Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using std::abs;
using std::array;
using std::cerr;
using std::cin;
using std::cout;
using std::generate;
using std::make_pair;
using std::map;
using std::max;
using std::max_element;
using std::min;
using std::min_element;
using std::pair;
using std::reverse;
using std::set;
using std::sort;
using std::string;
using std::unique;
using std::vector;
template <typename T>
T input() {
T res;
cin >> res;
{};
return res;
}
template <typename IT>
void input_seq(IT b, IT e) {
std::generate(b, e,
input<typename std::remove_reference<decltype(*b)>::type>);
}
string solve(int a, int b, int c) {
string base = "a";
while (c >= a) base += 'c', c -= a;
while (b >= a) base += 'b', b -= a;
if (b == 0 and c == 0) {
string res = "";
for (int t = 0; t != a; ++t) res += base;
return res;
}
if (b + c >= a) {
vector<string> lst;
int count = 0;
while (c != 0) {
c -= 1, count += 1;
lst.push_back(base + 'c');
}
while (count != a) {
b -= 1, count += 1;
lst.push_back(base + 'b');
}
while (b != 0) lst.push_back("b"), b -= 1;
std::sort(lst.begin(), lst.end());
string res = lst[0];
for (int i = int((lst).size()) - 1; i >= 0; --i) res += lst[i];
return res;
} else {
int num = (a + (b + c - 1)) / (b + c);
int free = num * (b + c) - a;
string tmp = "";
for (int i = 0; i != num - 1; ++i) tmp += base;
vector<string> parts;
for (int i = 0; i != (b + c - free); ++i) parts.push_back(tmp + base);
for (int i = 0; i != free; ++i) parts.push_back(tmp);
for (int i = 0; i != c; ++i) parts[i] += 'c';
for (int i = 0; i != b; ++i) parts[c + i] += 'b';
std::sort(parts.begin(), parts.end());
vector<string> cparts = parts;
cparts.resize(std::unique(parts.begin(), parts.end()) - parts.begin());
while (cparts.size() < 3) cparts.push_back("");
assert(int((cparts).size()) == 3);
string zzans = solve(std::count(parts.begin(), parts.end(), cparts[0]),
std::count(parts.begin(), parts.end(), cparts[1]),
std::count(parts.begin(), parts.end(), cparts[2]));
string ans = "";
for (char ch : zzans) ans += cparts[ch - 'a'];
return ans;
}
}
int main() {
std::iostream::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int a = input<int>();
int b = input<int>();
int c = input<int>();
std::map<char, char> back;
if (a == 0 and b == 0) {
back['a'] = 'c';
a = c;
b = 0;
c = 0;
} else if (a == 0) {
back['a'] = 'b';
back['b'] = 'c';
a = b;
b = c;
c = 0;
} else {
back['a'] = 'a';
back['b'] = 'b';
back['c'] = 'c';
}
string ans = solve(a, b, c);
for (int i = 0; i != int((ans).size()); ++i) cout << back[ans[i]];
cout << "\n";
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
pair<int, int> ans;
string a, b, c;
void calc(int x, int y, int z) {
if (x == 0 && z == 0) {
ans.first = 2, ans.second = y;
return;
}
if (x == 0 && y == 0) {
ans.first = 3, ans.second = z;
return;
}
if (y == 0 && z == 0) {
ans.first = 1, ans.second = x;
return;
}
if (x <= z) {
for (auto it : c) a.push_back(it);
calc(x, y, z - x);
} else {
string tmp = c;
c = b;
b.clear();
for (auto it : a) b.push_back(it);
for (auto it : tmp) b.push_back(it);
calc(x - z, z, y);
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
a.clear(), b.clear(), c.clear();
cin >> x >> y >> z;
a.push_back('a'), b.push_back('b'), c.push_back('c');
calc(x, y, z);
for (int i = 0; i < ans.second; i++) {
if (ans.first == 1)
cout << a;
else if (ans.first == 2)
cout << b;
else
cout << c;
}
cout << '\n';
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
const int MAXN = 4005;
int x, y, z;
string s;
int dp[51][51][51][51];
int link[51][3];
int fail[51];
bool rend[MAXN];
bool f(int x, int y, int z, int m) {
if (m == s.size()) m = fail[m];
if (x + y + z == 0) return rend[m];
if (~dp[x][y][z][m]) return dp[x][y][z][m];
int ret = 0;
if (link[m][0] != -1 && x && f(x - 1, y, z, link[m][0])) ret = 1;
if (link[m][1] != -1 && y && f(x, y - 1, z, link[m][1])) ret = 1;
if (link[m][2] != -1 && z && f(x, y, z - 1, link[m][2])) ret = 1;
return dp[x][y][z][m] = ret;
}
bool trial() {
int p = 0;
for (int i = 1; i < s.size(); i++) {
while (p && s[i] != s[p]) p = fail[p];
if (s[i] == s[p]) p++;
fail[i + 1] = p;
}
for (int i = 0; i < s.size(); i++) {
for (int j = 0; j < 3; j++) {
int pos = i;
if (s[i] > j + 'a') {
link[i][j] = -1;
continue;
}
while (pos && s[pos] != j + 'a') pos = fail[pos];
if (s[pos] == j + 'a') pos++;
link[i][j] = pos;
}
}
for (int i = 0; i < s.size(); i++) {
int pos = i;
rend[i] = 1;
for (int j = 0; j < s.size(); j++) {
pos = link[pos][s[j] - 'a'];
if (pos == -1) {
rend[i] = 0;
break;
}
}
}
memset(dp, -1, sizeof(dp));
return f(x, y, z, 0);
}
int main() {
cin >> x >> y >> z;
while (s.size() < x + y + z) {
s.push_back('c');
if (trial()) continue;
s.back() = 'b';
if (trial()) continue;
s.back() = 'a';
}
cout << s << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.*;
class Main {
public static void main(String args[]) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String s = new String(in.readLine());
String[] abc = s.split(",");
// 整数の入力
int a = Integer.parseInt(abc[0]);
// スペース区切りの整数の入力
int b = Integer.parseInt(abc[1]);
// スペース区切りの整数の入力
int c = Integer.parseInt(abc[2]);
StringBuilder buff = new StringBuilder();
boolean flag = true;
while(flag) {
if(a!=0) {
buff.append("a");
a--;
}else if(c!=0) {
buff.append("c");
}else if(b!=0) {
buff.append("b");
} else {
System.out.println(buff);
flag = false;
}
}
}
} |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int x, y, z, tmp, t;
vector<char> V[55];
int main() {
scanf("%d%d%d", &x, &y, &z);
if (x == 0 && y == 0) {
for (int i = 1; i <= z; i++) cout << 'c' << endl;
return 0;
}
if (x == 0) {
for (int i = 1; i <= y; i++) {
V[i].push_back('b');
}
tmp = y;
for (int i = z; i >= 1; i--) {
V[tmp--].push_back('c');
if (tmp == 0) tmp = y;
}
for (int i = 1; i <= y; i++) {
for (int j = 0; j < V[i].size(); j++) {
cout << V[i][j];
}
}
cout << endl;
return 0;
}
for (int i = 1; i <= x; i++) {
V[i].push_back('a');
}
tmp = x;
for (int i = z; i >= 1; i--) {
V[tmp--].push_back('c');
if (tmp == 0) tmp = x;
}
t = tmp;
for (int i = y; i >= 1; i--) {
V[tmp--].push_back('b');
if (tmp == 0) tmp = t;
}
for (int i = 1; i <= x; i++) {
for (int j = 0; j < V[i].size(); j++) {
cout << V[i][j];
}
}
cout << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
string s[100];
int main() {
scanf("%d%d%d", &x, &y, &z);
if (!x && !y) {
for (int i = 1; i <= z; ++i) {
printf("%c", 'c');
}
} else if (!x) {
for (int i = 1; i <= y; ++i) s[i] = 'b';
for (; z;) {
for (int i = y; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
for (int i = 1; i <= y; ++i)
for (int j = 0; j <= (int)s[i].length() - 1; ++j) {
printf("%c", s[i][j]);
}
} else {
for (int i = 1; i <= x; ++i) s[i] = 'a';
for (; z;) {
for (int i = x; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
int k = x;
for (int i = 1; i <= x - 1; ++i)
if (s[i].length() != s[i + 1].length()) {
k = i;
break;
}
for (; y;) {
for (int i = k; i; --i)
if (y) {
s[i] = s[i] + 'b';
--y;
}
}
for (int i = 1; i <= x; ++i)
for (int j = 0; j <= (int)s[i].length() - 1; ++j) {
printf("%c", s[i][j]);
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class C>
void mini(C &a4, C b4) {
a4 = min(a4, b4);
}
template <class C>
void maxi(C &a4, C b4) {
a4 = max(a4, b4);
}
template <class TH>
void _dbg(const char *sdbg, TH h) {
cerr << sdbg << '=' << h << endl;
}
template <class TH, class... TA>
void _dbg(const char *sdbg, TH h, TA... a) {
while (*sdbg != ',') cerr << *sdbg++;
cerr << '=' << h << ',';
_dbg(sdbg + 1, a...);
}
template <class T>
ostream &operator<<(ostream &os, vector<T> V) {
os << "[";
for (auto vv : V) os << vv << ",";
return os << "]";
}
template <class L, class R>
ostream &operator<<(ostream &os, pair<L, R> P) {
return os << "(" << P.first << "," << P.second << ")";
}
long long a, b, c;
long long t[3];
vector<long long> res;
void licz(long long ak) {
if (((long long)(res).size()) == a + b + c) {
for (long long el : res) cout << char(el + 'a');
cout << "\n";
exit(0);
}
for (long long i = 2; i >= res[ak]; i--) {
if (t[i]) {
t[i]--;
res.push_back(i);
licz(i == res[ak] ? ak + 1 : 0);
res.pop_back();
t[i]++;
}
}
}
int32_t main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(11);
if (0) cout << fixed << setprecision(6);
cin >> a >> b >> c;
t[0] = a;
t[1] = b;
t[2] = c;
for (long long i = 0; i < 3; i++) {
if (t[i]) {
res.push_back(i);
t[i]--;
break;
}
}
licz(0);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string slow(int ca, int cb, int cc) {
int n = ca + cb + cc;
string s = "";
for (int i = 0; i < ca; i++) s += 'a';
for (int i = 0; i < cb; i++) s += 'b';
for (int i = 0; i < cc; i++) s += 'c';
string ans = s;
do {
string mn = s;
for (int i = 0; i < n; i++) {
string t = s;
rotate(t.begin(), t.begin() + i, t.end());
mn = min(mn, t);
}
ans = max(ans, mn);
} while (next_permutation(s.begin(), s.end()));
return ans;
}
string lexmin(string s) {
string mn = s;
for (int i = 0; i < (int)s.length(); i++) {
string t = s;
rotate(t.begin(), t.begin() + i, t.end());
mn = min(mn, t);
}
return mn;
}
string solve(vector<string> v) {
sort(v.begin(), v.end());
int n = v.size();
if (v[0] == v[n - 1]) {
string s = "";
for (auto t : v) s += t;
return lexmin(s);
}
map<string, int> mp;
for (auto s : v) mp[s]++;
vector<pair<string, int> > b;
for (auto it : mp) {
b.push_back(it);
}
vector<string> nv;
vector<string> cur(b[0].second, b[0].first);
for (int i = (int)b.size() - 1; i >= 1; i--) {
for (int j = 0; j < b[i].second; j++) {
cur[j % (int)cur.size()] += b[i].first;
}
if (b[i].second % cur.size()) {
int rem = b[i].second % cur.size();
while (cur.size() > rem) {
nv.push_back(*cur.rbegin());
cur.pop_back();
}
}
}
for (auto s : cur) nv.push_back(s);
return solve(nv);
}
string fast(int ca, int cb, int cc) {
bool f = 0;
if (ca == 0) {
f = 1;
ca = cb;
cb = cc;
cc = 0;
}
if (ca == 0) {
return string(cb, 'c');
}
int n = ca + cb + cc;
vector<string> a(ca, "a");
for (int i = 0; i < cc; i++) {
a[i % ca] += "c";
}
for (int i = 0; i < cb; i++) {
a[(i + cc) % (ca - cc % ca) + cc % ca] += "b";
}
sort(a.begin(), a.end());
string ans = solve(a);
while (1) {
string s = "";
random_shuffle(a.begin(), a.end());
for (string ss : a) s += ss;
string mn = s;
for (int i = 0; i < n; i++) {
string t = s;
rotate(t.begin(), t.begin() + i, t.end());
mn = min(mn, t);
}
ans = max(ans, mn);
if (clock() / (double)CLOCKS_PER_SEC > 1.9) break;
}
if (f) {
for (char &c : ans) {
if (c == 'a')
c = 'b';
else
c = 'c';
}
}
return ans;
}
int main() {
int ca, cb, cc;
while (cin >> ca >> cb >> cc) {
cout << fast(ca, cb, cc) << endl;
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 55;
string res;
bool vis[maxn][maxn][maxn][maxn];
int failure[maxn];
void push() {
memset(failure, 0, sizeof(failure));
for (int s = 2; s <= res.size(); s++) {
failure[s] = failure[s - 1];
while (failure[s] > 0 && res[failure[s]] != res[s - 1])
failure[s] = failure[failure[s]];
if (res[failure[s]] == res[s - 1]) ++failure[s];
}
}
bool solve(int qx, int qy, int qz, int pos) {
if (qx + qy + qz == 0) {
string pref;
for (int e = 0; e < pos; e++) pref.push_back(res[e]);
pref += res;
for (int e = 0; e < res.size(); e++) {
if (pref[e] < res[e]) return false;
if (pref[e] > res[e]) return true;
}
return true;
}
if (vis[qx][qy][qz][pos]) return false;
vis[qx][qy][qz][pos] = 1;
if (qz > 0) {
int nxt = pos;
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'c' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'c') nxt++;
if (solve(qx, qy, qz - 1, nxt)) return true;
}
if (res[pos] != 'c' && qy > 0) {
int nxt = pos;
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'b' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'b') nxt++;
if (solve(qx, qy - 1, qz, nxt)) return true;
}
if (res[pos] != 'c' && res[pos] != 'b' && qx > 0) {
int nxt = pos;
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'a' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'a') nxt++;
if (solve(qx - 1, qy, qz, nxt)) return true;
}
return false;
}
int M() {
int x, y, z;
if (!(cin >> x >> y >> z)) return 0;
int len = x + y + z;
res.clear();
for (int e = 0; e < len; e++) {
{
if (z > 0) {
res.push_back('c');
push();
memset(vis, false, sizeof(vis));
if (solve(x, y, z - 1, 0)) {
z--;
continue;
}
res.pop_back();
}
}
{
if (y > 0) {
res.push_back('b');
push();
memset(vis, false, sizeof(vis));
if (solve(x, y - 1, z, 0)) {
y--;
continue;
}
res.pop_back();
}
}
{
if (x > 0) {
res.push_back('a');
push();
memset(vis, false, sizeof(vis));
if (solve(x - 1, y, z, 0)) {
x--;
continue;
}
res.pop_back();
}
}
assert(0);
}
cout << res << endl;
return 1;
}
int main() {
while (M())
;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); }
string solve(int na, int nb, int nc) {
if (na == 0 && nb == 0 && nc == 0) return "";
if (na == 0) {
string ret = solve(nb, nc, 0);
for (int i = (0); i < (((int)(ret).size())); ++i) ++ret[i];
return ret;
}
vector<string> parts;
string cur = "a";
int curcnt = na;
na = 0;
while (na + nb + nc > 0) {
if (nc >= curcnt) {
cur += "c";
nc -= curcnt;
continue;
}
while (nc > 0) parts.push_back(cur + "c"), --curcnt, --nc;
if (nb >= curcnt) {
cur += "b";
nb -= curcnt;
continue;
}
while (nb > 0) parts.push_back(cur + "b"), --curcnt, --nb;
}
while (((int)(parts).size()) > 0) {
int rep = curcnt / ((int)(parts).size()),
rem = curcnt % ((int)(parts).size());
if (rem == 0) --rep, rem = ((int)(parts).size());
string pref;
for (int i = (0); i < (rep); ++i) pref += cur;
string nxt = pref + cur + parts[rem - 1];
int nxtcnt = 1;
while (nxtcnt < rem && parts[rem - 1] == parts[rem - 1 - nxtcnt]) ++nxtcnt;
vector<string> nparts;
for (int i = (0); i < (rem - nxtcnt); ++i)
nparts.push_back(pref + cur + parts[i]);
for (int i = (rem); i < (((int)(parts).size())); ++i)
nparts.push_back(pref + parts[i]);
parts = nparts;
cur = nxt;
curcnt = nxtcnt;
}
string ret;
for (int i = (0); i < (curcnt); ++i) ret += cur;
return ret;
}
void run() {
int na, nb, nc;
scanf("%d%d%d", &na, &nb, &nc);
string s = solve(na, nb, nc);
printf("%s\n", s.c_str());
}
int main() {
run();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
u=0
s=1
x=0
y=0
for i in a:
u+=i
if s*u<=0:
x+=1-s*u
u=s
s=s*(-1)
s=-1
u=0
for i in a:
u+=i
if s*u<=0:
y+=1-s*u
u=s
s=-1*s
print(min(x,y)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
int main(){
int n;
cin >> n;
vector<long> a(n);
for(int i=0;i<n;i++) cin >> a[i];
long odd=0,even=0,sum=0;
for(int i=0;i<n;i++){ //+-
sum+=a[i];
if(i%2==0&&sum<=0){
odd+=abs(sum)+1;
sum=+1;
}
else if(i%2==1&&sum>=0){
odd+=abs(sum)+1;
sum=-1;
}
}
sum=0;
for(int i=0;i<n;i++){ //-+
sum+=a[i];
if(i%2==1&&sum<=0){
even+=abs(sum)+1;
sum=+1;
}
else if(i%2==0&&sum>=0){
even+=abs(sum)+1;
sum=-1;
}
}
cout << min(odd,even) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
int n;cin>>n;
int a[n];
for (int i=0;i<n;i++)
cin>>a[i];
ll mn=1e18;
for (int i=0;i<2;i++) {
ll sm=0;
ll cnt=0;
for (int j=0;j<n;j++) {
sm+=a[j];
if ((i+j)%2==0) {
if (sm<=0) {
cnt+=-sm+1;
sm=1;
}
} else {
if (sm>=0) {
cnt+=sm+1;
sm=-1;
}
}
}
mn=min(mn,cnt);
}
cout<<mn<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
def chk(A,t):
ans=0
s=0
for i in A:
s+=i
if t==True and s<1:
ans+=1-s
s=1
elif t==False and s>-1:
ans+=1+s
s=-1
t=not t
return ans
print(min(chk(A,True),chk(A,False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 10 ** 18
for z in range(2):
if z == 0:
sign = 1
else:
sign = -1
c = 0
cost = 0
for x in a:
c += x
if c * sign <= 0:
cost += 1 - c * sign
c = sign
sign *= -1
ans = min(ans, cost)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
s = max(A[0], +1)
ans_p = abs(A[0]-s)
for a in A[1:]:
if s>0: b=min(a, -s-1)
if s<0: b=max(a, -s+1)
s += b
ans_p += abs(a-b)
s = min(A[0], -1)
ans_n = abs(A[0]-s)
for a in A[1:]:
if s>0: b=min(a, -s-1)
if s<0: b=max(a, -s+1)
s += b
ans_n += abs(a-b)
print(min(ans_p, ans_n)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define ll long long
int main(){
ll n,ce=0,cf=0;
cin>>n;
ll a[n],e[n],f[n];
cin>>a[0];
e[0]=a[0];
f[0]=a[0];
if(e[0]<1){
e[0]=1;
ce+=1-a[0];
}
if(f[0]>-1){
f[0]=-1;
cf+=a[0]+1;
}
for(int i=1;i<n;i++){
cin>>a[i];
e[i]=e[i-1]+a[i];
f[i]=f[i-1]+a[i];
if(i%2==1){
if(e[i]>-1){
ce+=e[i]+1;
e[i]=-1;
}
if(f[i]<1){
cf+=1-f[i];
f[i]=1;
}
}else{
if(f[i]>-1){
cf+=f[i]+1;
f[i]=-1;
}
if(e[i]<1){
ce+=1-e[i];
e[i]=1;
}
}
}
cout<<min(ce,cf);
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.nio.charset.IllegalCharsetNameException;
import java.util.*;
import java.lang.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
long oddsum = 0;
long oddcount = 0;
for (int i = 0; i < n / 2; i++) {
oddsum += a[2 * i];
if (oddsum <= 0) {
oddcount += Math.abs(1 - oddsum);
oddsum = 1;
}
oddsum += a[2 * i + 1];
if (oddsum >= 0) {
oddcount += Math.abs(-1 - oddsum);
oddsum = -1;
}
}
long evensum = 0;
long evencount = 0;
for (int i = 0; i < n / 2; i++) {
evensum += a[2 * i];
if (evensum >= 0) {
evencount += Math.abs(-1 - evensum);
evensum = -1;
}
evensum += a[2 * i + 1];
if (evensum <= 0) {
evencount += Math.abs(1 - evensum);
evensum = 1;
}
}
if (n % 2 != 0) {
oddsum += a[n - 1];
if (oddsum <= 0) {
oddcount += Math.abs(1 - oddsum);
oddsum = 1;
}
evensum += a[n - 1];
if (evensum >= 0) {
evencount += Math.abs(-1 - evensum);
evensum = -1;
}
}
System.out.println(Math.min(oddcount, evencount));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | import sys
input = sys.stdin.readline
n=int(input())
a=list(map(int,input().split()))
v=[]
for s in (1,-1):
x=a[::]
hugou=[s*(-1)**i for i in range(n)]
total=0
for i in range(n):
if (total+x[i])*hugou[i]<=0:
x[i]=hugou[i]-total
total+=x[i]
v.append(sum(abs(a[i]-x[i]) for i in range(n)))
print(min(v))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
def solve(a,t):
ans,x=0,0
for i in a:
x+=i
if t==True and x<1:
ans+=1-x
x=1
elif t==False and x>-1:
ans+=x+1
x=-1
t=not t
return ans
print(min(solve(A,True),solve(A,False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.next());
int[] a = new int[n];
for (int i = 0; i < n; i++) {
int temp = Integer.parseInt(sc.next());
a[i] = temp;
}
long ans1 = 0;
long ans2 = 0;
long temp = 0;
for (int i = 0; i < n; i++) {
long num = a[i];
if (i % 2 == 0 && temp + num >= 0) {
ans1 += temp + num + 1;
num -= temp + num + 1;
}
if (i % 2 != 0 && temp + num <= 0) {
ans1 += Math.abs(temp + num - 1);
num += Math.abs(temp + num - 1);
}
temp += num;
}
temp = 0;
for (int i = 0; i < n; i++) {
long num = a[i];
if (i % 2 == 0 && temp + num <= 0) {
ans2 += Math.abs(temp + num - 1);
num += Math.abs(temp + num - 1);
}
if (i % 2 != 0 && temp + num >= 0) {
ans2 += temp + num + 1;
num -= temp + num + 1;
}
temp += num;
}
System.out.println(Math.min(ans1, ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | // C - Sequence
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define rp(i,n) for(int i=0;i<(n);i++)
ll counter(vector<ll> &A, int N, int sign){//sign: (+)start -> 1, (-)start -> -1
ll c = 0, s = 0;
rp(i,N){
s += A[i];
if(sign*s<=0){
c += abs(s) + 1;
s = sign;
}
sign *= -1;
}
return c;
}
int main(){
int N; cin>>N;
vector<ll> A(N);
rp(i,N) cin>>A[i];
ll a = counter(A,N, 1);
ll b = counter(A,N,-1);
cout<< (a<b?a:b) <<endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | // C - Sequence
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define up(i,s,e,d) for(int i=(s);i<(e);i+=(d))
int main(){
int N; cin>>N;
vector<ll> A(N);
ll csum = 0;
ll a = 0;
up(i,0,N,1){
cin>>A[i];
csum += A[i];
if(i%2==0 && csum<=0){//even +
a += abs(csum) + 1;
csum = 1;
}
if(i%2==1 && csum>=0){//odd -
a += abs(csum) + 1;
csum = -1;
}
}
csum = 0;
ll b = 0;
up(i,0,N,1){
csum += A[i];
if(i%2==1 && csum<=0){//odd +
b += abs(csum) + 1;
csum = 1;
}
if(i%2==0 && csum>=0){//even -
b += abs(csum) + 1;
csum = -1;
}
}
cout<< (a<b?a:b) <<endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | def F(list_A, sign):
total = 0
cnt = 0
for a in list_A:
total += a
if sign==True and total < 1:
cnt += 1- total
total = 1
elif sign==False and total > -1:
cnt += total + 1
total = -1
sign = not sign
return cnt
N = int(input())
A = list(map(int, input().split()))
ans = min(F(A, True), F(A, False))
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
public class Main{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
long[] s = new long[n];
for(int i = 0; i < n; i++){
a[i] = sc.nextLong();
if(i == 0){
s[0] = a[0];
} else {
s[i] = s[i-1]+a[i];
}
}
sc.close();
long cnt1 = 0;
long cnt2 = 0;
long diff1 = 0;
long diff2 = 0;
for(int i = 0; i < n; i++){
if(i%2 == 0){
if(s[i]+diff1 <= 0){
cnt1 += 1-s[i]-diff1;
diff1 += 1-s[i]-diff1;
}
} else {
if(s[i]+diff1 >= 0){
cnt1 += s[i] + diff1 + 1;
diff1 += -1-s[i]-diff1;
}
}
}
for(int i = 0; i < n; i++){
if(i%2 == 0){
if(s[i]+diff2 >= 0){
cnt2 += s[i] + diff2 + 1;
diff2 += -1-s[i]-diff2;
}
} else {
if(s[i]+diff2 <= 0){
cnt2 += 1-s[i]-diff2;
diff2 += 1-s[i]-diff2;
}
}
}
System.out.println(Math.min(cnt1, cnt2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] nums = new long[n];
for(int i = 0; i < n; i++) {
nums[i] = sc.nextLong();
}
long[] prefixSum = new long[n];
long minCost = 0;
if(nums[0] == 0) {
nums[0] = 1;
minCost = 1 + count(nums);
nums[0] = -1;
minCost = Math.min(minCost, 1 + count(nums));
} else {
minCost = count(nums);
long org = nums[0];
if(org > 0) {
nums[0] = -1;
minCost = Math.min(minCost,count(nums) + org + 1);
} else {
nums[0] = 1;
minCost = Math.min(minCost,count(nums) + 1 - org);
}
}
System.out.println(minCost);
}
private static long count(long[] nums) {
long cnt = 0;
long prev = nums[0];
long cur = 0;
for(int i = 1; i < nums.length; i++) {
cur = nums[i] + prev;
if(cur * prev < 0) {
prev = cur;
continue;
}
if(prev > 0) {
cnt += cur + 1;
prev = -1;
} else {
cnt += 1 - cur;
prev = 1;
}
}
return cnt;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | import copy
n = int(input())
*A, = map(int, input().split())
def solve(p):
r = 0
t = 0
for a in A:
t += a
if t * p <= 0:
r += abs(p - t)
t = p
p *= -1
return r
print(min(solve(1), solve(-1)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#if __has_include("print.hpp")
#include "print.hpp"
#endif
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
typedef long long ll;
typedef pair<int, int> p;
int n;
vector<int> v;
ll calc(ll s) {
ll sum = 0, res = 0;
for (int i = 0; i < n; ++i, s *= -1) {
sum += v[i];
if (sum * s > 0) continue;
res += abs(sum - s);
sum += s * abs(sum - s);
}
return res;
}
int main(){
cin >> n;
for (int i = 0; i < n; i++)
{
int tmp;
cin >> tmp;
v.push_back(tmp);
}
cout << min(calc(1), calc(-1)) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <algorithm>
using namespace std;
int main(void){
int n,i,a[100010];
long s=0,h1=0,h2=0;
cin >> n;
for (i=0;i<n;i++) cin >> a[i];
for (i=0;i<n;i++){
s+=a[i];
if (i%2 && s>=0){
h1+=s+1;
s=-1;
}
if (i%2==0 && s<=0){
h1+=1-s;
s=1;
}
}
s=0;
for (i=0;i<n;i++){
s+=a[i];
if (i%2==0 && s>=0){
h2+=s+1;
s=-1;
}
if (i%2 && s<=0){
h2+=1-s;
s=1;
}
}
cout << min(h1,h2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=[int(x) for x in input().split()]
def arrange(a0_is_plus):
r=0 if a0_is_plus==True else 1
sumNum=0
ans=0
for i,an in enumerate(a):
sumNum+=an
if i%2==r and sumNum<=0:
ans+=1-sumNum
sumNum=1
elif i%2!=r and sumNum>=0:
ans+=sumNum+1
sumNum=-1
return ans
print(min(arrange(True),arrange(False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
ans = 10**15
for s in [1,-1]:
cos = 0
tot = 0
for a in A:
tot+=a
if s*tot<=0:
cos+=abs(tot-s)
tot=s
s*=-1
ans=min(ans,cos)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[100010],n;
ll ans(int hugo){
ll sum=0,ANS=0;
for(int i=0;i<n;i++){
sum+=a[i];
if(hugo==-1){
hugo=1;
if(sum>=0){
ANS+=abs(sum)+1;
sum=-1;
}
}
else if(hugo==1){
hugo=-1;
if(sum<=0){
ANS+=abs(sum)+1;
sum=1;
}
}
}
return ANS;
}
int main() {
cin>>n;
for(int i=0;i<n;i++){
int z;
cin>>z;
a[i]=z;
}
cout << min(ans(-1),ans(1));
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
class Main {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
int n = sc.nextInt();
int[] ar = new int[n];
for (int i=0; i<n; i++) ar[i] = sc.nextInt();
//偶数項を正としたときの操作回数minA
long minA = 0;
long sumA = 0;
for (int i=0; i<n; i++) {
sumA += ar[i];
if (i%2 == 0) {
if (sumA <= 0) {
minA += Math.abs(sumA) + 1;
sumA += Math.abs(sumA) + 1;
}
}
else { //sumA -
if (sumA >= 0) {
minA += Math.abs(sumA) + 1;
sumA -= Math.abs(sumA) + 1;
}
}
}
//奇数項を正としたときの操作回数minB
long minB = 0;
long sumB = 0;
for (int i=0; i<n; i++) {
sumB += ar[i];
if (i%2 != 0) {
if (sumB <= 0) {
minB += Math.abs(sumB) + 1;
sumB += Math.abs(sumB) + 1;
}
}
else {
if (sumB >= 0) {
minB += Math.abs(sumB) + 1;
sumB -= Math.abs(sumB) + 1;
}
}
}
System.out.println(Math.min(minA, minB));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int N;
vector<int>a(100010); // 終了コード136が出る場合は配列を余分に取る。制約最大+αが望ましい
long calc(long s){
long sum=0, res=0;
for(int i=0; i<N; i++, s*=-1){
sum+=a[i];
if(sum*s>0){continue;} // 初項が+か―かで結果が出る問題である。sの変化を基準にしている。
res+=abs(sum-s); // abs(sum-s)を算出すると符号を変えるのに必要な操作回数の値がresに入る
sum+=s*abs(sum-s); // sum*sが成り立たないという事は、
} // sumに新しく入れる数値がsの基準に合致していないためであり、sを掛ける必要がある
return res; // 操作回数の最小値
}
int main() {
cin>>N;
for(int i=0; i<N; i++){
cin>>a[i]; }
cout<<min(calc(1), calc(-1));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Pradyumn Agrawal coderbond007
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = in.nextIntArray(n);
long ret = Long.MAX_VALUE;
for (int x = -1; x <= 1; x += 2) {
long s = 0;
long sg = x;
long cost = 0;
for (int i = 0; i < n; i++, sg = -sg) {
s += a[i];
if (Long.signum(s) == sg) {
} else if (sg == 1) {
cost += 1 - s;
s = 1;
} else {
cost += s - (-1);
s = -1;
}
}
ret = Math.min(ret, cost);
}
out.println(ret);
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int pnumChars;
private FastReader.SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (pnumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= pnumChars) {
curChar = 0;
try {
pnumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (pnumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c == ',') {
c = read();
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def pm(a, t):
ans = 0
s = 0
for i in a:
s += i
if t == 1 and s<1:
ans += -s+1
s = 1
elif t==-1 and s>-1:
ans += s+1
s = -1
t *= -1
return ans
print(min(pm(a, 1), pm(a, -1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.*;
import java.math.BigInteger;
public class Main implements Runnable {
static ContestScanner in;
static Writer out;
public static void main(String[] args) {
new Thread(null, new Main(), "", 16 * 1024 * 1024).start();
}
public void run() {
Main main = new Main();
try {
in = new ContestScanner();
out = new Writer();
main.solve();
out.close();
in.close();
} catch (IOException e) {
e.printStackTrace();
}
}
void solve() throws IOException {
n = in.nextInt();
s = new long[n];
for (int i = 0; i < n; i++) {
s[i] = in.nextLong();
}
System.out.println(Math.min(apply(-1), apply(1)));
}
int n;
long[] s;
long apply(long st) {
long ans = 0;
long sum = 0;
long target = st;
for (int i = 0; i < n; i++) {
long a = s[i];
if ((a + sum) * target > 0) sum += a;
else {
ans += Math.abs(a + sum - target);
sum = target;
}
target = -Long.signum(sum);
}
return ans;
}
}
class Writer extends PrintWriter{
public Writer(String filename)throws IOException
{super(new BufferedWriter(new FileWriter(filename)));}
public Writer()throws IOException {super(System.out);}
}
class ContestScanner implements Closeable {
private BufferedReader in;private int c=-2;
public ContestScanner()throws IOException
{in=new BufferedReader(new InputStreamReader(System.in));}
public ContestScanner(String filename)throws IOException
{in=new BufferedReader(new InputStreamReader(new FileInputStream(filename)));}
public String nextToken()throws IOException {
StringBuilder sb=new StringBuilder();
while((c=in.read())!=-1&&Character.isWhitespace(c));
while(c!=-1&&!Character.isWhitespace(c)){sb.append((char)c);c=in.read();}
return sb.toString();
}
public String readLine()throws IOException{
StringBuilder sb=new StringBuilder();if(c==-2)c=in.read();
while(c!=-1&&c!='\n'&&c!='\r'){sb.append((char)c);c=in.read();}
return sb.toString();
}
public long nextLong()throws IOException,NumberFormatException
{return Long.parseLong(nextToken());}
public int nextInt()throws NumberFormatException,IOException
{return(int)nextLong();}
public double nextDouble()throws NumberFormatException,IOException
{return Double.parseDouble(nextToken());}
public void close() throws IOException {in.close();}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
private static long[] add(long[] a, long add) {
long[] res = new long[a.length];
for (int i = 0; i < a.length; i++) {
res[i] = a[i];
}
res[0] += add;
return res;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNextInt()) {
int n = sc.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
boolean isZero = (a[0] == 0);
long ans = Long.MAX_VALUE;
if ( isZero ) {
long[] ta = add(a, 1);
ans = Math.min(ans, solve(ta) + 1);
ta = add(a, -1);
ans = Math.min(ans, solve(ta) + 1);
} else {
ans = Math.min(ans, solve(a));
long[] ta = add(a, -a[0] + (a[0] < 0 ? 1 : -1));
ans = Math.min(ans, solve(ta) + Math.abs(a[0]) + 1);
}
System.out.println(ans);
}
}
private static long solve(long[] a) {
long res = 0;
long sum = a[0];
boolean isPositive = sum > 0;
for (int i = 1; i < a.length; i++) {
isPositive = !isPositive;
sum += a[i];
if ( isPositive && sum <= 0 ) {
res += Math.abs(sum) + 1;
sum = 1;
} else if ( !isPositive && sum >= 0 ) {
res += Math.abs(sum) + 1;
sum = -1;
}
}
return res;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | #ABC059C
N=int(input())
A=list(map(int,input().split()))
ans=[0,0]
i=[1,0]
for c in range(2):
summ=0
for a in A:
summ+=a
if summ==0:
ans[c]+=abs(summ-(-1)**i[c])
summ=(-1)**i[c]
elif (summ>0)==i[c]:
ans[c]+=abs(summ-(-1)**i[c])
summ=(-1)**i[c]
i[c]=(i[c]+1)%2
print(min(ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.net.ConnectException;
import java.rmi.dgc.Lease;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.Set;
import java.util.Stack;
import java.util.TreeMap;
import java.util.TreeSet;
import static java.util.Comparator.*;
public class Main {
public static void main(String[] args) {
Main main = new Main();
main.solve();
main.out.close();
}
// ======================================================================
long[] R;
public void solve() {
int N = ni();
R = new long[N+1];
long a;
for (int i = 0; i < N; i++) {
a = nl();
R[i+1] = R[i] + a;
}
boolean f = true;
long ans1 = 0, sv = 0;
for (int i = 1; i <= N; i++) {
if(f) {
if(R[i]+sv <= 0) {
ans1 += (1-(R[i]+sv));
sv += (1-(R[i]+sv));
}
} else {
if(R[i]+sv >= 0) {
ans1 += (1+(R[i]+sv));
sv -= (1+(R[i]+sv));
}
}
f = !f;
}
f = false;
long ans2 = 0;
sv = 0;
for (int i = 1; i <= N; i++) {
if(f) {
if(R[i]+sv <= 0) {
ans2 += (1-(R[i]+sv));
sv += (1-(R[i]+sv));
}
} else {
if(R[i]+sv >= 0) {
ans2 += (1+(R[i]+sv));
sv -= (1+(R[i]+sv));
}
}
f = !f;
}
out.println(Math.min(ans1, ans2));
}
// ------------------------------------------
// ライブラリ
// ------------------------------------------
// Print
private PrintWriter out = new PrintWriter(System.out);
// Scanner
private FastScanner scan = new FastScanner();
int ni() {
return scan.nextInt();
}
int[] ni(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
int[][] ni(int y, int x) {
int[][] a = new int[y][x];
for (int i = 0; i < y; i++) {
for (int j = 0; j < x; j++) {
a[i][j] = ni();
}
}
return a;
}
long nl() {
return scan.nextLong();
}
long[] nl(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nl();
}
return a;
}
long[][] nl(int y, int x) {
long[][] a = new long[y][x];
for (int i = 0; i < y; i++) {
for (int j = 0; j < x; j++) {
a[i][j] = nl();
}
}
return a;
}
String ns() {
return scan.next();
}
String[] ns(int n) {
String[] a = new String[n];
for (int i = 0; i < n; i++) {
a[i] = ns();
}
return a;
}
String[][] ns(int y, int x) {
String[][] a = new String[y][x];
for (int i = 0; i < y; i++) {
for (int j = 0; j < x; j++) {
a[i][j] = ns();
}
}
return a;
}
}
class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[ptr++];
else
return -1;
}
private static boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
public boolean hasNext() {
while (hasNextByte() && !isPrintableChar(buffer[ptr]))
ptr++;
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
} else if (b == -1 || !isPrintableChar(b)) {
return minus ? -n : n;
} else {
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE)
throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i = 0 ; i < n ; i++) a[i] = sc.nextInt();
long sum = 0, count1 = 0;
for(int i = 0 ; i < n ; i++) {
sum += a[i];
if(i % 2 == 0 && sum <= 0) {
count1 += Math.abs(sum) + 1;
sum = 1;
} else if(i % 2 == 1 && sum >= 0) {
count1 += sum + 1;
sum = -1;
}
}
sum = 0;
long count2 = 0;
for(int i = 0 ; i < n ; i++) {
sum += a[i];
if(i % 2 == 0 && sum >= 0) {
count2+= sum + 1;
sum = -1;
} else if(i % 2 == 1 && sum <= 0) {
count2 += Math.abs(sum) + 1;
sum = 1;
}
}
System.out.println(Math.min(count1, count2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
answer = 1e15
for s in range(2): # start from + or -
prev_cumsum=0
num_man = 0
for i, a in enumerate(A):
if (prev_cumsum + a)*(-1)**(i+s) > 0:
prev_cumsum += a
#print(prev_cumsum)
else:
num_man += abs((-1)**(i+s) - prev_cumsum -a)
prev_cumsum = (-1)**(i+s)
#print(prev_cumsum)
answer = min(answer, num_man)
#print(num_man)
print(answer)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=input()
a=list(map(int,input().split()))
ans=10**18
for s in -1,1:
c=0
if a[0]*s<0:c=abs(s-a[0])
elif a[0]*s>0:s=a[0]
else:c=1
for i in a[1:]:
if s<0:
b=-s+1
c+=max(0,b-i)
s+=max(i,b)
else:
b=-s-1
c+=max(0,i-b)
s+=min(i,b)
ans=min(ans,c)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long[] A = new long[N];
for (int i = 0; i < N; i++) {
A[i] = sc.nextInt();
}
System.out.println( solve(N, A) );
}
private static long solve(int N, long[] A) {
long a0 = A[0];
if( a0 > 0 ) {
long p = solve1(N, A, a0, 0);
long m = solve1(N, A, -1, a0 + 1);
return Math.min(p, m);
} else if( a0 < 0 ) {
long p = solve1(N, A, 1, Math.abs(a0) + 1);
long m = solve1(N, A, a0, 0);
return Math.min(p, m);
} else {
long p = solve1(N, A, 1, 1);
long m = solve1(N, A, -1, 1);
return Math.min(p, m);
}
}
private static long solve1(int N, long[] A, long sum, long ans) {
for (int i = 1; i < N; i++) {
long a = A[i];
if( sum > 0 ) {
// 次はminusになるのを期待
if( a + sum >= 0 ) {
// sumが-1になるような値にまで変更する
// a + sum が 5 の場合、6 だけ操作すると -1 にできる
long diff = a + sum + 1L;
ans += diff;
sum = -1;
} else {
sum += a;
}
} else {
if( a + sum <= 0 ) {
long diff = Math.abs(a + sum) + 1L;
ans += diff;
sum = 1;
} else {
sum += a;
}
}
}
return ans;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
ans=0
tmp=0
for i in range(n):
tmp+=a[i]
if i%2==0:
if tmp<=0:
ans+=abs(tmp)+1
tmp=1
else:
if tmp>=0:
ans+=abs(tmp)+1
tmp=-1
tmp=0
tmp2=0
for i in range(n):
tmp+=a[i]
if i %2==0:
if tmp>=0:
tmp2+=abs(tmp)+1
tmp=-1
else:
if tmp<=0:
tmp2+=abs(tmp)+1
tmp=1
print(min(ans,tmp2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
long a[] = new long[(int)n];
for(int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
long sum = a[0];
long ans1 = 0;
if(sum == 0) {
sum = 1;
ans1++;
}
for(int i = 1; i < n; i++) {
if(sum > 0) {
if(sum + a[i] >= 0) {
ans1 += sum + a[i] + 1;
sum = -1;
} else {
sum = sum + a[i];
}
} else {
if(sum + a[i] <= 0) {
ans1 += Math.abs(a[i] + sum) + 1;
sum = 1;
} else {
sum = sum + a[i];
}
}
}
long ans2 = Math.abs(a[0]) + 1;
if(a[0] >= 0) {
sum = -1;
} else if(a[0] < 0){
sum = 1;
}
for(int i = 1; i < n; i++) {
if(sum > 0) {
if(sum + a[i] >= 0) {
ans2 += sum + a[i] + 1;
sum = -1;
} else {
sum = sum + a[i];
}
} else {
if(sum + a[i] <= 0) {
ans2 += Math.abs(a[i] + sum) + 1;
sum = 1;
} else {
sum = sum + a[i];
}
}
}
System.out.println(Math.min(ans1, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = [int(i) for i in input().split()]
mi = 1e20
for sign in [-1, 1]:
res, acc = 0, 0
for a in A:
acc += a
if sign * acc <= 0:
res += abs(acc - sign)
acc = sign
sign *= -1
mi = min(mi, res)
print(mi) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <algorithm>
#include <cstdlib>
using namespace std;
long long solver(bool pre_is_posi, long long a[], long long n)
{
long long total=0, ans=0;
for (int i=0; i<n; i++){
total += a[i];
if (pre_is_posi && total >= 0){
ans += abs(total)+1;
total = -1;
} else if (!(pre_is_posi) && total <= 0){
ans += abs(total)+1;
total = 1;
}
pre_is_posi = (total > 0);
}
return ans;
}
int main()
{
long long n, a[100000];
cin >> n;
for (int i=0; i<n; i++) cin >> a[i];
cout << min(solver(true, a, n), solver(false, a, n)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
long n;
cin >> n;
long a[n],sum = 0;
for(long i = 0;i < n;i++){
cin >> a[i];
}
long kekka = 0;
for(long i = 0;i < n;i++){
sum += a[i];
if(i % 2 == 0 && sum >= 0){
kekka += sum + 1;
sum = -1;
}
if(i % 2 == 1 && sum <= 0){
kekka += -sum + 1;
sum = 1;
}
}
long result = 0;
sum = 0;
for(long i = 0;i < n;i++){
sum += a[i];
if(i % 2 == 0 && sum <= 0){
result += -sum + 1;
sum = 1;
}
if(i % 2 == 1 && sum >= 0){
result += sum + 1;
sum = -1;
}
}
cout << min(kekka,result) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int []a = new int [n];
for(int i = 0; i < n ;i++) {
a[i] = sc.nextInt();
}
sc.close();
long ans = Math.min(count(n,a,0),count(n,a,1));
System.out.println(ans);
}
private static long count(int n, int []a, int pat) {
long count = 0;
long sum = 0;
int temp = (int)Math.pow(-1, 1+pat);
for(int i = 0 ; i < n ; i++) {
sum += a[i];
temp *= -1;
if((long)temp * sum <= 0) {
count += Math.abs(sum) + 1 ;
sum = temp;
}
}
return count;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define ll long long
#ifdef PAPITAS
#define DEBUG 1
#else
#define DEBUG 0
#endif
#define _DO_(x) if(DEBUG) x
int main()
{
ios::sync_with_stdio(false);cin.tie(NULL);
int n;
cin >> n;
int arr[n];
ll a = 0, b = 0, sa = 0, sb = 0;
for(int i = 0; i< n; i++){
cin >> arr[i];
}
for(int i = 0; i < n; i++){
sa += arr[i];
sb += arr[i];
if(i%2 == 0){
if(sa <= 0){
a += 1 - sa;
sa = 1;
}
if(sb >= 0){
b += sb + 1;
sb = -1;
}
}else{
if(sa >= 0){
a += sa + 1;
sa = -1;
}
if(sb <= 0){
b += 1 - sb;
sb = 1;
}
}
}
cout << min(a, b);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
s1 = s2 = su = 0
for i in range(n):
su += a[i]
if (i % 2 == 0 and su <= 0):
s1 += abs(su) + 1
su = 1
elif(i % 2 == 1 and su >= 0):
s1 += abs(su) + 1
su = -1
su = 0
for i in range(n):
su += a[i]
if (i % 2 == 0 and su >= 0):
s2 += abs(su) + 1
su = -1
elif (i % 2 == 1 and su <= 0):
s2 += abs(su) + 1
su = 1
print(min(s1,s2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | # solution
import math
import io
data=int(input())
qwe = (list(map(int,input().split())))
score1=score2=0
cnt1=cnt2=0
for i ,num in enumerate(qwe):
score1+=num
if score1<=0 and i%2==0:
cnt1+=1-score1
score1=1
elif score1>=0 and i%2!=0:
cnt1+=1+score1
score1=-1
score2+=num
if score2<=0 and i%2!=0:
cnt2+=1-score2
score2=1
elif score2>=0 and i%2==0:
cnt2+=1+score2
score2=-1
print(min(cnt1,cnt2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
t = 1
cand1 = 0
tmp = 0
for ai in a:
if (tmp + ai) * t <= 0:
cand1 += abs(tmp + ai - t)
tmp = t
else:
tmp += ai
t *= -1
t = -1
cand2 = 0
tmp = 0
for ai in a:
if (tmp + ai) * t <= 0:
cand2 += abs(tmp + ai - t)
tmp = t
else:
tmp += ai
t *= -1
print(min(cand1, cand2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = [int(i) for i in input().split()]
def f(A, op, acc = 0, cnt = 0):
for i in range(n):
acc += A[i]
if i % 2 == 0 and op * acc <= 0:
cnt += - op * acc + 1
acc = op
if i % 2 == 1and op * acc >= 0:
cnt += op * acc + 1
acc = -op
if acc == 0:
cnt += 1
return cnt
print(min(f(A, 1), f(A, -1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=input()
a = list(map(int,input().split()))
def chk(a,t):
ans=0
x=0
for i in a:
x+=i
if t and x<1:
ans+=1-x
x=1
elif not t and x>-1:
ans+=x+1
x=-1
t= not t
return ans
print(min(chk(a,True),chk(a,False)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.stream.LongStream;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
CSequence solver = new CSequence();
solver.solve(1, in, out);
out.close();
}
static class CSequence {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
long[] a = in.readLongArray(n);
long ans1 = calc(a);
long ans2 = calc(LongStream.of(a).map(x -> -x).toArray());
out.printLine(Math.min(ans1, ans2));
}
long calc(long[] a) {
int n = a.length;
long ret = 0;
long sum = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
long need = Math.max(1 - (sum + a[i]), 0);
ret += need;
sum = Math.max(sum + a[i], 1);
} else {
long need = Math.max(sum + a[i] - (-1), 0);
ret += need;
sum = Math.min(sum + a[i], -1);
}
}
return ret;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public long[] readLongArray(int size) {
long[] array = new long[size];
for (int i = 0; i < size; i++) {
array[i] = readLong();
}
return array;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using lli = int64_t;
using vi = vector<lli>;
lli f(vi& v, int n, int fl)
{
lli ans = 0;
for(lli i = 0, s = 0; i < n; i++, fl = !fl)
{
s += v[i];
if(!fl && s >= 0) ans += s - (-1), s = -1;
else
if(fl && s <= 0) ans += 1 - s, s = 1;
}
return ans;
}
int main()
{
ios_base::sync_with_stdio(0);
int n; cin >> n;
vi v(n);
for(int i = 0; i < n; i++) cin >> v[i];
lli ans = min(f(v, n, 0), f(v, n, 1));
cout << ans << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
def solve(parity):
wa=0
ans=0
for i in range(n):
wa+=a[i]
if i%2==parity:
if wa>=0:
ans+=wa+1
wa-=wa+1
else:
if wa<=0:
ans+=-wa+1
wa+=-wa+1
return ans
print(min(solve(0),solve(1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static double sequence(int a[], double start) {
double count = 0.0, presum = start, sum = start;
for(int i = 1; i < a.length; ++i) {
sum += (double)a[i];
if(sum * presum > 0) {
double min = Math.abs(sum) + 1;
if(presum > 0)sum -= min;
else sum += min;
count += min;
}
if(sum == 0) {
if(presum > 0)sum--;
else sum++;
++count;
}
presum = sum;
}
return count;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n, a[];
double count = 0.0, tmp2 = 0.0, tmp3 = 0.0;
n = sc.nextInt();
a = new int[n];
for(int i = 0; i < n; ++i) a[i] = sc.nextInt();
sc.close();
if(a[0] == 0) {
a[0]++;
++tmp3;
}
int tmp = Math.abs(a[0]) + 1;
if(a[0] > 0) {
tmp2 = tmp - tmp3;
tmp = a[0] - tmp;
}
else {
tmp2 = tmp + tmp3;
tmp = a[0] + tmp;
}
count = Math.min((tmp3 + sequence(a, (double)a[0])),(tmp2 + sequence(a, (double)tmp)));
System.out.printf("%.0f\n", count);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
def f(x):
cnt = 0
tmp = 0
for a in A:
tmp += a
#print(tmp, x)
if(tmp*x >= 0):
cnt += abs(tmp)+1
tmp = -x
x *= -1
#print(tmp, x)
return cnt
print(min(f(1), f(-1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
#define REP(i,n) for(int i=0;i<(n);i++)
#define ALL(v) (v).begin(),(v).end()
#define int long long
using namespace std;
typedef vector<int> vint;
typedef pair<int,int> pint;
signed main()
{
int N; cin>>N;
vint a(N);
REP(i,N) cin>>a[i];
int cost1=0,S=0;
REP(i,N){
S+=a[i];
if(i%2==0 and S<=0) cost1+=1-S,S=1;
if(i%2==1 and S>=0) cost1+=S+1,S=-1;
}
int cost2=0; S=0;
REP(i,N){
S+=a[i];
if(i%2==0 and S>=0) cost2+=S+1,S=-1;
if(i%2==1 and S<=0) cost2+=1-S,S=1;
}
cout<<min(cost1,cost2)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
def cnt(p):
s=d=0
for i in range(n):
c=(s+a[i])*p
if c<=0:
d+=(1-c)
s=p
else:
s+=a[i]
p*=(-1)
return d
da=cnt(1)
db=cnt(-1)
print(min(da,db)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.IOException;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws IOException{
Sequence solver = new Sequence();
solver.readInput();
solver.solve();
solver.writeOutput();
}
static class Sequence {
private int n;
private long a[];
private long output;
private Scanner scanner;
public Sequence() {
this.scanner = new Scanner(System.in);
}
public void readInput() {
n = Integer.parseInt(scanner.next());
a = new long[n];
for(int i=0; i<n; i++) {
a[i] = Integer.parseInt(scanner.next());
}
}
private int count(int sign) {
int count=0;
long sum=0;
for(int i=0; i<n; i++) {
sum += a[i];
if(i%2==sign) {
// a[i]までの合計を正にするとき
if(sum<=0) {
count += 1-sum;
sum = 1;
}
} else {
// a[i]までの合計を負にするとき
if(0<=sum) {
count += 1+sum;
sum = -1;
}
}
}
return count;
}
public void solve() {
/* https://atcoder.jp/contests/abc059/submissions/8183898 */
long sum1 = 0;
long count1 = 0;
long sum2 = 0;
long count2 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
sum2 += a[i];
if (i % 2 == 0) {
if (sum1 <= 0) {
count1 += 1 - sum1;
sum1 = 1;
}
if (sum2 >= 0) {
count2 += sum2 + 1;
sum2 = -1;
}
} else {
if (sum2 <= 0) {
count2 += 1 - sum2;
sum2 = 1;
}
if (sum1 >= 0) {
count1 += sum1 + 1;
sum1 = -1;
}
}
}
output = Math.min(count1,count2);
}
public void writeOutput() {
System.out.println(output);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def f(isPosi):
total = 0
cnt = 0
for i in a:
total += i
if isPosi:
if total >= 0:
cnt += 1 + total
total = -1
isPosi = False
else:
if total <= 0:
cnt += 1 - total
total = 1
isPosi = True
return cnt
print(min(f(True), f(False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.*;
import java.util.*;
class Solver {
final int n;
final int[] as;
long[] bs;
Solver(int n, int[] as) {
this.n = n;
this.as = as;
}
private long makePositive(int index, long sum) {
if (index >= n) {
return 0;
}
long v = 0;
if (as[index] + sum <= 0) {
v = 1 - (as[index] + sum);
}
return v + makeNegative(index + 1, sum + as[index] + v);
}
private long makeNegative(int index, long sum) {
if (index >= n) {
return 0;
}
long v = 0;
if (as[index] + sum >= 0) {
v = as[index] + sum - (-1);
}
return v + makePositive(index + 1, sum + as[index] - v);
}
public long solve() {
return Math.min(makePositive(0, 0), makeNegative(0, 0));
}
}
public class Main {
private static void execute(ContestReader reader, PrintWriter out) {
int n = reader.nextInt();
int[] as = reader.nextInt(n);
out.println(new Solver(n, as).solve());
}
public static void main(String[] args) {
ContestReader reader = new ContestReader(System.in);
PrintWriter out = new PrintWriter(System.out);
execute(reader, out);
out.flush();
}
}
class ContestReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
ContestReader(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new java.util.StringTokenizer(reader.readLine());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String[] next(int n) {
String[] array = new String[n];
for (int i = 0; i < n; i++) {
array[i] = next();
}
return array;
}
public int[] nextInt(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
public long[] nextLong(int n) {
long[] array = new long[n];
for (int i = 0; i < n; i++) {
array[i] = nextLong();
}
return array;
}
public double[] nextDouble(int n) {
double[] array = new double[n];
for (int i = 0; i < n; i++) {
array[i] = nextDouble();
}
return array;
}
public char[] nextCharArray() {
return next().toCharArray();
}
public int[][] nextInt(int n, int m) {
int[][] matrix = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
matrix[i][j] = nextInt();
}
}
return matrix;
}
public long[][] nextLong(int n, int m) {
long[][] matrix = new long[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
matrix[i][j] = nextLong();
}
}
return matrix;
}
public double[][] nextDouble(int n, int m) {
double[][] matrix = new double[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
matrix[i][j] = nextDouble();
}
}
return matrix;
}
public char[][] nextCharArray(int n) {
char[][] matrix = new char[n][];
for (int i = 0; i < n; i++) {
matrix[i] = next().toCharArray();
}
return matrix;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <vector>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; ++i) cin >> a[i];
long long cnt1 = 0, sum = 0;
for (int i = 0; i < n; ++i) {
long long _sum = sum + a[i], su = (i & 1 ? _sum : -_sum);
if (su >= 0) {
cnt1 += su + 1;
sum = (i & 1 ? -1 : 1);
} else sum = _sum;
}
long long cnt2 = 0;
sum = 0;
for (int i = 0; i < n; ++i) {
long long _sum = sum + a[i], su = (i & 1 ? -_sum : _sum);
if (su >= 0) {
cnt2 += su + 1;
sum = (i & 1 ? 1 : -1);
} else sum = _sum;
}
cout << min(cnt1, cnt2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | input()
*A,=map(int,input().split())
f=True
s1=0;r1=0
s2=0;r2=0
for a in A:
s1+=a;s2+=a
if f and s1<=0:r1+=1-s1;s1=1
elif not(f) and s1>=0:r1+=s1+1;s1=-1
if not(f) and s2<=0:r2+=1-s2;s2=1
elif f and s2>=0:r2+=s2+1;s2=-1
f=not(f)
print(min(r1,r2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
long[] b = new long[n];
for(int i = 0; i < n; i++) {
long t = sc.nextLong();
a[i] = t;
b[i] = t;
}
long min1 = 0;
long min2 = 0;
long[] s1 = new long[n];
s1[0] = a[0];
long[] s2 = new long[n];
s2[0] = b[0];
// 部分和を+-+-にする場合
for(int i = 0; i < n; i++) {
if(i > 0) s1[i] = s1[i - 1] + a[i];
if(i % 2 == 0) {
if(s1[i] <= 0) {
min1 += (1 - s1[i]);
s1[i] = 1;
}
} else {
if(s1[i] >= 0) {
min1 += (1 + s1[i]);
s1[i] = -1;
}
}
}
// 部分和を-+-+にする場合
for(int i = 0; i < n; i++) {
if(i > 0) s2[i] = s2[i - 1] + b[i];
if(i % 2 == 0) {
if(s2[i] >= 0) {
min2 += (1 + s2[i]);
s2[i] = -1;
}
} else {
if(s2[i] <= 0) {
min2 += (1 - s2[i]);
s2[i] = 1;
}
}
}
long ans = Math.min(min1, min2);
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.*;
import java.util.*;
class Main{
void solve(){
int N = ni();
long[] a = new long[N];
long[] s = new long[N + 1];
for(int i = 0; i < N; i++){
a[i] = ni();
}
for(int i = 1; i <= N ; i++){
s[i] = s[i - 1] + a[i - 1];
}
long pattern1 = 0;
long control = 0;
for(int i = 1; i <= N; i++){
if(i % 2 == 1){ // 正
if(s[i] + control <= 0){
pattern1 += Math.abs(s[i] + control) + 1;
control += Math.abs(s[i] + control) + 1;
}
} else { // 負
if(s[i] + control >= 0){
pattern1 += Math.abs(s[i] + control) + 1;
//control = -1 * (Math.abs(s[i] + control) + 1);
control -= Math.abs(s[i] + control) + 1;
}
}
}
long pattern2 = 0;
control = 0;
for(int i = 1; i <= N; i++){
if(i % 2 == 0){ // 正
if(s[i] + control <= 0){
pattern2 += Math.abs(s[i] + control) + 1;
control += Math.abs(s[i] + control) + 1;
}
} else { // 負
if(s[i] + control >= 0){
pattern2 += Math.abs(s[i] + control) + 1;
control -= Math.abs(s[i] + control) + 1;
}
}
}
out.println(min(pattern1, pattern2));
out.flush();
}
public static void main(String[] args){
Main m = new Main();
m.solve();
}
Main(){
this.scan = new FastScanner();
this.out = new PrintWriter(System.out);
}
private FastScanner scan;
private PrintWriter out;
private final int MOD = 1_000_000_007;
private final int INF = 2_147_483_647;
private final long LINF = 9223372036854775807L;
private long[] fac;
private long[] finv;
private long[] inv;
// Scanner
int ni(){ return scan.nextInt();}
int[] ni(int n){int[] a = new int[n]; for(int i = 0; i < n; i++){a[i] = ni();} return a;}
int[][] ni(int y, int x){int[][] a = new int[y][x];
for(int i = 0; i < y; i++){for(int j = 0; j < x; j++){a[i][j] = ni();}} return a;}
long nl(){return scan.nextLong();}
long[] nl(int n){long[] a = new long[n]; for(int i = 0; i < n; i++){a[i] = nl();} return a;}
long[][] nl(int y, int x){long[][] a = new long[y][x];
for(int i = 0; i < y; i++){for(int j = 0; j < x; j++){a[i][j] = nl();}} return a;}
String ns(){return scan.next();}
String[] ns(int n){String[] a = new String[n]; for(int i = 0; i < n; i++){a[i] = ns();} return a;}
String[][] ns(int y, int x){String[][] a = new String[y][x];
for(int i = 0; i < y; i++){for(int j = 0; j < x; j++){a[i][j] = ns();}} return a;}
// Mathematics
int max(int a, int b){return Math.max(a, b);}
long max(long a, long b){return Math.max(a, b);}
double max(double a, double b){return Math.max(a, b);}
int max(int[] a){int max = a[0]; for(int value:a){max = max(max,value);} return max;}
long max(long[] a){long max = a[0]; for(long value:a){max = max(max,value);} return max;}
double max(double[] a){double max = a[0]; for(double value:a){max = max(max,value);} return max;}
int min(int a, int b){return Math.min(a, b);}
long min(long a, long b){return Math.min(a, b);}
double min(double a, double b){return Math.min(a, b);}
int min(int[] a){int min = a[0]; for(int value:a){min = min(min,value);} return min;}
long min(long[] a){long min = a[0]; for(long value:a){min = min(min,value);} return min;}
double min(double[] a){double min = a[0]; for(double value:a){min = min(min,value);} return min;}
long sum(int[] a){long sum = 0; for(int value:a){sum += value;} return sum;}
long sum(long[] a){long sum = 0; for(long value:a){sum += value;} return sum;}
double sum(double[] a){double sum = 0; for(double value:a){sum += value;} return sum;}
long mod(long n) { n %= MOD; return n + (n < 0 ? MOD : 0); }
int gcd(int a, int b){return b == 0 ? a : gcd(b, a % b);}
long gcd(long a, long b){return b == 0 ? a : gcd(b, a % b);}
int lcm(int a, int b){return a / gcd(a, b) * b;}
long lcm(long a, long b){return a / gcd(a, b) * b;}
long fact(int n){ if(n == 0){ return 1; } long a = n; for(long i = n - 1; i >= 2; i--){ a = a % MOD * i; } return a; }
long fact(long n){ if(n == 0){ return 1; } long a = n; for(long i = n - 1; i >= 2; i--){ a = a % MOD * i; } return a; }
// nPr(int)
long npr(int n, int r){
long a = 1;
for(int i = n; i > n - r; i--){
a *= i;
}
return a;
}
// nPr(long)
long npr(long n, long r){
long a = 1;
for(long i = n; i > n - r; i--){
a *= i;
}
return a;
}
// 素数判定(int)
boolean checkPrime(int n){
for(int i = 2; i * i <= n; i++){
if(n % i == 0){
return false;
}
}
return true;
}
// 素数判定(long)
boolean checkPrime(long n){
for(long i = 2; i * i <= n; i++){
if(n % i == 0){
return false;
}
}
return true;
}
// エラトステネスの篩
long[] erathos(int n){
boolean[] flag = new boolean[n + 1];
TreeSet<Integer> nums = new TreeSet<>();
for(int i = 2; i <= n; i++){
if(flag[i]) continue;
nums.add(i);
for(int j = i * 2; j <= n; j += i){
flag[j] = true;
}
}
long[] primes = new long[nums.size()];
int index = 0;
for(int num : nums){
primes[index] = num;
index++;
}
return primes;
}
// mod pにおける累乗 a^n
long modpow(long a, long n, long p){
long res = 1;
while(n > 0){
if((n & 1) == 1){
res = res * a % p;
}
a = a * a % p;
n = n >> 1;
}
return res;
}
// mod pにおけるaの逆元a^-1
long modinv(long a, long p){
return modpow(a, p - 2, p);
}
// fac,finv,invの初期化
void comInit(int max){
fac = new long[max];
finv = new long[max];
inv = new long[max];
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for(int i = 2; i < max; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
// 二項係数nCr
long com(int n, int r){
if(n < r || (n < 0 || r < 0)){
return 0;
}
return fac[n] * (finv[r] * finv[n - r] % MOD) % MOD;
}
// 二項係数nCr(nが10^9など巨大なとき用)
long ncr(long n, long k){
long a = 1;
long b = 1;
for(int i = 1; i <= k; i++){
a = a * (n + 1 - i) % MOD;
b = b * i % MOD;
}
return modinv(b, MOD) * a % MOD;
}
// 二次元上の二点間の距離
double distance(double x1, double y1, double x2, double y2){
double dist = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
return dist;
}
// 三次元上の二点間の距離
double distance(double x1, double y1, double z1, double x2, double y2, double z2){
double dist = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) + (z1 - z2) * (z1 - z2));
return dist;
}
// Array
void sort(int[] a){ Arrays.sort(a);}
void sort(long[] a){ Arrays.sort(a);}
void sort(double[] a){ Arrays.sort(a);}
void sort(String[] a){ Arrays.sort(a);}
int[] reverse(int[] a){
int[] reversed = new int[a.length];
for(int i = 0; i < a.length; i++){
reversed[a.length - i - 1] = a[i];
}
return reversed;
}
long[] reverse(long[] a){
long[] reversed = new long[a.length];
for(int i = 0; i < a.length; i++){
reversed[a.length - i - 1] = a[i];
}
return reversed;
}
double[] reverse(double[] a){
double[] reversed = new double[a.length];
for(int i = 0; i < a.length; i++){
reversed[a.length - i - 1] = a[i];
}
return reversed;
}
char[] reverse(char[] a){
char[] reversed = new char[a.length];
for(int i = 0; i < a.length; i++){
reversed[a.length - i - 1] = a[i];
}
return reversed;
}
String[] reverse(String[] a){
String[] reversed = new String[a.length];
for(int i = 0; i < a.length; i++){
reversed[a.length - i - 1] = a[i];
}
return reversed;
}
boolean[] reverse(boolean[] a){
boolean[] reversed = new boolean[a.length];
for(int i = 0; i < a.length; i++){
reversed[a.length - i - 1] = a[i];
}
return reversed;
}
void fill(int[] array, int x) { Arrays.fill(array, x); }
void fill(long[] array, long x) { Arrays.fill(array, x); }
void fill(double[] array, double x) { Arrays.fill(array, x); }
void fill(boolean[] array, boolean x) { Arrays.fill(array, x); }
void fill(int[][] array, int x) { for(int a[] : array) { fill(a, x); } }
void fill(long[][] array, long x) { for(long a[] : array) { fill(a, x); } }
void fill(double[][] array, double x) { for(double a[] : array) { fill(a, x); } }
void fill(boolean[][] array, boolean x) { for(boolean a[] : array) { fill(a, x); } }
void fill(int[][][] array, int x) { for(int[][] ary : array) { for(int[] a : ary){ fill(a, x); } } }
void fill(long[][][] array, long x) { for(long[][] ary : array) { for(long[] a : ary){ fill(a, x); } } }
// Algorithm
// 深さ優先探索
/* void dfs(Node[] nodes, int v, boolean[] seen){
seen[v] = true;
for(Edge edge : nodes[v].edges){
if(seen[edge.to]) continue;
dfs(nodes, edge.to, seen);
}
} */
// 幅優先探索
long[] bfs(Node[] nodes, int start){
Queue<Integer> queue = new ArrayDeque<>();
queue.add(start);
long[] dist = new long[nodes.length];
fill(dist, -1);
dist[start] = 0;
while(!queue.isEmpty()){
int now = queue.poll();
for(Edge edge : nodes[now].edges){
if(dist[edge.to] != -1) continue;
dist[edge.to] = dist[now] + 1;
queue.add(edge.to);
}
}
return dist;
}
// ダイクストラ法
long[] dijkstra(Node[] nodes, int start){
Queue<Edge> queue = new PriorityQueue<>();
long[] dist = new long[nodes.length];
fill(dist, LINF / 2);
dist[start] = 0;
queue.add(new Edge(start, start, dist[start]));
while(!queue.isEmpty()){
Edge now = queue.poll();
if(dist[now.to] < now.cost) continue;
for(Edge edge : nodes[now.to].edges){
if(dist[edge.to] > dist[edge.from] + edge.cost){
dist[edge.to] = dist[edge.from] + edge.cost;
queue.add(new Edge(edge.from, edge.to, dist[edge.to]));
nodes[edge.to].past = edge.from;
}
}
}
return dist;
}
// ソート済みint型配列でkey以上の値の最小indexを返す
int lowerBound(int[] a, int key){
int ng = -1;
int ok = a.length;
while(Math.abs(ok - ng) > 1){
int mid = (ok + ng) / 2;
if(a[mid] >= key){
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
// ソート済みlong型配列でkey以上の値の最小indexを返す
int lowerBound(long[] a, long key){
int ng = -1;
int ok = a.length;
while(Math.abs(ok - ng) > 1){
int mid = (ok + ng) / 2;
if(a[mid] >= key){
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
// 文字列sとtの最長共通部分列の長さを返す
int lcs(String s , String t){
int[][] dp = new int[s.length() + 1][t.length() + 1];
for(int i = 0; i < s.length(); i++){
for(int j = 0; j < t.length(); j++){
if(s.charAt(i) == t.charAt(j)){
dp[i + 1][j + 1] = max(dp[i][j] + 1, dp[i + 1][j + 1]);
}
dp[i + 1][j + 1] = max(dp[i + 1][j + 1], dp[i + 1][j]);
dp[i + 1][j + 1] = max(dp[i + 1][j + 1], dp[i][j + 1]);
}
}
return dp[s.length()][t.length()];
}
}
// ノード
class Node{
int id; // ノード番号
int past; // 直前の頂点
List<Edge> edges; // 辺のリスト
Node(int id, int past){
this.id = id;
this.past = past;
this.edges = new ArrayList<>();
}
void addEdge(Edge edge){
edges.add(edge);
}
public boolean equals(Object obj){
if(obj instanceof Node){
Node node = (Node)obj;
return this.id == node.id;
}
return false;
}
public int hashCode(){
return id;
}
public String toString(){
return "[id:" + id + " past: " + past + "]";
}
}
// 辺の情報を持つクラス
class Edge implements Comparable<Edge>{
int from; // どの頂点から
int to; // どの頂点へ
long cost; // 辺の重み
Edge(int from, int to, long cost){
this.from = from;
this.to = to;
this.cost = cost;
}
public int compareTo(Edge edge){
return Long.compare(this.cost, edge.cost);
}
public String toString(){
return "[" + from + " to " + to + " cost:" + cost + "]";
}
}
// 辺の重み比較のComparator
class EdgeComparator implements Comparator<Edge>{
@Override
public int compare(Edge e1, Edge e2){
long cost1 = e1.cost;
long cost2 = e2.cost;
if(cost1 < cost2){
return -1;
} else if(cost1 > cost2){
return 1;
} else {
return 0;
}
}
}
// Union-Find
class UnionFind{
int[] par;
int[] size;
UnionFind(int N){
par = new int[N];
size = new int[N];
for(int i = 0; i < N; i++){
par[i] = i;
size[i] = 1;
}
}
void init(int N){
for(int i = 0; i < N; i++){
par[i] = i;
size[i] = 1;
}
}
int root(int x){
if(par[x] == x){
return x;
} else {
return par[x] = root(par[x]);
}
}
boolean same(int x, int y){
return root(x) == root(y);
}
void unite(int x, int y){
x = root(x);
y = root(y);
if(x == y) return;
if(size[x] < size[y]){
int tmp = x;
x = y;
y = tmp;
}
size[x] += size[y];
par[y] = x;
}
int size(int x){
return size[root(x)];
}
}
// 順列を管理する
class Permutation {
private int number;
private int listSize;
private int searched;
private int nextIndex;
private int[][] permList;
Permutation(int num) {
this.number = num;
this.listSize = this.fact(this.number);
this.searched = 0;
this.nextIndex = 0;
this.permList = new int[this.listSize][this.number];
this.create(0, new int[this.number], new boolean[this.number]);
}
int[] nextPerm() {
return permList[this.nextIndex++];
}
boolean isNext() {
if(this.nextIndex < this.listSize) {
return true;
} else {
this.nextIndex = 0;
return false;
}
}
int fact(int n){
return n == 0 ? 1 : n * fact(n-1);
}
void create(int num, int[] list, boolean[] flag) {
if(num == this.number) {
copyArray(list, permList[this.searched]);
this.searched++;
}
for(int i = 0; i < this.number; i++){
if(flag[i]) continue;
list[num] = i;
flag[i] = true;
this.create(num+1, list, flag);
flag[i] = false;
}
}
void copyArray(int[] from, int[] to) {
for(int i=0; i<from.length; i++) to[i] = from[i];
}
void printNum(int[] nums) {
for(int n : nums) System.out.print(n);
System.out.println();
}
}
// 一点更新区間取得Segment Tree
/* class SegTree{
int[] dat;
int size;
SegTree(int N){
this.dat = new int[N * 4];
this.size = N;
}
// [a, b]の最小値を返す
// l,rにはノードkに対応する区間を与える
int query(int a, int b, int k, int l, int r){
if(r < a || b < l) return Integer.MAX_VALUE;
if(a <= l && r <= b) return dat[k];
int vl = query(a, b, k << 1, l, (l + r) / 2);
int vr = query(a, b, (k << 1) + 1, (l + r) / 2 + 1, r);
return Math.min(vl, vr);
}
// インデックスiの値をxに更新
void update(int i, int x){
i += this.size - 1;
dat[i] = x;
while(i > 0){
i = i >> 1; // 1ビットぶん右シフト
dat[i] = Math.min(dat[i << 1], dat[(i << 1) + 1]);
}
}
public String toString(){
StringBuilder sb = new StringBuilder("[");
for(int i = size; i < 2 * size; i++){
sb.append(dat[i]).append(",");
}
sb.delete(sb.length() - 1, sb.length());
String output = sb.append("]").toString();
return output;
}
} */
// Range Sum Queryを実現するBinary Indexed Tree
class BIT{
int[] tree;
BIT(int N){
this.tree = new int[N + 1];
}
int sum(int i){
int sum = 0;
while(i > 0){
sum += this.tree[i];
i -= i & -i;
}
return sum;
}
void add(int i, int x){
while(i <= tree.length){
this.tree[i] += x;
i += i & -i;
}
}
public String toString(){
StringBuilder sb = new StringBuilder("[");
for(int i = 0; i < tree.length; i++){
sb.append(tree[i] + ",");
}
sb.append("]");
String output = sb.toString();
return output;
}
}
// 標準のScannerより高速に標準入力する
class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
}else{
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while(true){
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
}else if(b == -1 || !isPrintableChar(b)){
return minus ? -n : n;
}else{
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() { return Double.parseDouble(next());}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] w = new long[n];
long sum1=0;
long sum2=0;
long ans1=0;
long ans2=0;
for(int i = 0; i < n; i++){
w[i] = sc.nextLong();
}
for(int i = 0; i<n; i++){
sum1+=w[i];
sum2+=w[i];
if(sum1>0 && i%2==1){
ans1+=Math.abs(sum1)+1;
sum1=-1;
}else if(sum1<0 && i%2==0){
ans1+=Math.abs(sum1)+1;
sum1=1;
}else if(sum1==0){
ans1+=1;
if(i%2==1){
sum1=-1;
}else{
sum1=1;
}
}
if(sum2>0 && i%2==0){
ans2+=Math.abs(sum2)+1;
sum2=-1;
}else if(sum2<0 && i%2==1){
ans2+=Math.abs(sum2)+1;
sum2=1;
}else if(sum2==0){
ans2+=1;
if(i%2==1){
sum2=1;
}else{
sum2=-1;
}
}
}
System.out.println(Math.min(ans1,ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python2 | n = input()
l = map(int, raw_input().split())
lastPos, lastNeg = l[0], l[0]
countPos, countNeg = 0, 0
if(lastPos<=0):
countPos = 1 - lastPos
lastPos = 1
if(lastNeg>=0):
countNeg = lastNeg+1
lastNeg = -1
for i in xrange(1,n):
if(lastPos>0):
#now it has to be negative
if(lastPos+l[i] >= 0):
diff = lastPos+l[i] + 1
countPos+=diff
lastPos = -1
else:
lastPos = lastPos + l[i]
else:
#now it has to be positive
if(lastPos+l[i] <= 0):
diff = 1 - (lastPos+l[i])
countPos+=diff
lastPos = 1
else:
lastPos = lastPos+l[i]
if(lastNeg<0):
#now it has to be positive
if(lastNeg+l[i] <= 0):
diff = 1 - (lastNeg+l[i])
countNeg+= diff
lastNeg = 1
else:
lastNeg = lastNeg + l[i]
else:
#now it has to be negative
if(lastNeg+l[i] >= 0):
diff = lastNeg+l[i]+1
countNeg+= diff
lastNeg = -1
else:
lastNeg = lastNeg + l[i]
print min(countPos, countNeg) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i = 0 ; i < n ; i++) a[i] = sc.nextInt();
long sum = 0, cnt = 0;
for(int i = 0 ; i < n ; i++) {
sum += a[i];
if(i % 2 == 0 && sum <= 0) {
// 正に変える
cnt += Math.abs(sum) + 1;
sum = 1;
} else if(i % 2 == 1 && sum >= 0) {
// 負に変える
cnt += sum + 1;
sum = -1;
}
}
long sum1 = 0, cnt1 = 0;
for(int i = 0 ; i < n ; i++) {
sum1 += a[i];
if(i % 2 == 0 && sum1 >= 0) {
// 負に変える
cnt1 += sum1 + 1;
sum1 = -1;
} else if(i % 2 == 1 && sum1 <= 0) {
// 正に変える
cnt1 += Math.abs(sum1) + 1;
sum1 = 1;
}
}
System.out.println(Math.min(cnt, cnt1));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
class Main {
int n;
int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Main m = new Main(sc);
m.solve();
sc.close();
}
Main(Scanner sc) {
n = sc.nextInt();
a = new int[n];
for(int i=0;i<n;i++){
a[i] = sc.nextInt();
}
}
void solve() {
long cnt1 = (a[0]>0)?0:(Math.abs(a[0])+1);
int sign = 1;
long sum = (a[0]>0)?a[0]:1;
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt1 += Math.abs(sum) + 1;
sum = -sign;
}
sign *= -1;
}
long cnt2 = (a[0]<0)?0:(Math.abs(a[0])+1);
sign = -1;
sum = (a[0]<0)?a[0]:-1;
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt2 += Math.abs(sum) + 1;
sum = -sign;
}
sign *= -1;
}
System.out.println(Math.min(cnt1, cnt2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <algorithm>
using namespace std;
typedef long long int ll;
int main(){
int n;
cin >> n;
ll a[n],sum=0,cnt1=0,cnt2=0;
for(int i=0;i<n;i++) cin >> a[i];
for(int i=0;i<n;i++){//奇数番目が正
sum+=a[i];
if(i%2==0){
if(sum>=0) cnt1+=1+sum,sum=-1;//1にするまでの距離?を足す
}
else{
if(sum<=0) cnt1+=1-sum,sum=1;//sumは1か-1になってる
}
}
sum=0;
for(int i=0;i<n;i++){//奇数番目が負
sum+=a[i];
if(i%2==0){
if(sum<=0) cnt2+=1-sum,sum=1;
}
else{
if(sum>=0) cnt2+=1+sum,sum=-1;
}
}
cout << min(cnt1,cnt2)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Hamza Hasbi
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
C_Sequence solver = new C_Sequence();
solver.solve(1, in, out);
out.close();
}
static class C_Sequence {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
long[] a = new long[n + 1];
long[] pre = new long[n + 1];
Arrays.fill(a, 0);
Arrays.fill(pre, 0);
long[] pro = new long[n + 1];
Arrays.fill(pro, 0);
long res = 0;
long ans = 0;
for (int i = 1; i <= n; i++) {
a[i] = in.nextLong();
pre[i] = pre[i - 1] + a[i];
if ((i & 1) == 1 && pre[i] <= 0) {
ans += Math.abs(1 - pre[i]);
pre[i] = 1;
continue;
}
if ((i & 1) == 0 && pre[i] >= 0) {
ans += Math.abs(1 + pre[i]);
pre[i] = -1;
continue;
}
}
for (int i = 1; i <= n; i++) {
pro[i] = pro[i - 1] + a[i];
if ((i & 1) == 0 && pro[i] <= 0) {
res += Math.abs(1 - pro[i]);
pro[i] = 1;
continue;
}
if ((i & 1) == 1 && pro[i] >= 0) {
res += Math.abs(1 + pro[i]);
pro[i] = -1;
continue;
}
}
out.printLine(Math.min(res, ans));
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer st;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void printLine(long i) {
writer.println(i);
}
public void close() {
writer.close();
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
#define rep(i,s,t) for(int i=s;i<=t;i++)
using namespace std;
typedef long long LL;
LL ans1,ans2,sum;
int n;
int a[100010];
int main(){
scanf("%d",&n);
rep(i,1,n) scanf("%d",&a[i]);
sum=0;
for(int i=1,s=1;i<=n;i++,s*=-1){
sum+=a[i];
if(sum*s<=0) ans1+=abs(sum-s),sum=s;
}
sum=0;
for(int i=1,s=-1;i<=n;i++,s*=-1){
sum+=a[i];
if(sum*s<=0) ans2+=abs(sum-s),sum=s;
}
printf("%lld\n",min(ans1,ans2));
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
static String[] alphabet = { "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q",
"r", "s", "t", "u", "v", "w", "x", "y", "z" };
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long[] ary = new long[N];
for (int i = 0; i < N; i++) {
ary[i] = sc.nextLong();
}
long cstKisu = 0;
long[] aryKisu = new long[N];
System.arraycopy(ary, 0, aryKisu, 0, ary.length);
long sumKisu = 0;
for (int i = 0; i < aryKisu.length; i++) {
sumKisu += aryKisu[i];
if (i % 2 == 0) {
if (sumKisu <= 0) {
aryKisu[i] += 1 - sumKisu;
cstKisu += 1 - sumKisu;
sumKisu = 1;
}
} else {
if (sumKisu >= 0) {
aryKisu[i] -= sumKisu + 1;
cstKisu += sumKisu + 1;
sumKisu = -1;
}
}
}
long cstGusu = 0;
long[] aryGusu = new long[N];
System.arraycopy(ary, 0, aryGusu, 0, ary.length);
long sumGusu = 0;
for (int i = 0; i < aryGusu.length; i++) {
sumGusu += aryGusu[i];
if (i % 2 == 0) {
if (sumGusu >= 0) {
aryGusu[i] -= sumGusu + 1;
cstGusu += sumGusu + 1;
sumGusu = -1;
}
} else {
if (sumGusu <= 0) {
aryGusu[i] += 1 - sumGusu;
cstGusu += 1 - sumGusu;
sumGusu = 1;
}
}
}
System.out.println(Math.min(cstGusu, cstKisu));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main() {
int n; cin >> n;
vector<int>a(n); for (auto&& x : a)cin >> x;
long long ans1 = 0, ans2 = 0, sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
else if (i % 2 == 1 && sum <= 0) {
ans1 += -sum + 1;
sum = 1;
}
}
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1 && sum >= 0) {
ans2 += sum + 1;
sum = -1;
}
else if (i % 2 == 0 && sum <= 0) {
ans2 += -sum + 1;
sum = 1;
}
}
cout << min(ans1, ans2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e5+10;
int n;
ll arr[ MAXN ];
int g( ll x ) {
if( x < 0 ) return -1;
if( x == 0 ) return 0;
return 1;
}
ll f( ll sgn ) {
ll r = 0, acc = 0;
for( int i = 0; i < n; ++i ) {
acc += arr[i];
if( g(acc) != sgn ) {
r += abs(sgn-acc);
acc = sgn;
}
sgn *= -1;
}
return r;
}
int main( ) {
ios_base::sync_with_stdio( 0 );
cin.tie( 0 );
#ifdef LOCAL
freopen( "input", "r", stdin );
#endif
while( cin >> n ) {
ll ans = 0;
for( int i = 0; i < n; ++i ) {
cin >> arr[i];
}
ans = min( f(1), f(-1) );
cout << ans << '\n';
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i = 0 ; i < n ; i++) a[i] = sc.nextInt();
long sum = 0, ans = 0, ans2 = 0;
// 偶数位置までの和:正、奇数位置までの和:負
for(int i = 0 ; i < n ; i++) {
if(i % 2 == 0) {
if(sum + a[i] >= 0) {
ans += sum + a[i] + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if(sum + a[i] <= 0) {
ans += 1 - (sum + a[i]);
sum = 1;
} else {
sum += a[i];
}
}
}
sum = 0;
// 偶数位置までの和:正、奇数位置までの和:負
for(int i = 0 ; i < n ; i++) {
if(i % 2 == 1) {
if(sum + a[i] >= 0) {
ans2 += sum + a[i] + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if(sum + a[i] <= 0) {
ans2 += 1 - (sum + a[i]);
sum = 1;
} else {
sum += a[i];
}
}
}
System.out.println(Math.min(ans, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.File;
import java.io.IOException;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Deque;
import java.util.List;
import java.util.Scanner;
public class Main {
//ABC059
public static void main(String[] args) throws IOException {
//File file = new File("input.txt");
//Scanner in = new Scanner(file);
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
long ans1 = 0;
long ans2 = 0;
for(int i = 0; i < n; i++){
a[i] = in.nextInt();
}
//+-+-
long sum = 0;
for(int i = 0; i < n; i++){
sum += a[i];
if(i % 2 == 0 && sum <= 0){
long diff = Math.abs(sum) + 1;
sum += diff;
ans1 += diff;
}else if(i % 2 == 1 && sum >= 0){
long diff = - Math.abs(sum) - 1;
sum += diff;
ans1 += Math.abs(diff);
}
}
//System.out.println(ans1);
//-+-+
sum = 0;
for(int i = 0; i < n; i++){
sum += a[i];
if(i % 2 == 1 && sum <= 0){
long diff = Math.abs(sum) + 1;
sum += diff;
ans2 += diff;
}else if(i % 2 == 0 && sum >= 0){
long diff = - Math.abs(sum) - 1;
sum += diff;
ans2 += Math.abs(diff);
}
}
//System.out.println(ans2);
System.out.println(Math.min(ans1, ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<string>
#include<vector>
#include<queue>
using namespace std;
const int mod = 1000000007;
#define ll long long
ll A[100010];
int main()
{
int N; cin >> N;
for (int i = 0; i < N; i++) {
cin >> A[i];
}
ll sum = 0;
ll ans1 = 0, ans2 = 0;
int x = 1;
for (int i = 0; i < N; i++) {
sum += A[i];
if (sum * x >= 0) {
ans1 += abs(sum + x);
sum = -x;
}
x *= -1;
}
sum = 0; x = -1;
for (int i = 0; i < N; i++) {
sum += A[i];
if (sum * x >= 0) {
ans2 += abs(sum + x);
sum = -x;
}
x *= -1;
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
std::cin >> n;
std::array<int64_t, 2> rets{};
std::array<int64_t, 2> sums{};
for (int i = 0; i < n; i++) {
int a;
std::cin >> a;
std::array<int64_t, 2> moves{};
for (int j = 0; j < 2; j++) {
sums[j] += a;
if (i % 2 == j) {
if (sums[j] >= 0) {
moves[j] = -sums[j] - 1;
}
} else {
if (sums[j] <= 0) {
moves[j] = -sums[j] + 1;
}
}
sums[j] += moves[j];
rets[j] += abs(moves[j]);
}
}
std::cout << std::min(rets[0], rets[1]) << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
#define REP(i,n) for(int i=0,i##_len=(n);i<i##_len;++i)
using namespace std;
signed main(){
int N;cin>>N;
vector<long long> A(N);
REP(i, N) cin >> A[i];
long long ans=LLONG_MAX;
int sig[2]={1,-1};
REP(j,2){
long long sum=0;
long long count=0;
REP(i,N){
sum+=A[i];
if(sig[(i^j)&1]*sum>=0){
count+=llabs(sum)+1;
sum=-sig[(i^j)&1];
}
}
ans=min(ans,count);
}
cout<<ans<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
using namespace std;
long long a[100001], res;
int n;
long long llabs(long long x) {
return x < 0 ? -x : x;
}
void solve() {
long long sum = 0; res = 0;
for(int i = 0; i < n; ++i) {
if((i%2)) {
if(sum + a[i] <= 0) {
res += llabs(sum + a[i]) + 1;
sum = 1;
}else {
sum += a[i];
}
}else {
if(sum + a[i] >= 0) {
res += llabs(sum + a[i]) + 1;
sum = -1;
}else {
sum += a[i];
}
}
}
}
int main() {
cin >> n;
for(int i = 0; i < n; ++i) {
cin >> a[i];
}
solve();
long long ress = res;
for(int i = 0; i < n ; ++i) {
a[i] = -a[i];
}
solve();
cout << (ress < res ? ress : res) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int64_t i;
int64_t n;cin >> n;
vector<int64_t> a(n);for(int i=0;i<n;i++) cin >> a[i];
int64_t sum=0,ans0=0,ans1=0;
for(i=0;i<n;i++){
sum += a[i];
if(i%2==0 && sum<=0){
ans0 += abs(sum) +1;
sum = 1;
} else if(i%2==1 && sum>=0){
ans0 += abs(sum) +1;
sum = -1;
}
}
sum=0;
for(i=0;i<n;i++){
sum += a[i];
if(i%2==0 && sum>=0){
ans1 += abs(sum) +1;
sum = -1;
} else if(i%2==1 && sum<=0){
ans1 += abs(sum) +1;
sum = 1;
}
}
cout << min(ans0,ans1) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
s = 0
tmp1 = 0
for i in range(N):
s += A[i]
if i % 2 == 0:
if s >= 0:
tmp1 += s + 1
s = -1
else:
if s <= 0:
tmp1 += -s + 1
s = 1
#print(tmp1)
s = 0
tmp2 = 0
for i in range(N):
s += A[i]
if i % 2 == 0:
if s <= 0:
tmp2 += -s + 1
s = 1
else:
if s >= 0:
tmp2 += s + 1
s = -1
#print(tmp2)
print(min(tmp1, tmp2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
using namespace std;
int N;
int a[112345];
long long int ans[2];
int main () {
cin >> N;
for(int i=0; i<N; i++) cin >> a[i];
for(int i=0; i<2; i++) {
long long int sum = 0;
for(int j=0; j<N; j++) {
sum += a[j];
if(j % 2 == i ) {
if(sum <= 0) {
ans[i] += 1 - sum;
sum = 1;
}
} else {
if(sum >= 0) {
ans[i] += sum + 1;
sum = -1;
}
}
}
}
cout << min(ans[0],ans[1]) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
class Main {
int n;
int[] a;
long cnt1;
long cnt2;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Main m = new Main(sc);
m.solve();
sc.close();
}
Main(Scanner sc) {
n = sc.nextInt();
a = new int[n];
for(int i=0;i<n;i++){
a[i] = sc.nextInt();
}
}
void solve() {
Thread t1 = new Thread(()->{calc_run1((a[0]>0)?0:(Math.abs(a[0])+1),1,(a[0]>0)?a[0]:1);});
t1.start();
Thread t2 = new Thread(()->{calc_run2((a[0]<0)?0:(Math.abs(a[0])+1),-1,(a[0]<0)?a[0]:-1);});
t2.start();
try {
t1.join();
t2.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Math.min(cnt1, cnt2));
}
void calc_run1(long cnt,int sign,long sum){
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt += Math.abs(sum) + 1;
sum = -sign;
}
sign *= -1;
}
cnt1 = cnt;
}
void calc_run2(long cnt,int sign,long sum){
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt += Math.abs(sum) + 1;
sum = -sign;
}
sign *= -1;
}
cnt2 = cnt;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int n;
cin >> n;
vector<long long int> a(n);
long long int sum1=0, sum2=0, cost1=0, cost2=0;
for(int i=0; i<n; i++){
cin >> a[i];
sum1 += a[i];
sum2 += a[i];
if(i%2 == 0 && sum1 <= 0){
cost1 += 1-sum1;
sum1 = 1;
}
else if(i%2 == 1 && sum1 >= 0){
cost1 += sum1+1;
sum1 = -1;
}
if(i%2 == 0 && sum2 >= 0){
cost2 += 1+sum2;
sum2 = -1;
}
else if(i%2 == 1 && sum2 <= 0){
cost2 += 1-sum2;
sum2 = 1;
}
}
cout << min(cost1, cost2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = list(map(int,input().split()))
s = max(A[0],1)
cnt1 = abs(A[0]-s) #sを正にするまで
for a in A[1:]:
if s>0:
b=min(a, -s-1) #aを何の値にするかがb
if s<0:
b=max(a,-s+1)
s += b #bを足してs更新
cnt1 += abs(a-b)
s = min(A[0],-1)
cnt2 = abs(A[0]-s)
for a in A[1:]:
if s>0:
b=min(a, -s-1) #aを何の値にするかがb
if s<0:
b=max(a,-s+1)
s += b #bを足してs更新
cnt2 += abs(a-b)
print(min(cnt1,cnt2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> P;
ll s1, s2, c1, c2;
int main() {
ll n, a;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a;
s1 += a;
s2 += a;
if (i % 2) {
if (s1 <= 0) c1 += 1 - s1,s1 = 1;
if (s2 >= 0) c2 += 1 + s2,s2 = -1;
}
else {
if (s1 >= 0) c1 += 1 + s1,s1 = -1;
if (s2 <= 0) c2 += 1 - s2,s2 = 1;
}
}
cout << min(c1, c2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.PrintWriter;
import java.math.BigDecimal;
import java.util.*;
import java.util.stream.Collectors;
public class Main {
public static void main(String[] args) {
PrintWriter out = new PrintWriter(System.out);
Scanner sc = new Scanner(System.in);
Task task = new Task();
task.solve(sc, out);
out.flush();
sc.close();
}
static class Task {
public void solve(Scanner sc, PrintWriter out) {
int n = nint(sc);
List<Long> aList = getLongList(sc, n);
long sum = 0;
long result1 = 0;
long result2 = 0;
long margin = 0;
// even +1
for (int i = 0; i < n; i++) {
sum += aList.get(i);
if (i%2 == 0){
if (sum>0){
continue;
}else {
margin = Math.abs(sum)+1;
result1 += margin;
sum = 1;
}
}else {
if (sum<0){
continue;
}else {
margin = Math.abs(sum)+1;
result1 += margin;
sum = -1;
}
}
}
sum = 0;
// even -1
for (int i = 0; i < n; i++) {
sum += aList.get(i);
if (i%2 == 0){
if (sum<0){
continue;
}else {
margin = Math.abs(sum)+1;
result2 += margin;
sum = -1;
}
}else {
if (sum>0){
continue;
}else {
margin = Math.abs(sum)+1;
result2 += margin;
sum = 1;
}
}
}
out.println(Math.min(result1, result2));
}
}
static int nint(Scanner sc) {
return Integer.parseInt(sc.next());
}
static long nlong(Scanner sc) {
return Long.parseLong(sc.next());
}
static double ndouble(Scanner sc) {
return Double.parseDouble(sc.next());
}
static float nfloat(Scanner sc) {
return Float.parseFloat(sc.next());
}
static String nstr(Scanner sc) {
return sc.next();
}
static long[] longLine(Scanner sc, int size) {
long[] lLine = new long[size];
for (int i = 0; i < size; i++) {
lLine[i] = nlong(sc);
}
return lLine;
}
static int[] intLine(Scanner sc, int size) {
int[] iLine = new int[size];
for (int i = 0; i < size; i++) {
iLine[i] = nint(sc);
}
return iLine;
}
static String[] strLine(Scanner sc, int size) {
String[] strLine = new String[size];
for (int i = 0; i < size; i++) {
strLine[i] = nstr(sc);
}
return strLine;
}
static long maxFromList(List<Long> longList) {
return longList.stream().max(Comparator.naturalOrder()).get();
}
static long minFromList(List<Long> longList) {
return longList.stream().min(Comparator.naturalOrder()).get();
}
public static int sumDigits(int n) {
int sum = 0;
while (n != 0) {
sum += n % 10;
n /= 10;
}
return sum;
}
public static long sumDigits(long n) {
long sum = 0;
while (n != 0) {
sum += n % 10;
n /= 10;
}
return sum;
}
static List<Integer> getIntegerList(Scanner sc, int size) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < size; i++) {
list.add(nint(sc));
}
return list;
}
static List<Long> getLongList(Scanner sc, int size) {
List<Long> list = new ArrayList<>();
for (int i = 0; i < size; i++) {
list.add(nlong(sc));
}
return list;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i = 0 ; i < n ; i++) a[i] = sc.nextInt();
long sum = 0, ans = 0, ans2 = 0;
for(int i = 0 ; i < n ; i++) {
sum += a[i];
if(i % 2 == 0 && sum <= 0) {
ans += 1 - sum;
sum = 1;
} else if(i % 2 == 1 && sum >= 0) {
ans += sum + 1;
sum = -1;
}
}
sum = 0;
for(int i = 0 ; i < n ; i++) {
sum += a[i];
if(i % 2 == 0 && sum >= 0) {
ans2 += sum + 1;
sum = -1;
} else if(i % 2 == 1 && sum <= 0) {
ans2 += 1 - sum;
sum = 1;
}
}
System.out.println(Math.min(ans, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
s1=c1=s2=c2=0
for i in range(n):
if i%2:
c1+=max(0,a[i]+s1+1); s1+=min(-s1-1,a[i])
c2+=max(0,-s2+1-a[i]); s2+=max(-s2+1,a[i])
else:
c1+=max(0,-s1+1-a[i]); s1+=max(-s1+1,a[i])
c2+=max(0,a[i]+s2+1); s2+=min(-s2-1,a[i])
print(min(c1,c2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
using namespace std;
int main() {
int N; cin >> N;
int a[100010];
for(int i=0; i<N; ++i) cin >> a[i];
long plus=0, minus=0;
long psum=0, msum=0;
for(int i=0; i<N; ++i){
psum += a[i];
msum += a[i];
if(i%2){
if(psum>=0){
plus += psum+1;
psum=-1;
}
if(msum<=0){
minus += 1-msum;
msum=1;
}
}else{
if(psum<=0){
plus += 1-psum;
psum=1;
}
if(msum>=0){
minus += msum+1;
msum=-1;
}
}
}
cout << min(plus, minus) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
import java.util.Arrays;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int [n];
for(int i = 0;i < n;i++){
a[i] = sc.nextInt();
}
int[] sum1 = new int[n];
int[] sum2 = new int[n];
sum1[0] = a[0];
sum2[0] = a[0];
long count = 0;
//System.out.println(solve1(sum1,a,count));
//System.out.println(solve2(sum2,a,count));
count = Math.min(solve1(sum1,a,count),solve2(sum2,a,count));
System.out.println(count);
}
public static long solve1(int[] sum,int[] a,long count){
if(sum[0] <= 0){
count += 1 - sum[0];
sum[0] = 1;
}
for(int i = 0;i < sum.length-1;i++){
sum[i+1] = sum[i] + a[i+1];
if((i+1) % 2 == 1){
if(sum[i+1] >= 0){
count += 1 + sum[i+1];
sum[i+1] = -1;
}
}
if((i+1) % 2 == 0){
if(sum[i+1] <= 0){
count += 1 - sum[i+1];
sum[i+1] = 1;
}
}
}
return count;
}
public static long solve2(int[] sum,int[] a,long count){
if(sum[0] >= 0){
count += 1 + sum[0];
sum[0] = -1;
}
for(int i = 0;i < sum.length-1;i++){
sum[i+1] = sum[i] + a[i+1];
if((i+1) % 2 == 1){
if(sum[i+1] <= 0){
count += 1 - sum[i+1];
sum[i+1] = 1;
}
}
if((i+1) % 2 == 0){
if(sum[i+1] >= 0){
count += 1 + sum[i+1];
sum[i+1] = -1;
}
}
}
return count;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for (int i = 0; i < (n); ++i)
typedef long long ll;
int main() {
int n,t=0;
ll r1=0,r2=0;
cin >> n;
vector<int> a(n);
rep(i,n)
cin >> a.at(i);
rep(i,n) {
t += a.at(i);
if(i%2==0 && t<=0) {
r1 += abs(-t)+1;
t = 1;
} else if(i%2 && t>=0) {
r1 += t+1;
t = -1;
}
}
t = 0;
rep(i,n) {
t += a.at(i);
if(i%2 && t<=0) {
r2 += abs(-t)+1;
t = 1;
} else if(i%2==0 && t>=0) {
r2 += t+1;
t = -1;
}
}
cout << min(r1,r2) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >>N;
long S0=0;
long S1=0;
long T0=0;
long T1=0;
for (int i=0; i<N; i++) {
long a;
cin >>a;
S0 +=a;
S1 +=a;
if (0==i%2) {
if (0>=S0) {
S0=1-S0;
T0 +=S0;
S0=1;
}
if (0<=S1) {
S1=S1+1;
T1 +=S1;
S1=-1;
}
} else {
if (0<=S0) {
S0=S0+1;
T0 +=S0;
S0=-1;
}
if (0>=S1) {
S1=1-S1;
T1 +=S1;
S1=1;
}
}
}
cout <<min(T0, T1) <<endl;
return 0;
};
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.