Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.*;
public class Main {
static InputStream is;
static PrintWriter out;
static String INPUT = "";
static void solve() {
int n = ni();
int[] a = na(n);
int[] b = a.clone();
for (int i = 0; i < n; i++) {
b[i] = -b[i];
}
System.out.println(Math.min(f(a), f(b)));
}
public static long f(int[] a) {
int n = a.length;
long sum = 0;
long ret = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
// +
long d = Math.max(0, 1 - sum);
sum += d;
ret += d;
} else {
// -
long d = Math.max(0, sum + 1);
sum -= d;
ret += d;
}
}
return ret;
}
public static void main(String[] args) throws Exception {
long S = System.currentTimeMillis();
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
solve();
out.flush();
long G = System.currentTimeMillis();
tr(G-S+"ms");
}
private static boolean eof() {
if(lenbuf == -1)return true;
int lptr = ptrbuf;
while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false;
try {
is.mark(1000);
while(true){
int b = is.read();
if(b == -1){
is.reset();
return true;
}else if(!isSpaceChar(b)){
is.reset();
return false;
}
}
} catch (IOException e) {
return true;
}
}
private static byte[] inbuf = new byte[1024];
static int lenbuf = 0, ptrbuf = 0;
private static int readByte() {
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private static double nd() { return Double.parseDouble(ns()); }
private static char nc() { return (char)skip(); }
private static String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private static char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private static char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private static int[] na(int n) {
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private static int ni() {
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static long nl() {
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); }
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N=int(input())
A=list(map(int,input().split()))
ans=10**15
for t in [1,-1]:
r=0
cnt=0
T=t
for i in range(N):
r+=A[i]
if(T>0 and r<=0):
cnt+=1-r
r+=1-r
if(T<0 and r>=0):
cnt+=r+1
r-=r+1
T*=-1
ans=min(cnt,ans)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[]a = new int[n];
for(int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
sc.close();
long c1 = 0;
long c2 = 0;
long sign = 1;
long sum = 0;
for(int i = 0; i < n; i++) {
sum += a[i];
if(sum * sign <= 0) {
c1 += Math.abs(sum) + 1;
sum = sign;
}
sign *= -1;
}
sign = -1;
sum = 0;
for(int i = 0; i < n; i++) {
sum += a[i];
if(sum * sign <= 0) {
c2 += Math.abs(sum) + 1;
sum = sign;
}
sign *= -1;
}
System.out.println(Math.min(c1, c2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
using namespace std;
int main(){
int n;
long sum1 = 0;
long sum2 = 0;
long op1 = 0;
long op2 = 0;
cin >> n;
for(int i = 0; i <n; i++){
int tmp;
cin >> tmp;
sum1 += tmp;
sum2 += tmp;
if(i%2){
if(sum1 >= 0) {
op1 += sum1 + 1;
sum1 = -1;
}
if(sum2 <= 0) {
op2 += -sum2 + 1;
sum2 = 1;
}
} else {
if(sum1 <= 0) {
op1 += -sum1 + 1;
sum1 = 1;
}
if(sum2 >= 0) {
op2 += sum2 + 1;
sum2 = -1;
}
}
}
if(op1 < op2) cout << op1;
else cout << op2;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = tuple(map(int, input().split()))
def f(pm):
ans, s = 0, 0
for a in A:
s += a
if s * pm <= 0:
d = abs(s - pm)
ans += d
s += d * pm
pm *= -1
return ans
print(min(f(1), f(-1)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
#include<vector>
#include<cmath>
using namespace std;
int main(void) {
long n;
cin >> n;
long a[n];
for(int i=0;i<n;++i) {
cin >> a[i];
}
long tmp1=0, tmp2=0;
long ans1=0, ans2=0;
for(int i=1;i<=n;++i){
tmp1 += a[i-1];
tmp2 += a[i-1];
if(i%2){
if(tmp1 <= 0){
ans1 += 1 - tmp1;
tmp1 = 1;
}
if(tmp2 >= 0){
ans2 += 1 + tmp2;
tmp2 = -1;
}
}
else{
if(tmp1 >= 0){
ans1 += 1 + tmp1;
tmp1 = -1;
}
if(tmp2 <= 0){
ans2 += 1 - tmp2;
tmp2 = 1;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
import java.awt.*;
import static java.lang.System.*;
import static java.lang.Math.*;
public class Main {
public static void main(String[]$) {
Scanner sc = new Scanner(in);
int n=sc.nextInt();
long[] a=new long[n];
long ans1=0,ans2=0;
for (int i = 0; i < n; i++) {
a[i]=sc.nextLong();
}
long temp1=0,temp2=0;
for (int i = 0; i <n; i++) {
//ans1:a[0]を負とする場合
temp1+=a[i];
temp2+=a[i];
if(i%2==0){
//負にする
if(temp1>=0) {
ans1 += temp1 + 1;
temp1 = -1;
}
//正にする
if(temp2<=0) {
ans2 +=1-temp2;
temp2 = 1;
}
}else{
//正にする
if(temp1<=0){
ans1+=1-temp1;
temp1=1;
}
//負にする
if(temp2>=0){
ans2+=1+temp2;
temp2=-1;
}
}
}
out.println(min(ans1,ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a_list=[int(i) for i in input().split()]
ans=10**20
for flg in (-1,1):
c=0
s=0
for a in a_list:
s+=a
if s==0:
c+=1
s=flg
if s//abs(s)!=flg:
c+=abs(s)+1
s=flg
flg*=-1
ans=min(ans,c)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
num = list(map(int, input().split()))
def culc(pattern):
sum=0
cost=0
for i in range(n):
sum+=num[i]
if i%2==pattern:
if sum>=0:
cost+=sum+1
sum=-1
else:
if sum<=0:
cost+=-sum+1
sum=1
#print("sum is ", sum, "cost is ", cost)
#print("")
return cost
print(min(culc(0), culc(1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | def sign(X):
return [-1,0,1][(X>=0)+(X>0)]
N = int(input())
A = [int(T) for T in input().split()]
AFPCnt = 0
AFPNow = 0
for TFP in range(0,N):
AFPNow += A[TFP]
if sign(AFPNow)!=(-1)**TFP:
AFPCnt += abs(AFPNow)+1
AFPNow = (-1)**TFP
AFFCnt = 0
AFFNow = 0
for TFF in range(0,N):
AFFNow += A[TFF]
if sign(AFFNow)!=(-1)**(TFF+1):
AFFCnt += abs(AFFNow)+1
AFFNow = (-1)**(TFF+1)
print(min(AFPCnt,AFFCnt)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | _,*l=map(int,open(0).read().split())
def f(s):
c=t=0
for i in l:
t+=i
if s*t<=0: c+=abs(t-s); t=s
s*=-1
return c
print(min(f(1),f(-1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <cstdint>
int main() {
int n;
std::cin >> n;
std::vector<int> vec(n);
for (auto&& e : vec)
std::cin >> e;
auto solve = [&](bool positive) {
int64_t ret = 0;
int sum = 0;
for (int i = 0; i < vec.size(); ++i) {
sum += vec[i];
if (sum == 0 || positive != sum > 0) {
ret += std::abs(sum) + 1;
sum = (positive ? 1 : -1);
}
positive = !positive;
}
return ret;
};
std::cout << std::min(solve(true), solve(false)) << std::endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
m=0
curr=1
ans=0
for i in range(n):
m+=a[i]
if curr*m<=0:
ans+=1-curr*m
m=curr
curr=-1*curr
ans2=0
m=0
curr=-1
for i in range(n):
m+=a[i]
if curr*m<=0:
ans2+=1-curr*m
m=curr
curr=-1*curr
print(min(ans,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.*;
public class Main {
static final long MOD1=1000000007;
static final long MOD2=998244353;
public static void main(String[] args) {
PrintWriter out = new PrintWriter(System.out);
InputReader sc=new InputReader(System.in);
int N=sc.nextInt();
long[] a=sc.nextLongArray(N);
long sum=0;
long ans=0;
for (int i = 0; i < a.length; i++) {
if (i%2==0) {
if (sum+a[i]>0) {
sum+=a[i];
}else {
ans+=-(sum+a[i])+1;
sum=1;
}
}else {
if (sum+a[i]<0) {
sum+=a[i];
}else {
ans+=(sum+a[i])+1;
sum=-1;
}
}
}
long ans1=0;
sum=0;
for (int i = 0; i < a.length; i++) {
if (i%2==1) {
if (sum+a[i]>0) {
sum+=a[i];
}else {
ans1+=-(sum+a[i])+1;
sum=1;
}
}else {
if (sum+a[i]<0) {
sum+=a[i];
}else {
ans1+=(sum+a[i])+1;
sum=-1;
}
}
}
System.out.println(Math.min(ans, ans1));
}
static class InputReader {
private InputStream in;
private byte[] buffer = new byte[1024];
private int curbuf;
private int lenbuf;
public InputReader(InputStream in) {
this.in = in;
this.curbuf = this.lenbuf = 0;
}
public boolean hasNextByte() {
if (curbuf >= lenbuf) {
curbuf = 0;
try {
lenbuf = in.read(buffer);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return false;
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[curbuf++];
else
return -1;
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private void skip() {
while (hasNextByte() && isSpaceChar(buffer[curbuf]))
curbuf++;
}
public boolean hasNext() {
skip();
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public int nextInt() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
int c = readByte();
while (isSpaceChar(c))
c = readByte();
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res = res * 10 + c - '0';
c = readByte();
} while (!isSpaceChar(c));
return (minus) ? -res : res;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public char[][] nextCharMap(int n, int m) {
char[][] map = new char[n][m];
for (int i = 0; i < n; i++)
map[i] = next().toCharArray();
return map;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 |
n = int(input())
a = list(map(int, input().split(" ")))
def solve(s1, s2):
"if start == true, assume the first of the sum is positive."
res = 0
sum = 0
for i in range(n):
sum += a[i]
if sum <= 0 and i % 2 == s1:
res += abs(sum) + 1
sum = 1
elif sum >= 0 and i % 2 == s2:
res += abs(sum) + 1
sum = -1
return res
print(min(solve(0, 1), solve(1, 0)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Main main = new Main();
main.run();
}
public void run() {
Scanner sc = new Scanner(System.in);
long n= sc.nextInt();
long sum1=0;
long sum2=0;
long ans1=0;
long ans2=0;
for(long i=0; i<n; i++) {
long a = sc.nextLong();
sum1 += a;
sum2 += a;
if(i%2==0) {
if(sum1 <= 0) {
ans1 += (1-sum1);
sum1=1;
}
if(sum2 >= 0) {
ans2 += sum2+1;
sum2=-1;
}
}else {
if(sum1 >= 0) {
ans1 += sum1+1;
sum1 = -1;
}
if(sum2 <= 0) {
ans2 += (1-sum2);
sum2 = 1;
}
}
}
System.out.println(Math.min(ans1, ans2));
sc.close();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def f(a, sgn):
cnt = 0
s = 0
for i in range(n):
s += a[i]
sgn *= (-1) #判定する符号は交互に変わる
if s * sgn <= 0: #sgn一致しなければその積は負
x = s + sgn*(-1)
s -= x
cnt += abs(x)
return cnt
ans = min(f(a, 1), f(a, -1))
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll s1, s2, c1, c2;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
ll n, a;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a;
s1 += a;
s2 += a;
if (i % 2) {
if (s1 <= 0) c1 += 1 - s1,s1 = 1;
if (s2 >= 0) c2 += 1 + s2,s2 = -1;
}
else {
if (s1 >= 0) c1 += 1 + s1,s1 = -1;
if (s2 <= 0) c2 += 1 - s2,s2 = 1;
}
}
cout << min(c1, c2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java |
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int num_count = sc.nextInt();
long[] array = new long[num_count];
for(int i = 0;i < num_count;i++){
array[i] = sc.nextInt();
}
long ans1 = 0,sum = 0;
for(int i = 0;i < num_count;i++){
if(i % 2 == 0 && (sum + array[i]) <= 0){
long cost = 1 - (sum + array[i]);
ans1 += cost;
sum = 1;
}else if(i % 2 == 1 && (sum + array[i]) >= 0){
long cost = 1 + (sum + array[i]);
ans1 += cost;
sum = -1;
}else{
sum += array[i];
}
}
long ans2 = 0;
sum = 0;
for(int i = 0;i < num_count;i++){
if(i % 2 == 1 && (sum + array[i]) <= 0){
long cost = 1 - (sum + array[i]);
ans2 += cost;
sum = 1;
}else if(i % 2 == 0 && (sum + array[i]) >= 0){
long cost = 1 + (sum + array[i]);
ans2 += cost;
sum = -1;
}else{
sum += array[i];
}
}
long min_ans = ans1 < ans2 ? ans1 : ans2;
System.out.println(min_ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
array = list(map(int, input().split()))
total = 0
flag = -1
minus = 0
for tmp in range(len(array)):
total += array[tmp]
if total * flag <= 0:
minus += abs(total*flag)+1
total = flag
flag *= -1
total = 0
flag = 1
plus = 0
for tmp in range(len(array)):
total += array[tmp]
if total * flag <= 0:
plus += abs(total*flag)+1
total = flag
flag *= -1
print(min(minus, plus)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <cmath>
using namespace std;
int main(){
int n;cin>>n;
int a[n];
for(int i = 0; n > i; i++)cin>>a[i];
long long sh = 0;
long long nw = 0;
for(int i = 0; n > i; i++){
nw = (long long)nw+a[i];
if(i % 2 == 0)if(nw<=0)sh = (long long)sh+1-nw,nw=1;
if(i % 2 == 1)if(nw>=0)sh = (long long)sh+nw+1,nw=-1;
}
long long hs = 0;
nw = 0;
for(int i = 0; n > i; i++){
nw = (long long)nw+a[i];
if(i % 2 == 1)if(nw<=0)hs = (long long)hs+1-nw,nw=1;
if(i % 2 == 0)if(nw>=0)hs = (long long)hs+nw+1,nw=-1;
}
cout << min(hs,sh) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i=0; i<n; i++){
a[i] = sc.nextInt();
}
int[] a_sum = new int[n];
a_sum[0] = a[0];
for(int i=1; i<n; i++){
a_sum[i] = a_sum[i-1] + a[i];
}
int[] a_sum_copy = new int[n];
for(int i=0; i<n; i++){
a_sum_copy[i] = a_sum[i];
}
//奇数番目までの和を正に、偶数番目までの和を負にする
long cnt1 = 0;
long cnt2 = 0;
for(int i=0; i<n; i++){
a_sum[i] += cnt1 + cnt2;
if(i%2==0){
if(a_sum[i]<0){
cnt1 += (-a_sum[i]) + 1;
a_sum[i] = 1;
}else if(a_sum[i]==0){
cnt1 += 1;
a_sum[i] = 1;
}
}else if(i%2==1){
if(a_sum[i]>0){
cnt2 -= a_sum[i] + 1;
a_sum[i] = -1;
}else if(a_sum[i]==0){
cnt2 -= 1;
a_sum[i] = -1;
}
}
}
//奇数番目までの和を負に、偶数番目までの和を正にする
long cnt3 = 0;
long cnt4 = 0;
for(int i=0; i<n; i++){
a_sum_copy[i] += cnt3 + cnt4;
if(i%2==1){
if(a_sum_copy[i]<0){
cnt3 += (-a_sum_copy[i]) + 1;
a_sum_copy[i] = 1;
}else if(a_sum_copy[i]==0){
cnt3 += 1;
a_sum_copy[i] = 1;
}
}else if(i%2==0){
if(a_sum_copy[i]>0){
cnt4 -= a_sum_copy[i] + 1;
a_sum_copy[i] = -1;
}else if(a_sum_copy[i]==0){
cnt4 -= 1;
a_sum_copy[i] = -1;
}
}
}
if(cnt1-cnt2>cnt3-cnt4){
System.out.print(cnt3-cnt4);
}else{
System.out.print(cnt1-cnt2);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <algorithm>
using namespace std;
long long n,no,ans,notw,anstw;
int main(){
cin>>n;
int a;
for(int i=0;i<n;i++){
cin>>a;
if(no>0){
no+=a;
if(no>=0){
ans+=no+1;
no=-1;
}
}else{
no+=a;
if(no<=0){
ans+=no*-1+1;
no=1;
}
}
if(notw>=0){
notw+=a;
if(notw>=0){
anstw+=notw+1;
notw=-1;
}
}else{
notw+=a;
if(notw<=0){
anstw+=notw*-1+1;
notw=1;
}
}
}
cout<<min(ans,anstw)<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Arrays;
import java.util.Scanner;
public class Main {
static final Scanner sc = new Scanner(System.in);
static final int MOD = (int) 1E9 + 7;
static final long INF_L = (long) 4E18;
public static void main(String[] args) {
int n = nint();
int[] a = nints(n);
long ans = min(solve(a, false), solve(a, true));
System.out.println(ans);
}
static long solve(int[] a, boolean posSum_) {
boolean posSum = posSum_; // trueなら偶数項目(0-indexed)までの和が正であるべき
long sum = 0;
long count = 0;
for (int i = 0; i < a.length; i++) {
long sumBuff = sum;
sum += a[i];
if (posSum && sum > 0 || !posSum && sum < 0) {
// do nothing
} else {
sum = posSum ? 1 : -1;
count += abs(-a[i] + sum - sumBuff);
}
posSum = !posSum;
}
return count;
}
@Deprecated
static int nint() {
return sc.nextInt();
}
@Deprecated
static int[] nints(int N) {
return nints(N, 0, 0);
}
@Deprecated
private static int[] nints(int N, int padL, int padR) {
int[] a = new int[padL + N + padR];
for (int i = 0; i < N; i++)
a[padL + i] = nint();
return a;
}
static long nlong() {
return sc.nextLong();
}
static long[] nlongs(int N) {
return nlongs(N, 0, 0);
}
static long[] nlongs(int N, int padL, int padR) {
long[] a = new long[padL + N + padR];
for (int i = 0; i < N; i++)
a[padL + i] = nlong();
return a;
}
static double ndouble() {
return sc.nextDouble();
}
static double[] ndoubles(int N) {
return ndoubles(N, 0, 0);
}
static double[] ndoubles(int N, int padL, int padR) {
double[] d = new double[N + padL + padR];
for (int i = 0; i < N; i++) {
d[padL + i] = ndouble();
}
return d;
}
static String nstr() {
return sc.next();
}
static char[] nchars() {
return sc.next().toCharArray();
}
static char[] nchars(int padL, int padR) {
char[] temp = sc.next().toCharArray();
char[] ret = new char[temp.length + padL + padR];
System.arraycopy(temp, 0, ret, padL, temp.length);
return ret;
}
static char[][] nchars2(int H, int W) {
return nchars2(H, W, 0, 0);
}
static char[][] nchars2(int H, int W, int padLU, int padRD) {
char[][] a2 = new char[H + padLU + padRD][W + padLU + padRD];
for (int i = 0; i < H; i++)
System.arraycopy(nchars(), 0, a2[padLU + i], padLU, W);
return a2;
}
static long min(long... ls) {
return Arrays.stream(ls).min().getAsLong();
}
static long max(long... ls) {
return Arrays.stream(ls).max().getAsLong();
}
static long abs(long a) {
return Math.abs(a);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = [int(n) for n in input().split()]
def calcSteps(sign):
res = 0
s = 0
for i in range(n):
if (s+a[i])*sign < 0:
s += a[i]
else:
step = -s -sign -a[i]
res += abs(step)
s = -sign
sign *= -1
return res
print(min(calcSteps(-1),calcSteps(1)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
#include<vector>
using namespace std;
int main(){
int n,i;
cin>>n;
vector<long long>a(n+1);
for(i=1;i<=n;i++)cin>>a[i];
for(i=1;i<n;i++)a[i+1]+=a[i];
long o=0,oc=0,e=0,ec=0;
for(i=1;i<=n;i++){
if(i%2){
if(a[i]+o<1)oc+=1-a[i]-o,o+=1-a[i]-o;
if(a[i]+e>-1)ec+=1+a[i]+e,e-=1+a[i]+e;
}
else{
if(a[i]+o>-1)oc+=1+a[i]+o,o-=1+a[i]+o;
if(a[i]+e<1)ec+=1-a[i]-e,e+=1-a[i]-e;
}
}
cout<<min(oc,ec)<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
num1, num2 = 0, 0
s = 0
for i in range(n):
s += a[i]
if i % 2 == 0 and s <= 0:
num1 += 1 - s
s = 1
elif i % 2 == 1 and s >= 0:
num1 += s + 1
s = -1
s = 0
for i in range(n):
s += a[i]
if i % 2 == 1 and s <= 0:
num2 += 1 - s
s = 1
elif i % 2 == 0 and s >= 0:
num2 += s + 1
s = -1
print(min(num1, num2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def solve(a, n, bool): # bool = True: 偶数項を足した時に正
change = 0
sum = 0
for i in range(n):
sum+=a[i]
if sum <= 0 and bool: # 和が正を仮定しているのに0以下なら
change += abs(1-sum)
sum=1
if sum >=0 and not bool:
change += abs(-1-sum)
sum=-1
bool = not bool
return change
print(min(solve(a,n,True),solve(a,n,False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
#define rep(i, n) for(ll i = 0;i < n;i++)
int main() {
cin.tie(0); ios::sync_with_stdio(false);
int n;
cin >> n;
int a[100000];
rep(i, n) cin >> a[i];
ll ans = 1LL<<62;
ll sum[100001] = {};
// parity
rep(p, 2) {
ll cnt = 0;
rep(i, n) {
int border = 1+(p+i)%2*-2;
sum[i+1] = sum[i] + a[i];
if (border == 1 && sum[i+1] >= border) continue;
if (border == -1 && sum[i+1] <= border) continue;
cnt += abs(border-sum[i+1]);
sum[i+1] = border;
}
ans = min(ans, cnt);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = list(map(int,input().split()))
ans = 10**15
for i in [-1,1]:
ansi,sum=0,0
for a in A:
sum+=a
if sum*i<=0:
ansi+=abs(sum-i)
sum=i
i*=-1
ans=min(ans,ansi)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = [int(x) for x in input().split()]
def F(A, sgn):
cnt = 0
cum = 0
for a in A:
sgn *= -1
cum += a
if cum * sgn > 0:
continue
if sgn > 0:
cnt += 1 - cum
cum = 1
else:
cnt += cum + 1
cum = -1
return cnt
answer = min(F(A,1), F(A,-1))
print(answer) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
c=0
d=0
e=0
f=0
for i in range(n):
k=a[i]
e+=k
f+=k
if i%2==0:
if e<=0:
c+=1-e
e=1
if f>=0:
d+=f+1
f=-1
else:
if e>=0:
c+=1+e
e=-1
if f<=0:
d+=1-f
f=1
print(min(c,d)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
long sumi = 0;
long sumi1 = 0;
long countPlus = 0;
long countMinus = 0;
long[] a = new long[n];
for(int i = 0; i < n; i++) {
a[i] = Long.valueOf(scan.next());
}
// 奇数がプラス
for(int i = 0; i < n; i++) {
sumi1 = sumi + a[i];
if((i + 1) % 2 == 1) {
if(sumi1 <= 0) {
countPlus += Math.abs(sumi1) + 1;
sumi1 += Math.abs(sumi1) + 1;
}
} else if((i + 1) % 2 == 0) {
if(sumi1 >= 0) {
countPlus += Math.abs(sumi1) + 1;
sumi1 -= Math.abs(sumi1) + 1;
}
}
sumi = sumi1;
}
sumi = 0;
sumi1 = 0;
// 奇数がマイナス
for(int i = 0; i < n; i++) {
sumi1 = sumi + a[i];
if((i + 1) % 2 == 1) {
if(sumi1 >= 0) {
countMinus += Math.abs(sumi1) + 1;
sumi1 -= Math.abs(sumi1) + 1;
}
} else if((i + 1) % 2 == 0) {
if(sumi1 <= 0) {
countMinus += Math.abs(sumi1) + 1;
sumi1 += Math.abs(sumi1) + 1;
}
}
sumi = sumi1;
}
if(countPlus < countMinus) {
System.out.println(countPlus);
} else {
System.out.println(countMinus);
}
scan.close();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<climits>
#include<iostream>
#include<sstream>
#include<utility>
#include<map>
#include<vector>
#include<queue>
#include<algorithm>
#include<set>
#include<stack>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
int A[100005],N;
ll ch(int p)
{
ll t=0,r=0;
for(int i=0;i<N;i++,p*=-1)
{
t+=A[i];
if(t*p<=0)
{
if(p==-1){r+=abs(-1-t);t=-1;}
else {r+=abs(1-t);t=1;}
}
}
return r;
}
int main()
{
scanf("%d",&N);
for(int i=0;i<N;i++)scanf("%d",&A[i]);
printf("%lld\n",min(ch(1),ch(-1)));
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
ans=10**30
for t in range(2):
a=0
s=0
for i in range(n):
a+=A[i]
if t and a<=0:
s+=-a+1
a=1
t=0
elif not(t) and a>=0:
s+=a+1
a=-1
t=1
else:
t=1-t
ans=min(s,ans)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def solve(a, t):
ans = 0
x = 0
for i in a:
x += i
if t==True and x<1:
ans += 1-x
x = 1
elif t==False and x>-1:
ans += x+1
x = -1
t = not t
return ans
print(min(solve(a,True), solve(a,False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
nums = list(map(int, input().split()))
ans = 10**14
for start in [-1, 1]:
before = start
cnt = 0
sum_n = 0
for num in nums:
sum_n += num
if before*sum_n >= 0:
if before < 0:
cnt += abs(1-sum_n)
sum_n = 1
else:
cnt += abs(-1-sum_n)
sum_n = -1
before = sum_n
ans = min(ans, cnt)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
for(int i =0; i<n; i++) {
a[i] = sc.nextLong();
}
long num1 = 0;
long tmp1 = 0;
//+-+-
for(int i=0; i<n; i++) {
tmp1 += a[i];
if(i % 2 == 0) {
if(tmp1 <= 0) {
num1 += Math.abs(tmp1) + 1;
tmp1 += Math.abs(tmp1) + 1;
}
} else {
if(tmp1 >= 0) {
num1 += Math.abs(tmp1) + 1;
tmp1 -= Math.abs(tmp1) + 1;
}
}
}
long num2 = 0;
long tmp2 = 0;
//-+-+
for(int i=0; i<n; i++) {
tmp2 += a[i];
if(i % 2 == 0) {
if(tmp2 >= 0) {
num2 += Math.abs(tmp2) + 1;
tmp2 -= Math.abs(tmp2) + 1;
}
} else {
if(tmp2 <= 0) {
num2 += Math.abs(tmp2) + 1;
tmp2 += Math.abs(tmp2) + 1;
}
}
}
System.out.println(Math.min(num1,num2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <vector>
using namespace std;
using ll = long long;
int main() {
ll n, ans1{}, ans2{}, s1{}, s2{}, t[2] = {1,-1};;
cin >> n;
vector<ll> a(n);
for (ll &x: a) cin >> x;
for (int i = 0; i != n; ++i) {
s1 += a[i];
s2 += a[i];
auto p = t[i%2];
if (s1 * p <= 0) {
ans1 += abs(p - s1);
s1 = p;
}
if (s2 * -p <= 0) {
ans2 += abs(p + s2);
s2 = -p;
}
}
cout << min(ans1,ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
typedef long long lint;
const int MAX_N = 1e5;
lint N, a[MAX_N+5];
lint solve(lint next){
lint s = 0, cnt = 0;
for(int i=0;i<N;i++){
s += a[i];
if(next==1 && s<=0){
cnt += next - s; s = 1;
}else if(next==-1 && s>=0){
cnt += s - next; s = -1;
}
next *= -1;
}
return cnt;
}
int main(){
cin >> N;
for(int i=0;i<N;i++) cin >> a[i];
cout << min(solve(1), solve(-1)) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | def k(n, a, p):
x = 0
c = 0
for i in range(n):
s = x + a[i]
if p and s > 0 or not p and s < 0: x = s
else:
c += abs(s) + 1
if p: x = 1
else: x = -1
p = not p
return c
n = int(input())
a = [int(x) for x in input().split()]
print(min(k(n, a, True), k(n, a, False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Arrays;
import java.util.Scanner;
import java.util.stream.IntStream;
public class Main {
public static void main(String[] args) {
try (Scanner scanner = new Scanner(System.in)) {
int n = scanner.nextInt();
long[] a = new long[n];
IntStream.range(0, n).forEach(i -> a[i] = scanner.nextLong());
// sum1=[1,-1,...], sum2=[-1,1,...]
int[] sum1 = new int[n], sum2 = new int[n];
Arrays.fill(sum1, 1);
Arrays.fill(sum2, -1);
IntStream.range(0, n / 2).forEach(i -> {
sum1[2 * i + 1] = -1;
sum2[2 * i + 1] = 1;
});
System.out.println(Math.min(getResult(a, sum1), getResult(a, sum2)));
}
}
/**
* @param a 数値配列
* @param sum 変更したい合計値の配列
* @return 変更すべきステップ数
*/
private static long getResult(final long[] a, final int[] sum) {
int n = a.length;
long now = 0, result = 0;
for (int i = 0; i < n; i++) {
now += a[i];
if (sum[i] * now <= 0) {
result += Math.abs(sum[i] - now);
now = sum[i];
}
}
return result;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
b = a[::]
ans1 = ans2 = 0
sign = 1
total = 0
for i in range(n):
total += a[i]
if total * sign <= 0:
k = abs(total - sign)
ans1 += k
total = sign
sign *= -1
sign = -1
total = 0
for i in range(n):
total += b[i]
if total * sign <= 0:
k = abs(total - sign)
ans2 += k
total = sign
sign *= -1
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
ans1 = 0
acc = 0
d = 1
for a in A:
if (acc + a) * d > 0:
acc += a
else:
ans1 += abs(1 - (acc + a) * d)
acc = d
d *= -1
ans2 = 0
acc = 0
d = -1
for a in A:
if (acc + a) * d > 0:
acc += a
else:
ans2 += abs(1 - (acc + a) * d)
acc = d
d *= -1
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main (String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.next());
long[] a = new long[n+1];
long[] b = new long[n+1];
long ans1 =0, ans2 =0,total =0;
//a[1]を+とするケース
for (int i =1; i<=n; i++) {
a[i] = Long.parseLong(sc.next());
b[i] = a[i];
total += a[i];
if (i % 2 == 1 && total <=0) {
long p = 1 - total;
ans1 += p;
total -= a[i];
a[i] += p;
total += a[i];
}
if (i % 2 == 0 && total >=0) {
long p = 1 + total;
ans1 += p;
total -= a[i];
a[i] -= p;
total += a[i];
}
}
total =0;
//a[1]を-とするケース
for (int i =1; i<=n; i++) {
total += b[i];
if (i % 2 == 0 && total <=0) {
long p = 1 - total;
ans2 += p;
total -= b[i];
b[i] += p;
total += b[i];
}
if (i % 2 == 1 && total >=0) {
long p = 1 + total;
ans2 += p;
total -= b[i];
b[i] -= p;
total += b[i];
}
}
System.out.print(Math.min(ans1,ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java |
import java.io.*;
import java.util.*;
import java.lang.*;
public class Main {
static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() {
if (hasNextByte()) return buffer[ptr++];
else return -1;
}
private static boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
public boolean hasNext() {
while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;
return hasNextByte();
}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
} else if (b == -1 || !isPrintableChar(b)) {
return minus ? -n : n;
} else {
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
FastScanner fs = new FastScanner();
int n = fs.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; ++i) {
a[i] = fs.nextLong();
}
// a[0] = fs.nextLong();
// a[1] = fs.nextLong();
// long ans = 0L;
// long sum = 0L;
// if (a[0] == 0 && a[1] > a[0]) {
// sum = -1L;
// ans += 1;
// } else if (a[0] == 0 && a[1] < a[0]) {
// sum = 1L;
// ans += 1;
// } else {
// sum = a[0];
// }
// if (check(sum, sum + a[1])) {
// sum += a[1];
// } else {
// if (sum > 0) {
// ans += (sum + a[1] + 1L);
// sum = -1L;
// } else {
// ans += (1L - sum - a[1]);
// sum = 1L;
// }
// }
// for (int i = 2; i < n; ++i) {
// a[i] = fs.nextLong();
// if (check(sum, sum + a[i])) {
// sum += a[i];
// } else {
// if (sum > 0) {
// ans += (sum + a[i] + 1L);
// sum = -1L;
// } else {
// ans += (1L - sum - a[i]);
// sum = 1L;
// }
// }
// }
long ans = Math.min(helper(n, a, true), helper(n, a, false));
System.out.println(ans);
}
private static long helper(int n, long[] a, boolean positive) {
long sum = 0L;
long ans = 0L;
for (int i = 0; i < n; ++i) {
if (positive) {
if (sum + a[i] <= 0) {
ans += (1L - sum - a[i]);
sum = 1L;
} else {
sum += a[i];
}
} else {
if (sum + a[i] >= 0) {
ans += (sum + a[i] + 1L);
sum = -1L;
} else {
sum += a[i];
}
}
positive = !positive;
}
return ans;
}
private static boolean check(long prev, long sum) {
if (prev > 0 && sum < 0) {
return true;
} else if (prev < 0 && sum > 0) {
return true;
}
return false;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int MAX = 1e5;
int n;
int a[MAX];
ll solve(bool flag, ll sum) {
ll res = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (flag) {
if (sum >= 0) {
res += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
res += -sum + 1;
sum = 1;
}
}
flag = !flag;
}
return res;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) scanf("%d", a + i);
// 貪欲法で操作回数の最小値を求める
// プラスから始まるパターンとマイナスから始まるパターンの2パターン試して、その小さい方が答え
cout << min(solve(true, 0), solve(false, 0)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
sum1 = sum2 = cost1 = cost2 = 0
for i in range(n):
cur = a[i]
sum1 += cur
if (sum1<=0, sum1>=0)[i%2]:
cost1 += 1+sum1*[-1,1][i%2]
sum1 = [1,-1][i%2]
sum2 += cur
if (sum2>=0, sum2<=0)[i%2]:
cost2 += 1+sum2*[1,-1][i%2]
sum2 = [-1,1][i%2]
print(min(cost1, cost2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100007];
long long solve()
{
long long res = 0;
long long sum = 0;
for(int i=0;i<n;i++)
{
if(i%2 == 0)
{
if(sum+a[i] <= 0)
{
res += llabs(sum+a[i]-1);
sum = 1;
}
else sum += a[i];
}
else
{
if(sum+a[i] >= 0)
{
res += llabs(sum+a[i]+1);
sum = -1;
}
else sum += a[i];
}
}
return res;
}
int main()
{
cin >> n;
for(int i=0;i<n;i++) cin >> a[i];
long long ans = solve();
for(int i=0;i<n;i++) a[i] *= -1;
ans = min(ans,solve());
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int n; cin>>n;
vector<int> a(n);
for(int i=0; i<n; ++i)cin>>a[i];
long long ans1=0LL, ans2=0LL, sum=0LL;
for(int i=0; i<n; ++i){
sum+=a[i];
if(i%2==0 && sum<=0){ans1+=1-sum; sum=1;}
else if(i%2==1 && sum>=0){ans1+=1+sum; sum=-1;}
}
sum=0;
for(int i=0; i<n; ++i){
sum+=a[i];
if(i%2==1 && sum<=0){ans2+=1-sum; sum=1;}
else if(i%2==0 && sum>=0){ans2+=1+sum; sum=-1;}
}
cout<<min(ans1, ans2)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | # -*- coding: utf-8 -*-
def calc(flag):
s = res = 0
for i in range(N):
flag = flag * -1
s += a[i]
if flag == 1:
if s <= 0:
res += abs(s) + 1
s = 1
elif flag == -1:
if s >= 0:
res += abs(s) + 1
s = -1
return res
N = int(input())
a = list(map(int, input().split()))
ans = min(calc(1), calc(-1))
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
def chk(a,t):
ans = 0
x = 0
for i in a:
x += i
if t==True and x<1:
ans += 1-x
x = 1
elif t==False and x>-1:
ans += x+1
x = -1
t=not t
return ans
print(min(chk(a,True),chk(a,False)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python2 | n=input()
a=map(int,raw_input().split())
#print n
#print a
a1_sum=0
a1=[]
for i in a:
a1_sum+=i
a1.append(a1_sum)
#print a1
#+,-
b=[]
chn_val=0
for i,val in enumerate(a1):
val+=chn_val
if i%2==0:
if val>0:
pass
else:
t_val=1-val
chn_val+=t_val
b.append(t_val)
else:
if val<0:
pass
else:
t_val=-1-val
chn_val+=t_val
b.append(t_val)
ans1=0
if len(b)==0:
ans1=0
else:
for i in b:
ans1+=abs(i)
#-,+
b=[]
chn_val=0
for i,val in enumerate(a1):
val+=chn_val
if i%2==0:
if val<0:
pass
else:
t_val=-1-val
chn_val+=t_val
b.append(t_val)
else:
if val>0:
pass
else:
t_val=1-val
chn_val+=t_val
b.append(t_val)
ans2=0
if len(b)==0:
ans2=0
else:
for i in b:
ans2+=abs(i)
print min(ans1,ans2)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
int n;
cin >> n;
vector<ll> a(n);
for(int i=0; i<n; i++) cin >> a[i];
ll sum = 0, ans1 = 0;
for(int i=0; i<n; i++) {
sum += a[i];
if(i%2 == 0 && sum <= 0) {
ans1 += 1 - sum;
sum = 1;
}
if(i%2 == 1 && sum >= 0) {
ans1 += 1 + sum;
sum = -1;
}
}
sum = 0;
ll ans2 = 0;
for(int i=0; i<n; i++) {
sum += a[i];
if(i%2 == 1 && sum <= 0) {
ans2 += 1 - sum;
sum = 1;
}
if(i%2 == 0 && sum >= 0) {
ans2 += 1 + sum;
sum = -1;
}
}
cout << min(ans1, ans2) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.ArrayList;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.next());
ArrayList<Integer> a = new ArrayList<>();
for(int i=0; i<n; i++){
a.add(Integer.parseInt(sc.next()));
}
long ans1 = 0;
long sum1 = 0;
long sign1 = 1;
for(int i=0; i<n; i++){
sum1 += a.get(i);
if (sum1 * sign1 <= 0){
ans1 += Math.abs(sum1) + 1;
sum1 = sign1;
}
sign1 *= -1;
}
long ans2 = 0;
long sum2 = 0;
long sign2 = -1;
for(int i=0; i<n; i++){
sum2 += a.get(i);
if (sum2 * sign2 <= 0){
ans2 += Math.abs(sum2) + 1;
sum2 = sign2;
}
sign2 *= -1;
}
System.out.println(Math.min(ans1, ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
an=list(map(int, input().split()))
def check(sign):
a_cnt=0
a_sum=0
for a in an:
a_sum+=a
if a_sum*sign<=0:
a_cnt+=abs(a_sum-sign)
a_sum=sign
sign*=-1
# print(a_sum, a_cnt)
return a_cnt
print(min(check(1),check(-1)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String args[]){
Scanner cin = new Scanner(System.in);
int target = cin.nextInt();
long list[] = new long[target];
for(int i=0;i<target;i++){
list[i] = cin.nextLong();
}
long sum_tmp_minus=0L;
long sum_tmp_plus=0L;
long count_minus=0;
long count_plus=0;
for(int k=0;k<target;k++){
sum_tmp_minus += list[k];
if(k%2==0){
if(sum_tmp_minus>=0){
count_minus += sum_tmp_minus+1;
sum_tmp_minus = -1;
}
}else{
if(sum_tmp_minus<=0){
count_minus += 1-sum_tmp_minus;
sum_tmp_minus=1;
}
}
}
for(int l=0;l<target;l++){
sum_tmp_plus += list[l];
if(l%2==0){
if(sum_tmp_plus<=0){
count_plus += 1-sum_tmp_plus;
sum_tmp_plus = 1;
}
}else{
if(sum_tmp_plus>=0){
count_plus += sum_tmp_plus+1;
sum_tmp_plus=-1;
}
}
}
System.out.println(Math.min(count_minus, count_plus));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long sum1 = 0;
long ans1 = 0;
long sum2 = 0;
long ans2 = 0;
for (int i = 0; i < n; i++) {
int a = sc.nextInt();
sum1 += a;
sum2 += a;
if(i % 2 == 0){
if(sum1 >= 0){
ans1 += sum1 + 1;
sum1 = -1;
}
if(sum2 <= 0){
ans2 += Math.abs(sum2) + 1;
sum2 = 1;
}
}else{
if(sum1 <= 0){
ans1 += Math.abs(sum1) + 1;
sum1 = 1;
}
if(sum2 >= 0){
ans2 += sum2 + 1;
sum2 = -1;
}
}
}
System.out.println(Math.min(ans1, ans2));
sc.close();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def tat(t,a,n):
ans = 0
ssu = 0
for x in a:
ssu += x
if ssu*t <= 0:
ans += abs(ssu-t)
ssu = t
t *= -1
return ans
print(min(tat(1,a,n),tat(-1,a,n))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define rep(i, s, t) for (int i = s; i <= t; i++)
ll ans1, ans2, sum;
int n;
int a[100010];
int main() {
cin >> n;
rep(i, 0, n - 1) cin >> a[i];
sum = 0;
for (int i = 0, s = 1; i < n; i++, s *= -1) {
sum += a[i];
if (sum * s <= 0) {
ans1 += abs(sum - s);
sum = s;
}
}
sum = 0;
for (int i = 0, s = -1; i < n; i++, s *= -1) {
sum += a[i];
if (sum * s <= 0) {
ans2 += abs(sum - s);
sum = s;
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include "bits/stdc++.h"
using namespace std;
typedef long long ll;
const ll MOD = 1e9 + 7;
const ll INF = 1LL << 60;
const double PI = 3.141592653589793238;
const double EPS = 1e-10;
int a[100000];
int main() {
int n;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
ll ans = INF;
for (int b = 0; b < 2; b++) {
bool plus = b;
ll cost = 0;
ll sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (plus) {
if (sum <= 0) cost += 1 - sum, sum = 1;
}
else {
if (sum >= 0) cost += sum + 1, sum = -1;
}
plus ^= 1;
}
ans = min(ans, cost);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(new BufferedReader(new InputStreamReader(System.in)));
int N = scan.nextInt();
int[] a = new int[N];
for (int i = 0; i < N; i++) {
a[i] = scan.nextInt();
}
long[] s = new long[N+1];
s[0] = 0;
for (int i = 0; i< N; i++) {
s[i+1] = s[i] + a[i];
}
// 正、負、正
long answer1 = solve(N, s, 1);
// 負、正、負
long answer2 = solve(N, s, 0);
System.out.println(Math.min(answer1, answer2));
}
public static long solve(int N, long[] s, int pattern) {
long answer = 0;
long diff = 0;
for (int i = 1; i <= N; i++) {
if (i % 2 == pattern) {
if (0 < s[i]+diff) {
continue;
} else {
answer += Math.abs(1-(s[i]+diff));
diff += (1 - (s[i]+diff));
}
} else {
if (s[i]+diff < 0) {
continue;
} else {
answer += Math.abs(s[i]+diff+1);
diff -= (s[i]+diff+1);
}
}
}
return answer;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
b=a
ans1=ans2=0
sign=1
total=0
for i in range(n):
total+=a[i]
if total*sign<=0:
k=abs(total-sign)
ans1+=k
total=sign
sign*=-1
sign=-1
total=0
for i in range(n):
total+=b[i]
if total*sign<=0:
k=abs(total-sign)
ans2+=k
total=sign
sign*=-1
print(min(ans1,ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.*;
public class Main {
public static void main(String... args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long[] map = new long[N];
for (int i = 0; i < N; i++) {
map[i] = sc.nextLong();
}
long ans1 = calcAns(map, 1);
long ans2 = calcAns(map, -1);
System.out.println(Math.min(ans1, ans2));
}
static long calcAns(long[] map, int type) {
long ans = 0;
long sum = 0;
for (int i = 0; i < map.length; i++) {
long a = map[i];
sum += a;
if (type == -1) {
if (sum <= type) {
type = 1;
continue;
} else {
ans += sum + 1;
type = 1;
sum = -1;
}
} else {
if (sum >= type) {
type = -1;
continue;
} else {
ans += Math.abs(sum) + 1;
type = -1;
sum = 1;
}
}
}
return ans;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java |
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main {
private static final int mod =(int)1e9+7;
public static void main(String[] args) throws Exception {
Scanner sc=new Scanner(System.in);
PrintWriter out=new PrintWriter(System.out);
int n=sc.nextInt();
long a[]=new long[n];
for(int i=0;i<n;i++) {
a[i]=sc.nextLong();
}
long sum=a[0];
long operations=0;
if(a.length==1) {
if(a[0]!=0) {
System.out.println(0);
}else {
System.out.println(1);
}
}else {
if(sum<=0) {
sum=1;
operations=Math.abs(a[0]-1);
}
for(int i=1;i<n;i++) {
if(sum>0) {
if(sum+a[i]<0) {
sum+=a[i];
}else {
if(sum+a[i]==0) {
sum=-1;
operations++;
}else {
long req=(long)-1-1l*sum;
sum=-1;
operations+=(-1l*req+a[i]);
}
}
}else {
if(sum+a[i]>0) {
sum+=a[i];
}else {
if(sum+a[i]==0) {
sum=1;
operations++;
}else {
long req=(long)1+-1l*sum;
sum=1;
operations+=(req-a[i]);
}
}
}
}
sum=a[0];
long op1=0;
if(sum>=0) {
sum=-1;
op1=Math.abs(a[0]+1);
}
for(int i=1;i<n;i++) {
if(sum>0) {
if(sum+a[i]<0) {
sum+=a[i];
}else {
if(sum+a[i]==0) {
sum=-1;
op1++;
}else {
long req=(long)-1-1l*sum;
sum=-1;
op1+=(-1l*req+a[i]);
}
}
}else {
if(sum+a[i]>0) {
sum+=a[i];
}else {
if(sum+a[i]==0) {
sum=1;
op1++;
}else {
long req=(long)1+-1l*sum;
sum=1;
op1+=(req-a[i]);
}
}
}
}
System.out.println(Math.min(operations,op1));
}
}
static boolean vis[]=new boolean[10001];
static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
// Function to find gcd of array of
// numbers
static int f(int arr[], int n)
{
int result = n;
int max=-1;
int ans=0;
for (int element: arr){
if(vis[element]==false)
result = gcd(n, element);
if(result>max) {
max=result;
ans=element;
}
}
return ans;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
ret = 0
def count(nega):
ret = 0
s = 0
for e in A:
nega = not nega
#print(e,ret,s,s+e)
if nega and 0 <= s + e:
ret += abs(s + e) + 1
s = -1
elif not nega and s + e <= 0:
ret += abs(s + e) + 1
s = 1
else:
s += e
return ret
print(min(count(True),count(False)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | def sign(p):
if p<0:
return -1
elif p>0:
return 1
else:
return 0
N=int(input())
a=[int(i) for i in input().split()]
m=[0,0]
for sgn in [-1,1]:
x=0
S=0
for i in range(N):
S+=a[i]
if sign(S)==sgn*(-1)**(i%2) or sign(S)==0:
x+=abs(S)+1
S=sgn*(-1)**((i+1)%2)
m[(sgn+1)//2]=x
print(min(m))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
l=[int(i) for i in input().split()]
chk1=ans1=chk2=ans2=0
for a,i in enumerate(l):
chk1+=i
chk2+=i
if a%2:
if chk1<=0:
ans1+=1-chk1
chk1=1
if chk2>=0:
ans2+=chk2+1
chk2=-1
else:
if chk1>=0:
ans1+=1+chk1
chk1=-1
if chk2<=0:
ans2+=1-chk2
chk2=1
print(min(ans1,ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
typedef long long ll;
using namespace std;
int n, a[100010];
ll calc(ll s) {
ll sum = 0, res = 0;
for (int i = 0; i < n; ++i, s *= -1) {
sum += a[i];
if (sum * s > 0) continue;
if (s > 0)
res += (-sum + s), sum += (-sum + s);
else
res += (sum - s), sum += -(sum - s);
}
return res;
}
int main() {
cin >> n;
rep(i, n) cin >> a[i];
cout << min(calc(1), calc(-1)) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
using namespace std;
int main(void){
int n;
long long a,b=0,c=0,d=0,e=0;
cin>>n;
for(int i=0;i<n;i++){
cin>>a;
b+=a;
c+=a;
if(i%2==0){
if(b>=0){
d+=b+1;
b=-1;
}
if(c<=0){
e+=-c+1;
c=1;
}
}else{
if(b<=0){
d+=-b+1;
b=1;
}
if(c>=0){
e+=c+1;
c=-1;
}
}
}
cout<<min(d,e)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def calcOperation(base):
sum = 0
ans = 0
sign = base
for i in range(n):
sum += a[i]
if sum * sign >= 0:
ans += abs(sum) + 1
sum = -sign
sign *= -1
return ans
posi = calcOperation(1)
nega = calcOperation(-1)
print(min(posi, nega)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
int n;
int[] as;
public static void main(String args[]) {
new Main().run();
}
void run() {
FastReader sc = new FastReader();
n = sc.nextInt();
as = new int[n];
for (int i = 0; i < n; i++) {
as[i] = sc.nextInt();
}
solve();
}
void solve() {
long[] sums = new long[n];
sums[0] = as[0];
for (int i = 1; i < n; i++) {
sums[i] = sums[i - 1] + as[i];
}
long evenCount = 0;
long evenChange = 0;
long[] sumsForEven = sums.clone();
for (int i = 0; i < n; i++) {
sumsForEven[i] += evenChange;
if (i % 2 == 0 && sumsForEven[i] <= 0) {
evenCount += -sumsForEven[i] + 1;
evenChange += -sumsForEven[i] + 1;
sumsForEven[i] = 1;
} else if (i % 2 == 1 && sumsForEven[i] >= 0) {
evenCount += sumsForEven[i] + 1;
evenChange -= sumsForEven[i] + 1;
sumsForEven[i] = -1;
}
}
long oddCount = 0;
long oddChange = 0;
for (int i = 0; i < n; i++) {
sums[i] += oddChange;
if (i % 2 == 1 && sums[i] <= 0) {
oddCount += -sums[i] + 1;
oddChange += -sums[i] + 1;
sums[i] = 1;
} else if (i % 2 == 0 && sums[i] >= 0) {
oddCount += sums[i] + 1;
oddChange -= sums[i] + 1;
sums[i] = -1;
}
}
System.out.println(Math.min(evenCount, oddCount));
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python2 | # -*- coding: utf-8 -*-
n = input()
a = map(int, raw_input().split())
b = a
asum = [0]*len(a)
bsum = [0]*len(a)
asum[0] = a[0]
bsum[0] = b[0]
cnt_a = 0
cnt_b = 0
if(a[0]==0):
asum[0] = 1
cnt_a = 1
bsum[0] = -1
cnt_b = 1
if(a[0]<0):
cnt_a += (-1)*a[0]+1
asum[0] = 1
for i in range(len(a)-1):
asum[i+1] = a[i+1] + asum[i]
if(i%2==0 and asum[i+1]>=0):
cnt_a += asum[i+1]+1
asum[i+1] = -1
elif(i%2==1 and asum[i+1]<=0):
cnt_a += (-1)*asum[i+1]+1
asum[i+1] = 1
if(b[0]>0):
cnt_b += b[0]+1
bsum[0] = -1
for i in range(len(b)-1):
bsum[i+1] = b[i+1] + bsum[i]
if(i%2==0 and bsum[i+1]<=0):
cnt_b += (-1)*bsum[i+1]+1
bsum[i+1] = 1
elif(i%2==1 and bsum[i+1]>=0):
cnt_b += bsum[i+1]+1
bsum[i+1] = -1
print(min(cnt_a,cnt_b)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long c1 = 0, c2 = 0, s1 = 0, s2 = 0;
for (int i = 0; i < n; i++) {
s1 += a[i];
s2 += a[i];
if (i & 1) {
if (s1 >= 0) {c1 += s1 + 1; s1 = -1;}
if (s2 <= 0) {c2 += 1 - s2; s2 = 1;}
} else {
if (s1 <= 0) {c1 += 1 - s1; s1 = 1;}
if (s2 >= 0) {c2 += s2 + 1; s2 = -1;}
}
}
cout << min(c1, c2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<iostream>
#define rep(i,n) for(int i=0;i<n;++i)
using namespace std;
int n, a[100000];
int64_t solve(bool plus) {
int64_t ret = 0, sum = 0;
rep(i, n) {
sum += a[i];
if (plus && sum <= 0 || !plus && sum >= 0) {
ret += abs(sum) + 1;
sum = plus ? 1 : -1;
}
plus ^= true;
}
return ret;
}
int main() {
cin >> n;
rep(i, n) cin >> a[i];
cout << min(solve(true), solve(false)) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define ll long long
constexpr ll inf = 1e9+7;
ll solve(vector<ll> As, bool flag) {
ll ans = 0;
ll sum = 0;
for (auto A : As) {
sum += A;
if (flag && sum <= 0) { ans += 1 - sum; sum = 1; }
else if (!flag && sum >= 0) { ans += 1 + sum; sum = -1; }
flag = !flag;
}
return ans;
}
int main () {
cin.tie(0);
ios::sync_with_stdio(false);
ll N;
cin>>N;
vector<ll> A(N);
for (ll n = 0; n < N; n++) cin>>A[n];
cout<<min(solve(A, false), solve(A, true))<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | /* "It's okay if you hate me. I hate me too." */
#include <bits/stdc++.h>
using namespace std;
int a[100005];
int n;
long long calc(int MOD) {
long long sum = 0, res = 0;
for (int i = 1; i <= n; ++i) {
sum += a[i];
if (i%2 == MOD && sum <= 0) {
res += (1-sum);
sum = 1;
}
else if (i%2 != MOD && sum >= 0) {
res += (sum+1);
sum = -1;
}
}
return res;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
cout << min(calc(0), calc(1));
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python2 | def smaller(x, y):
if x < y: return x
else: return y
def judge(a, posneg):
cnt = 0
cur = posneg
sum = 0
for i in range(0, len(a)):
sum = sum + a[i]
sumt = sum * cur
if sumt < 1:
cnt = cnt + abs(cur - sum)
sum = cur
cur = -1 * cur
return cnt
n = int(raw_input())
a = map(int, raw_input().split())
print smaller(judge(a, 1), judge(a, -1)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.lang.reflect.Array;
import java.util.*;
import java.util.function.*;
import java.util.stream.Collectors.*;
public class Main {
public static void main(String[] args) {
new Main().solve();
}
IO io = new IO();
/// ********** 本体 ********** ///
void solve() {
int n = io.Int();
int[] a = new int[n];
REP(n,integer -> a[integer]=io.Int());
long cost1=0,cost2=0;
long sum1=0,sum2=0;
//sum is +-+...
for(int i=0;i<n;++i){
if(i%2==0){
//sum is +
sum1+=a[i];
long addVal =
sum1<0?(-sum1)+1:
sum1==0?1:0;
sum1+=addVal;
cost1+=Math.abs(addVal);
}else{
//sum is -
sum1+=a[i];
long addVal =
sum1>0?(-sum1)-1:
sum1==0?-1:0;
sum1+=addVal;
cost1+=Math.abs(addVal);
}
}
//sum is -+-...
for(int i=0;i<n;++i){
if(i%2!=0){
//sum is +
sum2+=a[i];
long addVal =
sum2<0?(-sum2)+1:
sum2==0?1:0;
sum2+=addVal;
cost2+=Math.abs(addVal);
}else{
//sum is -
sum2+=a[i];
long addVal =
sum2>0?(-sum2)-1:
sum2==0?-1:0;
sum2+=addVal;
cost2+=Math.abs(addVal);
}
}
//result
long ans = Math.min(cost1,cost2);
System.out.println(ans);
}
void FOR(int a, int b, Consumer<Integer>act) { for(int i = a; i < b; ++i) act.accept(i); }
void REP(int a, Consumer<Integer>act) { FOR(0, a, act); }
}
class IO{
String[] nextBuff;
int buffCnt;
Scanner sc = new Scanner(System.in);
public IO(){
nextBuff = new String[0];
buffCnt = 0;
}
String next() {
if (buffCnt < nextBuff.length) return nextBuff[buffCnt++];
String line = sc.nextLine();
while (line == "") line = sc.nextLine();
nextBuff = line.split(" ");
buffCnt = 0;
return nextBuff[buffCnt++];
}
public String String() { return next(); }
public char Char() { return next().charAt(0);}
public int Int() { return Integer.parseInt(next());}
public long Long() { return Long.parseLong(next());}
public double Double() { return Double.parseDouble(next());}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
long[] ac = new long[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
long answer = Long.MAX_VALUE;
for (int i = 0; i < 2; i++) {
long t = 0;
ac[0] = a[0];
for (int j = 0; j < n; j++) {
if ((i + j) % 2 == 0) {
if (ac[j] >= 0) {
t += ac[j] + 1;
ac[j] = -1;
}
} else {
if (ac[j] <= 0) {
t += Math.abs(ac[j]) + 1;
ac[j] = 1;
}
}
if (j < n - 1) ac[j + 1] = ac[j] + a[j + 1];
}
answer = Math.min(answer, t);
}
System.out.println(answer);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n=int(input())
a=list(map(int, input().split()))
def f(presum, x, fugo):
if (presum+x)*fugo<=0:
sa=fugo-presum-x
prosum=fugo
else:
sa=0
prosum=presum+x
return sa, prosum
out1=0
y=0
for i in range(n):
x, y=f(y, a[i], (-1)**i)
out1+=abs(x)
out2=0
y=0
for i in range(n):
x, y=f(y, a[i], -(-1)**i)
out2+=abs(x)
print(min(out1, out2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <iostream>
#include <algorithm>
#include <map>
#include <string>
#include <math.h>
typedef long long ll;
using namespace std;
int main(){
int n;
cin >> n;
ll a[100001]={0};
for (int i=0;i<n;i++) cin >> a[i];
bool sign=true;
ll res=0,res2=0,sum=0;
for (int x=0;x<2;x++){
res=0;
sum=0;
for (int i=0;i<n;i++){
sum+=a[i];
if (sign){
if (sum <= 0){
res+=1-sum;
sum=1;
}
sign=false;
} else {
if (sum >= 0){
res+=1+sum;
sum=-1;
}
sign=true;
}
}
sign=false;
if (x == 0) res2=res;
}
cout << min(res,res2) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
INF = float('inf')
ans = INF
for sign in (1, -1):
res, total_a = 0, 0
for a in A:
total_a += a
if total_a * sign <= 0:
res += abs(total_a - sign)
total_a = sign
sign *= -1
ans = min(ans, res)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.AbstractMap;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.Stack;
import static java.util.Comparator.*;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
MyInput in = new MyInput(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver();
solver.solve(1, in, out);
out.close();
}
// ======================================================================
static class Solver
{
long[] A = null;
long[] S = null;
long calc(boolean mflag, PrintWriter out) {
long ans = 0;
Arrays.fill(S, 0);
for(int i=0; i < A.length; i++) {
if(i == 0) S[0] = A[0];
else S[i] = S[i-1] + A[i];
// out.println("A[" + i + "] = " + A[i] + " S[" + i + "] = " + S[i]);
if(mflag) {
if(S[i] >= 0) {
ans += Math.abs(S[i]) +1;
S[i] = -1;
// out.println("mflag = " + mflag + " ans = " + ans);
}
mflag = false;
} else {
if(S[i] <= 0) {
ans += Math.abs(S[i]) + 1;
S[i] = 1;
// out.println("mflag = " + mflag + " ans = " + ans);
}
mflag = true;
}
}
return ans;
}
public void solve(int testNumber, MyInput in, PrintWriter out) {
int N = in.nextInt();
A = new long[N];
S = new long[N];
for(int i=0; i < N; i++) {
A[i] = in.nextLong();
}
long ans = Math.min(calc(true, out), calc(false, out));
out.println(ans);
}
}
// ======================================================================
static class Pair<K, V> extends AbstractMap.SimpleEntry<K, V> {
/** serialVersionUID. */
private static final long serialVersionUID = 6411527075103472113L;
public Pair(final K key, final V value) {
super(key, value);
}
public String getString() {
return "[" + getKey() + "] [" + getValue() + "]";
}
}
static class MyInput {
private final BufferedReader in;
private static int pos;
private static int readLen;
private static final char[] buffer = new char[1024 * 8];
private static char[] str = new char[500 * 8 * 2];
private static boolean[] isDigit = new boolean[256];
private static boolean[] isSpace = new boolean[256];
private static boolean[] isLineSep = new boolean[256];
static {
for (int i = 0; i < 10; i++) {
isDigit['0' + i] = true;
}
isDigit['-'] = true;
isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true;
isLineSep['\r'] = isLineSep['\n'] = true;
}
public MyInput(InputStream is) {
in = new BufferedReader(new InputStreamReader(is));
}
public int read() {
if (pos >= readLen) {
pos = 0;
try {
readLen = in.read(buffer);
} catch (IOException e) {
throw new RuntimeException();
}
if (readLen <= 0) {
throw new MyInput.EndOfFileRuntimeException();
}
}
return buffer[pos++];
}
public int nextInt() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
int ret = 0;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public long nextLong() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
long ret = 0L;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public String nextString() {
String ret = new String(nextDChar()).trim();
return ret;
}
public char[] nextDChar() {
int len = 0;
len = reads(len, isSpace);
char[] ret = new char[len + 1];
for (int i=0; i < len; i++) ret[i] = str[i];
ret[len] = 0x00;
return ret;
}
public char nextChar() {
while (true) {
final int c = read();
if (!isSpace[c]) {
return (char) c;
}
}
}
int reads(int len, boolean[] accept) {
try {
while (true) {
final int c = read();
if (accept[c]) {
break;
}
if (str.length == len) {
char[] rep = new char[str.length * 3 / 2];
System.arraycopy(str, 0, rep, 0, str.length);
str = rep;
}
str[len++] = (char) c;
}
} catch (MyInput.EndOfFileRuntimeException e) {
}
return len;
}
static class EndOfFileRuntimeException extends RuntimeException {
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | java | import java.util.Scanner;
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
new Main().solve();
}
void solve() {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
long A = 0;
long ANS = 0;
long ans = 0;
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
for (int i = 0; i < n; i++) {
A += a[i];
if (i % 2 == 0 && A <= 0) {
ans += Math.abs(A - 1);
A = 1;
}
if (i % 2 == 1 && A >= 0) {
ans += Math.abs(A + 1);
A = -1;
}
}
ANS = ans;
A = 0;
ans = 0;
for (int i = 0; i < n; i++) {
A += a[i];
if (i % 2 == 0 && A >= 0) {
ans += Math.abs(A + 1);
A = -1;
}
if (i % 2 == 1 && A <= 0) {
ans += Math.abs(A - 1);
A = 1;
}
}
ANS = Math.min(ANS, ans);
System.out.println(ANS);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
#define REP(i,n) for(int i=0,i##_len=(n);i<i##_len;++i)
using namespace std;
signed main(){
int N;cin>>N;
vector<long long> A(N);
REP(i, N) cin >> A[i];
long long ans=LLONG_MAX;
int sig[2]={1,-1};
REP(j,2){
long long sum=0;
long long count=0;
REP(i,N){
sum+=A[i];
if(i%2==0&&sig[j]*sum<=0){
count+=llabs(sum-sig[j]*1);
sum=sig[j]*1;
}
if(i%2==1&&sig[j]*sum>=0){
count+=llabs(sum+sig[j]*1);
sum=-1*sig[j];
}
}
ans=min(ans,count);
}
cout<<ans<<endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | from itertools import accumulate
n = int(input())
a = [int(i) for i in input().split()]
def n_op(a, p):
s = accumulate(a)
x = 0
n = 0
for si in s:
if p and si + x <= 0:
n += 1 - (si + x)
x += 1 - (si + x)
if (not p) and si + x >= 0:
n += 1 + (si + x)
x -= 1 + (si + x)
p = not p
return n
answer = min([n_op(a, True), n_op(a, False)])
print(answer)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<(n);i++)
using namespace std;
using ll = long long;
const ll INF = 1LL << 61;
int main(){
int n;
cin >> n;
vector<int> a(n);
rep(i,n) cin >> a[i];
ll ans = INF;
for(int a0 : {1,-1,a[0]} ) if(a0 != 0) {
ll tmp = abs(a0 - a[0]), sum = a0;
for(int i = 1; i < n; i++){
sum += a[i];
if(sum - a[i] > 0){
if(sum >= 0){
tmp += sum + 1;
sum = -1;
}
}
else if(sum - a[i] < 0){
if(sum <= 0){
tmp += 1 - sum;
sum = 1;
}
}
}
ans = min(ans, tmp);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
B1 = [(-1)**i for i in range(n)]
B2 = [(-1)**(i+1) for i in range(n)]
def func(A, B):
cum = 0
res = 0
for i in range(n):
cum += A[i]
if B[i] > 0 and cum <= 0:
res += 1-cum
cum = 1
elif B[i] < 0 and cum >= 0:
res += cum+1
cum = -1
return res
print(min(func(A, B1), func(A, B2)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
def chk(A, first):
sum = 0
count = 0
t = first
for a in A:
sum += a
if t == True and sum < 1:
count += 1-sum
sum = 1
elif t == False and sum > -1:
count += sum + 1
sum = -1
t = not t
return count
print(min(chk(A, True), chk(A, False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | _ = int(input())
A = list(map(int, input().split()))
def chk(a_list, sgn):
cum_n = 0
count = 0
for a in a_list:
cum_n += a
if sgn>0 and cum_n<=0:
count += abs(cum_n-1)
cum_n = 1
elif sgn<0 and cum_n>=0:
count += abs(cum_n-(-1))
cum_n = -1
sgn = sgn*(-1)
return(count)
print(min(chk(A, 1), chk(A, -1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
def sol(S):
ret = 0
for a in A[1:]:
b = a
if S * (S + b) > 0:
b = (abs(S) + 1) * (1 if S < 0 else -1)
if S + b == 0:
b = b - 1 if S > 0 else b + 1
ret += abs(b - a)
S += b
return ret
if A[0] == 0:
ans = min(sol(1), sol(-1)) + 1
else:
ans = min(sol(A[0]), sol(-1 if A[0] > 0 else 1) + abs(A[0]) + 1)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mp make_pair
#define pb push_back
ll n,a[100005],sum,cnt1,cnt2;
int main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++){
sum+=a[i];
if(i%2 && sum<=0){
cnt1+=1-sum;
sum=1;
}
if(i%2==0 && sum>=0){
cnt1+=sum+1;
sum=-1;
}
}
sum=0;
for(int i=1;i<=n;i++){
sum+=a[i];
if(i%2==0 && sum<=0){
cnt2+=1-sum;
sum=1;
}
if(i%2 && sum>=0){
cnt2+=sum+1;
sum=-1;
}
}
cout<<min(cnt1,cnt2);
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | def solve(f, A):
r, s = 0, 0
for a in A:
s += a
if s == 0:
r += 1
s = f
elif s * f < 0:
r += -(s * f) + 1
s = f
f = -f
return r
def main():
N = int(input())
A = list(map(int, input().split()))
return min(solve(1, A), solve(-1, A))
print(main())
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | n = int(input())
ls = list(map(int, input().split()))
def calc(ls, sign):
count = 0
acc = 0
for x in ls:
y = acc + x
if y == 0 or y // abs(y) != sign:
z = sign - y
count += abs(z)
acc = sign
else:
acc = y
sign *= -1
return count
count = min(calc(ls, 1), calc(ls, -1))
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
#define rep(i, n) REP(i, 0, n)
#define REP(i, l, r) for (int i = l; i < r; ++i)
#define int long long
using namespace std;
typedef pair<int, int> P;
signed main() {
int n;
cin >> n;
vector<int> a(n);
rep(i, n) {
cin >> a[i];
if (i)
a[i] += a[i - 1];
}
int out = LLONG_MAX;
rep(i, 2) {
int cnt = 0, ans = 0;
rep(j, n) {
if (j % 2 == i) {
ans += max(1 - (a[j] + cnt), 0ll);
cnt += max(1 - (a[j] + cnt), 0ll);
} else {
ans += max((a[j] + cnt) + 1, 0ll);
cnt += min(-(a[j] + cnt) - 1, 0ll);
}
}
out = min(out, ans);
}
cout << out << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int n;
cin>>n;
vector<int64_t> a(n);
for(int i=0;i<n;++i){
cin>>a.at(i);
}
int64_t S1=0,S2=0,count1=0,count2=0;
//odd>0,even<0
for(int i=0;i<n;++i){
S1 += a.at(i);
if(i%2!=0 && S1<=0){
count1 += (1-S1);
S1=1;
}
else if(i%2==0 && S1>=0){
count1 += (1+S1);
S1=-1;
}
}
//odd<0,even>0
for(int i=0;i<n;++i){
S2 += a.at(i);
if(i%2!=0 && S2>=0){
count2 += (1+S2);
S2=-1;
}
else if(i%2==0 && S2<=0){
count2 += (1-S2);
S2=1;
}
}
cout<<min(count1,count2)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
#define ll long long
using namespace std;
int main() {
int n;
ll c = 0, d = 0, pm = 0, mp = 0;
scanf("%d", &n);
for(int i = 0; i < n; i++) {
int a;
scanf("%d", &a);
pm += a;
mp += a;
if(pm * (i % 2 ? -1 : 1) <= 0) {
c += abs(pm) + 1;
pm = i % 2 ? -1 : 1;
}
if(mp * (i % 2 ? -1 : 1) >= 0) {
d += abs(mp) + 1;
mp = i % 2 ? 1 : -1;
}
}
printf("%lld\n", min(c, d));
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for(int i = 0; i < (int)n; i++)
using ll = long long;
int main(){
int n;
cin >> n;
ll a[n];
rep(i,n) cin >> a[i];
ll c = 0, d = 0, s = 0, t = 0;
rep(i,n) {
s += a[i]; t += a[i];
if(i % 2 == 0) {
if(s <= 0) {
c += 1 - s;
s = 1;
}
if(t >= 0) {
d += t + 1;
t = -1;
}
} else {
if(s >= 0) {
c += s + 1;
s = -1;
}
if(t <= 0) {
d += 1 - t;
t = 1;
}
}
}
cout << min(c,d) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | CORRECT | python3 | # coding: utf-8
# hello worldと表示する
N=int(input())
s=list(map(int,input().split()))
def f(N,s,t):
ss=0
w=0
for i in range(N):
ss+=s[i]
if t==1:
if ss<=0:
w+=1-ss
ss=1
t=-1
elif t==-1:
if ss>=0:
w+=1+ss
ss=-1
t=1
return w
t=1
a=f(N,s,t)
t=-1
b=f(N,s,t)
print(min(a,b))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.