Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define int long long
int solvePlus(vector<int> v) {
int cnt = 0, sum = 0;
for (int i = 0; i < v.size(); i++) {
sum += v[i];
if (i % 2 == 1) {
cnt = (sum < 0) ? cnt : (cnt + abs(sum) + 1);
sum = (sum < 0) ? sum : -1;
} else if (i % 2 == 0) {
cnt = (sum > 0) ? cnt : (cnt + abs(sum) + 1);
sum = (sum > 0) ? sum : 1;
}
}
return cnt;
}
signed main() {
int n;
cin >> n;
vector<int> a(n), b(n);
for (auto&& w : a) cin >> w;
copy(begin(a), end(a), begin(b));
for (auto&& w : b) w *= -1;
int ans = min(solvePlus(a), solvePlus(b));
cout << ans << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int n, a[100000], s = 0;
ll x = 0, y = 0;
bool b = 0;
int main() {
cin >> n;
for (int i = 0; i < n; ++i)
cin >> a[i];
for (int i = 0; i < n; ++i, b = !b) {
s += a[i];
if (b) {
if (s <= 0) {
x += 1 - s;
s = 1;
}
} else if (s >= 0) {
x += s + 1;
s = -1;
}
}
b = 1;
s = 0;
swap(x, y);
for (int i = 0; i < n; ++i, b = !b) {
s += a[i];
if (b) {
if (s <= 0) {
x += 1 - s;
s = 1;
}
} else if (s >= 0) {
x += s + 1;
s = -1;
}
}
cout << min(x, y) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
long a[] = new long[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
long odd = f(a, n, 1);
long even = f(a, n, -1);
System.out.println(Math.min(odd, even));
}
static long f(long a[], int n, int sign) {
long total = 0;
long man = 0;
for (int i = 0; i < n; i++) {
total += a[i];
if (total * sign <= 0) {
long x = Math.abs(total) + 1;
total += sign * x;
man += x;
}
sign = -sign;
}
return man;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int posi(long long x){
if(x>0)return 1;
if(x<0)return -1;
return 0;
}
int main(){
int N;
cin >> N;
vector<long long> a(N);
for(auto &i:a)cin >> i;
long long ans=0,tmp=0;
long long sum=a[0];
if(a[0]==0){
tmp=1;
sum=-1;
}
for(int i=1;i<N;i++){
if(posi(sum+a[i])*posi(sum)!=-1 || sum+a[i]==0){
tmp+=abs(sum+a[i])+1;
sum=(sum>0)?-1:1;
}
else sum+=a[i];
}
ans=tmp;
tmp=abs(a[0])+1;
sum=(a[0]>0)?-1:1;
for(int i=1;i<N;i++){
if(posi(sum+a[i])*posi(sum)!=-1 || sum+a[i]==0){
tmp+=abs(sum+a[i])+1;
sum=(sum>0)?-1:1;
}
else sum+=a[i];
}
ans=min(ans,tmp);
cout << ans << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.lang.Character.Subset;
import java.math.BigDecimal;
import java.text.DecimalFormat;
import java.time.temporal.ValueRange;
import java.util.AbstractMap;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Objects;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Set;
import java.util.Stack;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.concurrent.ForkJoinPool;
import static java.util.Comparator.*;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
MyInput in = new MyInput(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver(in, out);
solver.solve();
out.close();
}
// ======================================================================
static class Solver {
MyInput in;
PrintWriter out;
public Solver(MyInput in, PrintWriter out) {
this.in = in;
this.out = out;
}
// -----------------------------------------
public void solve() {
int N = ni();
long[] A = ndl(N);
long cnt = 0;
long total = 0;
boolean f = true;
for (int i = 0; i < N; i++) {
total += A[i];
if(f && total <= 0) {
cnt += (Math.abs(total) + 1);
total = 1;
} else if(!f && total >= 0){
cnt += (Math.abs(total) + 1);
total = -1;
}
f = !f;
}
long ans = cnt;
cnt = 0;
total = 0;
f = false;
for (int i = 0; i < N; i++) {
total += A[i];
if(f && total <= 0) {
cnt += (Math.abs(total) + 1);
total = 1;
} else if(!f && total >= 0){
cnt += (Math.abs(total) + 1);
total = -1;
}
f = !f;
}
ans = Math.min(ans, cnt);
prn(ans);
}
// -----------------------------------------
// Integer のキーに対して、カウントを管理する(カウントを足したり、引いたりする)
static class MapCounter {
private Map<Long, Long> map = new TreeMap<>();
public MapCounter() {}
// キーのカウントに値を足す
public void add(long key) {
add(key, 1);
}
public void add(long key, int cnt) {
Long val = map.get(key);
if(val == null) {
map.put(key, (long)cnt);
} else {
map.put(key, val + cnt);
}
}
// キーのカウントから値を引く
public void sub(long key) {
sub(key, 1);
}
public void sub(long key, int cnt) {
Long val = map.get(key);
if(val == null) {
map.put(key, (long)-cnt);
} else {
map.put(key, val - cnt);
}
}
// キーのカウントを取得する(なければ NULLを返す)
public Long getCountwithNull(long key) {
return map.get(key);
}
// キーのカウントを取得する(なければ 0 を返す)
public Long getCount(long key) {
Long val = map.get(key);
if(val == null) return 0L;
else return val;
}
public Set<Long> getKey() {
return map.keySet();
}
// 登録されているキーの数を返す
public int getKeyCount() {
return map.keySet().size();
}
}
// -----------------------------------------
// 配列のバイナリーサーチ 1
boolean isRightMin(int[] a, boolean f, int index, int key) {
if (f && a[index] >= key) return true; // 以上
else if (!f && a[index] > key) return true; // より大きい
else return false;
}
// 配列 a の中で key 以上(f=true)または、より大きく(f=false)、一番小さい値を返す
int binarySearchRightMin(int[] a, boolean f, int key) {
int ng = -1; //「index = 0」が条件を満たすこともあるので、初期値は -1
int ok = (int)a.length; // 「index = a.length-1」が条件を満たさないこともあるので、初期値は a.length()
/* ok と ng のどちらが大きいかわからないことを考慮 */
while (Math.abs(ok - ng) > 1) {
int mid = (ok + ng) / 2;
if (isRightMin(a, f, mid, key)) ok = mid; // 下半分を対象とする
else ng = mid; // 上半分を対象とする
}
return ok; // ← ここで返すのは isOK() が true の時にセットする方(ok / ng)
}
// -----------------------------------------
// 配列のバイナリーサーチ 2
boolean isLeftMax(int[] a, boolean f, int index, int key) {
if (f && a[index] <= key) return true; // 以下
else if (!f && a[index] < key) return true; // より小さい
else return false;
}
// 配列 a の中で key 以下(f=true)または、より小さい(f=false)、一番大きい値を返す
int binarySearchLeftMax(int[] a, boolean f, int key) {
int ng = -1; //「index = 0」が条件を満たすこともあるので、初期値は -1
int ok = (int)a.length; // 「index = a.length-1」が条件を満たさないこともあるので、初期値は a.length()
/* ok と ng のどちらが大きいかわからないことを考慮 */
while (Math.abs(ok - ng) > 1) {
int mid = (ok + ng) / 2;
if (isLeftMax(a, f, mid, key)) ng = mid; // 上半分を対象とする
else ok = mid; // 下半分を対象とする
}
return ng; // ← ここで返すのは isOK() が true の時にセットする方(ok / ng)
}
// -----------------------------------------
// オイラーツアー(部分木対応)
static class EulerTour {
Graph g;
List<Integer> euler_tour = new ArrayList<>();
int[] begin, end;
int k = 0, root = 0;
void dfs(int v,int p, PrintWriter out) {
out.println("v = " + v + " p = " + p);
begin[v] = k;
euler_tour.add(v);
k++;
if(!g.contains(v)) {
return;
}
for(int i : g.get(v)) {
if(i != p) {
dfs(i, v, out);
euler_tour.add(v);
k++;
}
}
end[v]=k;
}
// 初期化
public void init(int p_cnt, int root, Graph g, PrintWriter out) {
begin = new int[p_cnt + 1];
end = new int[p_cnt + 1];
this.root = root;
this.g = g;
dfs(root, -1, out);
}
// 部分木の頂点を渡すと、オイラーツアーの部分木を返す
public List getPartTour(int v) {
return euler_tour.subList(begin[v], end[v]);
}
// 部分木の頂点を渡すと、頂点のリストを返す
public List<Integer> getPartList(int v) {
Set<Integer> set = new TreeSet<>();
set.addAll(getPartTour(v));
List<Integer> ans = new ArrayList<>();
for(Integer p : set) {
ans.add(p);
}
return ans;
}
}
// -----------------------------------------
// グラフのリンクリスト
static class Graph {
// 頂点に紐づく頂点のリスト
private Map<Integer, List<Integer>> data = new HashMap<Integer, List<Integer>>();
// // 全ての頂点のセット
// private Set<Integer> point = new TreeSet<>();
// 頂点と頂点の繋がりを追加する
void add(int from, int to) {
List<Integer> list = data.get(from);
if(list == null) {
list = new ArrayList<Integer>();
data.put(from, list);
}
list.add(to);
// point.add(key);
// point.add(value);
}
// 指定された頂点に紐づく、頂点のリストを返す
List<Integer> get(int key) {
return data.get(key);
}
// 頂点 key が登録されているか?
boolean contains(int key) {
return data.containsKey(key);
}
// 頂点のセットを返す
Set<Integer> keySet() {
return data.keySet();
}
// 頂点 key_1 と 頂点 key_2 がつながっていれば true を返す
boolean isConnect(int key_1, int key_2) {
List<Integer> list = data.get(key_1);
if(list == null) return false;
else return list.contains(key_2);
}
// 指定された頂点から、すべての頂点への距離を返す
List<PP> distList(int key) {
List<PP> dist = new ArrayList<>(); // 頂点と距離のペアのリスト
Set<Integer> mark = new HashSet<>(); // 処理したら入れる
Stack<PP> stack = new Stack<>(); // スタックの宣言
stack.push(new PP(key, 0)); // スタートをスタックに保存
while(!stack.isEmpty()) {
PP wk = stack.pop(); // スタックから次の頂点を取得
int pp = wk.getKey();
int dd = wk.getVal();
mark.add(pp); // 通過マーク
dist.add(new PP(pp, dd)); // 距離を登録
List<Integer> list = get(pp); // つながっている頂点のリストを取得
for(int next : list) {
if(mark.contains(next)) continue;
stack.push(new PP(next, dd + 1));
}
}
return dist;
}
// ダンプ
void dump(PrintWriter out) {
for(int key : data.keySet()) {
out.print(key + " : ");
for(int val : data.get(key)) {
out.print(val + " ");
}
out.println("");
}
}
}
// -----------------------------------------
// 重さを持ったグラフのリンクリスト
static class GraphWith {
// キーに紐づくリストに、頂点番号と重さのペアを持つ
private Map<Integer, List<PP>> data = new HashMap<Integer, List<PP>>();
// 指定された頂点に紐づく、頂点と重さのペアを追加する
void add(int key, PP p) {
List<PP> list = data.get(key);
if(list == null) {
list = new ArrayList<PP>();
data.put(key, list);
}
list.add(p);
}
// 頂点に紐づく、頂点と重さのペアのリストを返す
List<PP> get(int key) {
return data.get(key);
}
// 頂点 key が登録されているか?
boolean contains(int key) {
return data.containsKey(key);
}
// 頂点のセットを返す
Set<Integer> keySet() {
return data.keySet();
}
// 頂点 key_1 と 頂点 key_2 がつながっていれば true を返す
boolean isConnect(int key_1, int key_2) {
List<PP> list = data.get(key_1);
if(list == null) return false;
boolean ans = false;
for(PP p : list) {
if(p.getKey() == key_2) {
ans = true;
break;
}
}
return ans;
}
}
// -----------------------------------------
// グラフのリンクリスト(Long)
static class GraphLong {
private Map<Long, List<Long>> G = new HashMap<Long, List<Long>>();
void add(long key, long value) {
List<Long> list = G.get(key);
if(list == null) {
list = new ArrayList<Long>();
G.put(key, list);
}
list.add(value);
}
List<Long> get(long key) {
return G.get(key);
}
}
// -----------------------------------------
// 重さを持ったグラフのリンクリスト(Long)
static class GraphLongWith {
private Map<Long, List<PPL>> G = new HashMap<Long, List<PPL>>();
void add(long key, PPL p) {
List<PPL> list = G.get(key);
if(list == null) {
list = new ArrayList<PPL>();
G.put(key, list);
}
list.add(p);
}
List<PPL> get(long key) {
return G.get(key);
}
}
// -----------------------------------------
void prn(String s) {
out.println(s);
}
void prn(int i) {
out.println(i);
}
void prn(long i) {
out.println(i);
}
void prr(String s) {
out.print(s);
}
int ni() {
return in.nextInt();
}
long nl() {
return in.nextLong();
}
double nd() {
return in.nextDouble();
}
String ns() {
return in.nextString();
}
int[] ndi(int n) {
int[] ans = new int[n];
for(int i=0; i < n; i++) {
ans[i] = ni();
}
return ans;
}
long[] ndl(int n) {
long[] ans = new long[n];
for(int i=0; i < n; i++) {
ans[i] = nl();
}
return ans;
}
double[] ndd(int n) {
double[] ans = new double[n];
for(int i=0; i < n; i++) {
ans[i] = nd();
}
return ans;
}
String[] nds(int n) {
String[] ans = new String[n];
for(int i=0; i < n; i++) {
ans[i] = ns();
}
return ans;
}
int[][] nddi(int n, int m) {
int[][] ans = new int[n][m];
for(int i=0; i < n; i++) {
for(int j=0; j < m; j++) {
ans[i][j] = ni();
}
}
return ans;
}
long[][] nddl(int n, int m) {
long[][] ans = new long[n][m];
for(int i=0; i < n; i++) {
for(int j=0; j < m; j++) {
ans[i][j] = nl();
}
}
return ans;
}
}
// Set に入れるなら PPKEY を使う!
static class PP{
public int key, val;
public PP(int key, int val) {
this.key = key;
this.val = val;
}
public int getKey() {
return key;
}
public void setKey(int key) {
this.key = key;
}
public int getVal() {
return val;
}
public void setVal(int val) {
this.val = val;
}
}
static class PPL {
public long key, val;
public PPL(long key, long val) {
this.key = key;
this.val = val;
}
public long getKey() {
return key;
}
public void setKey(long key) {
this.key = key;
}
public long getVal() {
return val;
}
public void setVal(long val) {
this.val = val;
}
}
static class PPDL {
public long key;
public long[] val;
public PPDL(long key, long[] val) {
this.key = key;
this.val = val;
}
public long getKey() {
return key;
}
public void setKey(long key) {
this.key = key;
}
public long[] getVal() {
return val;
}
public void setVal(long[] val) {
this.val = val;
}
public void dump(PrintWriter out) {
out.print("key = " + key + " val ");
for(int i=0; i < val.length; i++) {
out.print("[" + val[i] + "] ");
}
out.println("");
}
}
// HashMap のキーに使う → Set に入れるのもこれ(PPでは値での比較が行われない)
static final class PPKEY{
private final int key, val;
public PPKEY(int key, int val) {
this.key = key;
this.val = val;
}
public int getKey() {
return key;
}
public int getVal() {
return val;
}
@Override
public boolean equals(Object obj) {
if (obj instanceof PPKEY) {
PPKEY dest = (PPKEY) obj;
return this.key == dest.key && this.val == dest.val;
} else {
return false;
}
}
@Override
public int hashCode() {
return Objects.hash(key, val);
}
}
// HashMap のキーに使う → Set に入れるのもこれ(PPでは値での比較が行われない)
static final class PPLKEY{
private final long key, val;
public PPLKEY(long key, long val) {
this.key = key;
this.val = val;
}
public long getKey() {
return key;
}
public long getVal() {
return val;
}
@Override
public boolean equals(Object obj) {
if (obj instanceof PPKEY) {
PPKEY dest = (PPKEY) obj;
return this.key == dest.key && this.val == dest.val;
} else {
return false;
}
}
@Override
public int hashCode() {
return Objects.hash(key, val);
}
}
// ======================================================================
static class Pair<K, V> extends AbstractMap.SimpleEntry<K, V> {
/** serialVersionUID. */
private static final long serialVersionUID = 6411527075103472113L;
public Pair(final K key, final V value) {
super(key, value);
}
}
static class MyInput {
private final BufferedReader in;
private static int pos;
private static int readLen;
private static final char[] buffer = new char[1024 * 8];
private static char[] str = new char[500 * 8 * 2];
private static boolean[] isDigit = new boolean[256];
private static boolean[] isSpace = new boolean[256];
private static boolean[] isLineSep = new boolean[256];
static {
for (int i = 0; i < 10; i++) {
isDigit['0' + i] = true;
}
isDigit['-'] = true;
isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true;
isLineSep['\r'] = isLineSep['\n'] = true;
}
public MyInput(InputStream is) {
in = new BufferedReader(new InputStreamReader(is));
}
public int read() {
if (pos >= readLen) {
pos = 0;
try {
readLen = in.read(buffer);
} catch (IOException e) {
throw new RuntimeException();
}
if (readLen <= 0) {
throw new MyInput.EndOfFileRuntimeException();
}
}
return buffer[pos++];
}
public int nextInt() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
int ret = 0;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public long nextLong() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
long ret = 0L;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public double nextDouble() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
double ret = 0;
if (str[0] == '-') {
i = 1;
}
int cnt = 0;
for (; i < len; i++) {
if(str[i] == '.') {
cnt = 10;
continue;
}
if(cnt == 0) {
ret = ret * 10 + str[i] - '0';
} else {
ret = ret + ((double)(str[i] - '0') / cnt);
cnt *= 10;
}
}
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public String nextString() {
String ret = new String(nextDChar()).trim();
return ret;
}
public char[] nextDChar() {
int len = 0;
len = reads(len, isSpace);
char[] ret = new char[len + 1];
for (int i=0; i < len; i++) ret[i] = str[i];
ret[len] = 0x00;
return ret;
}
public char nextChar() {
while (true) {
final int c = read();
if (!isSpace[c]) {
return (char) c;
}
}
}
int reads(int len, boolean[] accept) {
try {
while (true) {
final int c = read();
if (accept[c]) {
break;
}
if (str.length == len) {
char[] rep = new char[str.length * 3 / 2];
System.arraycopy(str, 0, rep, 0, str.length);
str = rep;
}
str[len++] = (char) c;
}
} catch (MyInput.EndOfFileRuntimeException e) {
}
return len;
}
static class EndOfFileRuntimeException extends RuntimeException {
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
total = [0,0]
count = [0,0]
for i in range(2):
for j in range(N):
total[i] += A[j]
if (i+j)%2 == 0:
if total[i] >= 0:
count[i] += abs(total[i]+1)
total[i] = -1
else:
if total[i] <= 0:
count[i] += abs(total[i]-1)
total[i] = 1
print(min(count)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class Main {
void solve() throws IOException {
int N = ni();
int[] a = new int[N];
for (int i = 0; i < N; i++) {
a[i] = ni();
}
long csum = 0;
long ans = 0;
for (int i = 0; i < N; i++) {
csum += a[i];
if(i%2==0 && csum>=0) {
ans+= Math.abs(csum - (-1));
csum = -1;
}
else if (i%2==1 && csum<=0) {
ans += Math.abs(csum - 1);
csum = 1;
}
}
csum = 0;
long ans2 = 0;
for (int i = 0; i < N; i++) {
csum += a[i];
if(i%2==0 && csum<=0) {
ans2 += Math.abs(csum - (1));
csum = 1;
}
else if (i%2==1 && csum>=0) {
ans2 += Math.abs(csum - (-1));
csum = -1;
}
}
out.println(Math.min(ans,ans2));
}
final int mod = 1000000007;
final BigInteger MOD = BigInteger.valueOf(mod);
int upperBound(ArrayList<Long> list, Long target){
int i = Collections.binarySearch(list, target, new UpperBoundComparator<Long>());
return ~i;
}
class UpperBoundComparator<T extends Comparable<? super T>> implements Comparator<T>{
public int compare(T x, T y){
return (x.compareTo(y) > 0) ? 1 : -1;
}
}
int lowerBound(ArrayList<Long> list, Long target){
int i = Collections.binarySearch(list, target, new LowerBoundComparator<Long>());
return ~i;
}
class LowerBoundComparator<T extends Comparable<? super T>> implements Comparator<T>{
public int compare(T x, T y){
return (x.compareTo(y) >= 0) ? 1 : -1;
}
}
int mul(int x, int y){
int val = (int)((x * 1L * y) % mod);
return val>=0 ? val : val+mod;
}
int add(int x, int y) {
x += y;
if(x < 0) x += mod;
if(x>=mod) x -= mod;
return x;
}
int sub(int x, int y){
x = add(x,mod-y);
if(x < 0) x += mod;
if(x>=mod) x -= mod;
return x;
}
String ns() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine(), " ");
}
return tok.nextToken();
}
int ni() throws IOException {
return Integer.parseInt(ns());
}
long nl() throws IOException {
return Long.parseLong(ns());
}
double nd() throws IOException {
return Double.parseDouble(ns());
}
String[] nsa(int n) throws IOException {
String[] res = new String[n];
for (int i = 0; i < n; i++) {
res[i] = ns();
}
return res;
}
int[] nia(int n) throws IOException {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = ni();
}
return res;
}
long[] nla(int n) throws IOException {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = nl();
}
return res;
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
tok = new StringTokenizer("");
Main main = new Main();
main.solve();
out.close();
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) {
try {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] inputString = br.readLine().split(" ");
long[] input = new long[n];
for(int i = 0 ; i < n ; i++) {
input[i] = Integer.parseInt(inputString[i]);
}
long result = -1, keyValue = result;
while(keyValue == -1){
keyValue = result;
result = 0;
long count = 0;
for(int i = 0 ; i < n ; i++){
if(i % 2 == 0 && (count + input[i]) * Math.signum(keyValue) >= 0){
result += Math.abs(count + input[i]) + 1;
count = (int)Math.signum(keyValue) * -1;
}else if(i % 2 != 0 && (count + input[i]) * Math.signum(keyValue) <= 0){
result += Math.abs(count + input[i]) + 1;
count = (int)Math.signum(keyValue);
}else{
count += input[i];
}
}
result = (keyValue != -1)? Math.min(result, keyValue): result;
}
System.out.println(result);
} catch (Exception e) {
e.printStackTrace();
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
using namespace std;
int n;
long long a[100005];
long long ans1, ans2, sum;
void solver(){
sum = 0;
for(int i = 1, s = 1; i <= n; ++i, s *= -1){
sum += a[i];
if(sum * s <= 0)ans1+=abs(sum-s),sum=s;
}
sum = 0;
for(int i = 1, s = -1; i <= n; ++i, s *= -1){
sum += a[i];
if(sum * s <= 0)ans2+=abs(sum-s),sum=s;
}
cout << min(ans1, ans2) << endl;
}
int main(){
cin >> n;
for(int i = 1; i <= n; ++i){
cin >> a[i];
}
solver();
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
long cnt1 = 0;
long add1 = 0;
//一番目を奇数スタートにする。
for (int i = 0; i < n; i++) {
add1 += a[i];
if (i % 2 == 0 && add1 <= 0) {
cnt1 += (long) 1 - add1;
add1 = 1;
} else if (i % 2 == 1 && add1 >= 0) {
cnt1 += (long) add1 + 1;
add1 = -1;
}
}
long cnt2 = 0;
long add2 = 0;
for (int i = 0; i < n; i++) {
add2 += a[i];
if (i % 2 == 1 && add2 <= 0) {
cnt2 += (long) 1 - add2;
add2 = 1;
} else if (i % 2 == 0 && add2 >= 0) {
cnt2 += (long) add2 + 1;
add2 = -1;
}
}
System.out.println(Math.min(cnt1, cnt2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
using namespace std;
typedef long long ll;
const int MAX = 1e5;
int n;
int a[MAX];
ll solve(bool flag, ll sum) {
ll res = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (flag) {
if (sum >= 0) {
res += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
res += -sum + 1;
sum = 1;
}
}
flag = !flag;
}
return res;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
// 貪欲法で操作回数の最小値を求める
// プラスから始まるパターンとマイナスから始まるパターンの2パターン試して、その小さい方が答え
cout << min(solve(true, 0), solve(false, 0)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | import copy
n=int(input())
a=[int(x) for x in input().rstrip().split()]
now=0
ans1=0
for i in range(n):
now+=a[i]
if i%2==0:
if now<=0:
ans1+=abs(now)+1
now=1
else:
if 0<=now:
ans1+=abs(now)+1
now=-1
now=0
ans2=0
for i in range(n):
now+=a[i]
if i%2==0:
if 0<=now:
ans2+=abs(now)+1
now=-1
else:
if now<=0:
ans2+=abs(now)+1
now=1
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
// ABC 6-C
// http://abc006.contest.atcoder.jp/tasks/abc006_3
public class Main {
public static void main (String[] args) throws java.lang.Exception {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] nums = new int[n];
for (int i = 0; i < n; i++) {
nums[i] = in.nextInt();
}
long answer = solve(nums, 0, 0);
if (nums[0] > 0) {
answer = Math.min(solve(nums, nums[0], 1), nums[0] + 1 + solve(nums, -1, 1));
} else if (nums[0] < 0) {
answer = Math.min(solve(nums, nums[0], 1), Math.abs(nums[0]) + 1 + solve(nums, 1, 1));
} else {
answer = Math.min(1 + solve(nums, 1, 1), 1 + solve(nums, -1, 1));
}
System.out.println(answer);
//
// long sum = 0;
// long answer = 0;
//
// for (int i = 0; i < n; i++) {
// int a = in.nextInt();
//
// if (sum < 0 && sum + a < 0) {
// answer += 1 + Math.abs(sum + a);
// sum = 1;
// } else if (sum > 0 && sum + a > 0) {
// answer += 1 + sum + a;
// sum = -1;
// } else if (sum + a == 0) {
// answer++;
// if (sum < 0) {
// sum = 1;
// } else {
// sum = -1;
// }
// } else {
// sum += a;
// }
// }
// System.out.println(answer);
}
public static long solve(int[] nums, long sum, int index) {
if (index == nums.length) {
return 0;
}
if (sum < 0 && sum + nums[index] < 0) {
return 1 + Math.abs(sum + nums[index]) + solve(nums, 1, index + 1);
} else if (sum > 0 && sum + nums[index] > 0) {
return 1 + sum + nums[index] + solve(nums, -1, index + 1);
} else if (sum + nums[index] == 0) {
if (sum > 0) {
return 1 + solve(nums, -1, index + 1);
} else {
return 1 + solve(nums, 1, index + 1);
}
} else {
return solve(nums, sum + nums[index], index + 1);
}
// else if (sum < 0 && sum + nums[index] > 0) {
// return solve(nums, sum + nums[index], index + 1);
// } else if (sum > 0 && sum + nums[index] < 0) {
// return solve(nums, sum + nums[index], index + 1);
// } else {
// // sum == 0 or sum + nums[index] == 0
// if (sum == 0) {
// return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1));
// }
// // sum + nums[index] == 0
// else {
// if (sum < 0) {
// return Math.abs(sum) + 1 + solve(nums, 1, index + 1);
// } else {
// return Math.abs(sum) + 1 + solve(nums, -1, index + 1);
// }
// }
// }
// else if (sum + nums[index] == 0) {
// if (sum < 0) {
// return Math.abs(sum) + 1 + solve(nums, 1, index + 1);
// } else if (sum > 0) {
// return Math.abs(sum) + 1 + solve(nums, -1, index + 1);
// } else {
// return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1));
// }
// } else if (sum == 0) {
// return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1));
// } else {
// return solve(nums, sum + nums[index], index + 1);
// }
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
int n;
cin>>n;
vector<long long> a(n);
for(int i=0;i<n;i++)cin>>a[i];
long long res1=0, res2=0, sum=0;
for(int i=0;i<n;i++){
sum+=a[i];
if(i%2==0 && sum>=0){//奇数番目までの和を負に
res1+= sum+1;
sum=-1;
}
if(i%2==1 && sum<=0){//偶数番目までの和を正に
res1+= 1-sum;
sum=1;
}
}
sum=0;
for(int i=0;i<n;i++){
sum+=a[i];
if(i%2==0 && sum<=0){//奇数番目までの和を正に
res2+= 1-sum;
sum=1;
}
if(i%2==1 && sum>=0){//偶数番目までの和を負に
res2+= sum+1;
sum=-1;
}
}
cout<<min(res1, res2)<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
typedef long long ll;
int a[100010],n;
ll s,cnt,ans=1e9;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
if(a[1]>0)s=a[1];
else cnt=1-a[1],s=1;
for(int i=2;i<=n;++i)
if(s*(s+a[i])<0)s+=a[i];
else
{
cnt+=abs(s+a[i])+1;
s=((s<0)<<1)-1;
}
ans=cnt;
if(a[1]<0)cnt=0,s=a[1];
else cnt=a[1]+1,s=-1;
for(int i=2;i<=n;++i)
if(s*(s+a[i])<0)s+=a[i];
else
{
cnt+=abs(s+a[i])+1;
s=((s<0)<<1)-1;
}
printf("%lld\n",std::min(ans,cnt));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
#define REP(i,n,N) for(int i=(n);i<(int)N;i++)
#define p(s) cout<<(s)<<endl
#define ck(n,a,b) (a)<=(n)&&(n)<(b)
typedef long long ll;
using namespace std;
const int inf=1e9;
int main(){
int n;
cin>>n;
int a[100010];
REP(i,0,n){
cin>>a[i];
}
ll ans[2];
REP(hugou,0,2){
ans[hugou]=0;
ll sum=0;
REP(i,0,n){
sum+=a[i];
if(i%2==hugou&&sum>=0){
ans[hugou]+=sum+1;
sum=-1;
}else if(i%2!=hugou&&sum<=0){
ans[hugou]+=-sum+1;
sum=1;
}
}
}
p(min(ans[0],ans[1]));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | import copy
n=int(input())
A=list(map(int,input().split()))
def solve(a,f):
# print(f,a)
ans=0
for i in range(n):
if i!=0: a[i]+=a[i-1]
if not f:
if a[i]>=0:
ans+=a[i]+1
a[i]=-1
else:
if a[i]<=0:
ans+=a[i]*-1+1
a[i]=1
# print(a,ans,f)
f^=True
return ans
x=A.copy()
print(min(solve(A,True),solve(x,False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
static class Graph0n {
private ArrayList<Node0n> dt = new ArrayList<>();
Graph0n(int sz){
for(int i=0; i<sz; i++){
Node0n node1 = new Node0n();
dt.add(node1);
}
}
public void add(int vn, int val){ dt.get(vn).add(val); }
public int get(int vn, int index){ return dt.get(vn).get(index); }
public ArrayList<Integer> get(int vn){ return dt.get(vn).getAll(); }
public int sizeOf(int vn){ return dt.get(vn).size(); }
public void clear(){ for(int i=0; i<dt.size(); i++){ dt.get(i).clear(); } }
}
static class Node0n { //重みなし無向・有向グラフの頂点
private ArrayList<Integer> next_vs = new ArrayList<>();
public void add(int val){ next_vs.add(val); }
public int get(int ad){ return next_vs.get(ad); }
public ArrayList<Integer> getAll(){ return next_vs; }
public int size(){ return next_vs.size(); }
public void clear(){ next_vs.clear(); }
}
static class Edge {
int from=-1, v2=-1; long weight;
public Edge(int vn, long w){
this.v2 = vn;
this.weight = w;
}
public Edge(int cm, int vn, long w){
this.from = cm;
this.v2 = vn;
this.weight = w;
}
}
static class Edge2 {
int v2; long cost1,cost2;
public Edge2(int vn, long w1, long w2){
this.v2 = vn;
this.cost1 = w1;
this.cost2 = w2;
}
}
static class Comparator_Edge implements Comparator<Edge>{
public int compare(Edge a, Edge b){
if(a.weight>b.weight) return -1;
else if(a.weight<b.weight) return 1;
else return a.v2-b.v2;
}
}
static class Vector {
int x,y;
public Vector(int sx, int sy){
this.x=sx;
this.y=sy;
}
}
//私が好きなアルゴリズム::累積和・UF木
public static void main(String[] args) throws Exception {
FastScanner sc = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int n=sc.nexI();
long[] as = new long[n];
sc.ni(as);
//+スタート
boolean sum_plus = true;
long sum_former = 0;
long nhandle = 0;
for(int i=0; i<n; i++){
sum_former += as[i];
if(sum_plus){
if(sum_former<=0){
nhandle += (1-sum_former);
sum_former = 1;
}
}else{
if(sum_former>=0){
nhandle += sum_former+1;
sum_former=-1;
}
}
sum_plus = !sum_plus;
}
long ans =nhandle;
sum_plus = false;
sum_former = 0;
nhandle = 0;
for(int i=0; i<n; i++){
sum_former += as[i];
if(sum_plus){
if(sum_former<=0){
nhandle += (1-sum_former);
sum_former = 1;
}
}else{
if(sum_former>=0){
nhandle += sum_former+1;
sum_former=-1;
}
}
sum_plus = !sum_plus;
}
ans = min(ans,nhandle);
out.println(ans);
out.flush();
}
private static boolean triangle_inequality(int a, int b, int c){
if((a+b)<c) return false;
if((b+c)<a) return false;
if((c+a)<b) return false;
return true;
}
private static int INF = (int)1e8;
private static long INFL = (long)1e17;
private static long e97 = (long)1e9 + 7;
private static int abs(int a){ return (a>=0) ? a: -a; }
private static long abs(long a){ return (a>=0) ? a: -a; }
private static double abs(double a){ return (a>=0) ? a: -a; }
private static int min(int a, int b){ return (a>b) ? b : a; }
private static long min(long a, long b){ return (a>b) ? b : a; }
private static double min(double a, double b){ return (a>b) ? b : a; }
private static int max(int a, int b){ return (a>b) ? a : b; }
private static long max(long a, long b){ return (a>b) ? a : b; }
private static double max(double a, double b){ return (a>b) ? a : b; }
private static int minN(int... ins){
int min = ins[0];
for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; }
return min;
}
private static int maxN(int... ins){
int max = ins[0];
for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; }
return max;
}
private static long minN(long... ins){
long min = ins[0];
for(int i=1; i<ins.length; i++){ if(ins[i] < min) min = ins[i]; }
return min;
}
private static long maxN(long... ins){
long max = ins[0];
for(int i=1; i<ins.length; i++){ if(ins[i] > max) max = ins[i]; }
return max;
}
private static int minExAd(int[] dt, int ad){
int min=INF;
for(int i=0; i<dt.length; i++){ if((i != ad) && (dt[i] < min)) min = dt[i]; }
return min;
}
private static long minExAd(long[] dt, int ad){
long min=INFL;
for(int i=0; i<dt.length; i++){ if((i != ad) && (dt[i] < min)) min = dt[i]; }
return min;
}
private static int minExVal(int[] dt, int ex_val){
int min=INF;
for(int i=0; i<dt.length; i++){ if((dt[i] != ex_val) && (dt[i] < min)) min = dt[i]; }
return min;
}
private static long minExVal(long[] dt, long ex_val){
long min=INFL;
for(int i=0; i<dt.length; i++){ if((dt[i] != ex_val) && (dt[i] < min)) min = dt[i]; }
return min;
}
private static int maxExAd(int[] dt, int ad){
int max=-INF;
for(int i=0; i<dt.length; i++){ if((i != ad) && (dt[i] > max)) max = dt[i]; }
return max;
}
private static long maxExAd(long[] dt, int ad){
long max=-INFL;
for(int i=0; i<dt.length; i++){ if((i != ad) && (dt[i] > max)) max = dt[i]; }
return max;
}
private static int maxExVal(int[] dt, int ex_val){
int max=-INF;
for(int i=0; i<dt.length; i++){ if((dt[i] != ex_val) && (dt[i] > max)) max = dt[i]; }
return max;
}
private static long maxExVal(long[] dt, long ex_val){
long max=-INFL;
for(int i=0; i<dt.length; i++){ if((dt[i] != ex_val) && (dt[i] > max)) max = dt[i]; }
return max;
}
private static boolean same3(long a, long b, long c){
if(a!=b) return false;
if(b!=c) return false;
if(c!=a) return false;
return true;
}
private static boolean dif3(long a, long b, long c){
if(a==b) return false;
if(b==c) return false;
if(c==a) return false;
return true;
}
private static double hypod(double a, double b){
return Math.sqrt(a*a+b*b);
}
private static long factorial(int n) {
long ans=1;
for(long i=n; i>0; i--){ ans*=i; }
return ans;
}
private static long facP(int n, long p) {
long ans=1;
for(long i=n; i>0; i--){
ans*=i;
ans %= p;
}
return ans;
}
private static long lcm(long m, long n){
long ans = m/gcd(m,n);
ans *= n;
return ans;
}
private static long gcd(long m, long n) {
if(m < n) return gcd(n, m);
if(n == 0) return m;
return gcd(n, m % n);
}
private static boolean is_prime(long a){
if(a==1) return false;
for(int i=2; i<=Math.sqrt(a); i++){ if(a%i == 0) return false; }
return true;
}
private static long modinv(long a, long p) { //a|p, >1に注意
long b = p, u = 1, v = 0;
while (b>0) {
long t = a / b;
long pe = a%b;
a=b; b=pe;
pe= u-t*v;
u=v; v=pe;
}
u %= p;
if (u < 0) u += p;
return u;
}
private static long[] fac10E97 = null;
private static long[] finv10E97 = null;
private static void Cinit(int max_sz, long p){
fac10E97 = new long[max_sz+1];
finv10E97 = new long[max_sz+1];
fac10E97[0]=1;
finv10E97[0]=1;
for(int i=1; i<=max_sz; i++){
fac10E97[i] = (fac10E97[i-1]*i) % p;
}
finv10E97[max_sz] = modinv(fac10E97[max_sz], p);
for(int i=max_sz; i>1; i--){
finv10E97[i-1] = (finv10E97[i]*i) % p;
}
}
private static long C10e97(int n, int k, long p){
long ans = fac10E97[n];
ans *= finv10E97[k];
ans %= p;
ans *= finv10E97[n-k];
ans %=p;
if(ans<0) return ans+p;
else return ans;
}
private static long C10e97LS(long n, int k, long p){
long ans =1;
for(long i=n; i>(n-(long)k); i--){
ans *= i;
ans %= e97;
}
ans *= modinv(facP(k,e97),e97);
return ans%e97;
}
private static int pow(int n, int k){
int ans=1;
for(int i=0; i<k; i++) ans *= n;
return ans;
}
private static int pow2(int in){ return in*in; }
private static long pow2(long in){ return in*in; }
private static double pow2(double in){ return in*in; }
private static int getDigit2(long num){
long cf = 1; int d=0;
while(num >= cf){ d++; cf = 1<<d; }
return d; //numはd桁の数で、2^dより小さい
}
private static int getDigit10(long num){
long cf = 1; int d=0;
while(num >= cf){ d++; cf*=10; }
return d; //numはd桁の数で、10^dより小さい
}
private static boolean isINF(int in){
if(((long)in*20)>INF) return true;
else return false;
}
private static boolean isINFL(long in){
if((in*10000)>INFL) return true;
else return false;
}
private static long pow10E97(long ob, long soeji, long p){
if(ob==0) return 0;
if(soeji==0) return 1;
if(soeji==2) return (ob*ob)%p;
int d = getDigit2(soeji);
long[] ob_pow_2pow = new long[d];
ob_pow_2pow[0] = ob;
for(int i=1; i<d; i++){ ob_pow_2pow[i] = (ob_pow_2pow[i-1]*ob_pow_2pow[i-1])%p; }
long ans=1;
for(int i=d-1; i>=0; i--){
if(soeji >= (long)(1<<i)){
soeji -= (long)(1<<i);
ans = (ans*ob_pow_2pow[i])%p;
}
}
return ans;
}
private static int flag(int pos){ return (1<<pos); }
private static boolean isFlaged(int bit, int pos){
if((bit&(1<<pos)) > 0) return true;
else return false;
}
private static boolean isFlaged(long bit, int pos){
if((bit&(1<<pos)) > 0) return true;
else return false;
}
private static int deflag(int bit, int pos){ return bit&~(1<<pos); }
private static int countFlaged(int bit){
int ans=0;
for(int i=0; i<getDigit2(bit); i++){
if((bit&(1<<i)) > 0) ans++;
}
return ans;
}
private static void showflag(int bit){
for(int i=0; i<getDigit2(bit); i++){
if(isFlaged(bit,i)) System.out.print("O");
else System.out.print(".");
}
System.out.println();
}
public static int biSearch(int[] dt, int target){
int left=0, right=dt.length-1;
int mid=-1;
while(left<=right){
mid = (right+left)/2;
if(dt[mid] == target) return mid;
if(dt[mid] < target) left=mid+1;
else right=mid-1;
}
return -1;
}
public static int biSearchMax(long[] dt, long target){
int left=-1, right=dt.length;
int mid=-1;
while((right-left)>1){
mid = left + (right-left)/2;
if(dt[mid] <= target) left=mid;
else right=mid;
}
return left;//target以下の最大のaddress
}
public static int biSearchMaxAL(ArrayList<Integer> dt, long target){
int left=-1, right=dt.size();
int mid=-1;
while((right-left)>1){
mid = left + (right-left)/2;
if(dt.get(mid) <= target) left=mid;
else right=mid;
}
return left;//target以下の最大のaddress
}
private static int get_root_uf(int[] parent, int index){
if(parent[index] == index) return index;
int root = get_root_uf(parent, parent[index]);
parent[index] = root;
return root;
}
private static boolean is_same_uf(int[] parent, int x, int y){
if(get_root_uf(parent,x) == get_root_uf(parent,y)) return true;
else return false;
}
private static void unite_uf(int[] parent, int receiver, int attacker){
parent[get_root_uf(parent,attacker)] = get_root_uf(parent, receiver);
}
private static int[] Xdir4 = {1,0,0,-1};
private static int[] Ydir4 = {0,1,-1,0};
private static int[] Xdir8 = {1,1,1,0,0,-1,-1,-1};
private static int[] Ydir8 = {1,0,-1,1,-1,1,0,-1};
private static boolean is_in_area(int y, int x, int h, int w){
if(y<0) return false;
if(x<0) return false;
if(y>=h) return false;
if(x>=w) return false;
return true;
}
static void show2(boolean[][] dt, int lit_x, int lit_y){
PrintWriter out = new PrintWriter(System.out);
for(int j=0; j<dt.length; j++){
for(int i=0; i<dt[j].length; i++){
if((i==lit_y) && (j==lit_x)) out.print("X");
else if(dt[j][i]) out.print("O");
else out.print(".");
}
out.println();
}
out.flush();
}
static void show2(int[][] dt, String cmnt){
PrintWriter out = new PrintWriter(System.out);
for(int i=0; i<dt.length; i++){
for(int j=0; j<dt[i].length; j++){
out.print(dt[i][j]+",");
}
out.println("<-"+cmnt+":"+i);
}
out.flush();
}
static void show2(long[][] dt, String cmnt){
PrintWriter out = new PrintWriter(System.out);
for(int i=0; i<dt.length; i++){
for(int j=0; j<dt[i].length; j++){
out.print(dt[i][j]+",");
}
out.println("<-"+cmnt+":"+i);
}
out.flush();
}
static void disp_que(ArrayDeque<Long> dt){ //上手くいかなかった時用
long a=0;
while(dt.size()>0){
a=dt.removeFirst();
System.out.print(a);
}
System.out.println("\n");
}
static void disp_list(List dt){ //上手くいかなかった時用
for(int i=0; i<dt.size(); i++){
System.out.print(dt.get(i)+",");
}
System.out.println("\n");
}
private static void prtlnas(int[] as){
PrintWriter out = new PrintWriter(System.out);
for(int i=0; i<as.length; i++){
out.println(as[i]);
}
out.flush();
}
private static void prtlnas(long[] as){
PrintWriter out = new PrintWriter(System.out);
for(int i=0; i<as.length; i++){
out.println(as[i]);
}
out.flush();
}
private static void prtspas(int[] as){
PrintWriter out = new PrintWriter(System.out);
out.print(as[0]);
for(int i=1; i<as.length; i++){
out.print(" "+as[i]);
}
out.flush();
}
private static void prtspas(long[] as){
PrintWriter out = new PrintWriter(System.out);
out.print(as[0]);
for(int i=1; i<as.length; i++){
out.print(" "+as[i]);
}
out.flush();
}
private static void fill(boolean[] ob, boolean res){ for(int i=0; i<ob.length; i++){ ob[i] = res; }}
private static void fill(int[] ob, int res){ for(int i=0; i<ob.length; i++){ ob[i] = res; }}
private static void fill(long[] ob, long res){ for(int i=0; i<ob.length; i++){ ob[i] = res; }}
private static void fill(char[] ob, char res){ for(int i=0; i<ob.length; i++){ ob[i] = res; }}
private static void fill(double[] ob, double res){ for(int i=0; i<ob.length; i++){ ob[i] = res; }}
private static void fill(boolean[][] ob,boolean res){for(int i=0;i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}}
private static void fill(int[][] ob, int res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}}
private static void fill(long[][] ob, long res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}}
private static void fill(char[][] ob, char res){ for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}}
private static void fill(double[][] ob, double res){for(int i=0; i<ob.length; i++){ for(int j=0; j<ob[0].length; j++){ ob[i][j] = res; }}}
private static void fill(int[][][] ob,int res){for(int i=0;i<ob.length;i++){for(int j=0;j<ob[0].length;j++){for(int k=0;k<ob[0][0].length;k++){ob[i][j][k]=res;}}}}
private static void fill_parent(int[] ob){
for(int i=0; i<ob.length; i++) ob[i]=i;
}
static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
}else{
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nexL() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while(true){
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
}else if(b == -1 || !isPrintableChar(b) || b == ':'){
return minus ? -n : n;
}else{
throw new NumberFormatException();
}
b = readByte();
}
}
public int nexI() {
long nl = nexL();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nexD() { return Double.parseDouble(next());}
public void ni(long[] array2){
for(int i=0; i<array2.length; i++){
array2[i] = nexL();
}
return;
}
public void ni(int[] array2){
for(int i=0; i<array2.length; i++){
array2[i] = nexI();
}
return;
}
public void ni(int[] as, int[] bs){
for(int i=0; i<as.length; i++){
as[i] = nexI();
bs[i] = nexI();
}
return;
}
public void ni(int[] as, int[] bs, int[] cs){
for(int i=0; i<as.length; i++){
as[i] = nexI();
bs[i] = nexI();
cs[i] = nexI();
}
return;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | def z(s,l):
for i in range(n-1):
r=l+a[i+1]
if r*l>=0:
if l<=0:
s+=1-r
r=1
else:
s+=1+r
r=-1
l=r
return s
n=int(input())
a=list(map(int,input().split()))
s1=0
l1=a[0]
if a[0]<=0:
s1=1-a[0]
l1=1
s2=0
l2=a[0]
if a[0]>=0:
s2=a[0]+1
l2=-1
print(min(z(s1,l1),z(s2,l2))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <algorithm>
using namespace std;
int main(void) {
int num, i = 0, a;
long long sumT = 0, sumF = 0, ansT = 0, ansF = 0;
bool sig = true;
cin >> num;
for (; i < num; i++) {
scanf("%d", &a);
sumT += a;
sumF += a;
if (sig && sumT >= 0) {
ansT += sumT + 1;
sumT = -1;
}
else if (!sig && sumT <= 0) {
ansT += 1 - sumT;
sumT = 1;
}
if (!sig && sumF >= 0) {
ansF += sumF + 1;
sumF = -1;
}
else if (sig && sumF <= 0) {
ansF += 1 - sumF;
sumF = 1;
}
sig = !sig;
}
cout << min(ansT, ansF) << "\n";
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <map>
#include <set>
using namespace std;
#define lli long long int
#define REP(i,n) for(int i=0;i<n;i++)
#define DEBUG 1
lli n,a[100100];
lli calc(lli s){
lli sum=0,res = 0;
for(lli i=0;i<n;i++,s *= -1){
sum += a[i];
if(sum * s > 0)continue;
res += abs(sum-s);
sum += s*abs(sum-s);
}
return res;
}
int main(){
cin>>n;
REP(i,n)cin>>a[i];
cout<<min(calc(1),calc(-1))<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
int64_t min_ans = INT64_MAX;
for (int s = -1; s < 2; s += 2) {
int64_t ans = 0LLU;
int64_t sum = 0LLU;
int sign;
for (int i = 0, sign = s; i < n; ++i, sign *= -1) {
sum += a[i];
// cout << i << "| sign: " << sign << " sum: " << sum << "\n";
if (sum * sign <= 0) {
ans += abs(sign - sum);
sum = sign;
}
}
min_ans = min(min_ans, ans);
}
cout << min_ans << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def chk(a,first):
count = 0
x = 0 # sum
t = first # True : plus, False : minus
for item in a:
x += item
if t == True and x<1:
count += 1-x
x = 1
elif t == False and x>-1:
count += x+1
x = -1
t = not t
return count
print(min(chk(a,True),chk(a,False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define all(a) (a).begin(),(a).end()
typedef long long ll;
ll mod=1000000007;
int main() {
int n;cin >>n;
ll cnt_a=0;
ll cnt_b=0;
ll sum_a =0;
ll sum_b =0;
ll sign_a = 1;
ll sign_b = -1;
for(int i=0;i<n;++i){
ll t;cin >> t;
sum_a +=t;
sum_b +=t;
if (sum_a * sign_a <= 0){
cnt_a += abs(sum_a) + 1;
sum_a = sign_a;
}
if (sum_b * sign_b <= 0){
cnt_b += abs(sum_b) + 1;
sum_b = sign_b;
}
sign_a *=-1;
sign_b *=-1;
}
cout << min(cnt_a,cnt_b) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = map(int, input().split())
sum_b = 0
cnt_b = 0
sum_c = 0
cnt_c = 0
for i,a in enumerate(A):
sum_b += a
if not sum_b or ((sum_b > 0) != ((i % 2) > 0)):
cnt_b += abs(sum_b) + 1
sum_b = 1 if ((i % 2) > 0) else -1
sum_c += a
if not sum_c or ((sum_c > 0) == ((i % 2) > 0)):
cnt_c += abs(sum_c) + 1
sum_c = -1 if ((i % 2) > 0) else 1
print(min(cnt_b, cnt_c))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
def sol(S):
ret = 0
for a in A[1:]:
b = a
if S * (S + b) > 0:
b = (abs(S) + 1) * (1 if S < 0 else -1)
if S + b == 0:
b = b - 1 if S > 0 else b + 1
ret += abs(b - a)
S += b
return ret
if A[0] == 0:
ans = min(sol(1), sol(-1)) + 1
else:
ans = min(sol(A[0]), sol(-A[0] // abs(A[0])) + abs(A[0]) + 1)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i=0;i<n;i++) a[i] = sc.nextInt();
sc.close();
long ans = Long.MAX_VALUE / 2;
// + - + - + -
long res = 0;
long t = 0;
for(int i=0;i<n;i++) {
t += a[i];
if(i % 2 == 0) {
if(t > 0) continue;
res += 1 - t;
t = 1;
}
else {
if(t < 0) continue;
res += t + 1;
t = -1;
}
}
ans = Math.min(ans, res);
res = 0;
t = 0;
for(int i=0;i<n;i++) {
t += a[i];
if(i % 2 == 1) {
if(t > 0) continue;
res += 1 - t;
t = 1;
}
else {
if(t < 0) continue;
res += t + 1;
t = -1;
}
}
ans = Math.min(ans, res);
System.out.println(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
long long int a[100005]={0};
long long int solve(long long int n, long long int sum){
long long int ans = 0;
for(int i=1;i<n;++i){
long long int s = sum + a[i];
if((s^sum) >= 0 || s == 0){
ans += abs(s) + 1;
s = (sum < 0 ? 1 : -1);
}
sum = s;
}
return ans;
}
int main(){
int n;
cin >> n;
for(int i=0;i<n;++i)cin >> a[i];
long long int ans = solve(n, 1) + abs(1-a[0]);
ans = min(solve(n, -1) + abs(-1-a[0]), ans);
if(a[0] != 0)ans = min(solve(n, a[0]), ans);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <functional>
using namespace std;
using Int = long long;
#define REP(i, n) for (int i = 0; i < n; i++)
int main()
{
int n; cin >> n;
Int c1 = 0, c2 = 0, s1 = 0, s2 = 0;
REP(i, n) {
int a; cin >> a;
s1 += a;
s2 += a;
if (i % 2 == 0) {
if (s1 <= 0) c1 += 1 - s1, s1 = 1;
if (s2 >= 0) c2 += s2 - (-1), s2 = -1;
} else {
if (s1 >= 0) c1 += s1 - (-1), s1 = -1;
if (s2 <= 0) c2 += 1 - s2, s2 = 1;
}
}
cout << min(c1, c2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> P;
ll s1, s2, c1, c2;
int main() {
ll n, a[100010];
cin >> n;
for (int i = 1; i <= n; i++)cin >> a[i];
for (int i = 1; i <= n; i++) {
s1 += a[i];
s2 += a[i];
if (i % 2) {
if (s1 <= 0) {
c1 += 1 - s1;
s1 = 1;
}
if (s2 >= 0) {
c2 += 1 + s2;
s2 = -1;
}
}
else {
if (s1 >= 0) {
c1 += 1 + s1;
s1 = -1;
}
if (s2 <= 0) {
c2 += 1 - s2;
s2 = 1;
}
}
}
cout << min(c1, c2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.net.ConnectException;
import java.rmi.dgc.Lease;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.Set;
import java.util.Stack;
import java.util.TreeMap;
import java.util.TreeSet;
import java.util.function.Function;
import static java.util.Comparator.*;
public class Main {
public static void main(String[] args) {
Main main = new Main();
main.solve();
main.out.close();
}
// ======================================================================
long[] R;
int N;
long calc(boolean f) {
long ans = 0, sv = 0, wk;
for (int i = 1; i <= N; i++) {
wk = R[i] + sv;
if(f && wk <= 0) {
ans += (1 - wk);
sv += (1 - wk);
} else if(!f && wk >= 0) {
ans += (1 + wk);
sv -= (1 + wk);
}
f = !f;
}
return ans;
}
public void solve() {
N = ni();
R = new long[N+1];
long a;
for (int i = 0; i < N; i++) {
a = nl();
R[i+1] = R[i] + a;
}
long ans1 = calc(true);
long ans2 = calc(false);
out.println(Math.min(ans1, ans2));
}
// ------------------------------------------
// ライブラリ
// ------------------------------------------
// Print
private PrintWriter out = new PrintWriter(System.out);
// Scanner
private FastScanner scan = new FastScanner();
int ni() {
return scan.nextInt();
}
int[] ni(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
int[][] ni(int y, int x) {
int[][] a = new int[y][x];
for (int i = 0; i < y; i++) {
for (int j = 0; j < x; j++) {
a[i][j] = ni();
}
}
return a;
}
long nl() {
return scan.nextLong();
}
long[] nl(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nl();
}
return a;
}
long[][] nl(int y, int x) {
long[][] a = new long[y][x];
for (int i = 0; i < y; i++) {
for (int j = 0; j < x; j++) {
a[i][j] = nl();
}
}
return a;
}
String ns() {
return scan.next();
}
String[] ns(int n) {
String[] a = new String[n];
for (int i = 0; i < n; i++) {
a[i] = ns();
}
return a;
}
String[][] ns(int y, int x) {
String[][] a = new String[y][x];
for (int i = 0; i < y; i++) {
for (int j = 0; j < x; j++) {
a[i][j] = ns();
}
}
return a;
}
}
class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[ptr++];
else
return -1;
}
private static boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
public boolean hasNext() {
while (hasNextByte() && !isPrintableChar(buffer[ptr]))
ptr++;
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
} else if (b == -1 || !isPrintableChar(b)) {
return minus ? -n : n;
} else {
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE)
throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.next());
long[] a = new long[n];
for (int i = 0; i < n; i++) {
long temp = Long.parseLong(sc.next());
a[i] = temp;
}
long ans1 = 0;
long ans2 = 0;
long temp = 0;
for (int i = 0; i < n; i++) {
long num = a[i];
if (i % 2 == 0 && temp + num >= 0) {
ans1 += temp + num + 1;
num -= temp + num + 1;
}
if (i % 2 != 0 && temp + num <= 0) {
ans1 += Math.abs(temp + num - 1);
num += Math.abs(temp + num - 1);
}
temp += num;
}
temp = 0;
for (int i = 0; i < n; i++) {
long num = a[i];
if (i % 2 == 0 && temp + num <= 0) {
ans2 += Math.abs(temp + num - 1);
num += Math.abs(temp + num - 1);
}
if (i % 2 != 0 && temp + num >= 0) {
ans2 += temp + num + 1;
num -= temp + num + 1;
}
temp += num;
}
System.out.println(Math.min(ans1, ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | from itertools import accumulate
n, *A = map(int, open(0).read().split())
B = list(accumulate(A))
p0 = n0 = p1 = n1 = 0
for i, b in enumerate(B):
if i % 2 == 0:
if b+p0-n0 <= 0:
p0 += abs(b+p0-n0)+1
if b+p1-n1 >= 0:
n1 += abs(b+p1-n1)+1
else:
if b+p0-n0 >= 0:
n0 += abs(b+p0-n0)+1
if b+p1-n1 <= 0:
p1 += abs(b+p1-n1)+1
print(min(p0+n0, p1+n1))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
using namespace std;
typedef long long ll;
int n;
ll a[100000] = {};
ll solve(bool judge){
ll sum = 0, score = 0;
for(int i = 0; i < n; i++){
sum += a[i];
if(judge){
if(sum <= 0){
score += 1-sum;
sum = 1;
}
}else{
if(sum >= 0){
score += sum+1;
sum = -1;
}
}
judge = !judge;
}
return score;
}
int main(){
cin >> n;
for(int i = 0; i < n; i++) cin >> a[i];
ll first = solve(true);
ll second = solve(false);
cout << min(first, second) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Main {
private static final int MOD = (int)Math.pow(10, 9);
public static void main(String[] args) {
FastReader sc = new FastReader();
int n = sc.nextInt();
int[] nums = new int[n];
for (int i = 0; i < nums.length; i++) {
nums[i] = sc.nextInt();
}
long firstDigitPostive = 0;
long prefixSum = 0;
for (int i = 0; i < nums.length; i++) {
prefixSum += nums[i];
if (i % 2 == 0) {
// odd is postive
if (prefixSum == 0) {
prefixSum++;
firstDigitPostive++;
} else if (prefixSum < 0) {
firstDigitPostive += (1 - prefixSum);
prefixSum += 1 - prefixSum;
}
} else {
// even is negative
if (prefixSum == 0) {
prefixSum--;
firstDigitPostive++;
} else if (prefixSum > 0) {
firstDigitPostive += (1 + prefixSum);
prefixSum -= (prefixSum + 1) ;
}
}
}
prefixSum = 0;
long firstDigitNegative = 0;
for (int i = 0; i < nums.length; i++) {
prefixSum += nums[i];
if (i % 2 == 0) {
// odd is negative
if (prefixSum == 0) {
prefixSum--;
firstDigitNegative++;
} else if (prefixSum > 0) {
firstDigitNegative += (1 + prefixSum);
prefixSum -= (prefixSum + 1) ;
}
} else {
// even is postive
if (prefixSum == 0) {
prefixSum++;
firstDigitNegative++;
} else if (prefixSum < 0) {
firstDigitNegative += (1 - prefixSum);
prefixSum += 1 - prefixSum;
}
}
}
System.out.println(Math.min(firstDigitPostive, firstDigitNegative));
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try{
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
using namespace std;
using ll = long long;
ll n, a, c[2], s[2];
int main() {
cin >> n;
for (int i = 0; i != n; ++i) {
cin >> a;
for (int j : {0, 1}) {
s[j] += a;
auto p = 1 - (i + j) % 2 * 2;
if (s[j] * p <= 0) {
c[j] += abs(p - s[j]);
s[j] = p;
}
}
}
cout << min(c[0], c[1]) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java |
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main implements Runnable { // クラス名はMain1
PrintWriter out = new PrintWriter(System.out);
InputReader sc = new InputReader(System.in);
public static void main(String[] args) {
Thread.setDefaultUncaughtExceptionHandler((t, e) -> System.exit(1));
new Thread(null, new Main(), "", 1024 * 1024 * 1024).start(); // 16MBスタックを確保して実行
}
public void run() {
try {
int N = sc.nextInt();
long[] A = new long[N];
for (int i = 0; i < N; i++) {
A[i] = sc.nextLong();
}
long[] wa = new long[N + 1];
long[] wa2 = new long[N + 1];
for (int i = 1; i <= N; i++) {
wa[i] += wa[i - 1] + A[i - 1];
wa2[i] += wa2[i - 1] + A[i - 1];
}
//out.println("A:" + Arrays.toString(A));
//out.println("W:" + Arrays.toString(wa));
boolean plus = wa[1] >= 0 ? true : false;
long cntp = 0;
long cntm = 0;
for (int i = 1; i <= N; i++) {
wa[i] += cntp - cntm;
if (!plus && wa[i] >= 0) {
long p = Math.abs(wa[i]) + 1;
cntm += p;
wa[i] -= p;
A[i - 1] -= p;
} else if (plus && wa[i] <= 0) {
long m = Math.abs(wa[i]) + 1;
cntp += m;
wa[i] += m;
A[i - 1] += m;
}
plus = !plus;
}
long ans = cntp + cntm;
//out.println("W:" + Arrays.toString(wa));
for (int i = 1; i <= N; i++) {
wa[i] = wa2[i];
}
plus = wa[1] >= 0 ? false : true;
cntp = 0;
cntm = 0;
for (int i = 1; i <= N; i++) {
wa[i] += cntp - cntm;
if (!plus && wa[i] >= 0) {
long p = Math.abs(wa[i]) + 1;
cntm += p;
wa[i] -= p;
} else if (plus && wa[i] <= 0) {
long m = Math.abs(wa[i]) + 1;
cntp += m;
wa[i] += m;
}
plus = !plus;
}
ans = Math.min(ans, cntp + cntm);
//out.println("A:" + Arrays.toString(A));
//out.println("WM:" + Arrays.toString(wa2));
out.println(ans);
} catch (ArithmeticException ae) {
//ae.printStackTrace();
throw new RuntimeException();
} catch (Exception e) {
e.printStackTrace();
throw new RuntimeException();
} finally {
out.flush();
out.close();
}
}
// 高速なScanner
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
#define rep(i,n) for(int i=0; i<(int)(n); i++)
using namespace std;
typedef long long LL;
const LL INF=1e15;
int main(){
int n;
cin >> n;
vector<LL> a(n);
rep(i,n) cin >> a[i];
LL sum=0, sign=1;
LL res1=0, res2=0;
rep(i,n){
sum+=a[i];
if(sum*sign<=0){
res1+=abs(sum)+1;
sum=sign;
}
sign*=-1;
}
sum=0, sign=-1;
rep(i,n){
sum+=a[i];
if(sum*sign<=0){
res2+=abs(sum)+1;
sum=sign;
}
sign*=-1;
}
cout << min(res1,res2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, sum1 = 0, sum2 = 0, b = 0, c = 0, a;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a;
if (i%2) {
if (sum1+a < 0) {
sum1 += a;
} else {
b += 1+(sum1+a);
sum1 = -1;
}
if (sum2+a > 0) {
sum2 += a;
} else {
c += 1-(sum2+a);
sum2 = 1;
}
} else {
if (sum1+a > 0) {
sum1 += a;
} else {
b += 1-(sum1+a);
sum1 = 1;
}
if (sum2+a < 0) {
sum2 += a;
} else {
c += 1+(sum2+a);
sum2 = -1;
}
}
}
cout << min(b,c);
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | // C - Sequence
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main(){
int N; cin>>N;
vector<ll> A(N);
for(int i=0; i<N; ++i) cin>>A[i];
vector<ll> C(2);
for(int c=0; c<2; ++c){
int sign = c?1:-1;
for(ll s=0, a=0; a<N; ++a, sign*=-1){
s += A[a];
if(sign*s<=0){ C[c]+=abs(s)+1; s=sign; }
}
}
cout<< (C[0]<C[1]?C[0]:C[1]) <<endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
sc.close();
long ans1 = 0;
long sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
if (sum <= 0) {
ans1 += 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
ans1 += 1 + sum;
sum = -1;
}
}
}
long ans2 = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
if (sum >= 0) {
ans2 += 1 + sum;
sum = -1;
}
} else {
if (sum <= 0) {
ans2 += 1 - sum;
sum = 1;
}
}
}
System.out.println(Math.min(ans1, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
long N;cin>>N;
vector<long>A(N),SP(N),SN(N);
long ansp=0,ansn=0;
for(int i=0;i<N;i++)cin>>A[i];
for(int i=0;i<N;i++){
SP[i]=(i==0?0:SP[i-1])+A[i];
if(i%2==0&&SP[i]<=0){ansp+=1-SP[i];SP[i]=1;}
if(i%2==1&&SP[i]>=0){ansp+=SP[i]+1;SP[i]=-1;}
}
for(int i=0;i<N;i++){
SN[i]=(i==0?0:SN[i-1])+A[i];
if(i%2==0&&SN[i]>=0){ansn+=SN[i]+1;SN[i]=-1;}
if(i%2==1&&SN[i]<=0){ansn+=1-SN[i];SN[i]=1;}
}
cout<<min(ansp,ansn);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
long long N,sum,ans,ans2;
cin>>N;
sum=0;
ans=0;
ans2=0;
vector<long long>x(N);
for(int i=0;i<N;i++){
cin>>x[i];
}
for(int i=0;i<N;i++){
sum+=x[i];
if(i%2==0&&sum<=0){
ans+=1-sum;
sum=1;
}
if(i%2==1&&sum>=0){
ans+=1+sum;
sum=-1;
}
ans2=ans;
}
ans=0;
sum=0;
for(int i=0;i<N;i++){
sum+=x[i];
if(i%2==1&&sum<=0){
ans+=1-sum;
sum=1;
}
if(i%2==0&&sum>=0){
ans+=1+sum;
sum=-1;
}
}
cout<<min(ans,ans2)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def f(p):
sa = 0
ans = 0
for ai in a:
if p:
sa += ai
if sa >= 0:
ans += sa + 1
sa = -1
p = False
else:
sa += ai
if 0 >= sa:
ans += 1 - sa
sa = 1
p = True
return ans
def main():
print(min(f(True), f(False)))
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
#include<stdlib.h>
using namespace std;
int main(){
int n;
cin>>n;
long sum;
long input;
cin>>sum;
long ans1,ans2,sum1,sum2;
if(sum>0){
sum1=sum;
sum2=-1;
ans1=0;
ans2=abs(sum)+1;
}
else if(sum<0){
sum1=1;
sum2=sum;
ans1=abs(sum)+1;
ans2=0;
}
else{
sum1=1;
sum2=-1;
ans1=1;
ans2=1;
}
for(long i=1;i<n;++i){
cin>>input;
if(sum1*(sum1+input)>=0){
ans1+=abs(sum1+input)+1;
if(sum1<0) sum1=1;
else sum1=-1;
}
else sum1+=input;
if(sum2*(sum2+input)>=0){
ans2+=abs(sum2+input)+1;
if(sum2<0) sum2=1;
else sum2=-1;
}
else sum2+=input;
}
cout<<min(ans1,ans2)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a_list = list(map(int,input().split()))
ans = float('inf')
for i in [1,-1]:
ans_i = 0
sums = 0
for a in a_list:
sums += a
if sums*i <= 0:
ans_i += abs(sums-i)
sums = i
i *= -1
ans = min(ans,ans_i)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<map>
#include<iomanip>
#include<sstream>
using namespace std;
int main(void){
const long long int mod=1000000007;
long long int n,m,a[200005],plsum=0,misum=0,pl=0,mi=0;
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
plsum+=a[i];
misum+=a[i];
if(plsum<=0&&i%2==0){pl+=1-plsum;plsum=1;}
if(plsum>=0&&i%2==1){pl+=plsum+1;plsum=-1;}
if(misum>=0&&i%2==0){mi+=1+misum;misum=-1;}
if(misum<=0&&i%2==1){mi+=1-misum;misum=1;}
}
cout<<min(mi,pl);
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin>>N;
vector<int> a(N);
for(int j=0;j<N;j++){
cin>>a[j];
}
long c1=0, c2=0;
long sum=0;
// a[0]>0
for(int i=0;i<N;i++){
sum += a[i];
if(i%2==1 && sum>=0){
c1 += sum+1;
sum =-1;
}
if(i%2==0 && sum<=0){
c1 += -sum+1;
sum = 1;
}
}
// a[0]<0
sum=0;
for(int i=0;i<N;i++){
sum += a[i];
if(i%2==1 && sum<=0){
c2 += -sum+1;
sum =1;
}
if(i%2==0 && sum>=0){
c2 += sum+1;
sum = -1;
}
// cout<<sum<<endl;
}
// cout<<c1<<" "<<c2<<endl;
cout<<min(c1,c2)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import static java.lang.Math.*;
import static java.lang.String.format;
public class Main {
public static void main(String[] args) {
solve();
}
final static int INF = Integer.MAX_VALUE>>1;
final static int MOD = 1_000_000_007;
final static int[] dx4 = { 0, 1, 0, -1 };
final static int[] dy4 = { 1, 0, -1, 0 };
final static int[] dx8 = {0, 1, 1, 1, 0, -1, -1, -1};
final static int[] dy8 = {1, 1, 0, -1, -1, -1, 0, 1};
final static Runnable me=()->{};
public static void solve(){
//TODO:Solve problem like ***
Scanner sc=new Scanner();
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
put(min(func(a, true), func(a, false)));
}
private static long func(int[] a,boolean firstIsPlus){
long ans=0;
long sum=a[0];
if(firstIsPlus){
if(a[0]<=0){
ans+=abs(a[0])+1;
sum=1;
}
}else{
if(a[0]>=0){
ans+=abs(a[0])+1;
sum=-1;
}
}
for (int i = 1; i < a.length; i++) {
long nextAns=sum+a[i];
if(firstIsPlus){
if(i%2==0){
if(nextAns<=0){
//だめ
sum=1;
ans+=abs(nextAns)+1;
continue;
}else{
sum=nextAns;
continue;
}
}else{
if(nextAns>=0){
//だめ
sum=-1;
ans+=abs(nextAns)+1;
continue;
}else{
sum=nextAns;
continue;
}
}
}else{
if(i%2==0){
if(nextAns>=0){
//だめ
sum=-1;
ans+=abs(nextAns)+1;
continue;
}else{
sum=nextAns;
continue;
}
}else{
if(nextAns<=0){
//だめ
sum=1;
ans+=abs(nextAns)+1;
continue;
}else{
sum=nextAns;
continue;
}
}
}
}
return ans;
}
private static Runnable func(Object... objects){
try{
assert false;
return me;
}catch(AssertionError e){
return ()->{put(objects);};
}
}
private static void print(Object... objects){
if(objects.length==1){
System.out.print(objects[0]);
}else{
System.out.print(Arrays.toString(objects));
}
}
private static void put(Object... objects) {
print(objects);
put();
}
private static void put(){
System.out.println();
}
private static void runWhenEA(Runnable runnable){
try{
assert false;
}catch(AssertionError e){
PrintStream ps=System.out;
PrintStream pse=System.err;
System.setOut(pse);
runnable.run();
System.setOut(ps);
}
}
private static void putM(String name,char[][] mat){
put("---------------------"+name+"-----------------");
for (int i = 0; i < mat.length; i++) {
put(Arrays.toString(mat[i]));
}
}
private static void putM(String name,int[][] mat){
put("---------------------"+name+"-----------------");
for (int i = 0; i < mat.length; i++) {
put(Arrays.toString(mat[i]));
}
}
private static void putM(String name,long[][] mat){
put("---------------------"+name+"-----------------");
for (int i = 0; i < mat.length; i++) {
put(Arrays.toString(mat[i]));
}
}
private static void putM(String name,boolean[][] mat){
put("---------------------"+name+"-----------------");
for (int i = 0; i < mat.length; i++) {
put(Arrays.toString(mat[i]));
}
}
final static private class Scanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[ptr++];
else
return -1;
}
private boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
public boolean hasNext() {
while (hasNextByte() && !isPrintableChar(buffer[ptr]))
ptr++;
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
} else if (b == -1 || !isPrintableChar(b)) {
return minus ? -n : n;
} else {
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE)
throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
final static private class FixedIntPair {
final public int x, y;
final static public FixedIntPair ZEROS=new FixedIntPair(0,0);
FixedIntPair(int x, int y) {
this.x = x;
this.y = y;
}
public static double distance(FixedIntPair fip1,FixedIntPair fip2){
double x = (double) fip1.x - fip2.x;
double y = (double) fip1.y - fip2.y;
return Math.sqrt(x*x+y*y);
}
@Override
public int hashCode() {
return x*100000+y;
}
@Override
public boolean equals(Object obj) {
if(obj==null)return false;
if(!(obj instanceof FixedIntPair)) return false;
FixedIntPair pair=(FixedIntPair) obj;
return this.x==pair.x&&this.y==pair.y;
}
@Override
public String toString() {
return format(FixedIntPair.class.getSimpleName()+":(%d,%d)", x, y);
}
}
final static private class FixedLongPair {
final public long x, y;
final static public FixedLongPair ZEROS=new FixedLongPair(0,0);
FixedLongPair(long x, long y) {
this.x = x;
this.y = y;
}
public static double distance(FixedLongPair flp1,FixedLongPair flp2){
double x = (double) flp1.x - flp2.x;
double y = (double) flp1.y - flp2.y;
return Math.sqrt(x*x+y*y);
}
@Override
public int hashCode() {
return (int)x+(int)y;
}
@Override
public boolean equals(Object obj) {
if(obj==null)return false;
if(!(obj instanceof FixedLongPair)) return false;
FixedLongPair pair=(FixedLongPair)obj;
return this.x==pair.x&&this.y==pair.y;
}
@Override
public String toString() {
return format(FixedLongPair.class.getSimpleName()+":(%d,%d)", x, y);
}
}
final static private class Binary{
public static String toZeroPadding(int i){
return format("%"+Integer.toBinaryString(-1).length()+"s",Integer.toBinaryString(i)).replace(' ','0');
}
public static String toZeroPadding(long i){
return format("%"+Long.toBinaryString(-1).length()+"s",Long.toBinaryString(i)).replace(' ','0');
}
}
final static private class Util {
static long gcd(long a,long b){
a= abs(a);
b= abs(b);
if(a<b){
long tmp=a;
a=b;
b=tmp;
}
while(b!=0){
long r=a%b;
a=b;
b=r;
}
return a;
}
static int gcd(int a,int b){
a= abs(a);
b= abs(b);
if(a<b){
int tmp=a;
a=b;
b=tmp;
}
while(b!=0){
int r=a%b;
a=b;
b=r;
}
return a;
}
static long lcm(long a,long b){
long gcd=gcd(a,b);
long result=b/gcd;
return a*result;
}
static boolean isValidCell(int i,int j,int h,int w){
return i>=0&&i<h&&j>=0&&j<w;
}
}
}
/*
......................................................................................................................................
..................................... ________ ____ __________________________________________ .....................................
..................................... / _____/| | \ \__ ___/\_ _____/\______ \.....................................
...................................../ \ ___| | / | \| | | __)_ | _/.....................................
.....................................\ \_\ \ | / | \ | | \ | | \.....................................
..................................... \______ /______/\____|__ /____| /_______ / |____|_ /.....................................
..................................... \/ \/ \/ \/ .....................................
......................................................................................................................................
.............................................................,;'';:...................................................................
........................................................+@@@@@@@@@@@@@@'..............................................................
.....................................................#@@@##############@@@:...........................................................
...................................................@@@####################@@,.........................................................
.................................................@@#########################@@........................................................
...............................................:@############################@@.......................................................
..............................................@@######@@@#';;'#@@@############@@:.....................................................
.............................................@#####@@,````````````,@@###########@:....................................................
............................................@####@;``````````````````+@##########@....................................................
...........................................@###@:``````````````````````#@########@@...................................................
..........................................@####``````````````````````````@########@@..................................................
.........................................###@.````````````````````````````@########@+.................................................
.........................................@#@```````````````````````````````#########@.................................................
........................................@#@`````````````````````````````````########@@................................................
.......................................,@@```````````````````````````````````@#######@:...............................................
.......................................@@`````````````````````````````````````@#######@...............................................
.......................................@:````````````````````#@@'``````````````@######@+..............................................
......................................#@```````````````````@@@@@@@#````````````########@..............................................
......................................@```````````````````@@@@@@@@@@````````````@######@+.............................................
......................................@``````````````````@@@@@@@+ +```````````+#######@.............................................
.....................................;:``````````````````@@@@@@@ @````````````@######@'............................................
.....................................@``````````````````:@@@@@@@ @````````````@#######@............................................
.....................................@```,@@@#``````````;@@@@@@@ @````````````:#######@:...........................................
.....................................@``@@@@@@@@````````.@@@@@@@# ,#`````````````@#######@...........................................
.....................................@`@@@@@@@+'@````````@@@@@@@@@@@``````````````@#######@...........................................
.....................................@,@@@@@@ ,```:+:``:@@@@@@@@@.``````````````@########@..........................................
.....................................#@@@@@@@ ;@@#;,,,@``:@@@@@@@````````````````#########@..........................................
.....................................+@@@@@@@@',,,,,,,,;,```.'+;``````````````````'########@;.........................................
.....................................'@@@@',,,,,,,,,,,,,@`````````````````````````:#########@.........................................
....................................:@#,,,,,:;;;;;:,,,,,@`````````````````````````.#########@.........................................
.................................:@#@@@@#++';;;;;;;;;;;;@``````````````````````````##########+........................................
...............................#@#+;;;;;;;;;;;;;;;;;;;;':``````````````````````````##########@........................................
....................................,@#@@@@@#+'';;;;;+@#```````````````````````````##########@........................................
.....................................@``````````.,,,.``````````````````````````````############.......................................
.....................................@`````````````````````````````````````````````#######+'+#@.......................................
.....................................@`````````````````````````````````````````````##########'@.......................................
.....................................#`````````````````````````````````````````````############@#.....................................
.....................................:.````````````````````````````````````````````##############@,...................................
......................................+```````````````````````````````````````````.###############@#..................................
......................................@```````````````````````````````````````````.################@@.................................
......................................@```````````````````````````````````````````.###+##############@................................
......................................@```````````````````````````````````````````.###+###############@...............................
......................................',``````````````````````````````````````````.####'##############@@..............................
.......................................@```````````````````````````````````````````#####+##############@:.............................
.......................................@```````````````````````````````````````````#####'###############@.............................
.......................................@```````````````````````````````````````````######'################............................
.......................................#,``````````````````````````````````````````#######'##############@............................
........................................@``````````````````````````````````````````@######++##############+...........................
........................................@``````````````````````````````````````````@#######'##############@...........................
........................................@``````````````````````````````````````````@########'#############@...........................
.......................................@#'`````````````````````````````````````````@#########'##############..........................
.......................................@#@`````````````````````````````````````````+#########+'############@..........................
......................................@##@`````````````````````````````````````````.##########+'###########@..........................
......................................@##@:`````````````````````````````````````````###########+'###########..........................
.....................................:@###@`````````````````````````````````````````@###########+'+#########,.........................
.....................................@####@`````````````````````````````````````````@#############''########..........................
.....................................@####@.````````````````````````````````````````;##############+'######@..........................
.....................................@#####@`````````````````````````````````````````################@@@###+..........................
.....................................@#####@`````````````````````````````````````````@###############@..;;............................
....................................,@#####@.````````````````````````````````````````+################'...............................
....................................:#######@`````````````````````````````````````````################@...............................
....................................:#######@`````````````````````````````````````````@###############@...............................
....................................,@#######,````````````````````````````````````````:###############@...............................
.....................................@######@@`````````````````````````````````````````@##############@...............................
.....................................@######@@`````````````````````````````````````````+##############@...............................
.....................................@#####@,;;`````````````````````````````````````````@#############@...............................
.....................................@####@@..@`````````````````````````````````````````+#############@...............................
.....................................,####@...@``````````````````````````````````````````@############+...............................
......................................@##@.....@`````````````````````````````````````````:###########@,...............................
.......................................@+......@``````````````````````````````````````````@##########@................................
...............................................:#``````````````````````````````````````````##########@................................
................................................@``````````````````````````````````````````+########@,................................
................................................'+``````````````````````````````````````````@#######@.................................
.................................................@```````````````````````````````````````````@#####@:.................................
.................................................'#``````````````````````````````````````````.#####@..................................
..................................................@```````````````````````````````````````````;###@...................................
...................................................@```````````````````````````````````````````+#@'...................................
...................................................'#```````````````````````````````````````````@#....................................
....................................................##`````````````````````````````````````````@#.....................................
.....................................................#@```````````````````````````````````````@+......................................
......................................................:@;```````````````````````````````````;@,.......................................
.......................................................;@@'```````````````````````````````:@@+;.......................................
.......................................................@,,'@@'``````````````````````````@@@,,,@.......................................
......................................................@,,,,,,'@@@@;````````````````.+@@@;,,,,,@.......................................
......................................................#@+@,,,,,,,,+@@@@@@@@@@@@@@@@@;,,,,,'@@@........................................
.........................................................+,,,#',,@@..............@,,,,,,,,@...........................................
..........................................................@@@,#@@,...............:+,,,'@,,@...........................................
..................................................................................@,,,@.##............................................
...................................................................................@;@................................................
....................................................................................:.................................................
......................................................................................................................................
......................................................................................................................................
*/ |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
#正/負いずれかから始める
cost1=0
cost2=0
sum1=0
sum2=0
for i in range(n):
sum1=sum1+a[i]
sum2=sum2+a[i]
if i%2==0:
if sum1<1:
cost1+=1-sum1
sum1=1
if sum2>-1:
cost2+=1+sum2
sum2=-1
else:
if sum1>-1:
cost1+=1+sum1
sum1=-1
if sum2<1:
cost2+=1-sum2
sum2=1
print(min(cost1,cost2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
for(int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
long x = 0;
long sum = a[0];
if(sum <= 0) {
x = 1 - sum;
sum = 1;
}
long x1 = seq(sum, x, a);
x = 0;
long sum2 = a[0];
if(sum2 >= 0) {
x = sum2 + 1;
sum2 = -1;
}
long x2 = seq(sum2, x, a);
System.out.println(Math.min(x1, x2));
}
public static long seq(long sum, long x, long[] a) {
long count = 0;
for(int i = 1; i < a.length; i++) {
if(sum * (sum + a[i]) >= 0) {
if(sum < 0) {
count = -sum - a[i] + 1;
} else {
count = -sum - a[i] - 1;
}
}
sum += a[i] + count;
x += Math.abs(count);
count = 0;
}
return x;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a= (list(map(int,input().split())))
sm1=sm2=0
cnt1=cnt2=0
for i ,num in enumerate(a):
sm1+=num
if sm1<=0 and i%2==0:
cnt1+=1-sm1
sm1=1
elif sm1>=0 and i%2!=0:
cnt1+=1+sm1
sm1=-1
sm2+=num
if sm2<=0 and i%2!=0:
cnt2+=1-sm2
sm2=1
elif sm2>=0 and i%2==0:
cnt2+=1+sm2
sm2=-1
print(min(cnt1,cnt2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define int long long
int solvePlus(vector<int> v) {
int cnt = 0, sum = 0;
for (int i = 0; i < v.size(); i++) {
sum += v[i];
if (i % 2 == 1) {
cnt = (sum < 0) ? cnt : (cnt + abs(sum) + 1);
sum = (sum < 0) ? sum : -1;
} else if (i % 2 == 0) {
cnt = (sum > 0) ? cnt : (cnt + abs(sum) + 1);
sum = (sum > 0) ? sum : 1;
}
}
return cnt;
}
signed main() {
int n;
cin >> n;
vector<int> a(n);
for (auto&& w : a) cin >> w;
int ans1, ans2;
ans1 = solvePlus(a);
for (auto&& w : a) w *= -1;
ans2 = solvePlus(a);
cout << min(ans1, ans2) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
public static void main(String[] args) {
// Scanner sc = new Scanner(System.in);
FastScanner sc = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int n=sc.nextInt();
int a[]=sc.readArray(n);
long sum = 0, pm = 0, mp = 0;
for(int i=0; i<n; ++i){
sum += a[i];
if(i%2 == 0 && sum <= 0){
pm += 1-sum;
sum = 1;
}
if(i%2 != 0 && sum >= 0){
pm += 1+sum;
sum = -1;
}
}
sum = 0;
for(int i=0; i<n; ++i){
sum += a[i];
if(i%2 == 0 && sum >= 0){
mp += 1+sum; sum = -1;
}
if(i%2 != 0 && sum <= 0){
mp += 1-sum; sum = 1;
}
}
System.out.println(Math.min(pm,mp));
out.flush();
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void sortReverse(long[] a) {
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
// Collections.sort.(l);
Collections.sort(l,Collections.reverseOrder());
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readArrayLong(long n) {
long[] a=new long[(int)n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | input()
l=list(map(int,input().split()))
def f(b):
c=s=0
for i in l:
if b:
if s+i>0: s+=i
else: c-=s+i-1; s=1
else:
if s+i<0: s+=i
else: c+=s+i+1; s=-1
b=1-b
return c
print(min(f(0),f(1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a[100005];
int n;
long long calc(int MOD) {
long long sum = 0, res = 0;
for (int i = 1; i <= n; ++i) {
sum += a[i];
if (i%2 == MOD && sum <= 0) {
res += (1-sum);
sum = 1;
}
else if (i%2 != MOD && sum >= 0) {
res += (sum+1);
sum = -1;
}
}
return res;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
cout << min(calc(0), calc(1));
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = scan.nextLong();
}
long sum1 = 0;
long sum2 = 0;
long ans1 = 0;
long ans2 = 0;
for (int i = 0; i < n; i++) {//偶数添字が正
sum1 += a[i];
if (i%2 == 0) {
if (sum1 > 0) continue;
else {
ans1 += (1 + Math.abs(sum1));
sum1 = 1;
}
}
else if (i%2 == 1) {
if (sum1 < 0) continue;
else {
ans1 += (sum1 + 1);
sum1 = -1;
}
}
}
for (int i = 0; i < n; i++) {//奇数添字が正
sum2 += a[i];
if (i%2 == 1) {
if (sum2 > 0) continue;
else {
ans2 += (1 + Math.abs(sum2));
sum2 = 1;
}
}
else if (i%2 == 0) {
if (sum2 < 0) continue;
else {
ans2 += (sum2 + 1);
sum2 = -1;
}
}
}
if (sum1 == 0) {
ans1++;
}
if (sum2 == 0) {
ans2++;
}
System.out.println(Math.min(ans1, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int( input())
A = list( map( int, input().split()))
ans = 10**15
for i in [1, -1]:
ansi, sums = 0, 0
for a in A:
sums += a
if sums*i <= 0:
ansi += abs(sums-i)
sums = i
i *= -1
ans = min( ans, ansi)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
/**
* https://abc059.contest.atcoder.jp/tasks/arc072_a
*/
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = Integer.parseInt(sc.next());
long[] a = new long[N];
for(int i=0; i<N; i++) a[i] = sc.nextLong();
sc.close();
long ans = 0;
long ans2 = 0;
long sum = 0;
for(int i=0; i<N; i++){
if(i%2==0 && sum+a[i]>=0){
ans = ans + (a[i]+sum) +1;
sum = -1;
}else if(i%2==1 && sum+a[i]<=0){
ans = ans - (a[i]+sum) +1;
sum = 1;
}else{
sum = sum + a[i];
}
}
sum = 0;
for(int i=0; i<N; i++){
if(i%2==1 && sum+a[i]>=0){
ans2 = ans2 + (a[i]+sum) +1;
sum = -1;
}else if(i%2==0 && sum+a[i]<=0){
ans2 = ans2 - (a[i]+sum) +1;
sum = 1;
}else{
sum = sum + a[i];
}
}
System.out.println(Math.min(ans, ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.PrintWriter;
import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
//入力
int n = sc.nextInt();
long[] a = new long[n];
for(int i = 0; i < n; i++){
a[i] = sc.nextLong();
}
sc.close();
//処理
long ans = -1;
for(int pat = 0; pat < 2; pat++){
long sum = 0;
long temp = 0;
for(int i = 0; i < n; i++){
sum += a[i];
if(i % 2 == pat){
if(sum <= 0){
temp += Math.abs(sum) + 1;
sum = 1;
}
}else{
if(sum >= 0){
temp += Math.abs(sum) + 1;
sum = -1;
}
}
}
if(ans == -1){
ans = temp;
}else{
ans = Math.min(ans, temp);
}
}
//出力
out.println(ans);
out.flush();
}
static class Pair{
int w,v;
public Pair(int a, int b){
this.w = a;
this.v = b;
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
a = list(map(int,input().split()))
S = [0]*N
S[0] = a[0]
for i in range(1,N):
S[i] = S[i-1] + a[i]
count = [0]*N
num = [0]*2
for i in range(2):
value = 0
for j in range(N):
if (S[j]+value)*((-1)**(i+j)) <= 0:
num[i] += abs(S[j] + value - (-1)**(i+j))
value += (-1)**(i+j) - (S[j]+value)
#print(i,num,value)
#print(S)
print(min(num)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
auto f = [&](int sign) {
long long ans = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sign * sum <= 0) {
ans += -1 * sign * sum + 1;
sum = sign;
}
sign = sum < 0 ? 1 : -1;
}
return ans;
};
cout << min(f(1), f(-1)) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const long long int inf = 1e18;
int main(){
int n;
cin >> n;
vector<int> a(n);
for(int i=0; i<n; i++){
cin >> a[i];
}
long long int ans = inf;
for(int r=0; r<2; r++){
long long int sum=0, t=0;
for(int i=0; i<n; i++){
sum += a[i];
if(i%2==r && sum<=0){
t += -sum+1;
sum = 1;
}else if(i%2!=r && sum>=0){
t += sum+1;
sum = -1;
}
}
ans = min(ans, t);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | # -*- coding: utf-8 -*-
N = int(input())
An = list(map(int, input().split()))
ans = [0,0]
asum = 0
for i in range(N):
asum += An[i]
if asum*(-1)**i < 1:
ans[0] += 1 - asum*(-1)**i
asum = (-1)**i
asum = 0
for i in range(N):
asum += An[i]
if asum*(-1)**(i+1) < 1:
ans[1] += 1 - asum*(-1)**(i+1)
asum = (-1)**(i+1)
print(min(ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
using namespace std;
int main(){
int n;cin>>n;
int a[n];
for(int i=0;i<n;i++) cin>>a[i];
long long s1=0,s2=0,r1=0,r2=0,ans;
for(int i=0;i<n;i++){
s1+=a[i];
if((i&1)&&s1<=0){
r1=r1+1-s1;
s1=1;
}else if(!(i&1)&&s1>=0){
r1=r1+s1+1;
s1=-1;
}
s2+=a[i];
if(!(i&1)&&s2<=0){
r2=r2+1-s2;
s2=1;
}else if((i&1)&&s2>=0){
r2=r2+s2+1;
s2=-1;
}
}
ans=min(r1,r2);
cout<<ans<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n, *A = map(int, open(0).read().split())
def sgn(n):
return 0 if n==0 else 1 if n>0 else -1
a = A[0]
C = [0 if a>0 else -a+1, 0 if a<0 else a+1]
S = [max(1, a), min(-1, a)]
for a in A[1:]:
for i, s in enumerate(S):
sgn_sum = sgn(s)
if sgn(s+a) == -sgn_sum:
S[i] += a
else:
C[i] += abs(s+a+sgn_sum)
S[i] = -sgn_sum
print(min(C)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int n;
cin >> n;
vector<long long> a(n);
long long sum1=0,sum2=0,cost1=0,cost2=0;
for(int i=0;i<n;i++){
cin >> a[i];
sum1+=a[i];
sum2+=a[i];
if(i%2==0&&sum1<=0){
cost1+=1-sum1;
sum1=1;
}
else if(i%2==1&&sum1>=0){
cost1+=sum1+1;
sum1=-1;
}
if(i%2==0&&sum2>=0){
cost2+=1+sum2;
sum2=-1;
}
else if(i%2==1&&sum2<=0){
cost2+=1-sum2;
sum2=1;
}
}
cout << min(cost1,cost2) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = [int(_) for _ in input().split()]
def f(sign):
ans = 0
s = 0
for i in range(N):
a = A[i]
s += a
if s == 0:
ans += 1
s = sign
else:
a_sign = s // abs(s)
if a_sign != sign:
ans += abs(s) + 1
s = sign
sign *= -1
return ans
print(min(f(1), f(-1)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
#include <algorithm>
#include <string>
using namespace std;
int main()
{int N;
int C[200000];
cin >> N;
for(int i=0; i<N; i++){
cin >> C[i];}
long long cnt_a=0;
long long cnt_b=0;
int sum_a=0;
int sum_b=0;
for(int i=0; i<N; i++){
sum_a += C[i];
if((i%2==0)&&(sum_a<=0)){
cnt_a += 1 - sum_a;
sum_a = 1;}
if((i%2==1)&&(sum_a>=0)){
cnt_a += sum_a + 1;
sum_a = -1;}
}
for(int i=0; i<N; i++){
sum_b += C[i];
if((i%2==0)&&(sum_b>=0)){
cnt_b += 1 + sum_b;
sum_b = -1;}
if((i%2==1)&&(sum_b<=0)){
cnt_b += 1 - sum_b;
sum_b = 1;}
}
cout << min(cnt_a, cnt_b) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
int m,i;
int64_t ans0=0,ans1=0,t=0;
cin>>m;
vector<int64_t> x(m);
for(i=0;i<m;i++) cin>>x.at(i);
for(i=0;i<m;i++){
t+=x.at(i);
if(i%2==0&&t<=0){
ans0+=abs(t)+1;
t=1;
}
else if(i%2==1&&t>=0){
ans0+=abs(t)+1;
t=-1;
}
}
t=0;
for(i=0;i<m;i++){
t+=x.at(i);
if(i%2==0&&t>=0){
ans1+=abs(t)+1;
t=-1;
}
else if(i%2==1&&t<=0){
ans1+=abs(t)+1;
t=1;
}
}
cout<<min(ans0,ans1)<<endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
y = [0, 0]
for k in range(2):
s = 0
x = (-1) ** k
for ai in a:
si = s + ai
if si * x > 0:
s = si
x *= -1
else:
y[k] += abs(si) + 1
s = x
x *= -1
print(min(y))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = [int(_n) for _n in input().split()]
res0 = 0
s = 0
for i, a in enumerate(A):
s += a
if i % 2 == 0 and s >= 0:
res0 += s + 1
s = -1
elif i % 2 == 1 and s <= 0:
res0 += -s + 1
s = 1
res1 = 0
s = 0
for i, a in enumerate(A):
s += a
if i % 2 == 1 and s >= 0:
res1 += s + 1
s = -1
elif i % 2 == 0 and s <= 0:
res1 += -s + 1
s = 1
print(min(res0,res1)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python2 | #abc059c
n=int(raw_input())
a=map(int,raw_input().split())
def f(a,s):
ac=0
cnt=0
for i in xrange(n):
ac+=a[i]
if i%2:
if s*ac>=0:
cnt+=1+s*ac
ac=-s
else:
if s*ac<=0:
cnt+=1-s*ac
ac=s
return cnt
print min(f(a,1),f(a,-1))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
cnt = [0,0]
for i in [0,1]:
tmp_sum = 0
for j, a in enumerate(A):
tmp_sum += a
if (i + j) % 2 == 0 and tmp_sum <= 0:
cnt[i] += abs(tmp_sum) + 1
tmp_sum += abs(tmp_sum) + 1
elif (i + j) % 2 == 1 and tmp_sum >= 0:
cnt[i] += tmp_sum + 1
tmp_sum -= tmp_sum + 1
print(min(cnt))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
def sol(S):
ret = 0
for a in A[1:]:
b = a
if S * (S + b) > 0:
b = (abs(S) + 1) * (1 if S < 0 else -1)
if S + b == 0:
b = b - 1 if S < 0 else b + 1
ret += abs(b - a)
S += b
return ret
if A[0] == 0:
ans = min(sol(1), sol(-1)) + 1
else:
ans = min(sol(A[0]), sol(-1 if A[0] > 0 else 1) + abs(A[0]) + 1)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.IOException;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws IOException{
Sequence solver = new Sequence();
solver.readInput();
solver.solve();
solver.writeOutput();
}
static class Sequence {
private int n;
private long a[];
private long output;
private Scanner scanner;
public Sequence() {
this.scanner = new Scanner(System.in);
}
public void readInput() {
n = Integer.parseInt(scanner.next());
a = new long[n];
for(int i=0; i<n; i++) {
a[i] = Integer.parseInt(scanner.next());
}
}
private int count(int sign) {
int count=0;
long sum=0;
for(int i=0; i<n; i++) {
sum += a[i];
if(i%2==sign) {
// a[i]までの合計を正にするとき
if(sum<=0) {
count += 1-sum;
sum = 1;
}
} else {
// a[i]までの合計を負にするとき
if(0<=sum) {
count += 1+sum;
sum = -1;
}
}
}
return count;
}
public void solve() {
long sum1 = 0;
long count1 = 0;
long sum2 = 0;
long count2 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
sum2 += a[i];
if (i % 2 == 1) {
if (sum1 <= 0) {
count1 += 1 - sum1;
sum1 = 1;
}
if (sum2 >= 0) {
count2 += sum2 + 1;
sum2 = -1;
}
} else {
if (sum2 <= 0) {
count2 += 1 - sum2;
sum2 = 1;
}
if (sum1 >= 0) {
count1 += sum1 + 1;
sum1 = -1;
}
}
}
output = Math.min(count1,count2);
}
public void writeOutput() {
System.out.println(output);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
using namespace std;
int N, a, i, x, y;
long long X, Y;
int main() {
cin >> N;
while (cin >> a && ++i) {
x += a, y += a;
if (i % 2) {
if (x > -1) X += x + 1, x = -1;
if (y < 1) Y += 1 - y, y = 1;
} else {
if (y > -1) Y += y + 1, y = -1;
if (x < 1) X += 1 - x, x = 1;
}
}
cout << min(X, Y) << "\n";
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
a1,a2,s=0,0,0
def cal(a,t):
ans,x=0,0
for i in a:
x+=i
if t and x<1:
ans+=1-x
x=1
elif t==False and x>-1:
ans+=x+1
x=-1
t=not t
return ans
print(min(cal(a,True),cal(a,False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python2 | n = int(raw_input())
data = map(int, raw_input().split())
result = []
for i in range(2):
sum = 0
count = 0
for j in range(n):
sum += data[j]
if (i+j) % 2 == 0:
if sum <= 0:
count += abs(1-sum)
sum = 1
else:
if sum >= 0:
count += abs(-1-sum)
sum = -1
result.append(count)
print min(result) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
a = list(map(int, input().split()))
ans1 = 0
s = 0
flg = 1
for ai in a:
s += ai
if s * flg <= 0:
ans1 += abs(s) + 1
s = flg
flg *= -1
ans2 = 0
s = 0
flg = -1
for ai in a:
s += ai
if s * flg <= 0:
ans2 += abs(s) + 1
s = flg
flg *= -1
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define rep(i,n) for(int i=0;i<n;i++)
int main() {
int n;
cin >> n;
vector<ll> A(n);
ll a,now1=0,cnt1=0,now2=0,cnt2=0;
rep(i,n) cin >> A[i];
rep(i,n) {
now1 += A[i];
now2 += A[i];
if (now1<=0) {
cnt1+=abs(now1)+1;now1=1;
}
if (now2>=0) {
cnt2+=abs(now2)+1;now2=-1;
}
swap(now1,now2);swap(cnt1,cnt2);
}
cout << min(cnt1,cnt2) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll s1, s2, c1, c2;
int main() {
ll n, a;
scanf("%lld", &n);
for (int i = 1; i <= n; i++) {
scanf("%lld", &a);
s1 += a;
s2 += a;
if (i % 2) {
if (s1 <= 0) c1 += 1 - s1,s1 = 1;
if (s2 >= 0) c2 += 1 + s2,s2 = -1;
}
else {
if (s1 >= 0) c1 += 1 + s1,s1 = -1;
if (s2 <= 0) c2 += 1 - s2,s2 = 1;
}
}
cout << min(c1, c2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=[int(i) for i in input().split()]
if a[0]>=0:
f=1
else:
f=-1
s=0
ans=0
for i in range(n):
s+=a[i]
if s*f<0:
ans+=abs(s)+1
s=f
elif s==0:
ans+=1
s=f
f*=-1
if a[0]>=0:
f=-1
else:
f=1
s=0
ans2=0
for i in range(n):
s+=a[i]
if s*f<0:
ans2+=abs(s)+1
s=f
elif s==0:
ans2+=1
s=f
f*=-1
print(min(ans,ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans1, ans2 = 0, 0
cnt1, cnt2 = 0, 0
cur = 1
for i in a:
cnt1 += i
if cnt1 * cur <= 0:
ans1 += abs(cnt1 - cur)
cnt1 = cur
cur *= -1
cur = -1
for i in a:
cnt2 += i
if cnt2 * cur <= 0:
ans2 += abs(cnt2 - cur)
cnt2 = cur
cur *= -1
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = [int(x) for x in input().split()]
def F(A, sgn):
cnt_operation = 0
cum = 0
for a in A:
sgn *= (-1)
cum += a
if cum * sgn > 0:
continue
if sgn > 0:
cnt_operation += (1 - cum)
cum = 1
else:
cnt_operation += (cum + 1)
cum = -1
return cnt_operation
answer = min(F(A,1), F(A,-1))
print(answer) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] sa = br.readLine().split(" ");
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = Integer.parseInt(sa[i]);
}
br.close();
long val = 0;
long now = a[0];
if (a[0] <= 0) {
val += 1 - a[0];
now = 1;
}
for (int i = 1; i < n; i++) {
now += a[i];
if (i % 2 == 0) {
if (now <= 0) {
val += 1 - now;
now = 1;
}
} else {
if (now >= 0) {
val += now + 1;
now = -1;
}
}
}
long ans = val;
val = 0;
now = a[0];
if (a[0] >= 0) {
val += a[0] + 1;
now = -1;
}
for (int i = 1; i < n; i++) {
now += a[i];
if (i % 2 != 0) {
if (now <= 0) {
val += 1 - now;
now = 1;
}
} else {
if (now >= 0) {
val += now + 1;
now = -1;
}
}
}
ans = Math.min(ans, val);
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = [int(_) for _ in input().split()]
#positive
pos_count = 0
sign = 1
cumsum = 0
for a in A:
cumsum += a
if cumsum * sign <= 0:
pos_count += abs(sign - cumsum)
cumsum = sign
sign *= -1
#negative
neg_count = 0
sign = -1
cumsum = 0
for a in A:
cumsum += a
if cumsum * sign <= 0:
neg_count += abs(sign - cumsum)
cumsum = sign
sign *= -1
print(min(pos_count, neg_count))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = [int(i) for i in input().split()]
def judge(A,t):
a_sum = 0
cnt = 0
for i in range(len(A)):
a_sum += A[i]
if i % 2 == 0:
if t*a_sum <= 0:
cnt += 1-t*a_sum
a_sum = t
else:
if t*a_sum >= 0:
cnt += 1 + t*a_sum
a_sum = -t
return cnt
print(min(judge(A,1),judge(A,-1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java |
import java.util.Scanner;
public class Main {
private static Scanner scan = new Scanner(System.in);
public static void main(String[] args) {
int N = Integer.parseInt(scan.next());
long a[] = new long[N];
for (int i = 0; i < N; i++) {
a[i] = Long.parseLong(scan.next());
}
long s1 = 0;
long s2 = 0;
long count1 = 0;
long count2 = 0;
for (int i = 0; i < N; i++) {
s1 += a[i];
s2 += a[i];
if(i%2 == 0) {
if(s1 <= 0) {
count1 += (1-s1);
s1 = 1;
}
if(s2 >= 0) {
count2 += (s2+1);
s2 = -1;
}
} else {
if(s1 >= 0) {
count1 += (s1+1);
s1 = -1;
}
if(s2 <= 0) {
count2 += (1-s2);
s2 = 1;
}
}
}
System.out.println(count1 < count2 ? count1 : count2);
scan.close();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<(n);i++)
using namespace std;
using lint=long long;
const lint INF=1LL<<61;
int main(){
int n; cin>>n;
vector<int> a(n);
rep(i,n) cin>>a[i];
lint ans=INF;
for(int a0:{1,-1,a[0]}) if(a0!=0) {
lint tmp=abs(a0-a[0]),sum=a0;
for(int i=1;i<n;i++){
sum+=a[i];
if(sum-a[i]>0){
if(sum>=0){
tmp+=sum+1;
sum=-1;
}
}
else if(sum-a[i]<0){
if(sum<=0){
tmp+=1-sum;
sum=1;
}
}
}
ans=min(ans,tmp);
}
cout<<ans<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Scanner;
public class Main {
static void solve() {
int n = nextInt();
long[] a = nextLongArray(n);
long ans;
long sum;
boolean expectPlus;
// a1 > 0 の場合
ans = 0;
sum = 0;
expectPlus = true;
for (int i = 0; i < n; i++) {
sum += a[i];
if (expectPlus && sum <= 0) {
ans += -sum + 1;
sum = 1;
} else if (!expectPlus && sum >= 0) {
ans += sum + 1;
sum = -1;
}
expectPlus = !expectPlus;
}
long ans1 = ans;
// a1 < 0 の場合
ans = 0;
sum = 0;
expectPlus = false;
for (int i = 0; i < n; i++) {
sum += a[i];
if (expectPlus && sum <= 0) {
ans += -sum + 1;
sum = 1;
} else if (!expectPlus && sum >= 0) {
ans += sum + 1;
sum = -1;
}
expectPlus = !expectPlus;
}
long ans2 = ans;
ans = Math.min(ans1, ans2);
out.println(ans);
}
static final int MOD = 1_000_000_007;
static long[] fac, finv, inv;
// 階乗(n!)
static long factorial(long n) {
long ans = 1;
for (long i = n; i > 0; i--) {
ans = ans * i % MOD;
}
return ans;
}
// nCkの初期化
static void comInit(int max) {
fac = new long[max];
finv = new long[max];
inv = new long[max];
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < max; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
// nCkの計算
static long com(int n, int k) {
if (n < k)
return 0;
if (n < 0 || k < 0)
return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
static PrintWriter out;
static Scanner sc;
static int[][] newIntArray(int h, int w, int value) {
int[][] ret = new int[h][w];
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
ret[i][j] = value;
}
}
return ret;
}
static int nextInt() {
return Integer.parseInt(sc.next());
}
static long nextLong() {
return Long.parseLong(sc.next());
}
static String nextString() {
return sc.next();
}
static int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
static long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
static List<Integer> nextIntList(int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
list.add(nextInt());
}
return list;
}
static List<Double> nextDoubleList(int n) {
List<Double> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
list.add((double) nextInt());
}
return list;
}
static List<Long> nextLongList(int n) {
List<Long> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
list.add(nextLong());
}
return list;
}
static char[][] nextCharArray(int h, int w) {
char[][] c = new char[h][w];
for (int i = 0; i < h; i++) {
String str = nextString();
for (int j = 0; j < w; j++) {
c[i][j] = str.charAt(j);
}
}
return c;
}
static <T extends Comparable<? super T>> void sort(List<T> list) {
Collections.sort(list);
}
// greatest common divisor
// 最大公約数
static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
// least common multiple
// 最小公倍数
static long lcm(long a, long b) {
if (a >= b && a % b == 0)
return a;
if (b > a && b % a == 0)
return b;
if (a > b) {
return (a / gcd(a, b)) * b;
} else {
return (b / gcd(a, b)) * a;
}
// return a * b / gcd(a, b);
}
// baseのn乗を計算を返す
static int pow(int base, int n) {
int ret = 1;
for (int i = 0; i < n; i++) {
ret *= base;
}
return ret;
}
// return n^k mod m
static long powMod(long n, long k, long m) {
if (k == 0) {
return 1;
} else if (k % 2 == 1) {
return powMod(n, k - 1, m) * n % m;
} else {
long tmp = powMod(n, k / 2, m);
return tmp * tmp % m;
}
}
// intをlength桁のbit文字列に変換
static String toBitString(int length, int n) {
StringBuilder sb = new StringBuilder();
for (int i = length - 1; i >= 0; i--) {
if ((n >> i) % 2 == 1) {
sb.append("1");
} else {
sb.append("0");
}
}
return sb.toString();
}
public static void main(String[] args) {
out = new PrintWriter(System.out);
sc = new Scanner(System.in);
solve();
out.flush();
sc.close();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ansl = [0, 0]
s = [0, 0]
for i in range(2):
for j in range(n):
s[i] += a[j]
if (i+j) % 2 == 0:
if s[i] >=0:
ansl[i] += abs(s[i]) + 1
s[i] = -1
else:
if s[i] <=0:
ansl[i] += abs(s[i]) + 1
s[i] = 1
print(min(ansl))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int n;
cin >> n;
long long int sum1=0,prev1=0;
long long int sum2=0,prev2=0;
long long int ans1=0, ans2=0;
for(int i=0;i<n;i++){
long long int a;
cin >> a;
sum1 += a;
sum2 += a;
if(i%2==0){
if(sum1 >= 0){
ans1 += abs(sum1)+1;
sum1 = -1;
}
if(sum2 <= 0){
ans2 += abs(sum2)+1;
sum2 = 1;
}
} else {
if(sum1 <= 0){
ans1 += abs(sum1)+1;
sum1 = 1;
}
if(sum2 >= 0){
ans2 += abs(sum2)+1;
sum2 = -1;
}
}
prev1 = sum1;
prev2 = sum2;
}
cout << min(ans1, ans2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
int n;
cin >> n;
vector<int>a(n);
for (int i = 0; i < n; i++)cin >> a.at(i);
ll ans = 1e18;
bool x = true;
for (int i = 0; i < 2; i++) {
ll res = 0;
ll sig = 0;
for (int j = 0; j < n; j++) {
if (x) {
sig += a.at(j);
x = false;
if (sig > 0)continue;
else {
res += abs(1 - sig);
sig = 1;
}
}
else {
sig += a.at(j);
x = true;
if (sig < 0)continue;
else {
res += abs(-1 - sig);
sig = -1;
}
}
}
x = false;
ans = min(ans, res);
}
cout << ans << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include<sstream>
#include<vector>
#include<iterator>
#include<cmath>
using namespace std;
long long f(int sign, const vector<long long>& a)
{
long long cnt = 0;
long long sum = 0;
for(int i=0; i<a.size(); i++)
{
sum += a[i];
if(sign*sum <= 0)
{
long long d = sign - sum;
sum += d;
cnt += abs(d);
}
sign *= -1;
}
return cnt;
}
int main(void)
{
int n;
cin >> n;
vector<long long> a(n);
for(int i=0; i<n; i++)
cin >> a[i];
long long sum[2];
sum[0] = f(1, a);
sum[1] = f(-1, a);
cout << min(sum[0], sum[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <math.h>
#define MOD 1000000007
typedef long long ll;
using namespace std;
int main(){
int n;
cin>>n;
ll a[n];
for(int i=0;i<n;i++){
cin>>a[i];
}
ll ans1=0,ans2=0;
ll s=0;
for(int i=0;i<n;i++){
s+=a[i];
if(i%2==0&&s<=0){
ans1+=1-s;
s=1ll;
}else if(i%2==1&&s>=0){
ans1+=s+1;
s=-1ll;
}
}
s=0;
for(int i=0;i<n;i++){
s+=a[i];
if(i%2==1&&s<=0){
ans2+=1-s;
s=1ll;
}else if(i%2==0&&s>=0){
ans2+=s+1;
s=-1ll;
}
}
cout<<min(ans1,ans2)<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
l=list(map(int,input().split()))
count1=0
count2=0
sum1,sum2=0,0
now=1#一致させたい符号
for i in range(n):#第一項は正の時
sum1+=l[i]
if sum1*now>0:
pass
else:
count1+=abs(now-sum1)
sum1=now
now*=-1
now=-1
for i in range(n):#第一項はhuの時
sum2+=l[i]
if sum2*now>0:
pass
else:
count2+=abs(now-sum2)
sum2=now
now*=-1
print(min(count1,count2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
def calc(t):
global a
ans = 0
s = 0
for i in a:
s += i
if s * t <= 0:
ans += abs(s-t)
s = t
t *= -1
return ans
print(min(calc(1),calc(-1)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int INF = 1e9;
const int MOD = 1e9 + 7;
int main()
{
int n;
cin >> n;
vector<ll> a(n);
for (auto &e : a)
cin >> e;
ll ans = 1e16;
for (int i = 0; i < 2; ++i)
{
ll cnt = 0, sum = 0;
for (int j = 0; j < n; ++j)
{
sum += a[j];
if (j % 2 == i)
{
if (sum <= 0)
{
cnt += abs(sum) + 1;
sum = 1;
}
}
else
{
if (sum >= 0)
{
cnt += abs(sum) + 1;
sum = -1;
}
}
}
ans = min(cnt, ans);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
ans=10**15
for i in[-1,1]:
ansi,sum=0,0
for a in A:
sum+=a
if sum*i<=0:ansi+=abs(sum-i);sum=i
i*=-1
ans=min(ans,ansi)
print(ans) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.