}
if (!found) break;
}
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long inf = mod * mod;
const long long d2 = 500000004;
const double EPS = 1e-6;
const double PI = acos(-1.0);
int ABS(int a) { return max(a, -a); }
long long ABS(long long a) { return max(a, -a); }
int C[1100];
int B[1100];
int ad = 0;
vector<string> str;
void f(string aa, string bb, string cc, int a, int b, int c) {
if (a == 0) {
f(bb, cc, "", b, c, 0);
return;
}
if (b + c == 0) {
for (int i = 0; i < a; i++) printf("%s", aa.c_str());
printf("\n");
return;
}
ad = 0;
for (int i = 0; i < 1100; i++) B[i] = C[i] = 0;
while (a == 0) {
a = b;
b = c;
c = 0;
ad++;
}
for (int i = 0; i < c; i++) {
C[i % a]++;
}
if (C[0] != C[a - 1]) {
int f = 0;
for (int i = 0; i < a; i++)
if (C[a - 1] == C[i]) f++;
for (int i = 0; i < b; i++) {
B[a - f + i % f]++;
}
} else {
for (int i = 0; i < b; i++) {
B[i % a]++;
}
}
str.clear();
for (int i = a - 1; i >= 0; i--) {
string tmp = "";
tmp += aa;
for (int j = 0; j < C[i]; j++) tmp += cc;
for (int j = 0; j < B[i]; j++) tmp += bb;
str.push_back(tmp);
}
string ta = "", tb = "", tc = "";
int va = 0;
int vb = 0;
int vc = 0;
int fi = 0;
int ph = 0;
for (int i = 0; i < a; i++) {
if (str[i] == str[fi]) {
if (ph == 0) {
va++;
ta = str[i];
}
if (ph == 1) {
vb++;
tb = str[i];
}
if (ph == 2) {
vc++;
tc = str[i];
}
} else {
if (ph == 0) {
ph++;
vb++;
tb = str[i];
fi = i;
}
if (ph == 1) {
ph++;
vc++;
tc = str[i];
fi = i;
}
}
}
f(ta, tb, tc, va, vb, vc);
}
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
f("a", "b", "c", a, b, c);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
os << "sz:" << v.size() << "\n[";
for (const auto& p : v) {
os << p << ",";
}
os << "]\n";
return os;
}
template <typename S, typename T>
ostream& operator<<(ostream& os, const pair<S, T>& p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
constexpr ll MOD = (ll)1e9 + 7LL;
template <typename T>
constexpr T INF = numeric_limits<T>::max() / 100;
void place(const int small, const int large, vector<int>& result) {
assert(result.size() == small + large);
if (large == 0) {
for (int i = 0; i < result.size(); i++) {
result[i] = -1;
}
} else if (large == 1) {
for (int i = 0; i < result.size() - 1; i++) {
result[i] = -1;
}
result[result.size() - 1] = 1;
} else if (small >= large) {
const int ssize = (small + large - 1) / large;
const int lsize = ssize - 1;
const int snum = small - (lsize * large);
const int lnum = large - snum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = -2;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = -1;
pos++;
}
}
result[pos] = 1;
pos++;
}
} else {
const int ssize = large / small;
const int lsize = ssize + 1;
const int lnum = large - ssize * small;
const int snum = small - lnum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
result[pos] = -1;
pos++;
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = 1;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = 2;
pos++;
}
}
}
}
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int X, Y, Z;
cin >> X >> Y >> Z;
string s;
s.resize(X + Y + Z, 'd');
if (X > 0) {
assert(false);
if (Y + Z > 0) {
if (X >= Y + Z) {
assert(false);
vector<int> tmp(X + Y + Z);
place(X, Y + Z, tmp);
for (int i = 0; i < X + Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'a';
}
vector<int> smalls;
vector<int> larges;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] > 0 and tmp[i - 1] == -1) {
larges.push_back(i);
} else if (tmp[i] > 0 and tmp[i - 1] == -2) {
smalls.push_back(i);
}
}
reverse(smalls.begin(), smalls.end());
for (const int li : larges) {
if (Y > 0) {
s[li] = 'b';
Y--;
} else {
s[li] = 'c';
Z--;
}
}
for (const int si : smalls) {
if (Z > 0) {
s[si] = 'c';
Z--;
} else {
s[si] = 'b';
Y--;
}
}
}
cout << s << endl;
} else {
vector<string> sv(X, "a");
const int slen = Z / X;
const int llen = slen + 1;
const int snum = llen * X - Z;
for (int i = 0; i < snum; i++) {
for (int j = 0; j < slen; j++) {
sv[i].push_back('c');
}
}
for (int i = snum; i < X; i++) {
for (int j = 0; j < llen; j++) {
sv[i].push_back('c');
}
}
const int sslen = Y / snum;
const int lllen = sslen + 1;
const int ssnum = lllen * snum - Y;
for (int i = 0; i < ssnum; i++) {
for (int j = 0; j < sslen; j++) {
sv[i].push_back('b');
}
}
for (int i = ssnum; i < snum; i++) {
for (int j = 0; j < lllen; j++) {
sv[i].push_back('b');
}
}
for (int i = 0; i < X; i++) {
cout << sv[i];
}
cout << endl;
}
} else {
for (int i = 0; i < Y + Z; i++) {
cout << 'a';
}
cout << endl;
return 0;
}
} else {
if (Y > 0) {
if (Z > 0) {
vector<int> tmp(Y + Z);
place(Y, Z, tmp);
for (int i = 0; i < Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'b';
} else {
s[i] = 'c';
}
}
cout << s << endl;
return 0;
} else {
for (int i = 0; i < Y; i++) {
cout << 'b';
}
cout << endl;
return 0;
}
} else {
for (int i = 0; i < Z; i++) {
cout << 'c';
}
cout << endl;
return 0;
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline long long read() {
long long x;
char c;
while ((c = getchar()) < '0' || c > '9')
;
x = c - 48;
while ((c = getchar()) >= '0' && c <= '9') x = x * 10 + c - 48;
return x;
}
const int maxn = 60;
char s[maxn], ans[maxn], tmp[maxn * 2], res[maxn];
int main() {
int a = read(), b = read(), c = read();
for (int i = 0; i < a; ++i) s[i] = 'a';
for (int i = 0; i < b; ++i) s[a + i] = 'b';
for (int i = 0; i < c; ++i) s[a + b + i] = 'c';
strcpy(ans, s);
do {
strcpy(res, s);
memset(tmp, 0, sizeof(tmp));
strcpy(tmp, s);
for (int i = 0; i < a + b + c; ++i) {
tmp[i + a + b + c] = tmp[i];
if (strcmp(res, tmp + i + 1) > 0) strcpy(res, tmp + i + 1);
}
if (strcmp(ans, res) < 0) strcpy(ans, res);
} while (next_permutation(s, s + a + b + c));
puts(ans);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string slow(int ca, int cb, int cc) {
int n = ca + cb + cc;
string s = "";
for (int i = 0; i < ca; i++) s += 'a';
for (int i = 0; i < cb; i++) s += 'b';
for (int i = 0; i < cc; i++) s += 'c';
string ans = s;
do {
string mn = s;
for (int i = 0; i < n; i++) {
string t = s;
rotate(t.begin(), t.begin() + i, t.end());
mn = min(mn, t);
}
ans = max(ans, mn);
} while (next_permutation(s.begin(), s.end()));
return ans;
}
string fast(int ca, int cb, int cc) {
bool f = 0;
if (ca == 0) {
f = 1;
ca = cb;
cb = cc;
cc = 0;
}
if (ca == 0) {
return string(cb, 'a');
}
int n = ca + cb + cc;
vector<string> a(ca, "a");
for (int i = 0; i < cc; i++) {
a[i % ca] += "c";
}
for (int i = 0; i < cb; i++) {
a[(i + cc) % (ca - cc % ca) + cc % ca] += "b";
}
sort(a.begin(), a.end());
string ans = "a";
do {
string s = "";
for (string ss : a) s += ss;
string mn = s;
for (int i = 0; i < n; i++) {
string t = s;
rotate(t.begin(), t.begin() + i, t.end());
mn = min(mn, t);
}
ans = max(ans, mn);
} while (next_permutation(a.begin(), a.end()));
if (f) {
for (char &c : ans) {
if (c == 'a')
c = 'b';
else
c = 'c';
}
}
return ans;
}
int main() {
int ca, cb, cc;
while (cin >> ca >> cb >> cc) {
cout << fast(ca, cb, cc) << endl;
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string solve(int X, int Y, int Z) {
if (Y == 0 && Z == 0) {
string ret = "";
for (int i = 0; i < X; i++) ret += "A";
return ret;
}
if (X == 0) {
string ret = solve(Y, Z, 0);
for (int i = 0; i < ret.size(); i++) {
if (ret[i] == 'A')
ret[i] = 'B';
else
ret[i] = 'C';
}
return ret;
} else if (Y == 0) {
string ret = solve(X, Z, 0);
for (int i = 0; i < ret.size(); i++)
if (ret[i] == 'B') ret[i] = 'C';
return ret;
}
if (Z == 0) {
if (X % Y == 0) {
string ret = "";
for (int i = 0; i < Y; i++) {
for (int j = 0; j < X / Y; j++) ret += "A";
ret += "B";
}
return ret;
}
string ret = solve(X % Y, X - (X % Y), 0);
string ans = "";
for (int i = 0; i < ret.size(); i++) {
if (ret[i] == 'A') {
for (int j = 0; j <= X / Y; j++) ans += "A";
ans += "B";
} else {
for (int j = 0; j < X / Y; j++) ans += "A";
ans += "B";
}
}
return ans;
}
int z = X % (Y + Z), k = (X + Y + Z - 1) / (Y + Z);
if (z == 0) z = Y + Z;
if (z <= Z) {
string ret = solve(z, Y, Z - z);
string ans = "";
for (int i = 0; i < ret.size(); i++) {
if (ret[i] == 'A') {
for (int j = 0; j < k; j++) ans += "A";
ans += "C";
} else {
for (int j = 0; j < k - 1; j++) ans += "A";
ans += ret[i];
}
}
return ans;
} else {
string ret = solve(z - Z, Z, Y - (z - Z));
string ans = "";
for (int i = 0; i < ret.size(); i++) {
if (ret[i] == 'C') {
for (int j = 0; j < k - 1; j++) ans += "A";
ans += "B";
} else {
for (int j = 0; j < k; j++) ans += "A";
if (ret[i] == 'A')
ans += "B";
else
ans += "C";
}
}
return ans;
}
return "";
}
int main() {
int X, Y, Z;
scanf("%d %d %d", &X, &Y, &Z);
string ret = solve(X, Y, Z);
for (int i = 0; i < ret.size(); i++) {
if (ret[i] == 'A') ret[i] = 'a';
if (ret[i] == 'B') ret[i] = 'b';
if (ret[i] == 'C') ret[i] = 'c';
}
printf("%s\n", ret.c_str());
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
unsigned long long over = 1000000007;
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed;
int a, b, c;
cin >> a >> b >> c;
if (a == 0 && b == 0) {
for (int i = 0; i < c; ++i) cout << "c";
cout << endl;
return 0;
}
if (b == 0 && c == 0) {
for (int i = 0; i < a; ++i) cout << "a";
cout << endl;
return 0;
}
if (c == 0 && a == 0) {
for (int i = 0; i < b; ++i) cout << "b";
cout << endl;
return 0;
}
string ans_str;
if (a == 0) {
int k = min(b, c);
vector<string> ans(k);
for (int i = 0; i < b; ++i) ans[i % k] += "b";
for (int i = 0; i < c; ++i) ans[i % k] += "c";
for (int i = 0; i < k; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < k; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
} else if (b == 0) {
int k = min(a, c);
vector<string> ans(k);
for (int i = 0; i < a; ++i) ans[i % k] += "a";
for (int i = 0; i < c; ++i) ans[i % k] += "c";
for (int i = 0; i < k; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < k; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
} else if (c == 0) {
int k = min(a, b);
vector<string> ans(k);
for (int i = 0; i < a; ++i) ans[i % k] += "a";
for (int i = 0; i < b; ++i) ans[i % k] += "b";
for (int i = 0; i < k; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < k; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
} else {
if (a <= b + c) {
vector<string> ans(a, "a");
for (int i = 0; i < c; ++i) ans[i % a] += "c";
for (int i = c % a; i < a && b > 0; ++i) {
ans[i] += "b";
b--;
}
for (int i = 0; i < b; ++i) ans[i % a] += "b";
for (int i = 0; i < a; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < a; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
} else {
vector<string> ans(b + c);
for (int i = 0; i < a; ++i) ans[i % (b + c)] += "a";
for (int i = 0; i < c; ++i) ans[i] += "c";
for (int i = c; i < b + c; ++i) ans[i] += "b";
for (int i = 0; i < b + c; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < b + c; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
}
}
cout << ans_str << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main() {
int X, Y, Z;
scanf("%d %d %d", &X, &Y, &Z);
if (X == 0 && Y == 0) {
printf("%s\n", std::string(Z, 'c').c_str());
return 0;
} else if (Y == 0 && Z == 0) {
printf("%s\n", std::string(X, 'a').c_str());
return 0;
} else if (Z == 0 && X == 0) {
printf("%s\n", std::string(Y, 'b').c_str());
return 0;
}
if (X == 0 || Y == 0 || Z == 0) {
char c, d;
if (X == 0) {
c = 'b', d = 'c';
X = Y, Y = Z;
} else if (Y == 0) {
c = 'a', d = 'c';
Y = Z;
} else {
c = 'a', d = 'b';
}
std::string unit(1, c);
unit += std::string(Y / X, d);
std::vector<std::string> ss(X, unit);
if (Y %= X) {
int st = Y;
for (int i = ss.size(); Y;) {
ss[i - 1] += d;
i -= i / Y;
--Y;
}
}
for (const std::string &s : ss) printf("%s", s.c_str());
printf("\n");
return 0;
}
return 1;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MX = 1000;
char ans[MX][MX];
void solve2(int x, int y, int p) {
if (x == 0) {
for (int i = 0; i < y; i++) ans[p][i] = 'b';
} else if (y == 0) {
for (int i = 0; i < x; i++) ans[p][i] = 'a';
} else if (x >= y) {
int g = (x + y - 1) / y;
int f = x % y;
if (f == 0) f = y;
solve2(f, y - f, p + 1);
for (int i = 0, j = 0; i < y; i++) {
for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a';
if (ans[p + 1][i] == 'a') ans[p][j++] = 'a';
ans[p][j++] = 'b';
}
} else {
int g = (x + y - 1) / x;
int f = y % x;
if (f == 0) f = x;
solve2(x - f, f, p + 1);
for (int i = 0, j = 0; i < x; i++) {
ans[p][j++] = 'a';
for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'b';
if (ans[p + 1][i] == 'b') ans[p][j++] = 'b';
}
}
}
void solve(int x, int y, int z, int p = 0) {
if (x == 0) {
solve2(y, z, p);
for (int i = 0; i < y + z; i++) ans[p][i]++;
} else if (y == 0) {
solve2(x, z, p);
for (int i = 0; i < y + z; i++)
if (ans[p][i] == 'b') ans[p][i] = 'c';
} else if (z == 0) {
solve2(x, y, p);
} else if (x >= y + z) {
int g = (x + y + z - 1) / (y + z);
int f = x % (y + z);
if (f == 0) f = y + z;
if (z >= f) {
solve(f, y, z - f, p + 1);
for (int i = 0, j = 0; i < y + z; i++) {
for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a';
if (ans[p + 1][i] == 'a') {
ans[p][j++] = 'a';
ans[p][j++] = 'c';
} else {
ans[p][j++] = ans[p + 1][i];
}
}
} else {
solve(f - z, z, y + z - f, p + 1);
for (int i = 0, j = 0; i < y + z; i++) {
for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a';
if (ans[p + 1][i] == 'c') {
ans[p][j++] = 'b';
} else {
ans[p][j++] = 'a';
ans[p][j++] = ans[p + 1][i] + 1;
}
}
}
} else {
static string S[MX];
for (int i = 0; i < x; i++) S[i] = "a";
for (int i = 0; i < z; i++) S[i % x] += "c";
for (int i = 0; i < y; i++) S[x - 1 - i % x] += "b";
set<string> strs;
for (int i = 0; i < x; i++) strs.insert(S[i]);
string SS[3];
int cnt[3] = {0, 0, 0}, iter = 0;
for (auto& s : strs) {
SS[iter] = s;
cnt[iter] = 0;
for (int i = 0; i < x; i++)
if (S[i] == s) cnt[iter]++;
iter++;
}
solve(cnt[0], cnt[1], cnt[2], p + 1);
for (int i = 0, j = 0; i < y + z; i++)
for (char c : SS[ans[p + 1][i] - 'a']) ans[p][j++] = c;
}
}
int main() {
int x, y, z;
ignore = scanf("%d %d %d", &x, &y, &z);
solve(x, y, z);
ans[0][x + y + z] = 0;
printf("%s\n", ans[0]);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
signed main() {
int x, y, z;
cin >> x >> y >> z;
vector<int> cs, bs;
if (x == 0) {
if (y == 0) {
cout << string(z, 'c') << '\n';
} else {
for (int i = 0; i < y; ++i) {
cs.push_back((z + i) / y);
}
for (int i = 0; i < y; ++i) {
cout << 'b';
for (int j = 0; j < cs[i]; ++j) {
cout << 'c';
}
}
cout << '\n';
}
} else {
for (int i = 0; i < x; ++i) {
cs.push_back((z + i) / x);
}
int rem = z % x ? z % x : x;
for (int i = 0; i < rem; ++i) {
bs.push_back((y + i) / rem);
}
for (int i = 0; i < x; ++i) {
cout << 'a';
for (int j = 0; j < cs[i]; ++j) {
cout << 'c';
}
for (int j = 0; j < bs[i]; ++j) {
cout << 'b';
}
}
cout << '\n';
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline bool chkmin(T &a, const T &b) {
return a > b ? a = b, 1 : 0;
}
template <typename T>
inline bool chkmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
}
const int oo = 0x3f3f3f3f;
const int maxn = 60;
int a[3];
int main() {
for (int i = (0), i_end_ = (3); i < i_end_; ++i) scanf("%d", a + i);
int n = a[0] + a[1] + a[2];
static char ans[maxn + 5];
for (int i = (0), i_end_ = (n); i < i_end_; ++i) {
static bool f[maxn + 5][maxn + 5][maxn + 5][maxn + 5];
for (int j = 2; j >= 0; --j)
if (a[j] > 0) {
ans[i] = 'a' + j;
--a[j];
memset(f, 0, sizeof f);
f[a[0]][a[1]][a[2]][0] = 1;
for (int first = a[0]; first >= 0; --first)
for (int second = a[1]; second >= 0; --second)
for (int z = a[2]; z >= 0; --z)
for (int l = (0), l_end_ = (i + 1); l < l_end_; ++l) {
if (f[first][second][z][l]) {
for (int k = (0), k_end_ = (3); k < k_end_; ++k) {
int b[3] = {first, second, z};
if (b[k]) {
--b[k];
if (ans[l] <= 'a' + k) {
int nxtl = l;
if (ans[l] == 'a' + k)
nxtl = (nxtl + 1) % (i + 1);
else
nxtl = 0;
f[b[0]][b[1]][b[2]][nxtl] = 1;
}
}
}
}
}
if (f[0][0][0][0])
break;
else
++a[j];
}
}
printf("%s\n", ans);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename... As>
struct tpl : public std::tuple<As...> {
using std::tuple<As...>::tuple;
tpl() {}
tpl(std::tuple<As...> const& b) { std::tuple<As...>::operator=(b); }
template <typename T = tuple<As...>>
typename tuple_element<0, T>::type const& x() const {
return get<0>(*this);
}
template <typename T = tuple<As...>>
typename tuple_element<0, T>::type& x() {
return get<0>(*this);
}
template <typename T = tuple<As...>>
typename tuple_element<1, T>::type const& y() const {
return get<1>(*this);
}
template <typename T = tuple<As...>>
typename tuple_element<1, T>::type& y() {
return get<1>(*this);
}
template <typename T = tuple<As...>>
typename tuple_element<2, T>::type const& z() const {
return get<2>(*this);
}
template <typename T = tuple<As...>>
typename tuple_element<2, T>::type& z() {
return get<2>(*this);
}
template <typename T = tuple<As...>>
typename tuple_element<3, T>::type const& w() const {
return get<3>(*this);
}
template <typename T = tuple<As...>>
typename tuple_element<3, T>::type& w() {
return get<3>(*this);
}
};
using lli = long long int;
using llu = long long unsigned;
using pii = tpl<lli, lli>;
using piii = tpl<lli, lli, lli>;
using piiii = tpl<lli, lli, lli, lli>;
using vi = vector<lli>;
using vii = vector<pii>;
using viii = vector<piii>;
using vvi = vector<vi>;
using vvii = vector<vii>;
using vviii = vector<viii>;
template <class T>
using min_queue = priority_queue<T, vector<T>, greater<T>>;
template <class T>
using max_queue = priority_queue<T>;
template <size_t... I>
struct my_index_sequence {
using type = my_index_sequence;
static constexpr array<size_t, sizeof...(I)> value = {{I...}};
};
namespace my_index_sequence_detail {
template <typename I, typename J>
struct concat;
template <size_t... I, size_t... J>
struct concat<my_index_sequence<I...>, my_index_sequence<J...>>
: my_index_sequence<I..., (sizeof...(I) + J)...> {};
template <size_t N>
struct make_index_sequence
: concat<typename make_index_sequence<N / 2>::type,
typename make_index_sequence<N - N / 2>::type>::type {};
template <>
struct make_index_sequence<0> : my_index_sequence<> {};
template <>
struct make_index_sequence<1> : my_index_sequence<0> {};
} // namespace my_index_sequence_detail
template <class... A>
using my_index_sequence_for =
typename my_index_sequence_detail::make_index_sequence<sizeof...(A)>::type;
template <class T, size_t... I>
void print_tuple(ostream& s, T const& a, my_index_sequence<I...>) {
using swallow = int[];
(void)swallow{0, (void(s << (I == 0 ? "" : ", ") << get<I>(a)), 0)...};
}
template <class T>
ostream& print_collection(ostream& s, T const& a);
template <class... A>
ostream& operator<<(ostream& s, tpl<A...> const& a);
template <class... A>
ostream& operator<<(ostream& s, tuple<A...> const& a);
template <class A, class B>
ostream& operator<<(ostream& s, pair<A, B> const& a);
template <class T, size_t I>
ostream& operator<<(ostream& s, array<T, I> const& a) {
return print_collection(s, a);
}
template <class T>
ostream& operator<<(ostream& s, vector<T> const& a) {
return print_collection(s, a);
}
template <class T, class U>
ostream& operator<<(ostream& s, multimap<T, U> const& a) {
return print_collection(s, a);
}
template <class T>
ostream& operator<<(ostream& s, multiset<T> const& a) {
return print_collection(s, a);
}
template <class T, class U>
ostream& operator<<(ostream& s, map<T, U> const& a) {
return print_collection(s, a);
}
template <class T>
ostream& operator<<(ostream& s, set<T> const& a) {
return print_collection(s, a);
}
template <class T>
ostream& print_collection(ostream& s, T const& a) {
s << '[';
for (auto it = begin(a); it != end(a); ++it) {
s << *it;
if (it != prev(end(a))) s << " ";
}
return s << ']';
}
template <class... A>
ostream& operator<<(ostream& s, tpl<A...> const& a) {
s << '(';
print_tuple(s, a, my_index_sequence_for<A...>{});
return s << ')';
}
template <class... A>
ostream& operator<<(ostream& s, tuple<A...> const& a) {
s << '(';
print_tuple(s, a, my_index_sequence_for<A...>{});
return s << ')';
}
template <class A, class B>
ostream& operator<<(ostream& s, pair<A, B> const& a) {
return s << "(" << get<0>(a) << ", " << get<1>(a) << ")";
}
vi redcnt(vi cnt) {
vi cnt2;
for (int i : cnt)
if (i) cnt2.push_back(i);
return cnt2;
}
vi solve(vi cnt) {
cnt = redcnt(cnt);
if (cnt.size() == 1) {
vi r;
for (lli i = 0; i < (lli)(cnt[0]); ++i) r.push_back(0);
return r;
}
int k = 1;
while (1) {
int nx = (cnt[0] + k - 1) / k;
int x1 = cnt[0] % nx;
if (x1 == 0) x1 = nx;
int x2 = nx - x1;
map<vi, lli> make_pair;
for (lli j = (cnt.size() - 1); j >= (lli)(1); --j) {
vi base1;
for (lli k_ = 0; k_ < (lli)(k); ++k_) base1.push_back(0);
base1.push_back(j);
vi base2;
for (lli k_ = 0; k_ < (lli)(k - 1); ++k_) base2.push_back(0);
base2.push_back(j);
lli cc = cnt[j];
while (cc && x1) {
cc--;
x1--;
make_pair[base1]++;
}
while (cc && x2) {
cc--;
x2--;
make_pair[base2]++;
}
while (cc) {
cc--;
make_pair[{j}]++;
}
}
if (x1 == 0 && x2 == 0) {
vector<tpl<vi, lli>> mp_;
for (auto p : make_pair) mp_.push_back(make_tuple(p.first, p.second));
vi cnt2;
for (auto p : mp_) cnt2.push_back(p.y());
vi r = solve(cnt2);
vi ans;
for (int i : r) ans.insert(end(ans), begin(mp_[i].x()), end(mp_[i].x()));
return ans;
}
k += 1;
}
};
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
lli x, y, z;
cin >> x >> y >> z;
vi r = solve({x, y, z});
string s;
for (int i : r) s += 'a' + i;
cout << s << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // eddy1021
#pragma GCC optimize("O3")
#include <bits/stdc++.h>
using namespace std;
typedef double D;
typedef long double LD;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<LL,LL> PLL;
#define mod9 1000000009LL
#define mod7 1000000007LL
#define INF 1023456789LL
#define INF16 10000000000000000LL
#define eps 1e-9
#define SZ(x) (int)(x).size()
#define ALL(x) (x).begin(), (x).end()
#define IOS ios_base::sync_with_stdio(0); cin.tie(0)
#ifndef ONLINE_JUDGE
#define debug(...) printf(__VA_ARGS__)
#else
#define debug(...)
#endif
inline LL getint(){
LL _x=0,_tmp=1; char _tc=getchar();
while( (_tc<'0'||_tc>'9')&&_tc!='-' ) _tc=getchar();
if( _tc == '-' ) _tc=getchar() , _tmp = -1;
while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();
return _x*_tmp;
}
inline LL add( LL _x , LL _y , LL _mod = mod7 ){
_x += _y;
return _x >= _mod ? _x - _mod : _x;
}
inline LL sub( LL _x , LL _y , LL _mod = mod7 ){
_x -= _y;
return _x < 0 ? _x + _mod : _x;
}
inline LL mul( LL _x , LL _y , LL _mod = mod7 ){
_x *= _y;
return _x >= _mod ? _x % _mod : _x;
}
LL mypow( LL _a , LL _x , LL _mod ){
if( _x == 0 ) return 1LL;
LL _ret = mypow( mul( _a , _a , _mod ) , _x >> 1 , _mod );
if( _x & 1 ) _ret = mul( _ret , _a , _mod );
return _ret;
}
LL mymul( LL _a , LL _x , LL _mod ){
if( _x == 0 ) return 0LL;
LL _ret = mymul( add( _a , _a , _mod ) , _x >> 1 , _mod );
if( _x & 1 ) _ret = add( _ret , _a , _mod );
return _ret;
}
inline bool equal( D _x , D _y ){
return _x > _y - eps && _x < _y + eps;
}
#define Bye exit(0)
int __ = 1 , _cs;
/*********default*********/
void build(){
}
string mcp(string s){
int n = s.length();
s += s;
int i=0, j=1;
while (i<n && j<n){
int k = 0;
while (k < n && s[i+k] == s[j+k]) k++;
if (s[i+k] <= s[j+k]) j += k+1;
else i += k+1;
if (i == j) j++;
}
int ans = i < n ? i : j;
return s.substr(ans, n);
}
int a , b , c;
void init(){
cin >> a >> b >> c;
}
int gcd( int x , int y ){
if( x == 0 or y == 0 ) return x + y;
return __gcd( x , y );
}
int mxa;
bool ok = false;
inline string cal2( const vector<int>& v ){
int perc = c / (int)v.size();
int resc = c % (int)v.size();
int ress = (int)v.size() - resc;
if( ress == 0 ) ress = (int)v.size();
int perb = b / ress;
int resb = b % ress;
//cout << perc << " " << resc << " " << perb << " " << resb << endl;
vector<int> tmp;
for( int i = 0 ; i < (int)v.size() ; i ++ )
if( i < resc )
tmp.push_back( 0 );
else
tmp.push_back( 1 );
vector<int> tmp2;
for( int i = 0 ; i < ress ; i ++ )
if( i < resb )
tmp2.push_back( 1 );
else
tmp2.push_back( 0 );
string ret = "0";
do{
for( size_t i = 0 ; i < v.size() ; i ++ ){
string got = "";
for( size_t j = 0 ; j < v.size() ; j ++ ){
for( int k = 0 ; k < mxa - 1 ; k ++ ) got += "a";
if( v[ j ] == 0 ) got += "a";
for( int k = 0 ; k < perc ; k ++ ) got += "c";
if( tmp[ j ] == 0 ) got += "c";
if( i == j ){
for( int k = 0 ; k < b ; k ++ ) got += "b";
}
}
string got2 = mcp( got );
if( got == got2 ) ok = true;
ret = max( ret , got2 );
}
sort( tmp2.begin() , tmp2.end() );
do{
int ptr = 0;
string got = "";
for( size_t j = 0 ; j < v.size() ; j ++ ){
for( int k = 0 ; k < mxa - 1 ; k ++ ) got += "a";
if( v[ j ] == 0 ) got += "a";
for( int k = 0 ; k < perc ; k ++ ) got += "c";
if( tmp[ j ] == 0 ) got += "c";
else{
for( int k = 0 ; k < perb ; k ++ ) got += "b";
if( tmp2[ ptr ++ ] ) got += "b";
}
}
string got2 = mcp( got );
if( got == got2 ) ok = true;
ret = max( ret , got2 );
}while( next_permutation( tmp2.begin() , tmp2.end() ) );
if( ok )
return ret;
}while( next_permutation( tmp.begin() , tmp.end() ) );
return ret;
}
inline string cal(){
mxa = 2;
while( a / mxa > b + c ) mxa ++;
int tot = a / (mxa - 1);
int mr = a - tot * (mxa - 1);
// mr with mxa, tot - mr with mxa - 1
vector<int> tmp;
if( mr )
tmp.push_back( 0 );
for( int i = 0 ; i < tot - mr ; i ++ )
tmp.push_back( 1 );
for( int i = 1 ; i < mr ; i ++ )
tmp.push_back( 0 );
string bst = "0";
do{
bst = max( bst , cal2( tmp ) );
if( ok ) return bst;
}while( next_permutation( tmp.begin() , tmp.end() ) );
return bst;
}
void real_solve(){
int gg = gcd( a , gcd( b , c ) );
a /= gg;
b /= gg;
c /= gg;
string tmp = cal();
string ans = "";
while( gg -- ) ans += tmp;
cout << ans << endl;
Bye;
}
void solve(){
real_solve();
vector<char> v;
for( int i = 0 ; i < a ; i ++ ) v.push_back( 'a' );
for( int i = 0 ; i < b ; i ++ ) v.push_back( 'b' );
for( int i = 0 ; i < c ; i ++ ) v.push_back( 'c' );
string bst = "0";
do{
string ret = "";
for( auto i : v )
ret += i;
bst = max( bst , mcp( ret ) );
}while( next_permutation( v.begin() , v.end() ) );
cout << bst << endl;
}
int main(){
build();
//__ = getint();
while( __ -- ){
init();
solve();
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long s[200000];
long long t[200000];
int main() {
char x[50];
int a, b, c;
cin >> a >> b >> c;
for (int i = 0; i < a; i++) x[i] = 'a';
for (int i = 0; i < b; i++) x[i + a] = 'b';
for (int i = 0; i < c; i++) x[i + a + b] = 'c';
bool k = 1, m = 1;
while (k || m) {
k = 0;
m = 0;
for (int i = 0; i < a + b + c - 1; i++) {
if (x[i] == x[i + 1]) {
swap(x[i], x[i + 1]);
k = 1;
}
if (i + 2 < a + b + c) {
if (x[i] == x[i + 1] - 1 && x[i + 1] == x[i + 2] - 1)
swap(x[i + 1], x[i + 2]);
}
}
for (int i = a + b + c; i > 0; i--) {
if (x[i] == x[i - 1]) {
swap(x[i], x[i - 1]);
m = 1;
}
}
}
cout << x;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // ayy
// ' lamo
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld; //CARE
typedef complex<ld> pt;
#define fi first
#define se second
#define pb push_back
const ld eps=1e-8;
const int inf=1e9+99;
const ll linf=1e18+99;
const int P=1e9+7;
string g1(string A,int X) {
string Z="";
// cerr<<A<<" * "<<X<<endl;
for(;X--;) Z+=A;
return Z;
}
string g2(string A,string B,int X,int Y) {
// cerr<<"g2"<<" "<<A<<" "<<B<<" "<<X<<" "<<Y<<endl;
assert(A<B);
if(!X) return g1(B,Y);
if(!Y) return g1(A,X);
string AA=A;
string BB=A;
for(int i=0;i*X<Y;i++) AA+=B, BB+=B;
AA+=B;
int XX=Y%X;
int YY=X-XX;
return g2(BB,AA,YY,XX);
}
string g3(string A,string B,string C,int X,int Y,int Z) {
// cerr<<"g3"<<" "<<A<<" "<<B<<" "<<C<<" "<<X<<" "<<Y<<" "<<Z<<endl;
assert(A<B && B<C);
if(!X) return g2(B,C,Y,Z);
if(!Y) return g2(A,C,X,Z);
if(!Z) return g2(A,B,X,Y);
string AA=A;
string BB=A;
string CC=A;
for(int i=0;i*X<Z;i++) AA+=C, BB+=C, CC+=C;
AA+=C;
int XX=Z%X;
int qq=X-XX;
assert(qq>=1);
for(int i=0;i*qq<Y;i++) BB+=B, CC+=B;
BB+=B;
int YY=Y%qq;
int ZZ=qq-YY;
assert(XX+YY+ZZ == X);
return g3(CC,BB,AA,ZZ,YY,XX);
}
int32_t main() {
int X,Y,Z;
cin>>X>>Y>>Z;
cout<<g3("a","b","c",X,Y,Z)<<endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | ($X,$Y,$Z)=glob<>;
$s='a'x$X.'B'x$Y.'C'x$Z;
while($p=$s,$s=~s/^(a*)a?\K(\1.*)([BC])/\l$3$2/){
$t=$s;
for(1..length$s){
$t=~s/(.)(.*)/$2$1/;
if(lc$t lt lc$s){
$s=$t
}
}
if(lc$p ge lc$s){
$s=$p;
last
}
}
print lc$s
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr long long mod = 1000000007;
const long long INF = mod * mod;
const long double eps = 1e-12;
const long double pi = acos(-1.0);
long long mod_pow(long long x, long long n) {
long long res = 1;
while (n) {
if (n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
struct modint {
long long n;
modint() : n(0) { ; }
modint(long long m) : n(m) {
if (n >= mod)
n %= mod;
else if (n < 0)
n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) {
a.n += b.n;
if (a.n >= mod) a.n -= mod;
return a;
}
modint operator-=(modint& a, modint b) {
a.n -= b.n;
if (a.n < 0) a.n += mod;
return a;
}
modint operator*=(modint& a, modint b) {
a.n = ((long long)a.n * b.n) % mod;
return a;
}
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, int n) {
if (n == 0) return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2) res = res * a;
return res;
}
long long inv(long long a, long long p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b) return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
string calc(int x, int y, int z) {
int c[3] = {x, y, z};
if (y == 0 && z == 0) {
string res;
res.resize(x, 'a');
return res;
}
if (y == 0) {
string res;
res.resize(x + z, 'a');
int d = (x + z) / z;
int r = (x + z) % z;
int cur = 0;
for (int i = 0; i < z; i++) {
cur += d;
if (i < r) cur++;
res[cur - 1] = 'c';
}
return res;
}
if (x == 0) {
if (z == 0) {
string res;
res.resize(y, 'b');
return res;
}
string res;
res.resize(y + z, 'b');
int d = (y + z) / z;
int r = (y + z) % z;
int cur = 0;
for (int i = 0; i < z; i++) {
cur += d;
if (i < r) cur++;
res[cur - 1] = 'c';
}
return res;
}
int num = -1;
for (int i = 1; i <= 50; i++) {
int x = c[0] / i;
if (c[0] % i) x++;
if (x <= c[1] + c[2]) {
num = i;
break;
}
}
vector<string> anss;
for (int i = 0; i < c[0] / num; i++) {
string s;
s.resize(num, 'a');
anss.push_back(s);
}
if (c[0] % num) {
string s;
s.resize(c[0] % num, 'a');
s.push_back('b');
c[1]--;
anss.push_back(s);
}
int d = c[0] / num;
while (c[2] >= d) {
for (int i = 0; i < d; i++) {
anss[i].push_back('c');
}
c[2] -= d;
}
int rest = d;
for (int i = 0; i < c[2]; i++) {
anss[d - 1 - i].push_back('c');
rest--;
}
int m2 = d - rest;
while (c[1] >= rest) {
for (int i = 0; i < rest; i++) {
anss[i].push_back('b');
}
c[1] -= rest;
}
int m1 = c[1];
for (int i = 0; i < c[1]; i++) {
anss[rest - 1 - i].push_back('b');
}
int m0 = rest - c[1];
string rec = calc(m0, m1, m2);
vector<string> vans;
for (int i = 0; i < rec.size(); i++) {
if (rec[i] == 'a') {
vans.push_back(anss[0]);
} else if (rec[i] == 'b') {
vans.push_back(anss[m0]);
} else {
vans.push_back(anss[m0 + m1]);
}
}
if (anss.size() > m1 + m2 + m0) vans.push_back(anss.back());
string res;
for (int i = 0; i < vans.size(); i++) res += vans[i];
return res;
}
void solve() {
int c[3];
for (int i = 0; i < 3; i++) cin >> c[i];
string ans = calc(c[0], c[1], c[2]);
cout << ans << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
solve();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
os << "sz:" << v.size() << "\n[";
for (const auto& p : v) {
os << p << ",";
}
os << "]\n";
return os;
}
template <typename S, typename T>
ostream& operator<<(ostream& os, const pair<S, T>& p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
constexpr ll MOD = (ll)1e9 + 7LL;
template <typename T>
constexpr T INF = numeric_limits<T>::max() / 100;
void place(const int small, const int large, vector<int>& result) {
assert(result.size() == small + large);
if (large == 0) {
for (int i = 0; i < result.size(); i++) {
result[i] = -1;
}
} else if (large == 1) {
for (int i = 0; i < result.size() - 1; i++) {
result[i] = -1;
}
result[result.size() - 1] = 1;
} else if (small >= large) {
const int ssize = (small + large - 1) / large;
const int lsize = ssize - 1;
const int snum = small - (lsize * large);
const int lnum = large - snum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = -2;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = -1;
pos++;
}
}
result[pos] = 1;
pos++;
}
} else {
const int ssize = large / small;
const int lsize = ssize + 1;
const int lnum = large - ssize * small;
const int snum = small - lnum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
result[pos] = -1;
pos++;
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = 1;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = 2;
pos++;
}
}
}
}
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int X, Y, Z;
cin >> X >> Y >> Z;
string s;
s.resize(X + Y + Z, 'd');
if (X > 0) {
if (Y + Z > 0) {
if (X >= Y + Z) {
vector<int> tmp(X + Y + Z);
place(X, Y + Z, tmp);
cerr << "tmp"
<< " = " << tmp << endl;
for (int i = 0; i < X + Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'a';
}
vector<int> smalls;
vector<int> larges;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] > 0 and tmp[i - 1] == -1) {
larges.push_back(i);
} else if (tmp[i] > 0 and tmp[i - 1] == -2) {
smalls.push_back(i);
}
}
reverse(smalls.begin(), smalls.end());
for (const int li : larges) {
if (Y > 0) {
s[li] = 'b';
Y--;
} else {
s[li] = 'c';
Z--;
}
}
for (const int si : smalls) {
if (Z > 0) {
s[si] = 'c';
Z--;
} else {
s[si] = 'b';
Y--;
}
}
}
} else {
vector<string> sv(X, "a");
const int slen = Z / X;
const int llen = slen + 1;
const int snum = llen * X - Z;
for (int i = 0; i < snum; i++) {
for (int j = 0; j < slen; j++) {
sv[i].push_back('c');
}
}
for (int i = snum; i < X; i++) {
for (int j = 0; j < llen; j++) {
sv[i].push_back('c');
}
}
const int sslen = Y / snum;
const int lllen = sslen + 1;
const int ssnum = lllen * snum - Y;
for (int i = 0; i < ssnum; i++) {
for (int j = 0; j < sslen; j++) {
sv[i].push_back('b');
}
}
for (int i = ssnum; i < snum; i++) {
for (int j = 0; j < lllen; j++) {
sv[i].push_back('b');
}
}
for (int i = 0; i < X; i++) {
cout << sv[i];
}
cout << endl;
}
} else {
for (int i = 0; i < Y + Z; i++) {
cout << 'a';
}
cout << endl;
return 0;
}
} else {
if (Y > 0) {
if (Z > 0) {
vector<int> tmp(Y + Z);
place(Y, Z, tmp);
for (int i = 0; i < Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'b';
} else {
s[i] = 'c';
}
}
cout << s << endl;
return 0;
} else {
for (int i = 0; i < Y; i++) {
cout << 'b';
}
cout << endl;
return 0;
}
} else {
for (int i = 0; i < Z; i++) {
cout << 'c';
}
cout << endl;
return 0;
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long fastpow(int a, int b, int MOD) {
long long x = 1, y = a;
while (b > 0) {
if (b % 2 == 1) {
x = (x * y) % MOD;
}
y = (y * y) % MOD;
b /= 2;
}
return x;
}
long long InverseEuler(int n, int MOD) { return fastpow(n, MOD - 2, MOD); }
long long f[300000];
bool init;
long long C(int n, int r, int MOD) {
if (!init) {
init = 1;
f[0] = 1;
for (int i = 1; i < 300000; i++) f[i] = (f[i - 1] * i) % MOD;
}
return (f[n] *
((InverseEuler(f[r], MOD) * InverseEuler(f[n - r], MOD)) % MOD)) %
MOD;
}
int N;
string S = "";
vector<int> res;
vector<char> tok;
string solve(int A, int B, int C) {
string res = "";
if (A == 1 || B == 1 || C == 1) {
if (C == 1 && B != 1) {
return solve(A, B, 0) + 'c';
}
if (C != 1 && B == 1) {
return solve(A, 0, C) + 'b';
}
for (int i = 0; i < A; i++) res += "a";
for (int i = 0; i < C; i++) res += "c";
for (int i = 0; i < B; i++) res += "b";
return res;
}
int ka = (A + 1) / 2;
int kb = B / 2;
int kc = C / 2;
return solve(ka, kb, kc) + solve(A - ka, B - kb, C - kc);
}
int main() {
int A, B, C;
std::ios::sync_with_stdio(false);
cin >> A >> B >> C;
string res = solve(A, B, C);
cout << res << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MX = 300500;
string solve(int x, int y, int z) {
vector<int> a_pos;
int pos = 0;
int n = x + y + z;
string s;
for (int i = 0; i < n; i++) {
s += "b";
}
while (x--) {
a_pos.push_back(pos);
s[pos] = 'a';
int space_left = n - 1 - pos;
space_left -= x;
space_left /= x + 1;
pos += space_left + 1;
}
for (int j = 0; j < 100; j++) {
for (int i = 0; i < a_pos.size(); i++) {
if (z == 0) break;
if (s[a_pos[i] + j + 1] == 'a') continue;
s[a_pos[i] + j + 1] = 'c';
z--;
}
}
return s;
};
string sosolve(int x, int y, int z) {
if (x) return solve(x, y, z);
if (y == 0) {
string s;
while (z--) {
s += "c";
}
return s;
}
string s = solve(y, x, z);
for (int i = 0; i < s.size(); i++) {
if (s[i] == 'a') s[i] = 'b';
}
return s;
}
int main(int argc, char** argv) {
ios_base::sync_with_stdio(false);
cin.tie(0);
int x, y, z;
cin >> x >> y >> z;
cout << sosolve(x, y, z) << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
long long powmod(long long a, long long b) {
long long res = 1;
a %= mod;
assert(b >= 0);
for (; b; b >>= 1) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
}
return res;
}
int rem[55][55][55][55], nxt[55][10], fail[55], T;
bool val[55][55][55][55];
char s[55];
int x, y, z;
bool dfs2(int u, int v, int w, int p) {
if (rem[u][v][w][p] == T) return val[u][v][w][p];
rem[u][v][w][p] = T;
bool &r = val[u][v][w][p];
r = 0;
if (u == 0 && v == 0 && w == 0) {
for (int i = 0; i < x + y + z; i++) {
if (s[i] == 0) break;
if (s[p] > s[i])
return r = 0;
else
p = nxt[p][s[i] - 'a'];
}
return r = 1;
}
if (u > 0 && s[p] <= 'a') r |= dfs2(u - 1, v, w, nxt[p][0]);
if (r) return 1;
if (v > 0 && s[p] <= 'b') r |= dfs2(u, v - 1, w, nxt[p][1]);
if (r) return 1;
if (w > 0 && s[p] <= 'c') r |= dfs2(u, v, w - 1, nxt[p][2]);
if (r) return 1;
return r = 0;
}
bool checkp(int u, int v, int w, int d) {
s[d] = 0;
for (int i = 0; i < d; i++) {
bool cmp = 0;
for (int j = 0; j < d - i; j++)
if (s[j] != s[i + j]) {
if (s[j] > s[i + j]) cmp = 1;
break;
}
if (cmp) return 0;
}
if (d == 0) return 1;
for (int i = 0; i < 3; i++) nxt[0][i] = 0;
if (d > 1) nxt[0][s[0] - 'a'] = 1;
for (int i = 1; i < d; i++) {
if (i == 1)
fail[i] = 0;
else
fail[i] = nxt[fail[i - 1]][s[i] - 'a'];
for (int j = 0; j < 3; j++) nxt[i][j] = nxt[fail[i]][j];
if (i + 1 != d) nxt[i][s[i] - 'a'] = i + 1;
}
fail[d] = nxt[fail[d - 1]][s[d] - 'a'];
T++;
return dfs2(u, v, w, fail[d]);
}
bool check(int d) {
for (int i = 0; i < d; i++) {
bool cmp = 0;
for (int j = 0; j < d; j++)
if (s[j] != s[(i + j) % d]) {
if (s[j] > s[(i + j) % d]) cmp = 1;
break;
}
if (cmp) return 0;
}
return 1;
}
void dfs(int u, int v, int w, int d) {
if (!checkp(u, v, w, d)) return;
if (u == 0 && v == 0 && w == 0) {
if (check(d)) {
puts(s);
exit(0);
}
} else {
if (w > 0) s[d] = 'c', dfs(u, v, w - 1, d + 1);
if (v > 0) s[d] = 'b', dfs(u, v - 1, w, d + 1);
if (u > 0) s[d] = 'a', dfs(u - 1, v, w, d + 1);
}
}
int main() {
scanf("%d%d%d", &x, &y, &z);
dfs(x, y, z, 0);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:336777216")
using namespace std;
const int MAXN = 100 + 2;
int A, B, C, N;
int L;
char Fill[MAXN];
int Tmp[MAXN * 2];
int Check(int ta, int tb, int tc, string S) {
int a, b, c;
int Len = S.length();
for (int i = 0; i < Len; i++) Tmp[i] = S[i];
a = ta;
b = tb;
c = tc;
if (S[0] == 'b' && a > 0) return 0;
if (S[0] == 'c' && (a > 0 || b > 0)) return 0;
if (a > 0 && b == 0 && c == 0)
for (int i = Len; i < N; i++) Tmp[i] = 'a';
else if (b > 0 && a == 0 && c == 0)
for (int i = Len; i < N; i++) Tmp[i] = 'b';
else
for (int i = Len; i < N; i++) Tmp[i] = 'c';
for (int i = 0; i < N; i++) Tmp[i + N] = Tmp[i];
for (int k = 1; k < N; k++)
for (int i = 0; i < N; i++)
if (Tmp[i] != Tmp[k + i]) {
if (Tmp[i] > Tmp[k + i]) return 0;
break;
}
return 1;
}
void Update(string& To, string From) {
if (To == "" || To > From) To = From;
}
string DP[MAXN][MAXN][MAXN];
int Test() {
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) DP[i][j][k] = "";
DP[0][0][0] = (string)Fill;
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) {
if (DP[i][j][k].length() != i + j + k + L) continue;
string tmp;
if (i < A) {
tmp = DP[i][j][k] + 'a';
if (Check(A - i - 1, B - j, C - k, tmp)) Update(DP[i + 1][j][k], tmp);
}
if (j < B) {
tmp = DP[i][j][k] + 'b';
if (Check(A - i, B - j - 1, C - k, tmp)) Update(DP[i][j + 1][k], tmp);
}
if (k < C) {
tmp = DP[i][j][k] + 'c';
if (Check(A - i, B - j, C - k - 1, tmp)) Update(DP[i][j][k + 1], tmp);
}
}
return (DP[A][B][C].length() == A + B + C + L);
}
void Work() {
scanf("%d%d%d", &A, &B, &C);
N = A + B + C;
for (L = 1; L <= N; L++) {
Fill[L] = 0;
if (C > 0) {
Fill[L - 1] = 'c';
C--;
if (Test()) continue;
C++;
}
if (B > 0) {
B--;
Fill[L - 1] = 'b';
if (Test()) continue;
B++;
}
A--;
Fill[L - 1] = 'a';
}
printf("%s\n", Fill);
}
int main() {
Work();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int x, y, z;
vector<char> at[100];
int l = 0;
scanf("%d %d %d", &x, &y, &z);
if (x > y + z) {
for (int i = (long long int)0; i < y + z; i++) {
at[i % (y + z)].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[i + z].push_back('b');
}
l = y + z;
} else if (x > 0) {
for (int i = (long long int)0; i < x; i++) {
at[i].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i % x].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[(i + z) % x].push_back('b');
}
l = x;
} else if (y > 0) {
for (int i = (long long int)0; i < y; i++) {
at[i].push_back('b');
}
for (int i = (long long int)0; i < z; i++) {
at[i % y].push_back('c');
}
l = y;
} else {
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
l = z;
}
for (int i = (long long int)0; i < l; i++) {
if (i % 2 == 0) {
for (int j = (long long int)0; j < at[l - 1 - i / 2].size(); j++) {
printf("%c", at[l - 1 - i / 2][j]);
}
} else {
for (int j = (long long int)0; j < at[i / 2].size(); j++) {
printf("%c", at[i / 2][j]);
}
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline void gmin(T &x, const T &y) {
if (x > y) x = y;
}
template <class T>
inline void gmax(T &x, const T &y) {
if (x < y) x = y;
}
const int BufferSize = 1 << 16;
char buffer[BufferSize], *Bufferhead, *Buffertail;
bool Terminal;
inline char Getchar() {
if (Bufferhead == Buffertail) {
int l = fread(buffer, 1, BufferSize, stdin);
if (!l) {
Terminal = 1;
return 0;
}
Buffertail = (Bufferhead = buffer) + l;
}
return *Bufferhead++;
}
template <class T>
inline bool read(T &x) {
x = 0;
char c = Getchar(), rev = 0;
while (c < '0' || c > '9') {
rev |= c == '-';
c = Getchar();
if (Terminal) return 0;
}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = Getchar();
if (c == '.') {
c = Getchar();
double t = 0.1;
while (c >= '0' && c <= '9')
x = x + (c - '0') * t, c = Getchar(), t = t / 10;
}
x = rev ? -x : x;
return 1;
}
template <class T1, class T2>
inline bool read(T1 &x, T2 &y) {
return read(x) & read(y);
}
template <class T1, class T2, class T3>
inline bool read(T1 &x, T2 &y, T3 &z) {
return read(x) & read(y) & read(z);
}
template <class T1, class T2, class T3, class T4>
inline bool read(T1 &x, T2 &y, T3 &z, T4 &w) {
return read(x) & read(y) & read(z) & read(w);
}
inline bool reads(char *x) {
char c = Getchar();
while (c < 33 || c > 126) {
c = Getchar();
if (Terminal) return 0;
}
while (c >= 33 && c <= 126) (*x++) = c, c = Getchar();
*x = 0;
return 1;
}
template <class T>
inline void print(T x, const char c = '\n') {
if (!x) {
putchar('0');
putchar(c);
return;
}
if (x < 0) putchar('-'), x = -x;
int m = 0, a[20];
while (x) a[m++] = x % 10, x /= 10;
while (m--) putchar(a[m] + '0');
putchar(c);
}
const int inf = 0x3f3f3f3f;
const int N = 55, M = 100005, mod = 1e9 + 7;
template <class T, class S>
inline void ch(T &x, const S y) {
x = (x + y) % mod;
}
inline int exp(int x, int y, const int mod = ::mod) {
int ans = 1;
while (y) {
if (y & 1) ans = (long long)ans * x % mod;
x = (long long)x * x % mod;
y >>= 1;
}
return ans;
}
int n, pl = -1;
int g[5], a[N], s[N];
inline int check(int l, int r, int p, int q) {
for (int i = l, j = p; i <= r && j <= q; i++, j++)
if (a[i] > a[j])
return 1;
else if (a[i] < a[j])
return -1;
return 0;
}
inline bool check() {
for (int i = 2; i <= n; i++) {
int tmp = check(1, n, i, n);
if (tmp == 1) return 0;
if (tmp == -1) continue;
if (check(n - i + 2, n, 1, i - 1) == 1) return 0;
}
return 1;
}
inline bool check(int m) {
bool tag = 0;
if (m == 2 && s[m] == 2) tag = 1;
vector<int> now(0);
int cnt[5];
memcpy(cnt, g, sizeof(cnt));
for (int i = 1; i <= m; i++) a[i] = s[i], cnt[a[i]]--;
for (int i = 2; i <= m; i++) {
int tmp = check(1, m, i, m);
if (tmp == 1) return 0;
if (tmp == 0) now.push_back(m - i + 1);
}
for (int i = m + 1; i <= n; i++) {
int mx = 1;
for (int j = 0; j < now.size(); j++)
if (now[j] < m) gmax(mx, a[now[j] + 1]);
while (mx < 4 && !cnt[mx]) mx++;
if (mx == 4) return 0;
a[i] = mx;
cnt[mx]--;
vector<int> tn(0);
for (int j = 0; j < now.size(); j++)
if (now[j] < m && a[now[j] + 1] == mx) tn.push_back(now[j] + 1);
if (mx == 1) tn.push_back(1);
now = tn;
}
return check();
}
int main() {
read(g[1], g[2], g[3]);
n = g[1] + g[2] + g[3];
if (!g[1]) {
g[1] = g[2], g[2] = g[3], g[3] = 0;
pl++;
}
if (!g[1]) {
for (int i = 1; i <= n; i++) putchar('c');
puts("");
return 0;
}
int cnt[5];
memcpy(cnt, g, sizeof(cnt));
s[1] = 1;
cnt[1]--;
for (int i = 2; i <= n; i++) {
for (int j = 3; j; j--) {
if (!cnt[j]) continue;
s[i] = j;
if (check(i)) break;
}
cnt[s[i]]--;
}
for (int i = 1; i <= n; i++) putchar('a' + s[i] + pl);
puts("");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
long long powmod(long long a, long long b) {
long long res = 1;
a %= mod;
assert(b >= 0);
for (; b; b >>= 1) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
}
return res;
}
int rem[55][55][55][55], nxt[55][10], fail[55], T;
bool val[55][55][55][55];
char s[55];
int x, y, z;
bool dfs2(int u, int v, int w, int p) {
if (rem[u][v][w][p] == T) return val[u][v][w][p];
rem[u][v][w][p] = T;
bool &r = val[u][v][w][p];
r = 0;
if (u == 0 && v == 0 && w == 0) {
for (int i = 0; i < x + y + z; i++) {
if (s[i] == 0) break;
if (s[p] > s[i])
return r = 0;
else
p = nxt[p][s[i] - 'a'];
}
return r = 1;
}
if (u > 0 && s[p] <= 'a') r |= dfs2(u - 1, v, w, nxt[p][0]);
if (r) return 1;
if (v > 0 && s[p] <= 'b') r |= dfs2(u, v - 1, w, nxt[p][1]);
if (r) return 1;
if (w > 0 && s[p] <= 'c') r |= dfs2(u, v, w - 1, nxt[p][2]);
if (r) return 1;
return r = 0;
}
bool checkp(int u, int v, int w, int d) {
s[d] = 0;
for (int i = 0; i < d; i++) {
bool cmp = 0;
for (int j = 0; j < d - i; j++)
if (s[j] != s[i + j]) {
if (s[j] > s[i + j]) cmp = 1;
break;
}
if (cmp) return 0;
}
if (d == 0) return 1;
if (d > 1) nxt[0][s[0] - 'a'] = 1;
for (int i = 1; i < d; i++) {
if (i == 1)
fail[i] = 0;
else
fail[i] = nxt[fail[i - 1]][s[i] - 'a'];
for (int j = 0; j < 3; j++) nxt[i][j] = nxt[fail[i]][j];
if (i + 1 != d) nxt[i][s[i] - 'a'] = i + 1;
}
fail[d] = nxt[fail[d - 1]][s[d] - 'a'];
T++;
return dfs2(u, v, w, fail[d]);
}
bool check(int d) {
for (int i = 0; i < d; i++) {
bool cmp = 0;
for (int j = 0; j < d; j++)
if (s[j] != s[(i + j) % d]) {
if (s[j] > s[(i + j) % d]) cmp = 1;
break;
}
if (cmp) return 0;
}
return 1;
}
void dfs(int u, int v, int w, int d) {
if (!checkp(u, v, w, d)) return;
if (u == 0 && v == 0 && w == 0) {
if (check(d)) {
puts(s);
exit(0);
}
} else {
if (w > 0) s[d] = 'c', dfs(u, v, w - 1, d + 1);
if (v > 0) s[d] = 'b', dfs(u, v - 1, w, d + 1);
if (u > 0) s[d] = 'a', dfs(u - 1, v, w, d + 1);
}
}
int main() {
scanf("%d%d%d", &x, &y, &z);
dfs(x, y, z, 0);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string res = "";
vector<string> v;
void change(int z, int y, int x) {
vector<string> s;
for (int i = (int)v.size() - 1; i >= 0; i--) {
string temp = v[i];
if (x > 0) {
x--;
temp += 'a';
} else if (y > 0) {
y--;
temp += 'b';
} else if (z > 0) {
z--;
temp += 'c';
}
s.push_back(temp);
}
v = s;
return;
}
void solve(int x, int y, int z, int tot) {
if (tot == 0) {
if (x > 0) {
res += 'a';
for (int i = 0; i < x; i++) {
v.push_back("a");
}
solve(0, y, z, x);
} else if (y > 0) {
res += 'b';
for (int i = 0; i < y; i++) {
v.push_back("b");
}
solve(x, 0, z, y);
} else {
res += 'c';
for (int i = 0; i < z; i++) {
v.push_back("c");
}
solve(x, y, 0, z);
}
} else {
if (tot <= z) {
res += 'c';
solve(x, y, z - tot, tot);
change(tot, 0, 0);
} else if (tot <= y + z) {
res += 'b';
int aux = tot;
int used = y >= aux ? aux : y;
aux -= used;
int used2 = z >= aux ? aux : z;
change(used2, used, 0);
solve(x, y - used, z - used2, tot);
} else if (tot <= x + y + z) {
res += 'a';
int aux = tot;
int used = x >= aux ? aux : x;
aux -= used;
int used2 = y >= aux ? aux : y;
aux -= used2;
int used3 = z >= aux ? aux : z;
change(used3, used2, used);
solve(x - used, y - used2, z - used3, tot);
} else {
for (int i = (int)v.size() - 1; i >= 0; i--) {
if (z > 0) {
v[i] += 'c';
z--;
} else if (y > 0) {
v[i] += 'b';
y--;
} else if (x > 0) {
v[i] += 'a';
x--;
}
}
}
}
return;
}
int main(void) {
int x, y, z;
scanf(" %d %d %d", &x, &y, &z);
solve(x, y, z, 0);
for (int i = 0; i < (int)v.size(); i++) {
cout << v[i];
}
cout << '\n';
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string ans;
void dfs(int a, int b, int c, string aa, string bb, string cc) {
string nowa, nowb, nowc;
if (a == 0) {
dfs(b, c, 0, bb, cc, "");
}
if ((b == 0) && (c == 0)) {
int i;
for (i = 0; i < a; i++) {
ans += aa;
}
return;
}
nowa = aa;
int j;
for (j = 0; j < c / a; j++) {
nowa += cc;
}
int newc = c % a;
nowc = nowa + cc;
a -= newc;
for (j = 0; j < b / a; j++) {
nowa += bb;
}
int newb = b % a;
nowb = nowa + bb;
a -= newb;
dfs(a, newb, newc, nowa, nowb, nowc);
}
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
dfs(a, b, c, "a", "b", "c");
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f2f1f0f;
const long long LINF = 1ll * INF * INF;
const int MAX_N = 1e2;
int N, Ns[3], Now[MAX_N], Ans[MAX_N], AnsN[3];
int main() {
cin >> Ns[0] >> Ns[1] >> Ns[2];
for (int k = 0; k < 3; k++) N += Ns[k];
for (int k = 0; k < 3; k++) AnsN[k] = Ns[k];
for (int s = 0; s < N; s++) {
bool isFinish = false;
for (int o = 2; o >= 0; o--)
if (isFinish == false && AnsN[o] > 0) {
bool isCan = true;
Ans[s] = o;
int cnt[3];
for (int k = 0; k < 3; k++) cnt[k] = Ns[k];
int en = N / (s + 1) * (s + 1);
for (int i = 0; i < N; i++) {
int is = i % (s + 1);
bool findWell = false;
for (int k = Ans[is]; k < 3; k++) {
if (cnt[k] > 0) {
cnt[k]--, Now[i] = k;
findWell = true;
break;
}
}
if (findWell == false) isCan = false;
}
if (isCan) {
for (int i = en; i < N; i++) {
for (int j = 0; j < s + 1; j++) {
if (Now[j] < Now[(i + j) % N]) {
break;
} else if (Now[j] > Now[(i + j) % N]) {
isCan = false;
break;
} else
continue;
}
}
}
if (isCan) isFinish = true, AnsN[o]--;
}
}
for (int i = 0; i < N; i++) printf("%c", Ans[i] + 'a');
puts("");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | $/=$";@_=sort(@_,(a)x<>,(b)x<>,(c)x<>)while$#_&&!($_[0].=pop@_);print@_ |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
bool chkmax(T& a, T b) {
return a < b ? a = b, 1 : 0;
}
template <typename T>
bool chkmin(T& a, T b) {
return a > b ? a = b, 1 : 0;
}
const int N = 100000;
const int oo = 0x3f3f3f3f;
template <typename T>
T read() {
T n(0), f(1);
char ch = getchar();
for (; !isdigit(ch); ch = getchar())
if (ch == '-') f = -1;
for (; isdigit(ch); ch = getchar()) n = n * 10 + ch - 48;
return n * f;
}
int A, B, C;
string solve(int len) {
string str[55];
for (int i = 1; i <= len; ++i) {
for (int j = 1; j <= A / len + (A % len >= i); ++j) str[i] += "a";
}
int _len = A % len;
if (_len == 0) _len = len;
for (int i = 1; i <= _len; ++i) {
for (int j = 1; j <= C / _len + (C % _len >= i); ++j) str[i] += "c";
}
int __len = C % _len;
if (__len == 0) __len = _len;
for (int i = 1; i <= __len; ++i) {
for (int j = 1; j <= B / __len + (B % __len >= i); ++j) str[i] += "b";
}
string res;
for (int i = 1; i <= len; ++i) res = res + str[i];
return res;
}
int main() {
cin >> A >> B >> C;
string res;
for (int i = 1; i <= A + B + C; ++i) res = res + "0";
for (int i = 1; i <= A; ++i) {
chkmax(res, solve(i));
}
cout << res << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
int main(void) {
scanf("%d%d%d", &x, &y, &z);
deque<string> ss;
deque<string> ss2;
string ans = "";
if (x == 0 && y == 0) {
for (int i = 0; i < z; i++) {
ans += 'c';
}
cout << ans << endl;
return 0;
}
if (x == 0) {
for (int i = 0; i < y; i++) {
ss.push_back("b");
}
int now = 0;
for (int i = 0; i < z; i++) {
ss[now] += 'c';
now = (now + 1) % y;
}
sort(ss.begin(), ss.end());
sort(ss2.begin(), ss2.end());
int fl = 0;
while (ss.size()) {
if (fl == 0) {
string st = ss[0];
ss.pop_front();
ans += st;
} else {
string st = ss[ss.size() - 1];
ss.pop_back();
ans += st;
}
fl = 1 - fl;
}
fl = 1;
while (ss2.size()) {
if (fl == 0) {
string st = ss2[0];
ss2.pop_front();
ans += st;
} else {
string st = ss2[ss2.size() - 1];
ss2.pop_back();
ans += st;
}
fl = 1 - fl;
}
cout << ans << endl;
return 0;
}
for (int i = 0; i < x; i++) {
ss.push_back("a");
}
int now = 0;
for (int i = 0; i < z; i++) {
ss[now] += 'c';
now = (now + 1) % x;
}
for (int i = 0; i < y; i++) {
ss[now] += 'b';
now = (now + 1) % x;
}
for (int i = 0; i < now; i++) {
ss2.push_back(ss[0]);
ss.pop_front();
}
sort(ss.begin(), ss.end());
sort(ss2.begin(), ss2.end());
int fl = 0;
while (ss.size()) {
if (fl == 0) {
string st = ss[0];
ss.pop_front();
ans += st;
} else {
string st = ss[ss.size() - 1];
ss.pop_back();
ans += st;
}
fl = 1 - fl;
}
fl = 1;
while (ss2.size()) {
if (fl == 0) {
string st = ss2[0];
ss2.pop_front();
ans += st;
} else {
string st = ss2[ss2.size() - 1];
ss2.pop_back();
ans += st;
}
fl = 1 - fl;
}
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
int main(void) {
scanf("%d%d%d", &x, &y, &z);
deque<string> ss;
string ans = "";
if (x == 0 && y == 0) {
for (int i = 0; i < z; i++) {
ans += 'c';
}
cout << ans << endl;
}
if (x == 0) {
for (int i = 0; i < y; i++) {
ss.push_back("b");
}
int now = 0;
for (int i = 0; i < z; i++) {
ss[now] += 'c';
now = (now + 1) % y;
}
sort(ss.begin(), ss.end());
int fl = 0;
for (int i = 0; i < y; i++) {
if (fl == 0) {
string st = ss[0];
ss.pop_front();
ans += st;
} else {
string st = ss[ss.size() - 1];
ss.pop_back();
ans += st;
}
fl = 1 - fl;
}
cout << ans << endl;
return 0;
}
for (int i = 0; i < x; i++) {
ss.push_back("a");
}
int now = 0;
for (int i = 0; i < z; i++) {
ss[now] += 'c';
now = (now + 1) % x;
}
for (int i = 0; i < y; i++) {
ss[now] += 'b';
now = (now + 1) % x;
}
sort(ss.begin(), ss.end());
int fl = 0;
for (int i = 0; i < x; i++) {
if (fl == 0) {
string st = ss[0];
ss.pop_front();
ans += st;
} else {
string st = ss[ss.size() - 1];
ss.pop_back();
ans += st;
}
fl = 1 - fl;
}
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int X, Y, Z;
string make(int X, int Y, int Z) {
if (X == 0 && Y == 0 && Z == 0) return "";
string s = make(X / 2, Y / 2, Z / 2);
vector<string> v;
v.push_back(s);
v.push_back(s);
if (X % 2 == 1) {
v.push_back("a");
}
if (Y % 2 == 1) {
v.push_back("b");
}
if (Z % 2 == 1) {
v.push_back("c");
}
sort(v.begin(), v.end());
while (v.size() != 1) {
vector<string> vv;
for (int i = 0; i < (v.size() - 1); i++) {
if (i == 0) {
vv.push_back(v[0] + v[v.size() - 1]);
} else {
vv.push_back(v[i]);
}
}
sort(vv.begin(), vv.end());
swap(v, vv);
}
return v[0];
}
int main() {
cin >> X >> Y >> Z;
cout << make(X, Y, Z) << endl;
return (0);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
bool chkmax(T& a, T b) {
return a < b ? a = b, 1 : 0;
}
template <typename T>
bool chkmin(T& a, T b) {
return a > b ? a = b, 1 : 0;
}
const int N = 100000;
const int oo = 0x3f3f3f3f;
template <typename T>
T read() {
T n(0), f(1);
char ch = getchar();
for (; !isdigit(ch); ch = getchar())
if (ch == '-') f = -1;
for (; isdigit(ch); ch = getchar()) n = n * 10 + ch - 48;
return n * f;
}
int A, B, C;
string solve(int len) {
string str[55];
for (int i = 1; i <= len; ++i) {
for (int j = 1; j <= A / len + (A % len >= i); ++j) str[i] += "a";
}
int _len = A % len;
if (_len == 0) _len = len;
for (int i = 1; i <= _len; ++i) {
for (int j = 1; j <= C / _len + (C % _len >= i); ++j) str[i] += "c";
}
int __len = C % _len;
if (__len == 0) __len = _len;
for (int i = 1; i <= __len; ++i) {
for (int j = 1; j <= B / __len + (B % __len >= i); ++j) str[i] += "b";
}
string res;
for (int i = 1; i <= len; ++i) res = res + str[i];
return res;
}
int main() {
cin >> A >> B >> C;
string res;
for (int i = 1; i <= A + B + C; ++i) res = res + "0";
for (int i = 1; i <= A + B + C; ++i) {
chkmax(res, solve(i));
}
cout << res << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline bool chkmin(T &a, const T &b) {
return a > b ? a = b, 1 : 0;
}
template <typename T>
inline bool chkmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
}
const int oo = 0x3f3f3f3f;
const int maxn = 60;
int a, b, c;
int main() {
scanf("%d%d%d", &a, &b, &c);
if (b + c <= a) {
for (int i = (0), i_end_ = (a - b - c); i < i_end_; ++i) {
putchar('a');
}
for (int i = (0), i_end_ = (c); i < i_end_; ++i) putchar('a'), putchar('c');
for (int i = (0), i_end_ = (b); i < i_end_; ++i) putchar('a'), putchar('b');
return 0;
}
do {
putchar('a');
static bool f[maxn + 5][maxn + 5][maxn + 5];
memset(f, 0, sizeof f);
f[a][b][c] = 1;
while (1) {
static bool nxt[maxn + 5][maxn + 5][maxn + 5];
memset(nxt, 0, sizeof nxt);
bool ok = 0;
for (int i = (0), i_end_ = (a + 1); i < i_end_; ++i)
for (int j = (0), j_end_ = (b + 1); j < j_end_; ++j)
for (int k = (0), k_end_ = (c + 1); k < k_end_; ++k)
if (f[i][j][k]) {
if (k >= i) {
ok = 1;
nxt[i][j][k - i] = 1;
}
}
if (ok) {
memcpy(f, nxt, sizeof f);
putchar('c');
--c;
} else {
ok = 0;
for (int i = (0), i_end_ = (a + 1); i < i_end_; ++i)
for (int j = (0), j_end_ = (b + 1); j < j_end_; ++j)
for (int k = (0), k_end_ = (c + 1); k < k_end_; ++k)
if (f[i][j][k]) {
for (int l = (0), l_end_ = (min(i, j) + 1); l < l_end_; ++l)
if (l + k >= i) {
ok = 1;
nxt[l][j - l][k - (i - l)] = 1;
}
}
if (ok) {
memcpy(f, nxt, sizeof f);
putchar('b');
--b;
} else
break;
}
}
} while (--a);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main() {
int X, Y, Z;
scanf("%d %d %d", &X, &Y, &Z);
if (X == 0 && Y == 0) {
printf("%s\n", std::string(Z, 'c').c_str());
return 0;
} else if (Y == 0 && Z == 0) {
printf("%s\n", std::string(X, 'a').c_str());
return 0;
} else if (Z == 0 && X == 0) {
printf("%s\n", std::string(Y, 'b').c_str());
return 0;
}
if (X == 0 || Y == 0 || Z == 0) {
char c, d;
if (X == 0) {
c = 'b', d = 'c';
X = Y, Y = Z;
} else if (Y == 0) {
c = 'a', d = 'c';
Y = Z;
} else {
c = 'a', d = 'b';
}
std::string unit(1, c);
unit += std::string(Y / X, d);
std::vector<std::string> ss(X, unit);
if (Y % X) {
int s = (Y %= X);
for (int i = ss.size() - 1; Y; i -= X / s) {
ss[i] += d;
--Y;
}
}
for (const std::string &s : ss) printf("%s", s.c_str());
printf("\n");
return 0;
}
return 1;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | include<set>
#include<cstdio>
#include<cctype>
#include<string>
inline int getint()
{
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
int main()
{
std::multiset<std::string> set;
for(register int i=getint();i;i--) set.insert("a");
for(register int i=getint();i;i--) set.insert("b");
for(register int i=getint();i;i--) set.insert("c");
while(set.size()>1) {
std::string s=*set.begin(),t=*set.rbegin();
set.erase(set.lower_bound(s));
set.erase(set.lower_bound(t));
set.insert(s+t);
}
printf("%s\n",(*set.begin()).c_str());
return 0;
} |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
multiset<string> set;
int a, b, c;
int main() {
cin >> a >> b >> c;
for(int i = 1; i <= a; i--) {
set.insert("a");
}
for(int i = 1; i <= b; i--) {
set.insert("b");
}
for(int i = 1; i <= c; i--) {
set.insert("c");
}
while((set.size()) - 1 && set.size()) {
string s = *set.begin(), t = *set.rbegin();
set.erase(set.lower_bound(s));
set.erase(set.lower_bound(t));
set.insert(s + t);
}
printf("%s\n",(*set.begin()).c_str());
return 0;
} |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string ans;
int x, y, z;
void dfs(int a, int b, int c, string x, string y, string z) {
if (a == 0)
dfs(b, c, 0, y, z, "");
else if (c == 0 && b == 0) {
for (int i = 1; i <= a; i++) ans += x;
} else {
string ra = x, rb, rc;
for (int i = 1; i <= c / a; i++) ra += z;
rc = ra + z;
a -= (c % a);
c = c % a;
for (int i = 1; i <= b / a; i++) ra += y;
rb = ra + y;
a -= (b % a);
b = b % a;
dfs(a, b, c, ra, rb, rc);
}
}
int main() {
scanf("%d%d%d", &x, &y, &z);
ans.clear();
dfs(x, y, z, "a", "b", "c");
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c;
char sa[55], sb[55], sc[55];
char ua[55], ub[55], uc[55];
int pa, pb, pc;
void solve() {
if (a == 0 && b == 0) {
for (int i = (1); i <= (c); i++) printf("%s", sc);
printf("\n");
return;
} else if (a == 0) {
int good = c % b, bad = b - c % b;
for (int i = (1); i <= (b); i++) {
printf("%s", sb);
if (i * bad / b != (i - 1) * bad / b) {
for (int j = (1); j <= (c / b); j++) printf("%s", sc);
} else {
for (int j = (1); j <= (c / b + 1); j++) printf("%s", sc);
}
}
printf("\n");
return;
} else {
if (b == 0) {
strcpy(sb, sa);
b = a, a = 0;
solve();
return;
} else if (c == 0) {
strcpy(sc, sb);
strcpy(sb, sa);
c = b, b = a, a = 0;
solve();
return;
}
pa = pb = pc = 0;
strcpy(ua, sa);
pa += strlen(sa);
strcpy(ub, sa);
pb += strlen(sa);
strcpy(uc, sa);
pc += strlen(sa);
int na, nb, nc, nab;
int iter = c / a + (c % a > 0);
for (int i = (1); i <= (iter); i++) {
if (i < iter || c % a == 0) {
strcpy(ua + pa, sc);
pa += strlen(sc);
}
if (i < iter || c % a == 0) {
strcpy(ub + pb, sc);
pb += strlen(sc);
}
strcpy(uc + pc, sc);
pc += strlen(sc);
}
nc = c % a;
nab = a - nc;
iter = b / nab + (b % nab > 0);
for (int i = (1); i <= (iter); i++) {
if (i < iter || b % nab == 0) {
strcpy(ua + pa, sb);
pa += strlen(sb);
}
strcpy(ub + pb, sb);
pb += strlen(sb);
}
nb = b % nab;
na = nab - nb;
strcpy(sa, ua);
a = na;
strcpy(sb, ub);
b = nb;
strcpy(sc, uc);
c = nc;
solve();
}
}
int main() {
scanf("%d %d %d", &a, &b, &c);
sa[0] = 'a';
sb[0] = 'b';
sc[0] = 'c';
solve();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string solve(int x, int y, int z) {
if (y == 0 && z == 0) {
string ans;
for (int u = 1; u <= x; u++) ans += 'a';
return ans;
}
if (x == 0) {
string ans = solve(y, z, 0);
for (int u = 0; u < ans.size(); u++) ans[u]++;
return ans;
}
if (z == 0) {
string ans = solve(x, 0, y);
for (int u = 0; u < ans.size(); u++)
if (ans[u] == 'c') ans[u] = 'b';
return ans;
}
if (z >= x) {
string str = solve(x, y, z - x), ans;
for (int u = 0; u < str.size(); u++) {
ans += str[u];
if (str[u] == 'a') ans += 'c';
}
return ans;
} else {
string str = solve(x - z, z, y), ans;
for (int u = 0; u < str.size(); u++) {
if (str[u] == 'a')
ans += 'a';
else if (str[u] == 'b') {
ans += 'a';
ans += 'c';
} else
ans += 'c';
}
return ans;
}
}
int main() {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
cout << solve(x, y, z);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<cstdio>
int main(){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
int b[x]={};
int c[x]={};
if(x!=0){
if(x>y+z){
for(int i=x-1;i>=x-y;i--){
b[i]++;
}
for(int i=x-y-1;i>=x-y-z;i--){
c[i]++;
}
}else if(x==y+z){
for(int i=x-1;i>=x-z;i--){
c[i]++;
}
for(int i=x-z-1;i>=0;i--){
b[i]++;
}
}else{
if(x<=z){
if(z%x==0){
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=0;i<x;i++){
b[i]+=y/x;
}
for(int i=x-1;i>=x-y%x;i--){
b[i]++;
}
}else{
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=x-1;i>=x-z%x;i--){
c[i]++;
}
int k=x-z%x;
for(int i=0;i<k;i++){
b[i]+=y/k;
}
for(int i=0;i<y%k;i--){
b[i]++;
}
}
}else{
for(int i=x-1;i>=x-z;i--){
c[i]++;
}
int k=x-z;
for(int i=0;i<k;i++){
b[i]+=x/k;
}
for(int i=k-1;i>=k-x%k;i--){
b[i]++;
}
}
}
for(int i=0;i<x;i++){
printf("a");
for(int j=0;j<c[i];j++){
printf("c");
}
for(int j=0;j<b[i];j++){
printf("b");
}
}
}else if(y!=0){
if(z==0){
for(int i=0;i<y;i++){
printf("b");
}
}
if(y>z){
for(int i=0;i<z;i++){
printf("c");
for(int j=0;j<y/z;j++){
printf("b");
}
if(i<y%z)printf("c");
}
}else{
for(int i=0;i<z;i++){
printf("c");
if(i<y)printf("b");
}
}
}else{
for(int i=0;i<z;i++){
printf("c");
}
}
if(x<y && z==0 && x!=0){
for(int i=0;i<y-x;i++){
printf("b");
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long fastpow(int a, int b, int MOD) {
long long x = 1, y = a;
while (b > 0) {
if (b % 2 == 1) {
x = (x * y) % MOD;
}
y = (y * y) % MOD;
b /= 2;
}
return x;
}
long long InverseEuler(int n, int MOD) { return fastpow(n, MOD - 2, MOD); }
long long f[300000];
bool init;
long long C(int n, int r, int MOD) {
if (!init) {
init = 1;
f[0] = 1;
for (int i = 1; i < 300000; i++) f[i] = (f[i - 1] * i) % MOD;
}
return (f[n] *
((InverseEuler(f[r], MOD) * InverseEuler(f[n - r], MOD)) % MOD)) %
MOD;
}
int N;
string S = "";
vector<int> res;
vector<char> tok;
string solve(int A, int B, int C) {
string res = "";
if (A + B + C == max(A, max(B, C))) {
for (int i = 0; i < A; i++) res += "a";
for (int i = 0; i < C; i++) res += "c";
for (int i = 0; i < B; i++) res += "b";
return res;
}
if (A == 1 || B == 1 || C == 1) {
if (C == 1 && A >= 2) {
return solve(A - 1, B, 0) + "ac";
}
if (C == 1 && B != 1) {
return solve(A, B, 0) + 'c';
}
if (C != 1 && B == 1) {
return solve(A, 0, C) + 'b';
}
for (int i = 0; i < A; i++) res += "a";
for (int i = 0; i < C; i++) res += "c";
for (int i = 0; i < B; i++) res += "b";
return res;
}
int wut = 0;
int wutc = 0;
if (A % 2) wut = 1, wutc = 1;
if (A == 0) wut = 1;
int ka = (A + 1) / 2;
int kb = (B + wut) / 2;
int kc = (C + wutc) / 2;
return solve(ka, kb, kc) + solve(A - ka, B - kb, C - kc);
}
int main() {
int A, B, C;
std::ios::sync_with_stdio(false);
cin >> A >> B >> C;
string res = solve(A, B, C);
cout << res << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long inf = mod * mod;
const long long d2 = 500000004;
const double EPS = 1e-6;
const double PI = acos(-1.0);
int ABS(int a) { return max(a, -a); }
long long ABS(long long a) { return max(a, -a); }
int C[1100];
int B[1100];
int ad = 0;
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
while (a == 0) {
a = b;
b = c;
ad++;
}
for (int i = 0; i < c; i++) {
C[i % a]++;
}
if (C[0] != C[a - 1]) {
int f = 0;
for (int i = 0; i < a; i++)
if (C[a - 1] == C[i]) f++;
for (int i = 0; i < b; i++) {
B[a - f + i % f]++;
}
} else {
for (int i = 0; i < b; i++) {
B[i % a]++;
}
}
for (int i = a - 1; i >= 0; i--) {
printf("%c", 'a' + ad);
for (int j = 0; j < C[i]; j++) printf("%c", 'c' + ad);
for (int j = 0; j < B[i]; j++) printf("%c", 'b' + ad);
}
printf("\n");
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int duval(string s) {
int n = s.length();
s += s;
int i = 0, ans = 0;
while (i < n) {
ans = i;
int j = i + 1, k = i;
while (j < n + n && s[k] <= s[j]) {
if (s[k] < s[j]) {
k = i;
} else {
k++;
}
j++;
}
while (i <= k) {
i += j - k;
}
}
return ans;
}
string res;
void solve(vector<pair<string, int> > &v, const string &cur) {
bool any = false;
for (auto &p : v) {
if (p.second == 0) {
continue;
}
any = true;
p.second--;
solve(v, cur + p.first);
p.second++;
}
if (!any) {
int pos = duval(cur);
string shift = cur.substr(pos) + cur.substr(0, pos);
res = max(res, shift);
}
}
int main() {
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
bool flag = false;
if (a == 0) {
flag = true;
a = b;
b = c;
c = 0;
}
res = "";
if (a == 0) {
res = string(b, 'b');
} else {
vector<string> put(a, "a");
for (int i = 0; i < c; i++) {
put[i % a] += 'c';
}
int ptr = c % a;
for (int i = 0; i < b; i++) {
put[ptr] += 'b';
ptr++;
if (ptr == a) {
ptr = c % a;
}
}
map<string, int> mp;
for (auto &s : put) {
mp[s]++;
}
vector<pair<string, int> > v;
for (auto &p : mp) {
v.push_back(p);
}
res = "";
solve(v, "");
}
if (flag) {
for (char &c : res) {
c++;
}
}
cout << res << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<char> vec[10010];
int main() {
int x, y, z, p;
scanf("%d%d%d", &x, &y, &z);
if (x == 0) {
if (y == 0) {
for (int i = 1; i <= z; i++) printf("c");
printf("\n");
return 0;
} else {
p = 1;
for (int i = 1; i <= z; i++) {
vec[p].push_back('c');
if (p == y)
p = 1;
else
p++;
}
for (int i = 1; i <= y; i++) {
printf("b");
for (int j = 0; j < (int)vec[i].size(); j++) printf("c");
}
}
return 0;
}
p = x;
for (int i = 1; i <= z; i++) {
vec[p].push_back('c');
p--;
if (p == 0) p = x;
}
if (p == x) {
for (int i = 1; i <= y; i++) {
vec[p].push_back('b');
p--;
if (p == 0) p = x;
}
for (int i = 1; i <= x; i++) {
printf("a");
for (int j = 0; j < (int)vec[i].size(); j++) printf("%c", vec[i][j]);
}
return 0;
} else {
int zt = p;
for (int i = 1; i <= y; i++) {
vec[p].push_back('b');
p--;
if (p == 0) p = zt;
}
for (int i = 1; i <= x; i++) {
printf("a");
for (int j = 0; j < (int)vec[i].size(); j++) printf("%c", vec[i][j]);
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | X, Y, Z = map(int, input().split())
d = []
if X > 0:
if (Y+Z) > 0:
j = max(X//(Y+Z), 1)
else:
j = 1
for _ in range(X//j):
d.append("a"*j)
for i in range(X-j*(X//j)):
d[i] = d[i] + "a"
for i in range(len(d)):
d[i] = d[i] + "c"*(Z//X)
for i in range(Z-(Z//X)*X):
d[len(d)-i-1] = d[len(d)-i-1] + "c"
for i in range(len(d)):
d[i] = d[i] + "b"*(Y//X)
for i in range(Y-(Y//X)*X):
d[len(d)-i-1] = d[len(d)-i-1] + "b"
elif Y > 0:
if (Z) > 0:
j = max(Y//Z, 1)
else:
j = 1
for _ in range(Y//j):
d.append("b"*j)
for i in range(Y-j*(Y//j)):
d[i] = d[i] + "b"
for i in range(len(d)):
d[i] = d[i] + "c"*(Z//Y)
for i in range(Z-(Z//Y)*Y):
d[len(d)-i-1] = d[len(d)-i-1] + "c"
else:
for _ in range(Z):
d.append("c")
print("".join(d)) |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | $/=$";@_=sort(@_,(a)x<>,(b)x<>,(c)x<>),$_[0].=pop@_ while$#_;print@_ |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:336777216")
using namespace std;
const int MAXN = 100 + 2;
int A, B, C, N;
int L;
char Fill[MAXN];
int Tmp[MAXN * 2];
int Check(int ta, int tb, int tc, string S) {
int a, b, c;
int Len = S.length();
for (int i = 0; i < Len; i++) Tmp[i] = S[i];
a = ta;
b = tb;
c = tc;
if (S[0] == 'b' && a > 0) return 0;
if (S[0] == 'c' && (a > 0 || b > 0)) return 0;
if (a > 0 && b == 0 && c == 0)
for (int i = Len; i < N; i++) Tmp[i] = 'a';
else if (b > 0 && a == 0 && c == 0)
for (int i = Len; i < N; i++) Tmp[i] = 'b';
else
for (int i = Len; i < N; i++) Tmp[i] = 'c';
for (int i = 0; i < N; i++) Tmp[i + N] = Tmp[i];
for (int k = 1; k < Len; k++)
for (int i = 0; i < N; i++)
if (Tmp[i] != Tmp[k + i]) {
if (Tmp[i] > Tmp[k + i]) return 0;
break;
}
return 1;
}
void Update(string& To, string From) {
if (To == "" || To > From) To = From;
}
string DP[MAXN][MAXN][MAXN];
int Test() {
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) DP[i][j][k] = "";
DP[0][0][0] = (string)Fill;
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) {
if (DP[i][j][k].length() != i + j + k + L) continue;
string tmp;
if (i < A) {
tmp = DP[i][j][k] + 'a';
if (Check(A - i - 1, B - j, C - k, tmp)) Update(DP[i + 1][j][k], tmp);
}
if (j < B) {
tmp = DP[i][j][k] + 'b';
if (Check(A - i, B - j - 1, C - k, tmp)) Update(DP[i][j + 1][k], tmp);
}
if (k < C) {
tmp = DP[i][j][k] + 'c';
if (Check(A - i, B - j, C - k - 1, tmp)) Update(DP[i][j][k + 1], tmp);
}
}
return (DP[A][B][C].length() == A + B + C + L);
}
void Work() {
scanf("%d%d%d", &A, &B, &C);
N = A + B + C;
for (L = 1; L <= N; L++) {
Fill[L] = 0;
if (C > 0) {
Fill[L - 1] = 'c';
C--;
if (Test()) continue;
C++;
}
if (B > 0) {
B--;
Fill[L - 1] = 'b';
if (Test()) continue;
B++;
}
A--;
Fill[L - 1] = 'a';
}
printf("%s\n", Fill);
}
int main() {
Work();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c;
char sa[55], sb[55], sc[55];
char ua[55], ub[55], uc[55];
int pa, pb, pc;
void solve() {
if (a == 0 && b == 0) {
for (int i = (1); i <= (c); i++) printf("%s", sc);
printf("\n");
return;
} else if (a == 0) {
int good = c % b, bad = b - c % b;
for (int i = (1); i <= (b); i++) {
printf("%s", sb);
if (i * bad / b != (i - 1) * bad / b) {
for (int j = (1); j <= (c / b); j++) printf("%s", sc);
} else {
for (int j = (1); j <= (c / b + 1); j++) printf("%s", sc);
}
}
printf("\n");
return;
} else {
if (b == 0) {
strcpy(sb, sa);
b = a, a = 0;
solve();
return;
} else if (c == 0) {
strcpy(sc, sb);
strcpy(sb, sa);
c = b, b = a, a = 0;
solve();
return;
}
pa = pb = pc = 0;
strcpy(ua, sa);
pa += strlen(sa);
strcpy(ub, sa);
pb += strlen(sa);
strcpy(uc, sa);
pc += strlen(sa);
int na, nb, nc, nab;
int iter = c / a + (c % a > 0);
if (c % a == 0) {
for (int i = (1); i <= (iter); i++) {
strcpy(ua + pa, sc);
pa += strlen(sc);
strcpy(ub + pb, sc);
pb += strlen(sc);
strcpy(uc + pc, sc);
pc += strlen(sc);
}
} else {
for (int i = (1); i <= (iter); i++) {
if (i < iter) {
strcpy(ua + pa, sc);
pa += strlen(sc);
}
if (i < iter) {
strcpy(ub + pb, sc);
pb += strlen(sc);
}
strcpy(uc + pc, sc);
pc += strlen(sc);
}
}
nc = c % a;
nab = a - nc;
iter = b / nab + (b % nab > 0);
if (b % nab == 0) {
for (int i = (1); i <= (iter); i++) {
strcpy(ua + pa, sb);
pa += strlen(sb);
strcpy(ub + pb, sb);
pb += strlen(sb);
}
} else {
for (int i = (1); i <= (iter); i++) {
if (i < iter) {
strcpy(ua + pa, sb);
pa += strlen(sb);
}
strcpy(ub + pb, sb);
pb += strlen(sb);
}
}
nb = b % nab;
na = nab - nb;
strcpy(sa, ua);
a = na;
strcpy(sb, ub);
b = nb;
strcpy(sc, uc);
c = nc;
solve();
}
}
int main() {
scanf("%d %d %d", &a, &b, &c);
sa[0] = 'a';
sb[0] = 'b';
sc[0] = 'c';
solve();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
template <int n, class... T>
typename enable_if<(n >= sizeof...(T))>::type _ot(ostream &,
tuple<T...> const &) {}
template <int n, class... T>
typename enable_if<(n < sizeof...(T))>::type _ot(ostream &os,
tuple<T...> const &t) {
os << (n == 0 ? "" : ", ") << get<n>(t);
_ot<n + 1>(os, t);
}
template <class... T>
ostream &operator<<(ostream &o, tuple<T...> const &t) {
o << "(";
_ot<0>(o, t);
o << ")";
return o;
}
template <class T, class U>
ostream &operator<<(ostream &o, pair<T, U> const &p) {
o << "(" << p.first << ", " << p.second << ")";
return o;
}
template <class T>
ostream &operator<<(ostream &o, const stack<T> &a) {
o << "{";
for (auto tmp = a; tmp.size(); tmp.pop())
o << (a.size() == tmp.size() ? "" : ", ") << tmp.top();
o << "}";
return o;
}
template <class T,
class = typename iterator_traits<typename T::iterator>::value_type,
class = typename enable_if<!is_same<T, string>::value>::type>
ostream &operator<<(ostream &o, const T &a) {
for (auto ite = a.begin(); ite != a.end(); ++ite)
o << (ite == a.begin() ? "" : " ") << *ite;
return o;
}
string dp[51][51][51];
using P = pair<string, int>;
void sol(int x, int y, int z);
string ch(vector<P> &v) {
string res;
sort((v).begin(), (v).end());
sol(v[0].second, v[1].second, v[2].second);
string &str = dp[v[0].second][v[1].second][v[2].second];
for (auto &el : str) res += v[el - 'a'].first;
return res;
}
void sol(int x, int y, int z) {
if (dp[x][y][z] != "") return;
if (x == 0 && y == 0) {
dp[x][y][z] = string(z, 'c');
return;
}
if (y == 0 && z == 0) {
dp[x][y][z] = string(x, 'a');
return;
}
if (z == 0 && x == 0) {
dp[x][y][z] = string(y, 'b');
return;
}
string res;
vector<P> xs{
{"a", x},
{"b", y},
{"c", z},
};
if (y != 0 && z != 0) {
vector<P> v(3);
v[0] = P("a", x);
v[1] = P(y > z ? "b" : "c", abs(y - z));
v[2] = P("bc", min(y, z));
string it = ch(v);
res = max(res, it);
}
{
vector<P> v(3);
if (x > y + z) {
v[0] = P("ab", y);
v[1] = P("ac", z);
v[2] = P("a", x - y - z);
res = max(res, ch(v));
} else if (x > 0) {
v[0] = P("ac", z);
v[1] = P("ab", max(0, x - z));
int restb = y - max(0, x - z);
assert(restb >= 0);
assert(z + max(0, x - z) >= 1);
v[2] = P("b", restb);
res = max(res, ch(v));
}
}
dp[x][y][z] = res;
}
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0);
int x, y, z;
cin >> x >> y >> z;
sol(2, 1, 1);
(42);
sol(x, y, z);
cout << dp[x][y][z] << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | def work(a,b,c,A,B,C):
if A==0:
return work(b,c,'',B,C,0)
if B==0:
if C==0:
return a*A
else:
return work(a,c,'',A,C,0)
if C==0:
return work(a+b*(B/A),a+b*(B/A+1),'',A-B%A,B%A,0)
cmod = C%A
bmod = B%(A-cmod)
return work(a+c*(C/A)+b*(B/A),a+c*(C/A)+b*(B/A+1),a+c*(C/A+1),A-cmod-bmod,bmod,cmod)
if __name__ == '__main__':
s = raw_input()
a,b,c = [int(i) for i in s.split()]
print(work('a','b','c',a,b,c))
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | $/=$";$@[0].=pop@@while$#@and@@=sort@@,(a)x<>,(b)x<>,(c)x<>;print@@ |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int X, Y, Z;
cin >> X >> Y >> Z;
string res = "";
while (X > 0 || Y > 0 || Z > 0) {
if (X > 0) {
if (Y > 0 || Z > 0) {
res += 'a';
} else {
res = 'a' + res;
}
X--;
}
if (Z > 0) {
res += 'c';
Z--;
}
if (Y > 0) {
res += 'b';
Y--;
}
}
cout << res << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long fastpow(int a, int b, int MOD) {
long long x = 1, y = a;
while (b > 0) {
if (b % 2 == 1) {
x = (x * y) % MOD;
}
y = (y * y) % MOD;
b /= 2;
}
return x;
}
long long InverseEuler(int n, int MOD) { return fastpow(n, MOD - 2, MOD); }
long long f[300000];
bool init;
long long C(int n, int r, int MOD) {
if (!init) {
init = 1;
f[0] = 1;
for (int i = 1; i < 300000; i++) f[i] = (f[i - 1] * i) % MOD;
}
return (f[n] *
((InverseEuler(f[r], MOD) * InverseEuler(f[n - r], MOD)) % MOD)) %
MOD;
}
int N;
string S = "";
vector<int> res;
vector<char> tok;
string solve(int A, int B, int C) {
string res = "";
if (A + B + C == max(A, max(B, C))) {
for (int i = 0; i < A; i++) res += "a";
for (int i = 0; i < C; i++) res += "c";
for (int i = 0; i < B; i++) res += "b";
return res;
}
if (A == 1 || B == 1 || C == 1) {
if (C == 1 && B != 1) {
return solve(A, B, 0) + 'c';
}
if (C != 1 && B == 1) {
return solve(A, 0, C) + 'b';
}
for (int i = 0; i < A; i++) res += "a";
for (int i = 0; i < C; i++) res += "c";
for (int i = 0; i < B; i++) res += "b";
return res;
}
int wut = 0;
if (A == 0) wut = 1;
int ka = (A + 1) / 2;
int kb = (B + wut) / 2;
int kc = C / 2;
return solve(ka, kb, kc) + solve(A - ka, B - kb, C - kc);
}
int main() {
int A, B, C;
std::ios::sync_with_stdio(false);
cin >> A >> B >> C;
string res = solve(A, B, C);
cout << res << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<char> v[100010];
int main() {
int n, a, b, c;
while (cin >> a >> b >> c) {
if (c == 0) {
int tmp = min(b, a);
for (int i = 1; i <= tmp; ++i) {
cout << "ab";
}
for (int i = tmp + 1; i <= a; ++i) {
cout << "a";
}
for (int i = tmp + 1; i <= b; ++i) {
cout << "b";
}
cout << endl;
} else if (b == 0) {
int tmp = min(a, c);
for (int i = 1; i <= tmp; ++i) {
cout << "ac";
}
for (int i = tmp + 1; i <= a; ++i) {
cout << "a";
}
for (int i = tmp + 1; i <= c; ++i) {
cout << "c";
}
cout << endl;
} else if (a == 0) {
int tmp = min(b, c);
for (int i = 1; i <= tmp; ++i) {
cout << "bc";
}
for (int i = tmp + 1; i <= b; ++i) {
cout << "b";
}
for (int i = tmp + 1; i <= c; ++i) {
cout << "c";
}
cout << endl;
} else {
for (int i = 1; i <= a; ++i) v[i].clear();
int nm = 0;
if (c >= a) {
nm = a;
int tmp = a;
while (c--) {
v[tmp].push_back('c');
--tmp;
if (tmp == 0) tmp = a;
}
} else {
nm = c;
int tmp = nm;
while (c--) {
v[tmp].push_back('c');
--tmp;
if (tmp == 0) tmp = nm;
}
}
int tmp = nm;
while (b--) {
if (tmp == 0) tmp = nm;
v[tmp].push_back('b');
--tmp;
}
if (a % nm == 0) {
for (int i = 1; i <= nm; ++i) {
for (int j = 0; j < a / nm; ++j) cout << "a";
for (int j = 0; j < v[i].size(); ++j) {
cout << v[i][j];
}
}
} else {
for (int i = 1; i < nm; ++i) {
for (int j = 0; j < a / nm; ++j) cout << "a";
for (int j = 0; j < v[i].size(); ++j) {
cout << v[i][j];
}
}
for (int j = 0; j < a % nm; ++j) cout << "a";
for (int j = 0; j < v[nm].size(); ++j) {
cout << v[nm][j];
}
}
cout << endl;
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int A, B, C;
std::string smallestRotateString(std::string s) {
std::string result = "";
std::vector<int> indexList;
{
char smallestChar = 'z';
for (int i = 0; i < s.length(); i++) {
if (s[i] < smallestChar) smallestChar = s[i];
}
for (int i = 0; i < s.length(); i++) {
if (s[i] == smallestChar) indexList.push_back(i);
}
result += smallestChar;
}
for (int p = 1; p < s.length(); p++) {
for (int i = 0; i < indexList.size(); i++) {
indexList[i] = (indexList[i] + 1) % s.length();
}
char smallestChar = 'z';
for (int k = 0; k < indexList.size(); k++) {
int idx = indexList[k];
if (s[idx] < smallestChar) smallestChar = s[idx];
}
result += smallestChar;
std::vector<int>::iterator it = indexList.begin();
while (it != indexList.end()) {
if (s[*it] != smallestChar) {
it = indexList.erase(it);
} else
++it;
}
}
return result;
}
int main(int argc, char* argv[]) {
std::string best = "";
std::cin >> A >> B >> C;
for (int i = 0; i < A; i++) best += 'a';
for (int i = 0; i < B; i++) best += 'b';
for (int i = 0; i < C; i++) best += 'c';
for (int p = 1; p < best.length() - 1; p++) {
std::string tmp = best;
char from = tmp[p];
if (from <= 'a') {
char to = 'b';
for (int i = p + 1; i < tmp.length(); i++) {
if (tmp[i] == to) {
tmp[p] = to;
tmp[i] = from;
std::string ret = smallestRotateString(tmp);
tmp[p] = from;
tmp[i] = to;
if (best.compare(ret) < 0) {
best = ret;
}
}
}
}
if (from <= 'b') {
char to = 'c';
for (int i = p + 1; i < tmp.length(); i++) {
if (tmp[i] == to) {
tmp[p] = to;
tmp[i] = from;
std::string ret = smallestRotateString(tmp);
tmp[p] = from;
tmp[i] = to;
if (best.compare(ret) < 0) {
best = ret;
}
}
}
}
}
std::cout << best << std::endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int x, y, z;
string ans;
bool check(string s) {
int rem[3] = {x, y, z};
int p = 0;
string t = s;
for (int i = 0; i < n; i++) {
int c = t[p] - 'a', f = -1;
for (int j = c; j < 3; j++) {
if (rem[j]) {
rem[j]--;
f = j;
break;
}
}
if (f == -1) return false;
if (f > c) {
t[p] = (char)('a' + f);
t.erase(t.begin() + p + 1, t.end());
}
p++;
if (p >= t.size()) p = 0;
}
if (p != 0)
return t.substr(p) <= s;
else
return true;
}
int main(void) {
cin >> x >> y >> z;
n = x + y + z;
for (int i = 0; i < n; i++) {
for (int j = 2; j >= 0; j--) {
string s = ans + ((char)('a' + j));
if (check(s)) {
ans = s;
break;
}
}
}
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string trans(string x, string a, string b, string c) {
string ret;
for (int i = 0; i <= (int)x.length() - 1; ++i) {
if (x[i] == 'a') ret += a;
if (x[i] == 'b') ret += b;
if (x[i] == 'c') ret += c;
}
return ret;
}
void dfs(string a, string b, string c, int x, int y, int z) {
if (!y && !z) {
for (int i = 1; i <= x; ++i) cout << a;
return;
}
string s[55];
for (int i = 1; i <= x; ++i) s[i] = 'a';
for (; z;) {
for (int i = x; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
int k = x;
for (int i = 1; i <= x - 1; ++i)
if (s[i].length() != s[i + 1].length()) {
k = i;
break;
}
for (; y;) {
for (int i = k; i; --i)
if (y) {
s[i] = s[i] + 'b';
--y;
}
}
int X = 0, Y = 0, Z = 0, d[5] = {0};
for (int i = 1; i <= x - 1; ++i)
if (s[i] != s[i + 1]) {
d[++d[0]] = i;
}
d[++d[0]] = x;
if (d[0]) X = d[1];
if (d[0] > 1) Y = d[2] - d[1];
if (d[0] > 2) Z = d[3] - d[2];
dfs(trans(s[d[1]], a, b, c), trans(s[d[2]], a, b, c), trans(s[d[3]], a, b, c),
X, Y, Z);
}
int main() {
int x, y, z;
string s[55];
scanf("%d%d%d", &x, &y, &z);
if (!x && !y) {
for (int i = 1; i <= z; ++i) printf("%c", 'c');
} else if (!x) {
for (int i = 1; i <= y; ++i) s[i] = 'b';
for (; z;) {
for (int i = y; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
for (int i = 1; i <= y; ++i)
for (int j = 0; j <= (int)s[i].length() - 1; ++j) {
printf("%c", s[i][j]);
}
} else {
dfs("a", "b", "c", x, y, z);
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int X, Y, Z;
string f(int x, int y, int z) {
if (x == 0 && y == 0 && z == 0) return "";
if (x == 0) {
string ret = f(y, z, 0);
for (int i = 0; i < ret.size(); i++) ret[i]++;
return ret;
}
if (y + z == 0) {
string ret;
for (int i = 0; i < x; i++) ret.push_back('a');
return ret;
}
string ret;
int q = (x + y + z - 1) / (y + z);
int r = x % (y + z);
if (r == 0) r = y + z;
int ty = y, tz = z;
if (q > 1) {
ty -= (y + z - r);
if (ty < 0) tz += ty, ty = 0;
}
for (int i = 0; i < q; i++) ret.push_back('a');
for (int i = 0; i < tz / r; i++) ret.push_back('c');
for (int i = 0; i < ty / (r - tz % r); i++) ret.push_back('b');
return ret += f(x - q, y - ty / (r - tz % r), z - tz / r);
}
int main() {
cin >> X >> Y >> Z;
cout << f(X, Y, Z);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
struct dice {
mt19937 mt;
dice() {
random_device rd;
mt = mt19937(rd());
}
int operator()(int x) { return this->operator()(0, x - 1); }
int operator()(int x, int y) {
uniform_int_distribution<int> dist(x, y);
return dist(mt);
}
} dc;
string f(string s) {
int N = s.length();
string mi = "z";
for (int t = 0; t < N; t++) {
mi = min(mi, s);
rotate(s.begin(), s.begin() + 1, s.end());
}
return mi;
}
string solve(int A, int B, int C) {
string s;
for (int t = 0; t < A; t++) s.push_back('a');
for (int t = 0; t < B; t++) s.push_back('b');
for (int t = 0; t < C; t++) s.push_back('c');
shuffle(s.begin(), s.end(), dc.mt);
int N = s.length();
string ma = f(s);
for (int t = 0; t < 1000; t++) {
int i = dc(N), j = dc(N);
swap(s[i], s[j]);
string mi = f(s);
if (mi < ma)
swap(s[i], s[j]);
else
ma = mi;
}
return ma;
}
int main() {
int A, B, C;
cin >> A >> B >> C;
string ma = "";
for (int t = 0; t < 500; t++) ma = max(ma, solve(A, B, C));
cout << ma << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c;
char model[55];
vector<char> ans[55];
int p;
void solve() {
for (int i = (1); i <= (a); i++) ans[i].push_back('a');
int id = 1;
for (int i = (1); i <= (c); i++) {
ans[id].push_back('c');
id = id % a + 1;
}
int flag = id;
for (int i = (1); i <= (b); i++) {
ans[id].push_back('b');
id = id % a + 1;
if (id == 1 && flag > 1) id = flag;
}
for (int i = (1); i <= (a); i++) {
for (auto out : ans[i]) {
printf("%c", out);
}
}
}
int main() {
scanf("%d %d %d", &a, &b, &c);
if (a == 0 && b == 0) {
for (int i = (1); i <= (c); i++) printf("c");
} else if (a == 0) {
int boc = c / b;
model[++p] = 'b';
for (int i = (1); i <= (boc); i++) model[++p] = 'c';
c %= b;
for (int i = (1); i <= (b); i++) {
printf("%s", model + 1);
if (c > 0) {
printf("c");
c--;
}
}
} else
solve();
puts("");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<cstdio>
int main(){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
int b[x]={};
int c[x]={};
if(x!=0){
if(x>y+z){
for(int i=x-1;i>=x-y;i--){
b[i]++;
}
for(int i=x-y-1;i>=x-y-z;i--){
c[i]++;
}
}else if(x==y+z){
for(int i=x-1;i>=x-z;i--){
c[i]++;
}
for(int i=x-z-1;i>=0;i--){
b[i]++;
}
}else{
if(x<=z){
if(z%x==0){
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=0;i<x;i++){
b[i]+=y/x;
}
for(int i=x-1;i>=x-y%x;i--){
b[i]++;
}
}else{
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=x-1;i>=x-z%x;i--){
c[i]++;
}
int k=x-z%x;
for(int i=0;i<k;i++){
b[i]+=y/k;
}
for(int i=0;i<y%k;i--){
b[i]++;
}
}
}else{
for(int i=x-1;i>=x-z;i--){
c[i]++;
}
int k=x-z;
for(int i=0;i<k;i++){
b[i]+=x/k;
}
for(int i=k-1;i>=k-x%k;i--){
b[i]++;
}
}
}
for(int i=0;i<x;i++){
printf("a");
for(int j=0;j<c[i];j++){
printf("c");
}
for(int j=0;j<b[i];j++){
printf("b");
}
}
}else if(y!=0){
if(z==0){
for(int i=0;i<y;i++){
printf("b");
}
}
if(y>z){
for(int i=0;i<z;i++){
printf("c");
for(int j=0;j<y/z;j++){
printf("b");
}
if(i<y%z)printf("c");
}
}else{
for(int i=0;i<z;i++){
printf("c");
if(i<y)printf("b");
}
}
}else{
for(int i=0;i<z;i++){
printf("c");
}
}
if(z==0){
for(int i=0;i<y-x;i++){
printf("b");
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string res = "";
vector<string> v;
void change(int z, int y, int x) {
vector<string> s;
for (int i = 0; i < (int)v.size(); i++) {
string temp = v[i];
if (x > 0) {
x--;
temp += 'a';
} else if (y > 0) {
y--;
temp += 'b';
} else if (z > 0) {
z--;
temp += 'c';
}
s.push_back(temp);
}
v = s;
return;
}
void solve(int x, int y, int z, int tot) {
if (tot == 0) {
if (x > 0) {
res += 'a';
for (int i = 0; i < x; i++) {
v.push_back("a");
}
solve(0, y, z, x);
} else if (y > 0) {
res += 'b';
for (int i = 0; i < y; i++) {
v.push_back("b");
}
solve(x, 0, z, y);
} else {
res += 'c';
for (int i = 0; i < z; i++) {
v.push_back("c");
}
solve(x, y, 0, z);
}
} else {
if (tot <= z) {
res += 'c';
solve(x, y, z - tot, tot);
change(tot, 0, 0);
} else if (tot <= y + z) {
res += 'b';
int aux = tot;
int used = y >= aux ? aux : y;
aux -= used;
int used2 = z >= aux ? aux : z;
change(used2, used, 0);
solve(x, y - used, z - used2, tot);
} else if (tot <= x + y + z) {
res += 'a';
int aux = tot;
int used = x >= aux ? aux : x;
aux -= used;
int used2 = y >= aux ? aux : y;
aux -= used2;
int used3 = z >= aux ? aux : z;
change(used3, used2, used);
solve(x - used, y - used2, z - used3, tot);
} else {
for (int i = (int)v.size() - 1; i >= 0; i--) {
if (z > 0) {
v[i] += 'a';
z--;
} else if (y > 0) {
v[i] += 'b';
y--;
} else if (x > 0) {
v[i] += 'c';
x--;
}
}
}
}
return;
}
int main(void) {
int x, y, z;
scanf(" %d %d %d", &x, &y, &z);
solve(x, y, z, 0);
for (int i = 0; i < (int)v.size(); i++) {
cout << v[i];
}
cout << '\n';
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
signed main() {
int x, y, z;
cin >> x >> y >> z;
vector<int> cs, bs;
if (x == 0) {
if (y == 0) {
cout << string(z, 'c') << '\n';
} else {
for (int i = 0; i < y; ++i) {
cs.push_back((z + i) / y);
}
for (int i = 0; i < y; ++i) {
cout << 'b';
for (int j = 0; j < cs[i]; ++j) {
cout << 'c';
}
}
cout << '\n';
}
} else {
for (int i = 0; i < x; ++i) {
cs.push_back((z + i) / x);
}
int rem = x - z % x;
for (int i = 0; i < rem; ++i) {
bs.push_back((y + i) / rem);
}
bs.resize(int(cs.size()));
for (int i = 0; i < x; ++i) {
cout << 'a';
for (int j = 0; j < cs[i]; ++j) {
cout << 'c';
}
for (int j = 0; j < bs[i]; ++j) {
cout << 'b';
}
}
cout << '\n';
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int x, y, z;
cin >> x >> y >> z;
if (x == 0 && y == 0) {
for (int i = 0; i < z; i++) {
cout << "c";
}
cout << endl;
} else if (x == 0 && y <= z) {
int t;
t = z / y;
for (int i = 0; i < y - 1; i++) {
cout << "b";
for (int j = 0; j < t; j++) {
cout << "c";
}
}
cout << "b";
for (int k = 0; k < z - t * (y - 1); k++) {
cout << "c";
}
cout << endl;
} else if (x == 0) {
int t;
t = y / z;
for (int i = 0; i < y - t * (z - 1); i++) {
cout << "b";
}
cout << "c";
for (int j = 0; j < z - 1; j++) {
for (int k = 0; k < t; k++) {
cout << "b";
}
cout << "c";
}
cout << endl;
} else if (x <= z && x <= y) {
int t, u;
t = z / x;
u = y / x;
for (int i = 0; i < x - 1; i++) {
cout << "a";
for (int j = 0; j < t; j++) {
cout << "c";
}
for (int k = 0; k < u; k++) {
cout << "b";
}
}
cout << "a";
for (int l = 0; l < z - t * (x - 1); l++) {
cout << "c";
}
for (int m = 0; m < y - u * (x - 1); m++) {
cout << "b";
}
cout << endl;
} else if (x <= z) {
int t;
t = z / x;
for (int i = 0; i < x - y - 1; i++) {
cout << "a";
for (int j = 0; j < t; j++) {
cout << "c";
}
}
cout << "a";
for (int k = 0; k < z - t * (x - 1); k++) {
cout << "c";
}
for (int l = 0; l < y; l++) {
cout << "a";
for (int m = 0; m < t; m++) {
cout << "c";
}
cout << "b";
}
cout << endl;
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
struct dice {
mt19937 mt;
dice() {
random_device rd;
mt = mt19937(rd());
}
int operator()(int x) { return this->operator()(0, x - 1); }
int operator()(int x, int y) {
uniform_int_distribution<int> dist(x, y);
return dist(mt);
}
} dc;
string f(string s) {
int N = s.length();
string mi = "z";
for (int t = 0; t < N; t++) {
mi = min(mi, s);
rotate(s.begin(), s.begin() + 1, s.end());
}
return mi;
}
string solve(int A, int B, int C) {
string s;
for (int t = 0; t < A; t++) s.push_back('a');
for (int t = 0; t < B; t++) s.push_back('b');
for (int t = 0; t < C; t++) s.push_back('c');
shuffle(s.begin(), s.end(), dc.mt);
int N = s.length();
string ma = f(s);
for (int t = 0; t < 10000; t++) {
int i = dc(N), j = dc(N);
swap(s[i], s[j]);
string mi = f(s);
if (mi < ma)
swap(s[i], s[j]);
else
ma = mi;
}
return ma;
}
int main() {
int A, B, C;
cin >> A >> B >> C;
string ma = "";
for (int t = 0; t < 50; t++) ma = max(ma, solve(A, B, C));
cout << ma << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename A, size_t N, typename T>
void Fill(A (&array)[N], const T &val) {
std::fill((T *)array, (T *)(array + N), val);
}
template <class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
bool check(string s, int a, int b, int c) {
int m = s.size();
int n = a + b + c;
string t;
bool ng = 0;
int id = -1;
for (int i = 1; i < m; i++) {
bool ppp = 1;
for (int j = 0; j < (int)(m - i); ++j) {
if (s[j] != s[i + j]) {
ppp = 0;
}
}
if (ppp) {
id = i;
}
}
if (id != -1) {
string q;
for (int i = 0; i < (int)(id); ++i) {
q.push_back(s[i]);
}
for (int i = 0; i < (int)(7); ++i) {
if (q.size() >= a + b + c) break;
q += q;
}
s = q;
}
m = s.size();
for (int i = 0; i < (int)(n); ++i) {
if (s[i % m] == 'a') {
if (a != 0) {
t.push_back('a');
a--;
} else {
if (b != 0) {
t.push_back('b');
b--;
} else {
t.push_back('c');
c--;
}
}
} else if (s[i % m] == 'b') {
if (b == 0) {
if (c == 0) {
t.push_back('a');
} else {
t.push_back('c');
c--;
}
} else {
t.push_back('b');
b--;
}
} else {
if (c == 0) {
if (b == 0) {
t.push_back('a');
} else {
t.push_back('b');
b--;
}
} else {
t.push_back('c');
c--;
}
}
}
for (int i = 0; i < (int)(n); ++i) {
string p;
for (int j = 0; j < (int)(m); ++j) {
p.push_back(t[(i + j) % n]);
}
if (s > p) return false;
}
return true;
}
int main() {
int a, b, c;
cin >> a >> b >> c;
int n = a + b + c;
string s;
while (s.size() != n) {
string t = s;
t.push_back('c');
if (check(t, a, b, c)) {
s = t;
} else {
t[t.size() - 1] = 'b';
if (check(t, a, b, c)) {
s = t;
} else {
t[t.size() - 1] = 'a';
s = t;
}
}
}
cout << s << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | X, Y, Z = map(int, input().split())
d = []
if X > 0:
for _ in range(X):
d.append("a")
for i in range(len(d)):
d[i] = d[i] + "c"*(Z//X)
for i in range(Z-(Z//X)*X):
d[len(d)-i-1] = d[len(d)-i-1] + "c"
for i in range(len(d)):
d[i] = d[i] + "b"*(Y//X)
for i in range(Y-(Y//X)*X):
d[len(d)-i-1] = d[len(d)-i-1] + "b"
elif Y > 0:
for _ in range(Y):
d.append("b")
for i in range(len(d)):
d[i] = d[i] + "c"*(Z//Y)
for i in range(Z-(Z//Y)*Y):
d[len(d)-i-1] = d[len(d)-i-1] + "c"
else:
for _ in range(Z):
d.append("c")
print("".join(d)) |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int A, B, C;
std::string smallestRotateString(std::string s) {
std::string result = "";
std::vector<int> indexList;
{
char smallestChar = 'z';
for (int i = 0; i < s.length(); i++) {
if (s[i] < smallestChar) smallestChar = s[i];
}
for (int i = 0; i < s.length(); i++) {
if (s[i] == smallestChar) indexList.push_back(i);
}
result += smallestChar;
}
for (int p = 1; p < s.length(); p++) {
for (int i = 0; i < indexList.size(); i++) {
indexList[i] = (indexList[i] + 1) % s.length();
}
char smallestChar = 'z';
for (int k = 0; k < indexList.size(); k++) {
int idx = indexList[k];
if (s[idx] < smallestChar) smallestChar = s[idx];
}
result += smallestChar;
std::vector<int>::iterator it = indexList.begin();
while (it != indexList.end()) {
if (s[*it] != smallestChar) {
it = indexList.erase(it);
} else
++it;
}
}
return result;
}
std::vector<char> perm;
int main(int argc, char* argv[]) {
std::cin >> A >> B >> C;
for (int i = 0; i < A; i++) perm.push_back('a');
for (int i = 0; i < B; i++) perm.push_back('b');
for (int i = 0; i < C; i++) perm.push_back('c');
std::string best(perm.begin(), perm.end());
best = smallestRotateString(best);
do {
std::string tmp(perm.begin(), perm.end());
std::string ret = smallestRotateString(tmp);
if (best.compare(ret) < 0) {
best = ret;
}
if (best.compare(tmp) < 0) break;
} while (next_permutation(perm.begin(), perm.end()));
std::cout << best << std::endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<cstdio>
int main(){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
int b[x]={};
int c[x]={};
if(x!=0){
if(x>y+z){
for(int i=x-1;i>=x-y;i--){
b[i]++;
}
for(int i=x-y-1;i>=x-y-z;i--){
c[i]++;
}
}else if(x==y+z){
for(int i=x-1;i>=x-z;i--){
c[i]++;
}
for(int i=x-z-1;i>=0;i--){
b[i]++;
}
}else{
if(x<=z){
if(z%x==0){
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=0;i<x;i++){
b[i]+=y/x;
}
for(int i=x-1;i>=x-y%x;i--){
b[i]++;
}
}else{
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=x-1;i>=x-z%x;i--){
c[i]++;
}
int k=x-z%x;
for(int i=0;i<k;i++){
b[i]+=y/k;
}
for(int i=0;i<y%k;i--){
b[i]++;
}
}
}else{
for(int i=x-1;i>=x-z;i--){
c[i]++;
}
int k=x-z;
for(int i=0;i<k;i++){
b[i]+=x/k;
}
for(int i=k-1;i>=k-x%k;i--){
b[i]++;
}
}
}
for(int i=0;i<x;i++){
printf("a");
for(int j=0;j<c[i];j++){
printf("c");
}
for(int j=0;j<b[i];j++){
printf("b");
}
}
}else if(y!=0){
if(z==0){
for(int i=0;i<y;i++){
printf("b");
}
}
if(y>z){
for(int i=0;i<z;i++){
printf("c");
for(int j=0;j<y/z;j++){
printf("b");
}
if(i<y%z)printf("c");
}
}else{
for(int i=0;i<z;i++){
printf("c");
if(i<y)printf("b");
}
}
}else{
for(int i=0;i<z;i++){
printf("c");
}
}
if(x<y && z==0){
for(int i=0;i<y-x;i++){
printf("b");
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int read(register int ans = 0, register int sgn = ' ',
register int ch = getchar()) {
for (; ch < '0' || ch > '9'; sgn = ch, ch = getchar())
;
for (; ch >= '0' && ch <= '9'; (ans *= 10) += ch - '0', ch = getchar())
;
return sgn - '-' ? ans : -ans;
}
multiset<string> s;
int X, Y, Z;
string L, T = "\0";
int main() {
X = read(), Y = read(), Z = read();
for (register int i = 1; i <= X; s.insert("a"), i++)
;
for (register int i = 1; i <= Y; s.insert("b"), i++)
;
for (register int i = 1; i <= Z; s.insert("c"), i++)
;
for (; s.size() >= 2; L = *s.begin() + *--s.end(), s.erase(s.begin()),
s.erase(--s.end()), s.insert(L))
;
if (s.size()) T = *s.begin();
cerr << T;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct hash {
unsigned long long pow(unsigned long long a, unsigned long long b) {
unsigned long long res = 1;
while (b) {
if (b & 1) res = (res * a);
a = (a * a);
b >>= 1;
}
return res;
}
static const unsigned long long base = 31;
static const unsigned long long in_base = 17256631552825064415ull;
static const int maxn = 1e5 + 7;
unsigned long long p[maxn], inv[maxn], n, h[maxn];
bool is_cal = 0;
string s;
void init(string str) {
s = str;
n = s.size();
s = "#" + str;
if (!is_cal) {
is_cal = 1;
p[0] = 1;
inv[0] = 1;
for (int i = 1; i < maxn; i++) {
p[i] = (p[i - 1] * base);
inv[i] = (inv[i - 1] * in_base);
}
}
h[0] = 0;
unsigned long long c = 1;
for (int i = 1; i <= n; i++, c = (c * base)) {
h[i] = (h[i - 1] + c * s[i]);
}
}
unsigned long long get(int l, int r) {
if (l <= r) {
return (h[r] - h[l - 1]) * inv[l - 1];
} else {
unsigned long long a = get(l, n);
unsigned long long b = get(1, r);
return (b * p[n - l + 1] + a);
}
}
} h;
bool comp(int i, int j) {
int n = h.n;
int l = 0, r = n - 1, an = -1;
while (l <= r) {
int m = l + r >> 1;
if (h.get(i, (i + m <= n ? i + m : i + m - n)) ==
h.get(j, (j + m <= n ? j + m : j + m - n))) {
an = m;
l = m + 1;
} else {
r = m - 1;
}
}
if (an == n - 1) return i < j;
an++;
return h.s[(i + an <= n ? i + an : i + an - n)] <=
h.s[(j + an <= n ? j + an : j + an - n)];
}
int main() {
int a, b, c;
cin >> a >> b >> c;
string s;
while (a > 0 || b > 0 || c > 0) {
if (a) s += "a", a--;
if (c) s += "c", c--;
if (b) s += "b", b--;
}
vector<int> v;
for (int i = 0; i < s.size(); i++) v.push_back(i + 1);
h.init(s);
sort(v.begin(), v.end(), comp);
a = v[0] - 1;
cout << s.substr(a, h.n - a) + s.substr(0, a) << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long inf = mod * mod;
const long long d2 = 500000004;
const double EPS = 1e-6;
const double PI = acos(-1.0);
int ABS(int a) { return max(a, -a); }
long long ABS(long long a) { return max(a, -a); }
int C[1100];
int B[1100];
int ad = 0;
void f(int a, int b, int c) {
ad = 0;
for (int i = 0; i < 1100; i++) B[i] = C[i] = 0;
while (a == 0) {
a = b;
b = c;
c = 0;
ad++;
}
for (int i = 0; i < c; i++) {
C[i % a]++;
}
if (C[0] != C[a - 1]) {
int f = 0;
for (int i = 0; i < a; i++)
if (C[a - 1] == C[i]) f++;
for (int i = 0; i < b; i++) {
B[a - f + i % f]++;
}
} else {
for (int i = 0; i < b; i++) {
B[i % a]++;
}
}
for (int i = a - 1; i >= 0; i--) {
printf("%c", 'a' + ad);
for (int j = 0; j < C[i]; j++) printf("%c", 'c' + ad);
for (int j = 0; j < B[i]; j++) printf("%c", 'b' + ad);
}
printf("\n");
}
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
f(a, b, c);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MX = 1000;
char ans[MX][MX];
void solve2(int x, int y, int p) {
if (x == 0) {
for (int i = 0; i < y; i++) ans[p][i] = 'b';
} else if (y == 0) {
for (int i = 0; i < x; i++) ans[p][i] = 'a';
} else if (x >= y) {
int g = (x + y - 1) / y;
int f = x % y;
if (f == 0) f = y;
solve2(f, y - f, p + 1);
for (int i = 0, j = 0; i < y; i++) {
for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a';
if (ans[p + 1][i] == 'a') ans[p][j++] = 'a';
ans[p][j++] = 'b';
}
} else {
int g = (x + y - 1) / x;
int f = y % x;
if (f == 0) f = x;
solve2(x - f, f, p + 1);
for (int i = 0, j = 0; i < x; i++) {
ans[p][j++] = 'a';
for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'b';
if (ans[p + 1][i] == 'b') ans[p][j++] = 'b';
}
}
}
void solve(int x, int y, int z, int p = 0) {
if (x == 0) {
solve2(y, z, p);
for (int i = 0; i < y + z; i++) ans[p][i]++;
} else if (y == 0) {
solve2(x, z, p);
for (int i = 0; i < x + z; i++)
if (ans[p][i] == 'b') ans[p][i] = 'c';
} else if (z == 0) {
solve2(x, y, p);
} else if (x >= y + z) {
int g = (x + y + z - 1) / (y + z);
int f = x % (y + z);
if (f == 0) f = y + z;
if (z >= f) {
solve(f, y, z - f, p + 1);
for (int i = 0, j = 0; i < y + z; i++) {
for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a';
if (ans[p + 1][i] == 'a') {
ans[p][j++] = 'a';
ans[p][j++] = 'c';
} else {
ans[p][j++] = ans[p + 1][i];
}
}
} else {
solve(f - z, z, y + z - f, p + 1);
for (int i = 0, j = 0; i < y + z; i++) {
for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a';
if (ans[p + 1][i] == 'c') {
ans[p][j++] = 'b';
} else {
ans[p][j++] = 'a';
ans[p][j++] = ans[p + 1][i] + 1;
}
}
}
} else {
static string S[MX];
for (int i = 0; i < x; i++) S[i] = "a";
for (int i = 0; i < z; i++) S[i % x] += "c";
for (int i = 0; i < y; i++) S[x - 1 - i % x] += "b";
set<string> strs;
for (int i = 0; i < x; i++) strs.insert(S[i]);
string SS[3];
int cnt[3] = {0, 0, 0}, iter = 0;
for (auto& s : strs) {
SS[iter] = s;
cnt[iter] = 0;
for (int i = 0; i < x; i++)
if (S[i] == s) cnt[iter]++;
iter++;
}
solve(cnt[0], cnt[1], cnt[2], p + 1);
for (int i = 0, j = 0; i < x; i++)
for (char c : SS[ans[p + 1][i] - 'a']) ans[p][j++] = c;
}
}
int main() {
int x, y, z;
ignore = scanf("%d %d %d", &x, &y, &z);
solve(x, y, z);
ans[0][x + y + z] = 0;
printf("%s\n", ans[0]);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int A, B, C;
vector<string> vec;
string maxn = "";
void dfs(vector<string> V, string S) {
if (V.size() == 0) {
string G = S;
for (int i = 0; i < S.size(); i++) {
string I = "";
for (int j = 0; j < S.size(); j++) I += S[(i + j) % S.size()];
G = min(G, I);
}
maxn = max(maxn, G);
return;
}
for (int i = 0; i < V.size(); i++) {
if (i >= 1 && V[i] == V[i - 1]) continue;
vector<string> Z;
for (int j = 0; j < V.size(); j++) {
if (i != j) Z.push_back(V[j]);
}
string ZZ = S + V[i];
dfs(Z, ZZ);
}
}
int main() {
cin >> A >> B >> C;
while (A == 0) {
A = B;
B = C;
C = 0;
}
for (int i = 0; i < A; i++) vec.push_back("a");
for (int i = 0; i < C; i++) vec[i % A] += "c";
sort(vec.begin(), vec.end());
int Z = 0;
for (int i = 0; i < vec.size() - 1; i++) {
if (vec[i] == vec[i + 1]) Z = i + 2;
}
for (int i = 0; i < B; i++) vec[i % Z] += "b";
sort(vec.begin(), vec.end());
dfs(vec, "");
cout << maxn << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long inf = mod * mod;
const long long d2 = 500000004;
const double EPS = 1e-6;
const double PI = acos(-1.0);
int ABS(int a) { return max(a, -a); }
long long ABS(long long a) { return max(a, -a); }
int C[1100];
int B[1100];
int ad = 0;
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
while (a == 0) {
a = b;
b = c;
c = 0;
ad++;
}
for (int i = 0; i < c; i++) {
C[i % a]++;
}
if (C[0] != C[a - 1]) {
int f = 0;
for (int i = 0; i < a; i++)
if (C[a - 1] == C[i]) f++;
for (int i = 0; i < b; i++) {
B[a - f + i % f]++;
}
} else {
for (int i = 0; i < b; i++) {
B[i % a]++;
}
}
for (int i = a - 1; i >= 0; i--) {
printf("%c", 'a' + ad);
for (int j = 0; j < C[i]; j++) printf("%c", 'c' + ad);
for (int j = 0; j < B[i]; j++) printf("%c", 'b' + ad);
}
printf("\n");
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int duval(string s) {
int n = s.length();
s += s;
int i = 0, ans = 0;
while (i < n) {
ans = i;
int j = i + 1, k = i;
while (j < n + n && s[k] <= s[j]) {
if (s[k] < s[j]) {
k = i;
} else {
k++;
}
j++;
}
while (i <= k) {
i += j - k;
}
}
return ans;
}
string res;
void solve(vector<pair<string, int> > &v, const string &cur) {
bool any = false;
for (auto &p : v) {
if (p.second == 0) {
continue;
}
any = true;
p.second--;
solve(v, cur + p.first);
p.second++;
}
if (!any) {
int pos = duval(cur);
string shift = cur.substr(pos) + cur.substr(0, pos);
res = min(res, shift);
}
}
int main() {
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
bool flag = false;
if (a == 0) {
flag = true;
a = b;
b = c;
c = 0;
}
res = "";
if (a == 0) {
res = string(b, 'b');
} else {
vector<string> put(a, "a");
for (int i = 0; i < c; i++) {
put[i % a] += 'c';
}
int ptr = c % a;
for (int i = 0; i < b; i++) {
put[ptr] += 'b';
ptr++;
if (ptr == a) {
ptr = c % a;
}
}
map<string, int> mp;
for (auto &s : put) {
mp[s]++;
}
vector<pair<string, int> > v;
for (auto &p : mp) {
v.push_back(p);
}
res = "d";
solve(v, "");
}
if (flag) {
for (char &c : res) {
c++;
}
}
cout << res << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | /**
* code generated by JHelper
* More info: https://github.com/AlexeyDmitriev/JHelper
* @author Gosu_Hiroo
*/
#include <iostream>
#include <fstream>
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#ifdef int
#define V2(v,size_1, size_2, value) vector<vector<long long>>v(size_1, vector<long long>(size_2, value))
#define V3(v,size_1,size_2,size_3,value) vector<vector<vector<long long>>>v(size_1,vector<vector<long long>>(size_2,vector<long long>(size_3, value)))
#define VI vector<long long>
#define G(g,size_1) vector<vector<long long>>g(size_1, vector<long long>())
#define VVI vector<vector<long long>>
#define VVVI vector<vector<vector<long long>>>
#define SZ(x) ((long long)(x).size())
#define READ ({long long t;cin >> t;t;})
#define PII pair<long long, long long>
#else
#define V2(v,size_1, size_2, value) vector<vector<int>>v(size_1, vector<int>(size_2, value))
#define V3(v,size_1,size_2,size_3,value) vector<vector<vector<int>>>v(size_1,vector<vector<int>>(size_2,vector<int>(size_3, value)))
#define VI vector<int>
#define G(g,size_1) vector<vector<int>>g(size_1, vector<int>())
#define SZ(x) ((int)(x).size())
#define VVI vector<vector<int>>
#define VVVI vector<vector<vector<int>>>
#define READ ({int t;cin >> t;t;})
#define PII pair<int, int>
#endif
#define VM2(v,size_1, size_2, value) vector<vector<mint>>v(size_1, vector<mint>(size_2, value))
#define VM3(v,size_1,size_2,size_3,value) vector<vector<vector<mint>>>v(size_1,vector<vector<mint>>(size_2,vector<mint>(size_3, value)))
#define VM vector<mint>
#define VVM vector<vector<mint>>
#define VVVM vector<vector<vector<mint>>>
#define TR(container, it) \
for (auto it = container.begin(); it != container.end(); it++)
#define IN(c, x) ((c).find(x) != (c).end()) //O(log n)
#define IN_L(c, x) (find((c).begin(),(c).end(),x) != (c).end()) //O(n)
#define FOR(i, _begin, _end) for (__typeof(_end) end = _end, begin = _begin, i = (begin) - ((begin) > (end)); i != (end) - ((begin) > (end)); i += 1 - 2 * ((begin) > (end)))
#define REP(i, end) for (__typeof(end) i = 0, _len = (end); i < (_len); i += 1)
#define ALL(x) (x).begin(),(x).end()
#define F first
#define S second
#define y0 y3487465
#define y1 y8687969
#define j0 j1347829
#define j1 j234892
#define MOD(x, m) ((((x) % (m)) + (m)) % (m))
#define BIT(n) (1LL<<(n))
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );
#define EB emplace_back
#define PB push_back
#define fcout cout << fixed << setprecision(12)
#define fcerr cerr << fixed << setprecision(12)
#define print(x) cout << (x) << endl
# define BYE(a) do { cout << (a) << endl; return ; } while (false)
#ifdef DEBUG
#define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(cerr,_it, args); }
#define DBG(x) cerr << #x << " is " << x << endl;
#else
#define DBG(x) {};
#define ERR(args...) {};
#endif
void _err(std::ostream& cerr,istream_iterator<string> it) {cerr << endl;}
template<typename T, typename... Args>
void _err(std::ostream& cerr, istream_iterator<string> it, T a, Args... args) {
cerr << *it << " = " << a << " ";
_err(cerr,++it, args...);
}
const double pi = 2 * acos(.0);
const int inf = 0x3f3f3f3f;
const ll mod = (ll) (1e9) + 7;
//const ll mod = (ll) 998244353 ;
const double eps = 1e-10;
template<typename A, size_t N, typename T>
void Fill(A (&array)[N], const T &val) {
std::fill((T *) array, (T *) (array + N), val);
}
template <typename T>
ostream& operator << (ostream& os, const vector<T> V) {
os << "[";
int cnt = 0;
T curr;
if(!V.empty()){
for (int i = 0; i < V.size() - 1; ++i) {
if(V[i] == curr)cnt ++;
else cnt = 0;
if(cnt == 4)os << "... ";
if(cnt < 4)
os << V[i] << " ";
curr = V[i];
}
os << V.back();
}
os << "]";
return os;
}
template <typename T, typename U>
ostream& operator << (ostream& os, const pair<T,U> P) {
os << "(";
os << P.first << "," << P.second;
os << ")";
return os;
}
template <typename T, typename U>
ostream& operator << (ostream& os, const set<T,U> V) {
os << "{";
if(!V.empty()){
auto it = V.begin();
for (int i = 0; i < V.size() -1; ++i) {
os << *it << " ";
it++;
}
os << *it;
}
os << "}";
return os;
}
template <typename K, typename H, typename P>
ostream& operator << (ostream& os, const unordered_set<K, H, P> V) {
os << "{";
if(!V.empty()){
auto it = V.begin();
for (int i = 0; i < V.size() -1; ++i) {
os << *it << " ";
it++;
}
os << *it;
}
os << "}";
return os;
}
template <typename K, typename C>
ostream& operator << (ostream& os, const multiset<K, C> V) {
os << "{";
if(!V.empty()){
auto it = V.begin();
for (int i = 0; i < V.size() -1; ++i) {
os << *it << " ";
it++;
}
os << *it;
}
os << "}";
return os;
}
template <typename K, typename T, typename C>
ostream& operator << (ostream& os, const map<K,T,C> V) {
os << "{";
if(!V.empty()){
auto it = V.begin();
for (int i = 0; i < V.size() -1; ++i) {
os << "(";
os << it->first << "," << it->second;
os << ") ";
it++;
}
os << "(";
os << it->first << "," << it->second;
os << ")";
}
os << "}";
return os;
}
template <typename K, typename T, typename C>
ostream& operator << (ostream& os, const unordered_map<K,T,C> V) {
os << "{";
if(!V.empty()){
auto it = V.begin();
for (int i = 0; i < V.size() -1; ++i) {
os << "(";
os << it->first << "," << it->second;
os << ") ";
it++;
}
os << "(";
os << it->first << "," << it->second;
os << ")";
}
os << "}";
return os;
}
template <typename T>
ostream& operator << (ostream& os, const deque<T> V) {
os << "[";
if (!V.empty()) {
for (int i = 0; i < V.size() - 1; ++i) {
os << V[i] << "->";
}
if (!V.empty())os << V.back();
}
os << "]";
return os;
};
template <typename T, typename Cont, typename Comp>
ostream& operator << (ostream& os, const priority_queue<T, Cont, Comp> V) {
priority_queue<T, Cont, Comp> _V = V;
os << "[";
if(!_V.empty()){
while(_V.size() > 1){
os << _V.top() << "->";
_V.pop();
}
os << _V.top();
}
os << "]";
return os;
};
template <class F>
struct y_combinator {
F f; // the lambda will be stored here
// a forwarding operator():
template <class... Args>
decltype(auto) operator()(Args&&... args) const {
// we pass ourselves to f, then the arguments.
// the lambda should take the first argument as `auto&& recurse` or similar.
return f(*this, std::forward<Args>(args)...);
}
};
// helper function that deduces the type of the lambda:
template <class F>
y_combinator<std::decay_t<F>> recursive(F&& f){
return {std::forward<F>(f)};
}
struct hash_pair {
template <class T1, class T2>
size_t operator()(const pair<T1, T2>& p) const
{
auto hash1 = hash<T1>{}(p.first);
auto hash2 = hash<T2>{}(p.second);
return hash1 ^ hash2;
}
};
/*
struct X{
int x,y,id;
bool operator < (const X R)const{
return id < R.id;
}
friend ostream& operator << (ostream& os, X R){
os << "(" << R.x << "," << R.y << "," << R.id << ")";
}
friend bool operator == (const X L, const X R){
return L.id == R.id;
}
*/
template<class T>void Chmod(T &a, const T &m) {a = MOD(a, m);}
template<class T>bool Chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool Chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
//256MB = 2^29(~5.3*10^8)*sizeof(int)
//#define int ll //2^31=2.15*10^9, 2^63=9.22*10^18
class FLargestSmallestCyclicShift {
public:
void solve(std::istream& cin, std::ostream& cout, std::ostream& cerr) {
int X, Y, Z;
cin >> X >> Y >> Z;
string dp[X+5][Y+5][Z+5] = {};
dp[0][0][0] = "";
auto mi_str = [&](string& _s, string c){
string mx = "";
REP(i,SZ(_s)){
string s = _s.substr(0,i) + c + _s.substr(i);
string mi = "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz";
REP(j,SZ(s))Chmin(mi, s.substr(j) + s.substr(0,j));
Chmax(mx, mi);
}
if(SZ(_s) == 0)return (c);
ERR(_s, c, mx)
return mx;
};
REP(x,X+1)REP(y,Y+1)REP(z,Z+1){
Chmax(dp[x+1][y][z], mi_str(dp[x][y][z], "a"));
Chmax(dp[x][y+1][z], mi_str(dp[x][y][z], "b"));
Chmax(dp[x][y][z+1], mi_str(dp[x][y][z], "c"));
}
print(dp[X][Y][Z]);
}
};
#undef int
int main() {
FLargestSmallestCyclicShift solver;
std::istream& in(std::cin);
std::ostream& out(std::cout);
std::ostringstream err;
in.tie(0); ios::sync_with_stdio(0);
// solver.solve(in, out);
solver.solve(in, out,err);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long inf = mod * mod;
const long long d2 = 500000004;
const double EPS = 1e-6;
const double PI = acos(-1.0);
int ABS(int a) { return max(a, -a); }
long long ABS(long long a) { return max(a, -a); }
int C[1100];
int B[1100];
int ad = 0;
vector<string> str;
void f(string aa, string bb, string cc, int a, int b, int c) {
if (a == 0) {
f(bb, cc, "", b, c, 0);
return;
}
if (b + c == 0) {
for (int i = 0; i < a; i++) printf("%s", aa.c_str());
printf("\n");
return;
}
ad = 0;
for (int i = 0; i < 1100; i++) B[i] = C[i] = 0;
while (a == 0) {
a = b;
b = c;
c = 0;
ad++;
}
for (int i = 0; i < c; i++) {
C[i % a]++;
}
if (C[0] != C[a - 1]) {
int f = 0;
for (int i = 0; i < a; i++)
if (C[a - 1] == C[i]) f++;
for (int i = 0; i < b; i++) {
B[a - f + i % f]++;
}
} else {
for (int i = 0; i < b; i++) {
B[i % a]++;
}
}
str.clear();
for (int i = a - 1; i >= 0; i--) {
string tmp = "";
tmp += 'a' + ad;
for (int j = 0; j < C[i]; j++) tmp += 'c' + ad;
for (int j = 0; j < B[i]; j++) tmp += 'b' + ad;
str.push_back(tmp);
}
string ta = "", tb = "", tc = "";
int va = 0;
int vb = 0;
int vc = 0;
int fi = 0;
int ph = 0;
for (int i = 0; i < a; i++) {
if (str[i] == str[fi]) {
if (ph == 0) {
va++;
ta = str[i];
}
if (ph == 1) {
vb++;
tb = str[i];
}
if (ph == 2) {
vc++;
tc = str[i];
}
} else {
if (ph == 0) {
ph++;
vb++;
tb = str[i];
fi = i;
}
if (ph == 1) {
ph++;
vc++;
tc = str[i];
fi = i;
}
}
}
f(ta, tb, tc, va, vb, vc);
}
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
f("a", "b", "c", a, b, c);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int A, B, C;
string getans(string S) {
int ca = 0, cb = 0, cc = 0;
for (int i = 0; i < S.size(); i++) {
if (S[i] == 'a') ca++;
if (S[i] == 'b') cb++;
if (S[i] == 'c') cc++;
}
if (cb == 0) return S;
vector<string> vec;
for (int i = 0; i < ca; i++) vec.push_back("a");
for (int i = 0; i < cc; i++) vec[i % ca] += "c";
sort(vec.begin(), vec.end());
int Z = 1;
for (int i = 1; i < vec.size(); i++) {
if (vec[i] == vec[i - 1])
Z = i + 1;
else
break;
}
for (int i = 0; i < cb; i++) vec[i % Z] += "b";
sort(vec.begin(), vec.end());
string G = "a";
int I = 0;
for (int i = 1; i < vec.size(); i++) {
if (vec[i] != vec[i - 1]) I++;
G += ('a' + I);
}
vector<string> A = vec;
A.erase(unique(A.begin(), A.end()), A.end());
string V = getans(G), U = "";
for (int i = 0; i < V.size(); i++) {
U += A[V[i] - 'a'];
}
return U;
}
int main() {
cin >> A >> B >> C;
int P = 0;
while (A == 0) {
A = B;
B = C;
C = 0;
P++;
}
string G = "";
for (int i = 0; i < A; i++) G += "a";
for (int i = 0; i < B; i++) G += "b";
for (int i = 0; i < C; i++) G += "c";
string ret = getans(G);
for (int i = 0; i < ret.size(); i++) ret[i] += P;
cout << ret << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | def work(a,b,c,A,B,C):
if A==0:
return work(b,c,'',B,C,0)
if B==0:
if C==0:
return a*A
else:
return work(a,c,'',A,C,0)
if C==0:
return work(a+b*(B/A+1),a+b*(B/A),'',B%A,A-B%A,0)
cmod = C%A
bmod = B%A
if cmod+bmod<=A:
return work(a+c*(C/A)+b*(B/A),a+c*(C/A)+b*(B/A+1),a+c*(C/A+1)+b*(B/A),A-cmod-bmod,bmod,cmod)
else:
return work(a+c*(C/A)+b*(B/A+1),a+c*(C/A+1)+b*(B/A),a+c*(C/A+1)+b*(B/A+1),bmod,cmod,bmod+cmod-A)
if __name__ == '__main__':
s = raw_input()
a,b,c = [int(i) for i in s.split()]
print(work('a','b','c',a,b,c))
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long inf = mod * mod;
const long long d2 = 500000004;
const double EPS = 1e-6;
const double PI = acos(-1.0);
int ABS(int a) { return max(a, -a); }
long long ABS(long long a) { return max(a, -a); }
int C[1100];
int B[1100];
int main() {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
for (int i = 0; i < c; i++) {
C[i % a]++;
}
if (C[0] != C[a - 1]) {
int f = 0;
for (int i = 0; i < a; i++)
if (C[a - 1] == C[i]) f++;
for (int i = 0; i < b; i++) {
B[a - f + i % f]++;
}
} else {
for (int i = 0; i < b; i++) {
B[i % a]++;
}
}
for (int i = a - 1; i >= 0; i--) {
printf("a");
for (int j = 0; j < C[i]; j++) printf("c");
for (int j = 0; j < B[i]; j++) printf("b");
}
printf("\n");
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c, xa, xb, xc;
string AA, BB, CC, ss[110];
void iter() {
for (int i = 0; i < a; i++) ss[i] = AA;
for (int i = 0; i < c; i++) {
ss[i % a] += CC;
}
int ll = 0;
if (c % a == 0)
ll = a;
else
ll = (c - 1) % a + 1;
int now = 0;
for (int i = 0; i < b; i++) {
ss[i % (ll)] += BB;
now += 1;
if (now >= a) now = ll;
}
sort(ss, ss + a);
int cnt = 0;
xa = xb = xc = 0;
for (int i = 0; i < a; i++) {
if (i == 0 || ss[i] != ss[i - 1]) {
cnt += 1;
if (cnt == 1)
AA = ss[i];
else if (cnt == 2)
BB = ss[i];
else
CC = ss[i];
}
if (cnt == 1)
xa += 1;
else if (cnt == 2)
xb += 1;
else
xc += 1;
}
a = xa;
b = xb;
c = xc;
}
int main() {
scanf("%d%d%d", &a, &b, &c);
AA = "a";
BB = "b";
CC = "c";
if (a == 0) {
a = b;
b = c;
AA = BB;
BB = CC;
}
if (a == 0) {
for (int i = 0; i < c; i++) printf("c");
printf("\n");
return 0;
}
while (b + c > 0) {
iter();
}
while (a--) {
cout << AA;
}
cout << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string ans;
int x, y, z;
void dfs(int a, int b, int c, string x, string y, string z) {
if (a == 0)
dfs(b, c, 0, y, z, "");
else if (c == 0 && b == 0) {
for (int i = 1; i <= a; i++) ans += x;
} else {
string ra = x, rb, rc;
for (int i = 0; i < c / a; i++) ra += z;
rc = ra + z;
int rrc = c % a;
a -= (c % a);
for (int i = 0; i < b / a; i++) ra += y;
rb = ra + y;
int rrb = b % 1;
a -= rrb;
dfs(a, rrb, rrc, ra, rb, rc);
}
}
int main() {
scanf("%d%d%d", &x, &y, &z);
ans.clear();
dfs(x, y, z, "a", "b", "c");
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class BidirectionalIterator>
bool next_combination(BidirectionalIterator first1, BidirectionalIterator last1,
BidirectionalIterator first2,
BidirectionalIterator last2) {
if ((first1 == last1) || (first2 == last2)) return false;
BidirectionalIterator m1 = last1;
BidirectionalIterator m2 = last2;
--m2;
while (--m1 != first1 && !(*m1 < *m2))
;
bool result = (m1 == first1) && !(*first1 < *m2);
if (!result) {
while (first2 != m2 && !(*m1 < *first2)) ++first2;
first1 = m1;
std::iter_swap(first1, first2);
++first1;
++first2;
}
if ((first1 != last1) && (first2 != last2)) {
m1 = last1;
m2 = first2;
while ((m1 != first1) && (m2 != last2)) {
std::iter_swap(--m1, m2);
++m2;
}
std::reverse(first1, m1);
std::reverse(first1, last1);
std::reverse(m2, last2);
std::reverse(first2, last2);
}
return !result;
}
template <class BidirectionalIterator>
bool next_combination(BidirectionalIterator first, BidirectionalIterator middle,
BidirectionalIterator last) {
return next_combination(first, middle, middle, last);
}
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& vec) {
os << "[";
for (int i = 0; i < vec.size(); i++) {
os << vec[i] << ",";
}
os << "]";
return os;
}
template <typename T>
T input() {
T t;
cin >> t;
return t;
}
template <typename T>
vector<T> input(const int N) {
vector<T> v(N);
for (int i = 0; i < static_cast<int>(N); i++) cin >> v[i];
return v;
}
long long gcd(long long a, long long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
long long lcm(long long a, long long b) { return (a / gcd(a, b)) * b; }
int main() {
int X, Y, Z;
cin >> X >> Y >> Z;
string str;
for (int i = 0; i < static_cast<int>(X); i++) {
str += 'a';
}
for (int i = 0; i < static_cast<int>(Y); i++) {
str += 'b';
}
for (int i = 0; i < static_cast<int>(Z); i++) {
str += 'c';
}
string best = str;
string temp;
string temp_small;
map<string, string> result;
do {
if (result.find(str) != result.end()) {
continue;
}
temp = str;
temp_small = str;
int size = str.size();
for (int i = 0; i < static_cast<int>(size - 1); i++) {
temp = temp.substr(1, temp.size()) + temp[0];
if (result.find(temp) != result.end()) {
break;
}
if (temp < temp_small) {
temp_small = temp;
}
}
if (result.find(temp) != result.end()) {
continue;
}
result[str] = str;
if (best < temp_small) {
best = temp_small;
}
} while (next_permutation(str.begin(), str.end()));
cout << best << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
os << "sz:" << v.size() << "\n[";
for (const auto& p : v) {
os << p << ",";
}
os << "]\n";
return os;
}
template <typename S, typename T>
ostream& operator<<(ostream& os, const pair<S, T>& p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
constexpr ll MOD = (ll)1e9 + 7LL;
template <typename T>
constexpr T INF = numeric_limits<T>::max() / 100;
void place(const int small, const int large, vector<int>& result) {
assert(result.size() == small + large);
if (large == 0) {
for (int i = 0; i < result.size(); i++) {
result[i] = -1;
}
} else if (large == 1) {
for (int i = 0; i < result.size() - 1; i++) {
result[i] = -1;
}
result[result.size() - 1] = 1;
} else if (small >= large) {
const int ssize = (small + large - 1) / large;
const int lsize = ssize - 1;
const int snum = small - (lsize * large);
const int lnum = large - snum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = -2;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = -1;
pos++;
}
}
result[pos] = 1;
pos++;
}
} else {
const int ssize = large / small;
const int lsize = ssize + 1;
const int lnum = large - ssize * small;
const int snum = small - lnum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
result[pos] = -1;
pos++;
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = 1;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = 2;
pos++;
}
}
}
}
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int X, Y, Z;
cin >> X >> Y >> Z;
string s;
s.resize(X + Y + Z, 'd');
if (X > 0) {
if (Y + Z > 0) {
vector<int> tmp(X + Y + Z);
place(X, Y + Z, tmp);
for (int i = 0; i < X + Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'a';
}
}
if (X >= Y + Z) {
vector<int> smalls;
vector<int> larges;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] > 0 and tmp[i - 1] == -1) {
larges.push_back(i);
} else if (tmp[i] > 0 and tmp[i - 1] == -2) {
smalls.push_back(i);
}
}
reverse(smalls.begin(), smalls.end());
for (const int li : larges) {
if (Y > 0) {
s[li] = 'b';
Y--;
} else {
s[li] = 'c';
Z--;
}
}
for (const int si : smalls) {
if (Z > 0) {
s[si] = 'c';
Z--;
} else {
s[si] = 'b';
Y--;
}
}
} else {
vector<int> smalls;
vector<int> larges;
const int slen = (Y + Z) / X;
const int llen = slen + 1;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] < 0 and tmp[i + 1] == 1) {
smalls.push_back(i + 1);
} else if (tmp[i] < 0 and tmp[i + 1] == 2) {
larges.push_back(i + 1);
}
}
for (int i = 0; i < llen; i++) {
for (const int li : larges) {
if (Y > 0) {
s[li + i] = 'b';
Y--;
} else {
s[li + i] = 'c';
Z--;
}
}
}
for (int i = 0; i < slen; i++) {
for (const int si : smalls) {
if (Z > 0) {
s[si + i] = 'c';
Z--;
} else {
s[si + i] = 'b';
Y--;
}
}
}
}
cout << s << endl;
} else {
for (int i = 0; i < Y + Z; i++) {
cout << 'a';
}
cout << endl;
return 0;
}
} else {
if (Y > 0) {
if (Z > 0) {
vector<int> tmp(Y + Z);
place(Y, Z, tmp);
for (int i = 0; i < Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'b';
} else {
s[i] = 'c';
}
}
cout << s << endl;
return 0;
} else {
for (int i = 0; i < Y; i++) {
cout << 'b';
}
cout << endl;
return 0;
}
} else {
for (int i = 0; i < Z; i++) {
cout << 'c';
}
cout << endl;
return 0;
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
int main()
{
for(register int i=getint();i;i--) set.insert("a");
for(register int i=getint();i;i--) set.insert("b");
for(register int i=getint();i;i--) set.insert("c");
while(set.size()>1) {
std::string s=*set.begin(),t=*set.rbegin();
set.erase(set.lower_bound(s));
set.erase(set.lower_bound(t));
set.insert(s+t);
}
printf("%s\n",(*set.begin()).c_str());
return 0;
} |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int X, Y, Z;
cin >> X >> Y >> Z;
string res = "";
while (X > 0 || Y > 0 || Z > 0) {
if (X > 0) {
res = 'a' + res;
X--;
}
if (Z > 0) {
res += 'c';
Z--;
}
if (Y > 0) {
res += 'b';
Y--;
}
}
cout << res << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f2f1f0f;
const long long LINF = 1ll * INF * INF;
const int MAX_N = 1e2;
int N, Ns[3], Now[MAX_N], Ans[MAX_N], AnsN[3];
int main() {
cin >> Ns[0] >> Ns[1] >> Ns[2];
for (int k = 0; k < 3; k++) N += Ns[k];
for (int k = 0; k < 3; k++) AnsN[k] = Ns[k];
for (int s = 0; s < N; s++) {
bool isFinish = false;
for (int o = 2; o >= 0; o--)
if (isFinish == false && AnsN[o] > 0) {
bool isCan = true;
Ans[s] = o;
int cnt[3];
for (int k = 0; k < 3; k++) cnt[k] = Ns[k];
int en = N / (s + 1) * (s + 1);
for (int p = 0; p < N;) {
bool mustUp = true;
int np = p + (s + 1);
for (int is = 0; is < (s + 1) && p + is < N; is++) {
bool findWell = false;
int start = Ans[is];
for (int k = start; k < 3; k++) {
if (cnt[k] > 0) {
cnt[k]--, Now[p + is] = k;
if (k != Ans[is]) mustUp = false;
findWell = true;
break;
}
}
if (mustUp == false) {
np = p + is + 1;
break;
}
if (findWell == false) isCan = false;
}
if (isCan == false) break;
p = np;
}
if (isCan) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < s + 1; j++) {
if (Now[j] < Now[(i + j) % N]) {
break;
} else if (Now[j] > Now[(i + j) % N]) {
isCan = false;
break;
} else
continue;
}
}
}
if (isCan) isFinish = true, AnsN[o]--;
}
}
for (int i = 0; i < N; i++) printf("%c", Ans[i] + 'a');
puts("");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
string operator*(string a, int t) {
string r;
while (t) {
if (t & 1) r += a;
a += a;
t >>= 1;
}
return r;
}
string sol(int x, int y, int z, string a, string b, string c) {
if (y + z == 0) return a * x;
if (x == 0) return sol(y, z, 0, b, c, "");
int p = x / (y + z);
int q = x % (y + z);
string t = a * p;
if (q < z) {
return sol(q, y, z - q, t + a + c, t + b, t + c);
} else {
return sol(z, q - z, y - (q - z), t + a + c, t + a + b, t + b);
}
}
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0);
int x, y, z;
cin >> x >> y >> z;
cout << sol(x, y, z, "a", "b", "c") << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int A, B, C;
std::string smallestRotateString(std::string s) {
std::string result = "";
std::vector<int> indexList;
{
char smallestChar = 'z';
for (int i = 0; i < s.length(); i++) {
if (s[i] < smallestChar) smallestChar = s[i];
}
for (int i = 0; i < s.length(); i++) {
if (s[i] == smallestChar) indexList.push_back(i);
}
result += smallestChar;
}
for (int p = 1; p < s.length(); p++) {
for (int i = 0; i < indexList.size(); i++) {
indexList[i] = (indexList[i] + 1) % s.length();
}
char smallestChar = 'z';
for (int k = 0; k < indexList.size(); k++) {
int idx = indexList[k];
if (s[idx] < smallestChar) smallestChar = s[idx];
}
result += smallestChar;
std::vector<int>::iterator it = indexList.begin();
while (it != indexList.end()) {
if (s[*it] != smallestChar) {
it = indexList.erase(it);
} else
++it;
}
}
return result;
}
std::vector<char> perm;
int main(int argc, char* argv[]) {
std::cin >> A >> B >> C;
for (int i = 0; i < A; i++) perm.push_back('a');
for (int i = 0; i < B; i++) perm.push_back('b');
for (int i = 0; i < C; i++) perm.push_back('c');
std::string best(perm.begin(), perm.end());
best = smallestRotateString(best);
do {
std::string tmp(perm.begin(), perm.end());
std::cout << "t:" << tmp << std::endl;
std::string ret = smallestRotateString(tmp);
if (best.compare(ret) < 0) {
best = ret;
std::cout << "b:" << best << std::endl;
}
if (best.compare(tmp) < 0) break;
} while (next_permutation(perm.begin(), perm.end()));
std::cout << best << std::endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | def work(a,b,c,A,B,C):
if A==0:
return work(b,c,'',B,C,0)
if B==0:
if C==0:
return a*A
else:
return work(a,c,'',A,C,0)
if C==0:
return work(a+b*(B/A),a+b*(B/A+1),'',A-B%A,B%A,0)
cmod = C%A
bmod = B%A
if cmod+bmod<=A:
return work(a+c*(C/A)+b*(B/A),a+c*(C/A)+b*(B/A+1),a+c*(C/A+1)+b*(B/A),A-cmod-bmod,bmod,cmod)
else:
return work(a+c*(C/A)+b*(B/A+1),a+c*(C/A+1)+b*(B/A),a+c*(C/A+1)+b*(B/A+1),A-cmod,A-bmod,bmod+cmod-A)
if __name__ == '__main__':
s = raw_input()
a,b,c = [int(i) for i in s.split()]
print(work('a','b','c',a,b,c))
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
__attribute__((constructor)) void initial() {
cin.tie(0);
ios::sync_with_stdio(false);
}
int main() {
int x, y, z;
cin >> x >> y >> z;
multiset<string> ms;
for (int i = (0); i < (x); i++) ms.insert("a");
for (int i = (0); i < (y); i++) ms.insert("b");
for (int i = (0); i < (z); i++) ms.insert("c");
while (ms.size() > 1) {
auto itr1 = ms.begin();
auto itr2 = ms.end();
itr2--;
ms.erase(itr1);
ms.erase(itr2);
ms.insert(*itr1 + *itr2);
}
cout << *ms.begin() << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // ayy
// ' lamo
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld; //CARE
typedef complex<ld> pt;
#define fi first
#define se second
#define pb push_back
const ld eps=1e-8;
const int inf=1e9+99;
const ll linf=1e18+99;
const int P=1e9+7;
string g1(string A,int X) {
string Z="";
// cerr<<A<<" * "<<X<<endl;
for(;X--;) Z+=A;
return Z;
}
string g2(string A,string B,int X,int Y) {
// cerr<<"g2"<<" "<<A<<" "<<B<<" "<<X<<" "<<Y<<endl;
assert(A<B);
if(!X) return g1(B,Y);
string AA=A;
string BB=A;
for(int i=0;i*X<Y;i++) AA+=B, BB+=B;
AA+=B;
int XX=Y%X;
int YY=X-XX;
if(!XX) return g1(BB,YY);
return g2(BB,AA,YY,XX);
}
string g3(string A,string B,string C,int X,int Y,int Z) {
// cerr<<"g3"<<" "<<A<<" "<<B<<" "<<C<<" "<<X<<" "<<Y<<" "<<Z<<endl;
assert(A<B && B<C);
if(!X) return g2(B,C,Y,Z);
string AA=A;
string BB=A;
string CC=A;
for(int i=0;i*X<Z;i++) AA+=C, BB+=C, CC+=C;
AA+=C;
int XX=Z%X;
int qq=X-XX;
assert(qq>=1);
for(int i=0;i*qq<Y;i++) BB+=B, CC+=B;
BB+=B;
int YY=Y%qq;
int ZZ=qq-YY;
assert(XX+YY+ZZ == X);
if(!XX) return g2(CC,BB,ZZ,YY);
if(!YY) return g2(CC,AA,ZZ,XX);
return g3(CC,BB,AA,ZZ,YY,XX);
}
int32_t main() {
int X,Y,Z;
cin>>X>>Y>>Z;
cout<<g3("a","b","c",X,Y,Z)<<endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string f(int x, int y, int z, string a, string b, string c) {
if (y == 0 && z == 0) {
string ret;
for (int i = 0; i < x; i++) ret += a;
return ret;
}
if (x == 0) return f(y, z, 0, b, c, a);
if (y == 0 && z) return f(x, z, y, a, c, b);
if (z == 0) {
if (x <= y) {
string na = a;
for (int i = 0; i < y / x; i++) na += b;
return f(y - y % x, y % x, 0, na, b, c);
} else {
string na = a, nb = a + b;
return f(x - y, y, 0, na, nb, c);
}
} else if (x <= y + z) {
string na = a, nb = a;
for (int i = 0; i < z / x; i++) {
na += c;
nb += c;
}
for (int i = 0; i < z % x; i++) nb += c;
return f(x - z % x, z % x, y, na, nb, b);
} else {
string na = a, nb = a + b, nc = a + c;
return f(x - y - z, y, z, na, nb, nc);
}
}
int X, Y, Z;
int main() {
cin >> X >> Y >> Z;
cout << f(X, Y, Z, "a", "b", "c");
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string eval(string s) {
int n = s.size();
s += s;
string ans = "~";
for (int i = 0; i < n; ++i) {
ans = min(ans, s.substr(i, n));
}
return ans;
}
int main() {
int X, Y, Z;
cin >> X >> Y >> Z;
int N = X + Y + Z;
string ans = string(X, 'a') + string(Y, 'b') + string(Z, 'c');
string cur_ev = eval(ans);
while (true) {
bool found = false;
for (int i = 0; i < N && !found; ++i) {
for (int j = 0; j < N; ++j) {
string nxt = ans;
char ch = nxt[i];
nxt.erase(nxt.begin() + i);
nxt.insert(nxt.begin() + j, ch);
string ev = eval(nxt);
if (ev > cur_ev) {
cur_ev = ev;
ans = nxt;
found = true;
break;
}
}
}
if (!found) break;
}
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int X, Y, Z;
cin >> X >> Y >> Z;
vector<string> v;
if (X == 0 && Y == 0) {
for (int i = 0; i < Z; ++i) {
cout << 'c';
}
cout << '\n';
return 0;
}
if (X == 0) {
for (int i = 0; i < Y; ++i) {
v.push_back("b");
}
for (int i = 0; i < Y * (Z / Y); ++i) {
v[i % Y] += "c";
}
int c = -1;
for (int i = 0; i < Z % Y; ++i) {
if (i < Y % (Z % Y)) ++c;
c += Y / (Z % Y);
v[c] += "c";
}
for (int i = 0; i < v.size(); ++i) {
cout << v[i];
}
cout << '\n';
return 0;
}
for (int i = 0; i < X; ++i) {
v.push_back("a");
}
for (int i = 0; i < X * (Z / X); ++i) {
v[i % X] += "c";
}
int c = -1;
for (int i = 0; i < Z % X; ++i) {
if (i < X % (Z % X)) ++c;
c += X / (Z % X);
v[c] += "c";
}
vector<int> ind;
for (int i = 0; i < v.size(); ++i) {
if (v[i].length() <= 1 + Z / X) {
ind.push_back(i);
}
}
for (int i = 0; i < ind.size() * (Y / ind.size()); ++i) {
v[ind[i % ind.size()]] += "b";
}
c = -1;
for (int i = 0; i < Y % ind.size(); ++i) {
if (i < ind.size() % (Y % ind.size())) ++c;
c += ind.size() / (Y % ind.size());
v[ind[c]] += "b";
}
for (int i = 0; i < v.size(); ++i) {
cout << v[i];
}
cout << '\n';
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using std::abs;
using std::array;
using std::cerr;
using std::cin;
using std::cout;
using std::generate;
using std::make_pair;
using std::map;
using std::max;
using std::max_element;
using std::min;
using std::min_element;
using std::pair;
using std::reverse;
using std::set;
using std::sort;
using std::string;
using std::unique;
using std::vector;
template <typename T>
T input() {
T res;
cin >> res;
{};
return res;
}
template <typename IT>
void input_seq(IT b, IT e) {
std::generate(b, e,
input<typename std::remove_reference<decltype(*b)>::type>);
}
string solve(int a, int b, int c) {
string base = "a";
while (c >= a) base += 'c', c -= a;
while (b >= a) base += 'b', b -= a;
if (b == 0 and c == 0) {
string res = "";
for (int t = 0; t != a; ++t) res += base;
return res;
}
int num = (a + (b + c - 1)) / (b + c);
int free = num * (b + c) - a;
string tmp = "";
for (int i = 0; i != num - 1; ++i) tmp += base;
vector<string> parts;
for (int i = 0; i != (b + c - free); ++i) parts.push_back(tmp + base);
for (int i = 0; i != free; ++i) parts.push_back(tmp);
for (int i = 0; i != c; ++i) parts[i] += 'c';
for (int i = 0; i != b; ++i) parts[c + i] += 'b';
std::sort(parts.begin(), parts.end());
vector<string> cparts = parts;
cparts.resize(std::unique(cparts.begin(), cparts.end()) - cparts.begin());
while (cparts.size() < 3) cparts.push_back("");
assert(int((cparts).size()) == 3);
string zzans = solve(std::count(parts.begin(), parts.end(), cparts[0]),
std::count(parts.begin(), parts.end(), cparts[1]),
std::count(parts.begin(), parts.end(), cparts[2]));
string ans = "";
for (char ch : zzans) ans += cparts[ch - 'a'];
return ans;
}
int main() {
std::iostream::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int a = input<int>();
int b = input<int>();
int c = input<int>();
std::map<char, char> back;
if (a == 0 and b == 0) {
back['a'] = 'c';
a = c;
b = 0;
c = 0;
} else if (a == 0) {
back['a'] = 'b';
back['b'] = 'c';
a = b;
b = c;
c = 0;
} else {
back['a'] = 'a';
back['b'] = 'b';
back['c'] = 'c';
}
string ans = solve(a, b, c);
for (int i = 0; i != int((ans).size()); ++i) cout << back[ans[i]];
cout << "\n";
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.