Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <string.h> #include <algorithm> #include <vector> #include <queue> using namespace std; typedef long long ll; const ll INF=100000000000000LL; ll a[100001]; ll r[2]={}; int main() { int n; cin>>n; ll t1=0; ll t2=0; ll s1=0; ll s2=0; ll a1; for(int i=0;i<n;++i){ cin>>a1; t1+=a1; t2+=a1; if(i%2==0){ if(t1<=0){ s1+=-t1+1; t1=1; } if(t2>=0){ s2+=t2+1; t2=-1; } }else{ if(t1>=0){ s1+=t1+1; t1=-1; } if(t2<=0){ s2+=-t2+1; t2=1; } } } cout<<min(s1,s2)<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<iostream> #include<string> #include<algorithm> #include<vector> using ll = long long; using namespace std; ll n; vector<ll> a; ll solve(int x); int main(){ cin >> n; for(ll i=0;i<n;i++){ int x; cin >> x; a.push_back(x); } cout << min(solve(0),solve(1)) << endl; return 0; } ll solve(int x){ ll ans = 0; ll now = 0; for(ll i=0;i<n;i++){ now += a[i]; if((i%2^x)&&(now>=0)){ ans += now + 1; now = -1; } if(!(i%2^x)&&(now<=0)){ ans -= now - 1; now = 1; } } return ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n=int(input()) a=list(map(int,input().split())) b=a[:] x=0#pmpm y=0 sum1=0 sum2=0 for i in range(n): sum1+=a[i] sum2+=b[i] if(i%2==0): if(sum1<=0): x+=1-sum1 a[i]+=1-sum1 sum1+=1-sum1 if(sum2>=0): y+=sum2+1 b[i]-=sum2+1 sum2-=sum2+1 else: if(sum1>=0): x+=sum1+1 a[i]-=1+sum1 sum1-=1+sum1 if(sum2<=0): y+=1-sum2 b[i]+=1-sum2 sum2+=1-sum2 print(min(x,y))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
N = int(input()) A = [int(x) for x in input().split()] c = [0, 0] for f in [0, 1]: sumA = 0 for i, a in enumerate(A): sumA += a if i % 2 == f: if sumA < 1: d = 1 - sumA c[f] += d sumA += d else: if sumA > -1: d = 1 + sumA c[f] += d sumA -= d print(min(c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; ++i) cin >> a[i]; ll cnt = 0; ll sum = 0; for (int i = 0; i < N; ++i) { ll t = sum + a[i]; if (i % 2 == 0 && t <= 0) cnt += 1 - t, t = 1; if (i % 2 == 1 && t >= 0) cnt += t + 1, t = -1; sum = t; } ll ans = cnt; cnt = sum = 0; for (int i = 0; i < N; ++i) { ll t = sum + a[i]; if (i % 2 == 1 && t <= 0) cnt += 1 - t, t = 1; if (i % 2 == 0 && t >= 0) cnt += t + 1, t = -1; sum = t; } ans = min(ans, cnt); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) A = list(map(int,input().split())) def seq(a,t): ans = 0 x = 0 for i in a: x+=i if t==True and x<1: ans+=1-x x=1 elif t==False and x>-1: ans+=x+1 x=-1 t = not t return ans print(min(seq(A,True),seq(A,False)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.next()); long[] a1 = new long[n]; long[] a2 = new long[n]; for (int i = 0; i < n; i++) { long temp = Long.parseLong(sc.next()); a1[i] = temp; a2[i] = temp; } long ans1 = 0; long ans2 = 0; long temp = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && temp + a1[i] >= 0) { ans1 += temp + a1[i] + 1; a1[i] -= temp + a1[i] + 1; } if (i % 2 != 0 && temp + a1[i] <= 0) { ans1 += Math.abs(temp + a1[i] - 1); a1[i] += Math.abs(temp + a1[i] - 1); } temp += a1[i]; } if (Arrays.stream(a1).sum() == 0) { ans1++; } temp = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && temp + a2[i] <= 0) { ans2 += Math.abs(temp + a2[i] - 1); a2[i] += Math.abs(temp + a2[i] - 1); } if (i % 2 != 0 && temp + a2[i] >= 0) { ans2 += temp + a2[i] + 1; a2[i] -= temp + a2[i] + 1; } temp += a2[i]; } if (Arrays.stream(a2).sum() == 0) { ans2++; } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = input() A = list(map(int, input().split())) def Chk(a, pos): cnt = 0 tmp = 0 for a in A: tmp += a if pos and tmp < 1: cnt += 1 - tmp tmp = 1 elif not pos and tmp > -1: cnt += 1 + tmp tmp = -1 pos = not pos return cnt print(min(Chk(A, True), Chk(A, False)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; int main() { int n; cin>>n; vector<ll> a(n); for (int i=0; i<n; i++) cin>>a[i]; vector<ll> ret(2); for (int c=0; c<2; ++c){ int sgn=c?1:-1; for (ll s=0, t=0; t<n; t++, sgn*=-1) { s+=a[t]; if(sgn*s<=0) ret[c]+=abs(s)+1, s=sgn; } } cout<<min(ret[0],ret[1])<<"\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long c1 = 0, c2 = 0, s1 = 0, s2 = 0; for (int i = 0; i < n; i++) { s1 += a[i]; s2 += a[i]; if (i & 1) { if (s1 >= 0) {c1 += s1 + 1; s1 = -1;} if (s2 <= 0) {c2 += 1 - s2; s2 = 1;} } else { if (s1 <= 0) {c1 += 1 - s1; s1 = 1;} if (s2 >= 0) {c2 += s2 + 1; s2 = -1;} } } cout << min(c1, c2) << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import static java.lang.Math.*; import static java.lang.Math.min; import java.util.*; import java.util.stream.*; /** * @author baito */ class P implements Comparable<P> { int x, y; P(int a, int b) { x = a; y = b; } @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof P)) return false; P p = (P) o; return x == p.x && y == p.y; } @Override public int hashCode() { return Objects.hash(x, y); } @Override public int compareTo(P p) { return x == p.x ? y - p.y : x - p.x; //xで昇順にソート //return (x == p.x ? y - p.y : x - p.x) * -1; //xで降順にソート //return y == p.y ? x - p.x : y - p.y;//yで昇順にソート //return (y == p.y ? x - p.x : y - p.y)*-1;//yで降順にソート } } @SuppressWarnings("unchecked") public class Main { static StringBuilder sb = new StringBuilder(); static int INF = 1234567890; static int MINF = -1234567890; static long LINF = 123456789123456789L; static long MLINF = -123456789123456789L; static long MOD = 1000000007; static double EPS = 1e-10; static int[] y4 = {0, 1, 0, -1}; static int[] x4 = {1, 0, -1, 0}; static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1}; static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1}; static ArrayList<Long> Fa; static boolean[] isPrime; static int[] primes; static char[][] ban; static long maxRes = MLINF; static long minRes = LINF; static boolean DEBUG = true; static int N; static long[] B; public static void solve() throws Exception { //longを忘れるなオーバーフローするぞ N = ni(); B = nla(N); for (int _ = 0; _ < 2; _++) { long[] A = B.clone(); boolean plus = _ == 0 ? true : false; long cou = 0; if (plus) { if (A[0] == 0) { cou++; A[0]++; } else if (A[0] < 0) { cou += (-A[0]) + 1; A[0] += (-A[0]) + 1; } } else { if (A[0] == 0) { cou++; A[0]--; } else if (A[0] > 0) { cou += (A[0]) + 1; A[0] -= (A[0]) + 1; } } plus ^= true; long sum = A[0]; for (int i = 1; i < N; i++) { if (plus) { long now = sum + A[i]; if (now < 0) { cou += (-now) + 1; A[i] += (-now) + 1; } else if (now == 0) { cou++; A[i]++; } sum += A[i]; plus = false; } else { long now = sum + A[i]; if (now > 0) { cou += (now) + 1; A[i] -= (now) + 1; } else if (now == 0) { cou++; A[i]--; } sum += A[i]; plus = true; } } chMin(cou); } System.out.println(minRes); } public static boolean calc(long va) { //貪欲にギリギリセーフを選んでいく。 int v = (int) va; return true; } //条件を満たす最大値、あるいは最小値を求める static int mgr(long ok, long ng, long w) { //int ok = 0; //解が存在する //int ng = N; //解が存在しない while (Math.abs(ok - ng) > 1) { long mid; if (ok < 0 && ng > 0 || ok > 0 && ng < 0) mid = (ok + ng) / 2; else mid = ok + (ng - ok) / 2; if (calc(mid)) { ok = mid; } else { ng = mid; } } if (calc(ok)) return (int) ok; else return -1; } boolean equal(double a, double b) { return a == 0 ? abs(b) < EPS : abs((a - b) / a) < EPS; } public static void matPrint(long[][] a) { for (int hi = 0; hi < a.length; hi++) { for (int wi = 0; wi < a[0].length; wi++) { System.out.print(a[hi][wi] + " "); } System.out.println(""); } } //rにlを掛ける l * r public static long[][] matMul(long[][] l, long[][] r) throws IOException { int lh = l.length; int lw = l[0].length; int rh = r.length; int rw = r[0].length; //lwとrhが,同じである必要がある if (lw != rh) throw new IOException(); long[][] res = new long[lh][rw]; for (int i = 0; i < lh; i++) { for (int j = 0; j < rw; j++) { for (int k = 0; k < lw; k++) { res[i][j] = modSum(res[i][j], modMul(l[i][k], r[k][j])); } } } return res; } public static long[][] matPow(long[][] a, int n) throws IOException { int h = a.length; int w = a[0].length; if (h != w) throw new IOException(); long[][] res = new long[h][h]; for (int i = 0; i < h; i++) { res[i][i] = 1; } long[][] pow = a.clone(); while (n > 0) { if (bitGet(n, 0)) res = matMul(pow, res); pow = matMul(pow, pow); n >>= 1; } return res; } public static void chMax(long v) { maxRes = Math.max(maxRes, v); } public static void chMin(long v) { minRes = Math.min(minRes, v); } //2点間の行き先を配列に持たせる static int[][] packE(int n, int[] from, int[] to) { int[][] g = new int[n][]; int[] p = new int[n]; for (int f : from) p[f]++; for (int t : to) p[t]++; for (int i = 0; i < n; i++) g[i] = new int[p[i]]; for (int i = 0; i < from.length; i++) { g[from[i]][--p[from[i]]] = to[i]; g[to[i]][--p[to[i]]] = from[i]; } return g; } public static boolean bitGet(BitSet bit, int keta) { return bit.nextSetBit(keta) == keta; } public static boolean bitGet(long bit, int keta) { return ((bit >> keta) & 1) == 1; } public static int restoreHashA(long key) { return (int) (key >> 32); } public static int restoreHashB(long key) { return (int) (key & -1); } //正の数のみ public static long getHashKey(int a, int b) { return (long) a << 32 | b; } public static long sqrt(long v) { long res = (long) Math.sqrt(v); while (res * res > v) res--; return res; } public static int u0(int a) { if (a < 0) return 0; return a; } public static long u0(long a) { if (a < 0) return 0; return a; } public static int[] toIntArray(int a) { int[] res = new int[keta(a)]; for (int i = res.length - 1; i >= 0; i--) { res[i] = a % 10; a /= 10; } return res; } public static Integer[] toIntegerArray(int[] ar) { Integer[] res = new Integer[ar.length]; for (int i = 0; i < ar.length; i++) { res[i] = ar[i]; } return res; } public static long bitGetCombSizeK(int k) { return (1 << k) - 1; } //k個の次の組み合わせをビットで返す 大きさに上限はない 110110 -> 111001 public static long bitNextComb(long comb) { long x = comb & -comb; //最下位の1 long y = comb + x; //連続した下の1を繰り上がらせる return ((comb & ~y) / x >> 1) | y; } public static int keta(long num) { int res = 0; while (num > 0) { num /= 10; res++; } return res; } public static boolean isOutofIndex(int x, int y, int w, int h) { if (x < 0 || y < 0) return true; if (w <= x || h <= y) return true; return false; } public static boolean isOutofIndex(int x, int y, char[][] ban) { if (x < 0 || y < 0) return true; if (ban[0].length <= x || ban.length <= y) return true; return false; } public static int arrayCount(int[] a, int v) { int res = 0; for (int i = 0; i < a.length; i++) { if (a[i] == v) res++; } return res; } public static int arrayCount(long[] a, int v) { int res = 0; for (int i = 0; i < a.length; i++) { if (a[i] == v) res++; } return res; } public static int arrayCount(int[][] a, int v) { int res = 0; for (int hi = 0; hi < a.length; hi++) { for (int wi = 0; wi < a[0].length; wi++) { if (a[hi][wi] == v) res++; } } return res; } public static int arrayCount(long[][] a, int v) { int res = 0; for (int hi = 0; hi < a.length; hi++) { for (int wi = 0; wi < a[0].length; wi++) { if (a[hi][wi] == v) res++; } } return res; } public static int arrayCount(char[][] a, char v) { int res = 0; for (int hi = 0; hi < a.length; hi++) { for (int wi = 0; wi < a[0].length; wi++) { if (a[hi][wi] == v) res++; } } return res; } public static void setPrimes() { int n = 100001; isPrime = new boolean[n]; List<Integer> prs = new ArrayList<>(); Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for (int i = 2; i * i <= n; i++) { if (!isPrime[i]) continue; prs.add(i); for (int j = i * 2; j < n; j += i) { isPrime[j] = false; } } primes = new int[prs.size()]; for (int i = 0; i < prs.size(); i++) primes[i] = prs.get(i); } public static void revSort(int[] a) { Arrays.sort(a); reverse(a); } public static void revSort(long[] a) { Arrays.sort(a); reverse(a); } public static int[][] copy(int[][] ar) { int[][] nr = new int[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) for (int j = 0; j < ar[0].length; j++) nr[i][j] = ar[i][j]; return nr; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static <T extends Number> int lowerBound(final List<T> lis, final T value) { int low = 0; int high = lis.size(); int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (lis.get(mid).doubleValue() < value.doubleValue()) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static <T extends Number> int upperBound(final List<T> lis, final T value) { int low = 0; int high = lis.size(); int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (lis.get(mid).doubleValue() < value.doubleValue()) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int lowerBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int upperBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long lowerBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long upperBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } //次の順列に書き換える、最大値ならfalseを返す public static boolean nextPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] < A[pos + 1]) break; } if (pos == -1) return false; //posより大きい最小の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] > A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //次の順列に書き換える、最小値ならfalseを返す public static boolean prevPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] > A[pos + 1]) break; } if (pos == -1) return false; //posより小さい最大の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] < A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } static long ncr2(int a, int b) { if (b == 0) return 1; else if (a < b) return 0; long res = 1; for (int i = 0; i < b; i++) { res *= a - i; res /= i + 1; } return res; } static long ncrdp(int n, int r) { if (n < r) return 0; long[][] dp = new long[n + 1][r + 1]; for (int ni = 0; ni < n + 1; ni++) { dp[ni][0] = dp[ni][ni] = 1; for (int ri = 1; ri < ni; ri++) { dp[ni][ri] = dp[ni - 1][ri - 1] + dp[ni - 1][ri]; } } return dp[n][r]; } public static int mod(int a, int m) { return a >= 0 ? a % m : (int) (a + ceil(-a * 1.0 / m) * m) % m; } static long modNcr(int n, int r) { if (n < 0 || r < 0 || n < r) return 0; if (Fa == null || Fa.size() <= n) factorial(n); long result = Fa.get(n); result = modMul(result, modInv(Fa.get(n - r))); result = modMul(result, modInv(Fa.get(r))); return result; } public static long modSum(long... lar) { long res = 0; for (long l : lar) res = (res + l % MOD) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiff(long a, long b) { long res = a % MOD - b % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modMul(long... lar) { long res = 1; for (long l : lar) res = (res * l % MOD) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiv(long a, long b) { long x = a % MOD; long y = b % MOD; long res = (x * modInv(y)) % MOD; return res; } static long modInv(long n) { return modPow(n, MOD - 2); } static void factorial(int n) { if (Fa == null) { Fa = new ArrayList<>(); Fa.add(1L); Fa.add(1L); } for (int i = Fa.size(); i <= n; i++) { Fa.add((Fa.get(i - 1) * i) % MOD); } } static long modPow(long x, long n) { long res = 1L; while (n > 0) { if ((n & 1) == 1) { res = res * x % MOD; } x = x * x % MOD; n >>= 1; } return res; } //↑nCrをmod計算するために必要 static long lcm(long n, long r) { return n / gcd(n, r) * r; } static int gcd(int n, int r) { return r == 0 ? n : gcd(r, n % r); } static long gcd(long n, long r) { return r == 0 ? n : gcd(r, n % r); } static <T> void swap(T[] x, int i, int j) { T t = x[i]; x[i] = x[j]; x[j] = t; } static void swap(int[] x, int i, int j) { int t = x[i]; x[i] = x[j]; x[j] = t; } public static void reverse(int[] x) { int l = 0; int r = x.length - 1; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(long[] x) { int l = 0; int r = x.length - 1; while (l < r) { long temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(char[] x) { int l = 0; int r = x.length - 1; while (l < r) { char temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(int[] x, int s, int e) { int l = s; int r = e; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } static int length(int a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int length(long a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int cou(boolean[] a) { int res = 0; for (boolean b : a) { if (b) res++; } return res; } static int cou(String s, char c) { int res = 0; for (char ci : s.toCharArray()) { if (ci == c) res++; } return res; } static int countC2(char[][] a, char c) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == c) co++; return co; } static int countI(int[] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) if (a[i] == key) co++; return co; } static int countI(int[][] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == key) co++; return co; } static void fill(int[][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(char[][] a, char c) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = c; } static void fill(long[][] a, long v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(int[][][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) for (int k = 0; k < a[0][0].length; k++) a[i][j][k] = v; } static int max(int... a) { int res = Integer.MIN_VALUE; for (int i : a) { res = Math.max(res, i); } return res; } static long max(long... a) { long res = Integer.MIN_VALUE; for (long i : a) { res = Math.max(res, i); } return res; } static long min(long... a) { long res = Long.MAX_VALUE; for (long i : a) { res = Math.min(res, i); } return res; } static int max(int[][] ar) { int res = Integer.MIN_VALUE; for (int i[] : ar) res = Math.max(res, max(i)); return res; } static long max(long[][] ar) { long res = Integer.MIN_VALUE; for (long i[] : ar) res = Math.max(res, max(i)); return res; } static int min(int... a) { int res = Integer.MAX_VALUE; for (int i : a) { res = Math.min(res, i); } return res; } static int min(int[][] ar) { int res = Integer.MAX_VALUE; for (int i[] : ar) res = Math.min(res, min(i)); return res; } static int sum(int[] a) { int cou = 0; for (int i : a) cou += i; return cou; } static long sum(long[] a) { long cou = 0; for (long i : a) cou += i; return cou; } //FastScanner static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer tokenizer = null; public static String next() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } /*public String nextChar(){ return (char)next()[0]; }*/ public static String nextLine() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken("\n"); } public static long nl() { return Long.parseLong(next()); } public static String n() { return next(); } public static int ni() { return Integer.parseInt(next()); } public static double nd() { return Double.parseDouble(next()); } public static int[] nia(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni(); } return a; } //1-index public static int[] niao(int n) { int[] a = new int[n + 1]; for (int i = 1; i < n + 1; i++) { a[i] = ni(); } return a; } public static int[] niad(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni() - 1; } return a; } public static P[] npa(int n) { P[] p = new P[n]; for (int i = 0; i < n; i++) { p[i] = new P(ni(), ni()); } return p; } public static P[] npad(int n) { P[] p = new P[n]; for (int i = 0; i < n; i++) { p[i] = new P(ni() - 1, ni() - 1); } return p; } public static int[][] nit(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = ni(); } } return a; } public static int[][] nitd(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = ni() - 1; } } return a; } static int[][] S_ARRAY; static long[][] S_LARRAY; static int S_INDEX; static int S_LINDEX; //複数の配列を受け取る public static int[] niah(int n, int w) { if (S_ARRAY == null) { S_ARRAY = new int[w][n]; for (int i = 0; i < n; i++) { for (int ty = 0; ty < w; ty++) { S_ARRAY[ty][i] = ni(); } } } return S_ARRAY[S_INDEX++]; } public static long[] nlah(int n, int w) { if (S_LARRAY == null) { S_LARRAY = new long[w][n]; for (int i = 0; i < n; i++) { for (int ty = 0; ty < w; ty++) { S_LARRAY[ty][i] = ni(); } } } return S_LARRAY[S_LINDEX++]; } public static char[] nca() { char[] a = next().toCharArray(); return a; } public static char[][] nct(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = next().toCharArray(); } return a; } //スペースが入っている場合 public static char[][] ncts(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = nextLine().replace(" ", "").toCharArray(); } return a; } public static char[][] nctp(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + next() + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } //スペースが入ってる時用 public static char[][] nctsp(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + nextLine().replace(" ", "") + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } public static long[] nla(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nl(); } return a; } public static long[][] nlt(int h, int w) { long[][] a = new long[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nl(); } } return a; } public static void main(String[] args) throws Exception { long startTime = System.currentTimeMillis(); solve(); System.out.flush(); long endTime = System.currentTimeMillis(); if (DEBUG) System.err.println(endTime - startTime); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python2
#coding:utf-8 def count(seq, is_positive): operation = 0 sum = 0 for i in range(n): sum += seq[i] if sum == 0: operation += 1 if is_positive: sum -= 1 else: sum += 1 elif sum > 0 and is_positive: operation += abs(sum) + 1 sum = -1 elif sum < 0 and not is_positive: operation += abs(sum) + 1 sum = 1 if sum > 0: is_positive = True else: is_positive = False return operation if __name__ == "__main__": n = int(raw_input()) seq = map(int, raw_input().split(" ")) print min(count(seq, False), count(seq, True))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) A = list(map(int, input().split())) ans = {True:0, False:0} for s in [True, False]: sign = s total = 0 for i in range(len(A)): if total + A[i] == 0 or sign == (total + A[i] > 0): ans[s] += abs(total + A[i]) + 1 total = -1 if sign else 1 else: total += A[i] sign = total > 0 print(min(ans.values()))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = scanner.nextInt(); long c1 = 0; long sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { long d = 1 - sum; c1 += d; sum += d; } else if (i % 2 == 1 && sum >= 0){ long d = sum + 1; c1 += d; sum -= d; } } long c2 = 0; sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum >= 0) { long d = sum + 1; c2 += d; sum -= d; } else if (i % 2 == 1 && sum <= 0){ long d = 1 - sum; c2 += d; sum += d; } } System.out.println(Math.min(c1, c2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long n,ansa=0,ansb=0,x=0,y=0; cin >> n; vector<long> a(n),wa(n); for(long i=0;i<n;i++) cin >> a[i]; wa[0]=a[0]; for(long i=1;i<n;i++) wa[i]=wa[i-1]+a[i]; for(long i=0;i<n;i++) { if(i%2==0) { if(wa[i]+x<=0) { ansa+=1-wa[i]-x; x+=1-wa[i]-x; } if(wa[i]+y>=0) { ansb+=1+wa[i]+y; y+=-1-wa[i]-y; } } else { if(wa[i]+x>=0) { ansa+=1+wa[i]+x; x+=-1-wa[i]-x; } if(wa[i]+y<=0) { ansb+=1-wa[i]-y; y+=1-wa[i]-y; } } } cout << min(ansa,ansb) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int main() { int n; cin>>n; vector<int> v(n); for(auto &i:v) cin>>i; long long ansq=1e17; for(int x=0;x<2;x++) { int h=x; long long int sum=0,ans=0; for(int i=0;i<n;i++) { sum+=v[i]; if(h) { if(sum<=0) { ans+= abs(1-sum); sum=1;} } else { if(sum>=0) { ans+=abs(sum+1); sum=-1; } } h = h^1; } ansq=min(ansq,ans); } cout<<ansq<<"\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n=int(input()) a=list(map(int,input().split())) ans=999999999999999 temp=True for i in range(2): count=0 temp=0 if i==0: t=True else: t=False for j in a: temp=temp+j if t==True and temp<1: count=count+1-temp temp=1 elif t==False and temp>-1: count=count+1+temp temp=-1 if t==True: t=False else: t=True ans=min(ans,count) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n, *a = map(int, open(0).read().split()) results = [] for sign in [1, -1]: ans = 0 acc = 0 for v in a: acc += v if acc * sign <= 0: ans += abs(acc - sign) acc = sign sign *= -1 results.append(ans) print(min(results))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; public class Main { public static void main (String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long sum1 = 0; long count1 = 0; long sum2 = 0; long count2 = 0; for (int i = 0; i < n; i++) { int a = sc.nextInt(); sum1 += a; sum2 += a; if (i % 2 == 0) { if (sum1 <= 0) { count1 += 1 - sum1; sum1 = 1; } if (sum2 >= 0) { count2 += sum2 + 1; sum2 = -1; } } else { if (sum2 <= 0) { count2 += 1 - sum2; sum2 = 1; } if (sum1 >= 0) { count1 += sum1 + 1; sum1 = -1; } } } System.out.println(Math.min(count1, count2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) a = list(map(int,input().split(" "))) o = [] for b in [-1,1]: c = 0 s = [0]*n for i in range(0,n): s[i] = a[i] + (i and s[i-1]) if s[i] == 0 or s[i] < 0 < b or b < 0 < s[i]: c += abs(s[i] - b) s[i] = b b *= -1 o.append(c) print(min(o))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define rep(i,n) for (int i = 0; i < (n); ++i) using namespace std; typedef long long ll; ll s1, s2, c1, c2; int main() { ll n; cin>>n; rep(i,n){ int a; cin>>a; s1 += a; s2 += a; if (i % 2) { if (s1 <= 0) c1 += 1 - s1,s1 = 1; if (s2 >= 0) c2 += 1 + s2,s2 = -1; } else { if (s1 >= 0) c1 += 1 + s1,s1 = -1; if (s2 <= 0) c2 += 1 - s2,s2 = 1; } } cout << min(c1, c2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; public class Main { public static void main (String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long valueA = 0; long countA = 0; long valueB = 0; long countB = 0; for (int i = 0; i < n; i++) { long a = sc.nextLong(); valueA += a; valueB += a; if (i % 2 == 0) { if (valueA >= 0) { countA += valueA + 1; valueA = -1; } if (valueB <= 0) { countB += -valueB + 1; valueB = 1; } } else { if (valueA <= 0) { countA += -valueA + 1; valueA = 1; } if (valueB >= 0) { countB += valueB + 1; valueB = -1; } } } if (countA < countB) { System.out.println(countA); } else { System.out.println(countB); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n=int(input()) a=list(map(int,input().split())) #+-+- ans=0 s=0 for i in range(n): f=i%2 s+=a[i] if f==0: if s<=0: ans+=-s+1 s=1 else: if s>=0: ans+=1+s s=-1 #-+-+ anss=0 s=0 for i in range(n): f=i%2 s+=a[i] if f==1: if s<=0: anss+=-s+1 s=1 else: if s>=0: anss+=1+s s=-1 print(min(ans,anss))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (auto&& ai : a) cin >> ai; long long r1 = 0, r2 = 0; long long sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i%2 == 0 && sum <= 0) { r1 += 1 - sum; sum = 1; } else if (i%2 == 1 && sum >= 0) { r1 += sum + 1; sum = -1; } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i%2 == 0 && sum >= 0) { r2 += sum + 1; sum = -1; } else if (i%2 == 1 && sum <= 0) { r2 += 1 - sum; sum = 1; } } cout << min(r1, r2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) lst = [int(x) for x in input().split()] total = [0, 0] ret = [0, 0] for i in range(2): for j in range(n): total[i] += lst[j] if (i + j) % 2 == 0: if total[i] >= 0: ret[i] += abs(total[i] + 1) total[i] = -1 else: if total[i] <= 0: ret[i] += abs(total[i] - 1) total[i] = 1 print(min(ret))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; import java.io.*; public class Main{ static final Reader sc = new Reader(); static final PrintWriter out = new PrintWriter(System.out,false); public static void main(String[] args) throws Exception { int n = sc.nextInt(); long[] a = new long[n]; for(int i=0;i<n;i++){ a[i] = sc.nextLong(); } long counter = 0; long total = a[0]; if(a[0]==0){ total++; counter++; } for(int i=1;i<n;i++){ if(total>0 && total+a[i]<0){ total += a[i]; } else if(total<0 && total+a[i]>0){ total += a[i]; } else{ long x = 0; if(total>0){ x = -1 - total - a[i]; total = -1; } else{ x = 1 - total - a[i]; total = 1; } counter += (long)Math.abs(x); } //out.println(total+" "+counter); } long total1 = 0; long counter1 = 0; if(a[0]<0){ total1 = 1; counter1 = 1 - a[0]; } else if(a[0]>0){ total1 = -1; counter1 = 1 + a[0]; } else{ total1 = -1; counter1 = 1; } for(int i=1;i<n;i++){ if(total1>0 && total1+a[i]<0){ total1 += a[i]; } else if(total1<0 && total1+a[i]>0){ total1 += a[i]; } else{ long x = 0; if(total1>0){ x = -1 - total1 - a[i]; total1 = -1; } else{ x = 1 - total1 - a[i]; total1 = 1; } counter1 += (long)Math.abs(x); } //out.println(total+" "+counter); } if(counter>counter1){ out.println(counter1); } else{ out.println(counter); } out.flush(); sc.close(); out.close(); } static void trace(Object... o) { System.out.println(Arrays.deepToString(o));} } class Reader { private final InputStream in; private final byte[] buf = new byte[1024]; private int ptr = 0; private int buflen = 0; public Reader() { this(System.in);} public Reader(InputStream source) { this.in = source;} private boolean hasNextByte() { if (ptr < buflen) return true; ptr = 0; try{ buflen = in.read(buf); }catch (IOException e) {e.printStackTrace();} if (buflen <= 0) return false; return true; } private int readByte() { if (hasNextByte()) return buf[ptr++]; else return -1;} private boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} private void skip() { while(hasNextByte() && !isPrintableChar(buf[ptr])) ptr++;} public boolean hasNext() {skip(); return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); boolean minus = false; long num = readByte(); if(num == '-'){ num = 0; minus = true; }else if (num < '0' || '9' < num){ throw new NumberFormatException(); }else{ num -= '0'; } while(true){ int b = readByte(); if('0' <= b && b <= '9') num = num * 10 + (b - '0'); else if(b == -1 || !isPrintableChar(b)) return minus ? -num : num; else throw new NoSuchElementException(); } } public int nextInt() { long num = nextLong(); if (num < Integer.MIN_VALUE || Integer.MAX_VALUE < num) throw new NumberFormatException(); return (int)num; } public double nextDouble() { return Double.parseDouble(next()); } public char nextChar() { if (!hasNext()) throw new NoSuchElementException(); return (char)readByte(); } public String nextLine() { while (hasNextByte() && (buf[ptr] == '\n' || buf[ptr] == '\r')) ptr++; if (!hasNextByte()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (b != '\n' && b != '\r') { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int[] nextIntArray(int n) { int[] res = new int[n]; for (int i=0; i<n; i++) res[i] = nextInt(); return res; } public char[] nextCharArray(int n) { char[] res = new char[n]; for (int i=0; i<n; i++) res[i] = nextChar(); return res; } public void close() {try{ in.close();}catch(IOException e){ e.printStackTrace();}}; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
// C - Sequence #include <bits/stdc++.h> using namespace std; using ll = long long; int N; vector<ll> A(100000); ll counter(int sign){//sign: (+)start -> 1, (-)start -> -1 ll c = 0; for(ll s=0, i=0; i<N; ++i, sign*=-1){ s += A[i]; if(sign*s<=0){ c += abs(s) + 1; s = sign; } } return c; } int main(){ cin>>N; for(int i=0; i<N; ++i) cin>>A[i]; ll a = counter(1), b = counter(-1); cout<< (a<b?a:b) <<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; int main(){ ll n; cin>>n; ll a[n]; for(int i=0;i<n;i++) cin>>a[i]; ll c1=0,c2=0,sum=0; for(int i=0;i<n;i++){ if(i%2==0){ sum=sum+a[i]; if(sum<0) continue; c1+=abs(-1-sum); sum=-1; } else{ sum=sum+a[i]; if(sum>0) continue; c1+=abs(1-sum); sum=1; } } sum=0; for(int i=0;i<n;i++){ if(i%2==1){ sum=sum+a[i]; if(sum<0) continue; c2+=abs(-1-sum); sum=-1; } else{ sum=sum+a[i]; if(sum>0) continue; c2+=abs(1-sum); sum=1; } } cout<<min(c1,c2)<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <vector> #include <algorithm> using namespace std; int main(){ int N; cin>>N; vector<long long> a(N); for(int i=0;i<N;i++) cin>>a[i]; int initial_sign[2]={-1,1}; vector<long long> res(2); for(int i=0;i<2;i++){ long long cumsum=0; long long current_sign=initial_sign[i]; for(int j=0;j<N;j++){ cumsum+=a[j]; if(cumsum*current_sign<=0){ res[i]+=abs(cumsum-current_sign); cumsum=current_sign; } current_sign=-1*current_sign; } } cout << min(res[0],res[1]); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<iostream> #include<vector> using namespace std; int main(){ int n; cin >> n; vector<long long> a(n+1,0); for(int i=1;i<=n;i++){ cin >> a[i]; a[i]+=a[i-1]; } long long ans=1LL<<50; for(int k=-1;k<=1;k+=2){ int sign=k; long long plus=0,minus=0; for(int i=1;i<=n;i++){ if(a[i]+plus-minus>0){ if(sign==-1) minus+=a[i]+plus-minus+1; }else if(a[i]+plus-minus<0){ if(sign==1) plus+=-(a[i]+plus-minus)+1; }else{ if(sign==-1) minus+=1; else if(sign==1) plus+=1; } sign*=-1; } if(ans>plus+minus) ans=plus+minus; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextInt(); } long count1 = 0; long sum1 = 0; // 最初の和が正 for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0 && sum1 <= 0) { count1 += (-sum1) + 1; sum1 = 1; // while (sum1 <= 0) { // sum1++; // count1++; // } } else if (i % 2 == 1 && sum1 >= 0) { count1 += sum1 + 1; sum1 = -1; // while (sum1 >= 0) { // sum1--; // count1++; // } } } long count2 = 0; long sum2 = 0; // 最初の和が負 for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0 && sum2 >= 0) { count2 += sum2 + 1; sum2 = -1; // while (sum2 >= 0) { // sum2--; // count2++; // } } else if (i % 2 == 1 && sum2 <= 0) { count2 += (-sum2) + 1; sum2 = 1; // while (sum2 <= 0) { // sum2++; // count2++; // } } } long ans = Long.min(count1, count2); System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
/* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ class Main { static long result1 = Long.MAX_VALUE; public static void main (String[] args) throws java.lang.Exception { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.next()); long[] input = new long[n]; long[] result = new long[n]; for(int i = 0; i < n; i++) { input[i] = sc.nextLong(); } counting(input, result, 0, 0, true); counting(input, result, 0, 0, false); System.out.println(result1); } public static void counting(long[] input, long[] result, long count, int index, boolean sign) { if(index > 0) { result[index] = result[index-1] + input[index]; } else { result[index] = input[index]; } if(sign) { if(result[index] <= 0) { count += Math.abs(result[index]) + 1; result[index] = result[index] + Math.abs(result[index]) + 1; } sign = false; } else { if(result[index] >= 0) { count += Math.abs(result[index]) + 1; result[index] = result[index] - Math.abs(result[index]) - 1; } sign = true; } if(index < result.length-1) { counting(input, result, count, index+1, sign); } else { if(result1 > count) { result1 = count; } } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python2
n = int(raw_input()) a = map(int, raw_input().split()) ans = [] for k in range(2): s, cur = 0, 0 for j in range(n): s += a[j] if (k+j) % 2 == 0: if s <= 0: cur += abs(1 - s) s = 1 else: if s >= 0: cur += abs(-1 - s) s = -1 ans.append(cur) print min(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n=input() a=[int(i) for i in input().split()] def chk(a,t): ans=0 x=0 for i in a: x+=i if t==True and x<1: ans+=1-x x=1 elif t==False and x>-1: ans+=x+1 x=-1 t=not t return ans print(min(chk(a,True),chk(a,False)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
import copy n=int(input()) a=[int(x) for x in input().rstrip().split()] ac=copy.deepcopy(a) now=0 ans1=0 for i in range(n): now+=a[i] if i%2==0: if now<=0: ans1+=abs(now)+1 now=1 else: if 0<=now: ans1+=abs(now)+1 now=-1 now=0 ans2=0 for i in range(n): now+=a[i] if i%2==0: if 0<=now: ans2+=abs(now)+1 now=-1 else: if now<=0: ans2+=abs(now)+1 now=1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; int main() { int n; cin >> n; vector<ll> a(n); for (int i = 0; i < n; i++) cin >> a[i]; ll ans1 = 0, ans2 = 0; ll S = 0; for (int i = 0; i < n; i++) { S += a[i]; if (i % 2 == 0 && S <= 0) { ans1 += 1 - S; S = 1ll; } else if (i % 2 == 1 && S >= 0) { ans1 += S + 1; S = -1ll; } } S = 0; for (int i = 0; i < n; i++) { S += a[i]; if (i % 2 == 1 && S <= 0) { ans2 += 1 - S; S = 1ll; } else if (i % 2 == 0 && S >= 0) { ans2 += S + 1; S = -1ll; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
from copy import copy n = int(input()) a = [int(x) for x in input().split()] ans1=[(-1)**i for i in range(n)] b=copy(a) res_b=0 sb=0 c=copy(a) res_c=0 sc=0 for i in range(n): sb+=a[i] if ans1[i]*sb>0: pass else: b[i]=ans1[i]-(sb-b[i]) sb=sb-a[i]+b[i] res_b+=abs(b[i]-a[i]) sc+=a[i] if -1*ans1[i]*sc>0: pass else: c[i]=-1*ans1[i]-(sc-c[i]) sc=sc-a[i]+c[i] res_c+=abs(c[i]-a[i]) print(min(res_b,res_c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.next()); long[] a1 = new long[n]; long[] a2 = new long[n]; for (int i = 0; i < n; i++) { long temp = Long.parseLong(sc.next()); a1[i] = temp; a2[i] = temp; } long ans1 = 0; long ans2 = 0; long temp = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && temp + a1[i] >= 0) { ans1 += temp + a1[i] + 1; a1[i] -= temp + a1[i] + 1; } if (i % 2 != 0 && temp + a1[i] <= 0) { ans1 += Math.abs(temp + a1[i] - 1); a1[i] += Math.abs(temp + a1[i] - 1); } temp += a1[i]; } temp = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && temp + a2[i] <= 0) { ans2 += Math.abs(temp + a2[i] - 1); a2[i] += Math.abs(temp + a2[i] - 1); } if (i % 2 != 0 && temp + a2[i] >= 0) { ans2 += temp + a2[i] + 1; a2[i] -= temp + a2[i] + 1; } temp += a2[i]; } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(){ int n; cin>>n; vector<int> a(n); for(int i=0; n>i; i++) cin>>a.at(i); long long sum=0,cntp=0; for(int i=0; i<n; i++){ sum = sum+a.at(i); if(i%2==0) if(sum<=0){ cntp = cntp+1-sum; sum=1; } if(i%2==1) if(sum>=0){ cntp = cntp+sum+1; sum=-1; } } long long cntm = 0; sum = 0; for(int i=0; i<n; i++){ sum = sum+a.at(i); if(i%2==1) if(sum<=0){ cntm = cntm+1-sum; sum=1; } if(i%2==0) if(sum>=0){ cntm = cntm+sum+1; sum=-1; } } cout << min(cntm,cntp) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <iostream> using namespace std; int main() { int n; cin >> n; int a[n+1]; for(int i=0;i<n;i++) cin >> a[i]; int64_t sum = 0; int c = 1; int64_t ans0 = 0, ans1 = 0; for(int i=0;i<n;i++) { sum += a[i]; if(sum * c < 1) { ans0 += 1 - sum * c; sum = c; } c *= -1; } c = -1; sum = 0; for(int i=0;i<n;i++) { sum += a[i]; if(sum * c < 1) { ans1 += 1 - sum * c; sum = c; } c *= -1; } if(ans0 < ans1) cout << ans0 << endl; else cout << ans1 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
from sys import stdin N = int(stdin.readline().rstrip()) A = [int(_) for _ in stdin.readline().rstrip().split()] def solve(s): ans, tmp = 0, 0 for i in range(N): tmp += A[i] if tmp * s <= 0: ans += abs(tmp - s) tmp = s s *= -1 return ans print(min(solve(1), solve(-1)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
N = int(input()) A = [int(x) for x in input().split()] def f(sgn): cum = 0 cnt_operation = 0 for a in A: sgn *= -1 cum += a if cum * sgn > 0: continue else: cnt_operation += abs(cum) + 1 cum = sgn return cnt_operation print(min(f(-1), f(1)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Scanner; public class Main{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = sc.nextInt(); } long plus_op = 0, minus_op = 0; // start with +, - long sum = 0; for(int i = 0; i < n; i++) { sum += a[i]; if(i % 2 == 0 && sum > 0 || i % 2 == 1 && sum < 0) continue; if(i % 2 == 0) { // + なのに - になってる -> sumを+1にもっていく plus_op += (long)Math.abs(1 - sum); sum = 1; }else { // - なのに + になってる -> sumを-1にもっていく plus_op += (long)Math.abs(sum + 1); sum = -1; } } sum = 0; for(int i = 0; i < n; i++) { sum += a[i]; if(i % 2 == 0 && sum < 0 || i % 2 == 1 && sum > 0) continue; if(i % 2 == 0) { // - なのに + になってる -> sumを-1にもっていく minus_op += (long)Math.abs(sum + 1); sum = -1; }else { // + なのに - になってる -> sumを+1にもっていく minus_op += (long)Math.abs(1 - sum); sum = 1; } } System.out.println(Math.min(plus_op, minus_op)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args){ Scanner io = new Scanner(System.in); int n = io.nextInt(); int[] a = new int[n+1]; for(int i=1;i<=n;i++){ a[i] = io.nextInt(); } // + - long sum = 0; long now=0; long border = 1; long end = 0; long ans_p=0; for(int i=1;i<=n;i++){ sum += a[i]; end = border-sum; if(border>0){ if(now<end){ ans_p += Math.abs(now-end); now = end; } }else{ if(now>end){ ans_p += Math.abs(now-end); now = end; } } border = -border; } //- + sum=0; now=0; border = -1; end = 0; long ans_m=0; for(int i=1;i<=n;i++){ sum += a[i]; end = border-sum; if(border>0){ if(now<end){ ans_m += Math.abs(now-end); now = end; } }else{ if(now>end){ ans_m += Math.abs(now-end); now = end; } } border = -border; } System.out.println(Math.min(ans_p,ans_m)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) a = list(map(int, input().split())) result = [] for i in range(2): num = 0 r = 0 for j in range(len(a)): num += a[j] if (j + i) % 2 == 0: if num <= 0: r -= num - 1 num = 1 else: if num >= 0: r += num + 1 num = -1 result.append(r) print(min(result))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) a = list(map(int,input().split())) def calc(t): ans = su = 0 for i in range(n): su += a[i] if i % 2 == t: if su > 0: pass else: x = 1 - su ans += abs(x) su = 1 else: if su < 0: pass else: x = - 1 - su ans += abs(x) su = -1 return ans print(min(calc(1), calc(0)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.IOException; import java.util.Scanner; public class Main { public static void main(String[] args) throws IOException{ Sequence solver = new Sequence(); solver.readInput(); solver.solve(); solver.writeOutput(); } static class Sequence { private int n; private long a[]; private long output; private Scanner scanner; public Sequence() { this.scanner = new Scanner(System.in); } public void readInput() { n = Integer.parseInt(scanner.next()); a = new long[n]; for(int i=0; i<n; i++) { a[i] = Integer.parseInt(scanner.next()); } } private long count(int sign) { long count=0; long sum=0; for(int i=0; i<n; i++) { sum += a[i]; if(i%2==sign) { // a[i]までの合計を正にするとき if(sum<=0) { count += 1-sum; sum = 1; } } else { // a[i]までの合計を負にするとき if(0<=sum) { count += 1+sum; sum = -1; } } } return count; } public void solve() { long count1 = count(0); long count2 = count(1); output = Math.min(count1,count2); } public void writeOutput() { System.out.println(output); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<stdio.h> #include<iostream> #include<string> #include<algorithm> using namespace std; int n; long long sum = 0; long long ans1 = 0; long long ans2 = 0; int i, j; int t = 1; int main() { cin >> n ; int a[100010]; for (i = 0; i < n; i++) { cin >> a[i]; sum += a[i]; if (sum*t <= 0) { ans1 += abs(sum-t); sum = t; } t *= -1; } t = -1; sum = 0; for (i = 0; i < n; i++) { sum += a[i]; if (sum*t <= 0) { ans2 += abs(sum - t); sum = t; } t *= -1; } printf("%lld\n", min(ans1, ans2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int main(){ long long n,a,s1=0,s2=0,c1=0,c2=0; cin>>n; for(int i=0;i<n;i++){ cin>>a; s1+=a; s2+=a; if(i%2){ if(s1<=0){ c1+=1-s1; s1=1; } if(s2>=0){ c2+=1+s2; s2=-1; } } else{ if(s1>=0){ c1+=1+s1; s1=-1; } if(s2<=0){ c2+=1-s2; s2=1; } } } cout<<min(c1,c2)<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define ll long long template<typename T> void drop(const T &x){cout<<x<<endl;exit(0);} void solve() { int n; cin >> n; ll a; vector<ll> sum(2), cnt(2); for(int i=0; i<n; ++i) { cin >> a; for(int j : {0,1}) { sum[j] += a; int d = 1 - (i+j) % 2 * 2; if(sum[j]*d <= 0) { cnt[j] += abs(d-sum[j]); sum[j] = d; } } } cout << min(cnt[0],cnt[1]) << '\n'; return; } signed main() { ios::sync_with_stdio(false); cin.tie(0); int T=1; //cin >> T; while(T--) solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Arrays; import java.util.Scanner; import java.util.stream.IntStream; public class Main { public static void main(String[] args) { try (Scanner scanner = new Scanner(System.in)) { int n = scanner.nextInt(); long[] a = IntStream.range(0, n).mapToLong(i -> scanner.nextLong()).toArray(); // sum1=[1,-1,...], sum2=[-1,1,...] int[] sum1 = new int[n], sum2 = new int[n]; Arrays.fill(sum1, 1); Arrays.fill(sum2, -1); IntStream.range(0, n / 2).forEach(i -> { sum1[2 * i + 1] = -1; sum2[2 * i + 1] = 1; }); System.out.println(Math.min(getResult(a, sum1), getResult(a, sum2))); } } /** * @param a 数値配列 * @param sum 変更したい合計値の配列 * @return 変更が必要なステップ数 */ private static long getResult(final long[] a, final int[] sum) { int n = a.length; long now = 0, result = 0; for (int i = 0; i < n; i++) { now += a[i]; if (sum[i] * now <= 0) { result += Math.abs(sum[i] - now); now = sum[i]; } } return result; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.nextInt(); long ans1 = 0; long a1n = 0; long ans2 = 0; long a2n = 0; for (int i = 0; i < n; i++) { long cn = in.nextLong(); a1n += cn; a2n += cn; if (i % 2 == 0) { ans1 += Math.max(0, -a1n + 1); a1n = Math.max(1, a1n); ans2 += Math.max(0, a2n + 1); a2n = Math.min(-1, a2n); } else { ans2 += Math.max(0, -a2n + 1); a2n = Math.max(1, a2n); ans1 += Math.max(0, a1n + 1); a1n = Math.min(-1, a1n); } } out.println(Math.min(ans1, ans2)); } } static class FastScanner { private InputStream in; private byte[] buffer = new byte[1024]; private int bufPointer; private int bufLength; public FastScanner(InputStream in) { this.in = in; } private int readByte() { if (bufPointer >= bufLength) { if (bufLength == -1) throw new InputMismatchException(); bufPointer = 0; try { bufLength = in.read(buffer); } catch (IOException e) { throw new InputMismatchException(); } if (bufLength <= 0) return -1; } return buffer[bufPointer++]; } private static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public long nextLong() { long n = 0; int b = readByte(); while (isSpaceChar(b)) b = readByte(); boolean minus = (b == '-'); if (minus) b = readByte(); while (b >= '0' && b <= '9') { n *= 10; n += b - '0'; b = readByte(); } if (!isSpaceChar(b)) throw new NumberFormatException(); return minus ? -n : n; } public int nextInt() { long n = nextLong(); if (n < Integer.MIN_VALUE || n > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) n; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) A = list(map(int,input().split())) ans = float("inf") for ii in [1, -1]: i = ii s = 0 ans0 = 0 for j in range(n): s += A[j] if s * i <= 0: ans0 += abs(s - i) s = i i = -i ans = min(ans, ans0) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.next()); ArrayList<Integer> a = new ArrayList<>(); for (int i = 0; i < n; i++) { a.add(Integer.parseInt(sc.next())); } sc.close(); long ans1 = 0; long sum1 = 0; long sign1 = 1; for (int i = 0; i < n; i++) { sum1 += a.get(i); if (sum1 * sign1 <= 0) { ans1 += Math.abs(sum1) + 1; sum1 = sign1; } sign1 *= -1; } long ans2 = 0; long sum2 = 0; long sign2 = -1; for (int i = 0; i < n; i++) { sum2 += a.get(i); if (sum2 * sign2 <= 0) { ans2 += Math.abs(sum2) + 1; sum2 = sign2; } sign2 *= -1; } System.out.println(Math.min(ans1, ans2)); } public static int[] arrayInt(Scanner sc, int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = sc.nextInt(); } return array; } public static long[] arrayLong(Scanner sc, int n) { long[] array = new long[n]; for (int i = 0; i < n; i++) { array[i] = sc.nextLong(); } return array; } public static double[] arrayDouble(Scanner sc, int n) { double[] array = new double[n]; for (int i = 0; i < n; i++) { array[i] = sc.nextDouble(); } return array; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
def c_sequence(): N = int(input()) A = [int(i) for i in input().split()] def solver(sign): ret, total = 0, 0 for a in A: total += a if sign * total <= 0: ret += abs(sign - total) # 総和がsignになるまでaを変化させる total = sign sign *= -1 return ret # 1: 奇数番目を正、偶数番目を負にする場合。 -1: その逆 return min(solver(1), solver(-1)) print(c_sequence())
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) n, *a = map(int, read().split()) ans = float('inf') for i in (-1, 1): cnt, now = 0, 0 for aa in a: now += aa if now * i <= 0: cnt += abs(now - i) now = i i *= -1 ans = min(ans, cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n=int(input()) a=map(int,input().split()) ans1,ans2=0,0 m1,m2=0,0 k=1 for i in a: m1+=i m2+=i if k: k=0 if m1>=0: ans1+=m1+1 m1=-1 if m2<=0: ans2+=1-m2 m2=1 else: k=1 if m1<=0: ans1+=1-m1 m1=1 if m2>=0: ans2+=m2+1 m2=-1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
N = int(input()) A = list(map(int,input().split())) def dfs(sign): cnt = 0 tmp = 0 for a in A: tmp += a if(tmp*sign >= 0): cnt += abs(tmp) + 1 tmp = -sign sign *= -1 return cnt print(min(dfs(1), dfs(-1)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin>>n; vector<long long> a(n); for(long long &x: a) cin>>x; long long ans_1=0,ans=0; long long sum_1=a[0],sum=a[0]; while(sum_1<=0) {sum_1++; ans_1++;} while(sum>=0) {sum--; ans++;} for(int i=1;i<n;i++){ sum_1+=a[i]; if(i%2==1){ while(sum_1>=0) {sum_1--; ans_1++;} } if(i%2==0){ while(sum_1<=0) {sum_1++; ans_1++;} } } for(int i=1;i<n;i++){ sum+=a[i]; if(i%2==1){ while(sum<=0) {sum++; ans++;} } if(i%2==0){ while(sum>=0) {sum--; ans++;} } } cout<<min(ans_1,ans)<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main(){ int n; cin >> n; ll A[n]; for(int i=0; i<n; ++i) cin >> A[i]; ll sum = 0, pm = 0, mp = 0; for(int i=0; i<n; ++i){ sum += A[i]; if(i%2 == 0 && sum <= 0){ pm += 1-sum; sum = 1; } if(i%2 != 0 && sum >= 0){ pm += 1+sum; sum = -1; } } sum = 0; for(int i=0; i<n; ++i){ sum += A[i]; if(i%2 == 0 && sum >= 0){ mp += 1+sum; sum = -1; } if(i%2 != 0 && sum <= 0){ mp += 1-sum; sum = 1; } } cout << min(pm, mp) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<iostream> #define rep(i,n) for(int i=0;i<n;++i) using namespace std; int n, a[100000]; int64_t calc(int sign) { int64_t ret = 0, sum = 0; rep(i, n) { sum += a[i]; if (sum * sign <= 0) { ret += abs(sum) + 1; sum = sign; } sign *= -1; } return ret; } int main() { cin >> n; rep(i, n) cin >> a[i]; cout << min(calc(1), calc(-1)) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define rep(i, N) for (int i = 0; i < (int)N; i++) int main () { int n; cin >> n; vector<int> a(n); rep(i,n)cin >> a[i]; ll c1 = 0, c2 = 0; ll s1 = 0, s2 = 0; for(int i = 0; i < n; i++) { s1 += a[i]; if(i % 2 == 0 && s1 <= 0) { c1 += -s1 + 1; s1 = 1; } else if(i % 2 == 1 && s1 >= 0) { c1 += s1 + 1; s1 = -1; } s2 += a[i]; if(i % 2 == 1 && s2 <= 0) { c2 += -s2 + 1; s2 = 1; } else if(i % 2 == 0 && s2 >= 0) { c2 += s2 + 1; s2 = -1; } } cout << min(c1, c2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n=int(input()) A=list(map(int,input().split())) if A[0]>0: S=A[0] ans_1=0 else: S=1 ans_1=1-A[0] for i in A[1:]: if S*(S+i)<0: S+=i else: ans_1+=abs(S+i)+1 if S<0: S=1 else: S=-1 if A[0]<0: S=A[0] ans_2=0 else: S=-1 ans_2=A[0]+1 for i in A[1:]: if S*(S+i)<0: S+=i else: ans_2+=abs(S+i)+1 if S<0: S=1 else: S=-1 print(min(ans_1,ans_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<cstdio> #include<cmath> #include<algorithm> using namespace std; typedef long long ll; int n; ll a[100000]; ll solve(ll t){ ll res = 0, sum = 0; for(int i = 0; i < n; i++, t = -t){ sum += a[i]; if(sum * t > 0) continue; res += abs(sum - t); sum += t * abs(sum - t); } return res; } int main(){ scanf("%d", &n); for(int i = 0; i < n; i++) scanf("%lld", &a[i]); ll res = solve(1); res = min(res, solve(-1)); printf("%lld\n", res); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws Exception { // Your code here! BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] str_a = br.readLine().split(" "); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(str_a[i]); } long sum = 0; long count = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { if (sum >= 0) { count += sum + 1; sum = -1; } } else { if (sum <= 0) { count += 1 - sum; sum = 1; } } } long count2 = 0; sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum >= 0) { count2 += sum + 1; sum = -1; } } else { if (sum <= 0) { count2 += 1 - sum; sum = 1; } } } System.out.println(count>=count2?count2:count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] nums = new long[n]; for(int i = 0; i < n; i++){ nums[i] = sc.nextLong(); } long result = 0; long sum = 0; // + - + - for(int i = 0; i < n; i++){ if(i % 2 == 0 && sum + nums[i] <= 0){ result += Math.abs(1 - (sum + nums[i])); sum = 1; } else if(i % 2 == 1 && sum + nums[i] >= 0){ result += Math.abs(-1 - (sum + nums[i])); sum = -1; } else{ sum += nums[i]; } } long result2 = 0; sum = 0; // - + - + for(int i = 0; i < n; i++){ if(i % 2 == 1 && sum + nums[i] <= 0){ result2 += Math.abs(1 - (sum + nums[i])); sum = 1; } else if(i % 2 == 0 && sum + nums[i] >= 0){ result2 += Math.abs(-1 - (sum + nums[i])); sum = -1; } else{ sum += nums[i]; } } System.out.println(Math.min(result, result2)); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); long[] a=new long[n]; for(int i=0;i<n;i++)a[i]=sc.nextLong(); long sum=0; long cost1=0; long cost2=0; //+-+-の順番のコスト for(int i=0;i<n;i++){ if(i%2==0 && sum+a[i]<=0){ cost1+=-(sum+a[i]-1); sum=1; }else if(i%2!=0 && sum+a[i]>=0){ cost1+=sum+a[i]+1; sum=-1; }else{ sum+=a[i]; } } sum=0; //-+-+の順番のコスト for(int i=0;i<n;i++){ if(i%2==0 && sum+a[i]>=0){ cost2+=sum+a[i]+1; sum=-1; }else if(i%2!=0 && sum+a[i]<=0){ cost2+=-(sum+a[i]-1); sum=1; }else{ sum+=a[i]; } } System.out.println(Math.min(cost1, cost2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) a = list(map(int, input().split())) def check(flag): acc = 0 cnt = 0 flag = flag for i in a: acc += i if (flag == 1 and flag > acc) or (flag == -1 and flag < acc) or i == 0: cnt += abs(flag - acc) acc = flag flag *= -1 return cnt print(min(check(1), check(-1)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; using ll = long long; int main() { ll n; cin >> n; ll ans = 1e18; vector<ll> a(n); for(int i = 0;i<n;i++)cin >> a[i]; for(int aaa = 0;aaa<2;aaa++) { if(aaa)for(auto &i:a)i = -i; ll sum = 0; ll now = 0; for(int i = 0;i<n;i++) { sum += a[i]; if(i%2)//負になるようにする { now += max(0LL,sum-(-1)); sum = min<ll>(-1,sum); } else//正になるようにする { now += max(0LL,(1)-sum); sum = max<ll>(1,sum); } } ans = min<ll>(now,ans); } cout<<ans<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; #define LL long long LL ans1,ans2,sum; int n; int a[100010]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); sum=0; for(int i=1,s=1;i<=n;i++,s*=-1){ sum+=a[i]; if(sum*s<=0) ans1+=abs(sum-s),sum=s; } sum=0; for(int i=1,s=-1;i<=n;i++,s*=-1){ sum+=a[i]; if(sum*s<=0) ans2+=abs(sum-s),sum=s; } printf("%lld\n",min(ans1,ans2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define ll long long #define vl vector<ll> #define pl pair<ll,ll> #define FOR(i,a,b) for(ll i=a;i<b;i++) #define rep(i,b) for(ll i=0;i<b;i++) #define RFOR(i,a,b) for(ll i=b-1;i>=a;i--) #define rsort(v) sort((v).rbegin(), (v).rend()) #define all(v) (v).begin(),(v).end() using namespace std; ll mod=1000000007; signed main(){ ll n,s,sum,ans=0,ans2=0; cin>>n; vl a(n); rep(i,n)cin>>a[i]; sum = 0,s=1; rep(i,n){ s*=-1; sum += a[i]; if(sum * s <= 0)ans+=abs(sum-s),sum=s; } sum = 0,s=-1; rep(i,n){ s*=-1; sum += a[i]; if(sum * s <= 0)ans2+=abs(sum-s),sum=s; } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) { Solver solver = new Solver(); solver.solve(); solver.exit(); } static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} private void skipUnprintable() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;} public boolean hasNext() { skipUnprintable(); return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b)){ return minus ? -n : n; }else{ throw new NumberFormatException(); } b = readByte(); } } } static class Solver { FastScanner sc = new FastScanner(); public Solver() { } String ns() { return sc.next(); } String[] ns(int n) { String a[] = new String[n]; for(int i = 0; i < n; i ++) { a[i] = ns(); } return a; } String[][] ns(int n, int m) { String a[][] = new String[n][m]; for(int i = 0; i < n; i ++) { a[i] = ns(m); } return a; } char[] nc(int n) { String str = ns(); char a[] = new char[str.length()]; for(int i = 0; i < str.length(); i ++) { a[i] = str.charAt(i); } return a; } char[][] nc(int n, int m) { char a[][] = new char[n][m]; for(int i = 0; i < n; i ++) { a[i] = nc(m); } return a; } boolean[] nb(int n, char t) { boolean a[] = new boolean[n]; char c[] = nc(n); for(int i = 0; i < n; i ++) { a[i] = c[i] == t; } return a; } boolean[][] nb(int n, int m, char t) { boolean a[][] = new boolean[n][m]; for(int i = 0; i < n; i ++) { a[i] = nb(m, t); } return a; } int ni() { return (int)sc.nextLong(); } int[] ni(int n) { int a[] = new int[n]; for(int i = 0; i < n; i ++) { a[i] = ni(); } return a; } int[][] ni(int n, int m) { int a[][] = new int[n][m]; for(int i = 0; i < n; i ++) { a[i] = ni(m); } return a; } long nl() { return sc.nextLong(); } long[] nl(int n) { long a[] = new long[n]; for(int i = 0; i < n; i ++) { a[i] = nl(); } return a; } long[][] nl(int n, int m) { long a[][] = new long[n][m]; for(int i = 0; i < n; i ++) { a[i] = nl(m); } return a; } PrintWriter out = new PrintWriter(System.out); PrintWriter err = new PrintWriter(System.err); void prt() { out.print(""); } <T> void prt(T a) { out.print(a); } void prtln() { out.println(""); } <T> void prtln(T a) { out.println(a); } void prtln(int... a) { StringBuilder sb = new StringBuilder(); for(int element : a){ sb.append(element+" "); } prtln(sb.toString().trim()); } void prtln(long... a) { StringBuilder sb = new StringBuilder(); for(long element : a){ sb.append(element+" "); } prtln(sb.toString().trim()); } void prtln(double... a) { StringBuilder sb = new StringBuilder(); for(double element : a){ sb.append(element+" "); } prtln(sb.toString().trim()); } void prtln(String... a) { StringBuilder sb = new StringBuilder(); for(String element : a){ sb.append(element+" "); } prtln(sb.toString().trim()); } void prtln(char... a) { StringBuilder sb = new StringBuilder(); for(char element : a){ sb.append(element); } prtln(sb.toString().trim()); } void prtln(int[][] a) { for(int[] element : a){ prtln(element); } } void prtln(long[][] a) { for(long[] element : a){ prtln(element); } } void prtln(double[][] a) { for(double[] element : a){ prtln(element); } } void prtln(String[][] a) { for(String[] element : a){ prtln(element); } } void prtln(char[][] a) { for(char[] element : a){ prtln(element); } } void errprt() { err.print(""); } <T> void errprt(T a) { err.print(a); } void errprt(boolean a) { errprt(a ? "#" : "."); } void errprtln() { err.println(""); } <T> void errprtln(T a) { err.println(a); } void errprtln(boolean a) { errprtln(a ? "#" : "."); } void errprtln(int... a) { StringBuilder sb = new StringBuilder(); for(int element : a){ sb.append(element+" "); } errprtln(sb.toString().trim()); } void errprtln(long... a) { StringBuilder sb = new StringBuilder(); for(long element : a){ sb.append(element+" "); } errprtln(sb.toString().trim()); } void errprtln(double... a) { StringBuilder sb = new StringBuilder(); for(double element : a){ sb.append(element+" "); } errprtln(sb.toString().trim()); } void errprtln(String... a) { StringBuilder sb = new StringBuilder(); for(String element : a){ sb.append(element+" "); } errprtln(sb.toString().trim()); } void errprtln(char... a) { StringBuilder sb = new StringBuilder(); for(char element : a){ sb.append(element); } errprtln(sb.toString().trim()); } void errprtln(boolean... a) { StringBuilder sb = new StringBuilder(); for(boolean element : a){ sb.append((element ? "#" : ".")+" "); } errprtln(sb.toString().trim()); } void errprtln(int[][] a) { for(int[] element : a){ errprtln(element); } } void errprtln(long[][] a) { for(long[] element : a){ errprtln(element); } } void errprtln(double[][] a) { for(double[] element : a){ errprtln(element); } } void errprtln(String[][] a) { for(String[] element : a){ errprtln(element); } } void errprtln(char[][] a) { for(char[] element : a){ errprtln(element); } } void errprtln(boolean[][] a) { for(boolean[] element : a){ errprtln(element); } } void reply(boolean b) { prtln(b ? "Yes" : "No"); } void REPLY(boolean b) { prtln(b ? "YES" : "NO"); } void flush() { out.flush(); err.flush(); } void exit() { flush(); System.exit(0); } int min(int a, int b) { return Math.min(a, b); } long min(long a, long b) { return Math.min(a, b); } double min(double a, double b) { return Math.min(a, b); } int min(int... x) { int min = x[0]; for(int val : x) { min = min(min, val); } return min; } long min(long... x) { long min = x[0]; for(long val : x) { min = min(min, val); } return min; } double min(double... x) { double min = x[0]; for(double val : x) { min = min(min, val); } return min; } int max(int a, int b) { return Math.max(a, b); } long max(long a, long b) { return Math.max(a, b); } double max(double a, double b) { return Math.max(a, b); } int max(int... x) { int max = x[0]; for(int val : x) { max = max(max, val); } return max; } long max(long... x) { long max = x[0]; for(long val : x) { max = max(max, val); } return max; } double max(double... x) { double max = x[0]; for(double val : x) { max = max(max, val); } return max; } long sum(int... a) { long sum = 0; for(int element : a) { sum += element; } return sum; } long sum(long... a) { long sum = 0; for(long element : a) { sum += element; } return sum; } double sum(double... a) { double sum = 0; for(double element : a) { sum += element; } return sum; } long abs(double x) { return (long)Math.abs(x); } long round(double x) { return Math.round(x); } long floor(double x) { return (long)Math.floor(x); } long ceil(double x) { return (long)Math.ceil(x); } double sqrt(double x) { return Math.sqrt(x); } double pow(double x, double y) { return Math.pow(x, y); } long pow(long x, long y) { return (long)Math.pow(x, y); } int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } long lcm(long a, long b) { return a * b / gcd(a, b); } int upperToInt(char a) { return a - 'A'; } int lowerToInt(char a) { return a - 'a'; } int charToInt(char a) { return a >= 'a' ? lowerToInt(a) : upperToInt(a); } char intToUpper(int a) { return (char)(a + 'A'); } char intToLower(int a) { return (char)(a + 'a'); } long[] div(long a) { List<Long> divList = new ArrayList<Long>(); for(long i = 1; i * i <= a; i ++) { if(a % i == 0) { divList.add(i); if(i * i != a) { divList.add(a / i); }; } } long div[] = new long[divList.size()]; for(int i = 0; i < divList.size(); i ++) { div[i] = divList.get(i); } return div; } long[][] factor(long a) { List<Long> factorList = new ArrayList<Long>(); List<Long> degreeList = new ArrayList<Long>(); for(long i = 2; i * i <= a; i ++) { if(a % i == 0) { long count = 0; while(a % i == 0) { a /= i; count ++; } factorList.add(i); degreeList.add(count); } } if(a > 1) { factorList.add(a); degreeList.add(1L); } long factor[][] = new long[factorList.size()][2]; for(int i = 0; i < factorList.size(); i ++) { factor[i][0] = factorList.get(i); factor[i][1] = degreeList.get(i); } return factor; } long[][] countElements(long[] a, boolean sort) { int len = a.length; long array[] = new long[len]; for(int i = 0; i < len; i ++) { array[i] = a[i]; } if(sort) { Arrays.sort(array); } List<Long> elem = new ArrayList<Long>(); List<Long> cnt = new ArrayList<Long>(); long tmp = 1; for(int i = 1; i <= len; i ++) { if(i == len || array[i] != array[i - 1]) { elem.add(array[i - 1]); cnt.add(tmp); tmp = 1; }else { tmp ++; } } long counts[][] = new long[elem.size()][2]; for(int i = 0; i < elem.size(); i ++) { counts[i][0] = elem.get(i); counts[i][1] = cnt.get(i); } return counts; } long[][] countElements(String str, boolean sort) { int len = str.length(); char array[] = str.toCharArray(); if(sort) { Arrays.sort(array); } List<Long> elem = new ArrayList<Long>(); List<Long> cnt = new ArrayList<Long>(); long tmp = 1; for(int i = 1; i <= len; i ++) { if(i == len || array[i] != array[i - 1]) { elem.add((long)array[i - 1]); cnt.add(tmp); tmp = 1; }else { tmp ++; } } long counts[][] = new long[elem.size()][2]; for(int i = 0; i < elem.size(); i ++) { counts[i][0] = elem.get(i); counts[i][1] = cnt.get(i); } return counts; } int numDigits(long a) { return Long.toString(a).length(); } long bitFlag(int a) { return 1L << (long)a; } boolean isFlagged(long x, int a) { return (x & bitFlag(a)) != 0; } long countString(String str, String a) { return (str.length() - str.replace(a, "").length()) / a.length(); } long countStringAll(String str, String a) { return str.length() - str.replaceAll(a, "").length(); } void reverse(String array[]) { String reversed[] = new String[array.length]; for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; } for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; } } void reverse(int array[]) { int reversed[] = new int[array.length]; for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; } for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; } } void reverse(long array[]) { long reversed[] = new long[array.length]; for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; } for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; } } void reverse(double array[]) { double reversed[] = new double[array.length]; for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; } for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; } } void reverse(boolean array[]) { boolean reversed[] = new boolean[array.length]; for(int i = 0; i < array.length; i ++) { reversed[array.length - i - 1] = array[i]; } for(int i = 0; i < array.length; i ++) { array[i] = reversed[i]; } } void fill(int array[], int x) { Arrays.fill(array, x); } void fill(long array[], long x) { Arrays.fill(array, x); } void fill(double array[], double x) { Arrays.fill(array, x); } void fill(boolean array[], boolean x) { Arrays.fill(array, x); } void fill(int array[][], int x) { for(int a[] : array) { fill(a, x); } } void fill(long array[][], long x) { for(long a[] : array) { fill(a, x); } } void fill(double array[][], double x) { for(double a[] : array) { fill(a, x); } } void fill(boolean array[][], boolean x) { for(boolean a[] : array) { fill(a, x); } } void fill(int array[][][], int x) { for(int a[][] : array) { fill(a, x); } } void fill(long array[][][], long x) { for(long a[][] : array) { fill(a, x); } } void fill(double array[][][], double x) { for(double a[][] : array) { fill(a, x); } } void fill(boolean array[][][], boolean x) { for(boolean a[][] : array) { fill(a, x); } } long INF = (long)1e15; boolean isINF(long a) { return abs(a) > INF / 1000; } boolean isPlusINF(long a) { return a > 0 && isINF(a); } boolean isMinusINF(long a) { return isPlusINF(- a); } // mods long MOD = (long)1e9 + 7; // 998244353; public long mod(long i) { return i % MOD + ((i % MOD) < 0 ? MOD : 0); } long pow_m(long x, long y) { if (y == 0) { return 1; }else { long tmp = pow_m(x, y / 2); return mod(mod(tmp * tmp) * (y % 2 == 0 ? 1 : x)); } } long inv(long x) { return pow_m(x, MOD - 2); } int MAX_FACT = 5_000_100; long fact[]; long invFact[]; void prepareFact() { fact = new long[MAX_FACT]; Arrays.fill(fact, 0); invFact = new long[MAX_FACT]; Arrays.fill(invFact, 0); fact[0] = 1; int maxIndex = min(MAX_FACT, (int)MOD); for(int i = 1; i < maxIndex; i ++) { fact[i] = mod(fact[i - 1] * i); } invFact[maxIndex - 1] = inv(fact[maxIndex - 1]); for(int i = maxIndex - 1; i > 0; i --) { invFact[i - 1] = mod(invFact[i] * i); } } long P(int n, int r) { if(n < 0 || r < 0 || n < r) { return 0; } return mod(fact[n] * invFact[n - r]); } long C(int n, int r) { if(n < 0 || r < 0 || n < r) { return 0; } return mod(P(n, r) * invFact[r]); } long H(int n, int r) { return C((n - 1) + r, r); } // grid class Grid implements Comparable<Grid> { int h; int w; long val; Grid() { } Grid(int h, int w) { this.h = h; this.w = w; } Grid(int h, int w, long val) { this.h = h; this.w = w; this.val = val; } @Override public int compareTo(Grid g) { return Long.compare(this.val, g.val); } } // graph class Graph { int numNode; int numEdge; boolean directed; Edge edges[]; Node nodes[]; Node reversedNodes[]; Graph(int numNode, int numEdge, Edge edges[], boolean directed) { this.numNode = numNode; this.numEdge = numEdge; this.directed = directed; this.edges = edges; nodes = new Node[numNode]; reversedNodes = new Node[numNode]; for(int i = 0; i < numNode; i ++) { nodes[i] = new Node(i); reversedNodes[i] = new Node(i); } for(Edge edge : edges) { nodes[edge.source].add(edge.target, edge.cost); if(directed) { reversedNodes[edge.target].add(edge.source, edge.cost); }else { nodes[edge.target].add(edge.source, edge.cost); } } } void clearNodes() { for(Node n : nodes) { n.clear(); } for(Node n : reversedNodes) { n.clear(); } } } class Node { int id; ArrayList<Edge> edges = new ArrayList<Edge>(); Node(int id) { this.id = id; } void add(int target, long cost) { edges.add(new Edge(id, target, cost)); } void clear() { edges.clear(); } } class Edge implements Comparable<Edge> { int source; int target; long cost; Edge(int source, int target, long cost) { this.source = source; this.target = target; this.cost = cost; } @Override public int compareTo(Edge e) { return Long.compare(this.cost, e.cost); } } public void solve() { int num = ni(); long a[] = nl(num); long ans = INF; for(int x = 0; x < 2; x ++) { long cnt = 0; long sum = 0; boolean plus = x == 0; for(int i = 0; i < num; i ++) { sum += a[i]; if(plus) { if(sum <= 0) { cnt += 1 - sum; sum = 1; } }else { if(sum >= 0) { cnt += sum + 1; sum = -1; } } plus = !plus; } ans = min(ans, cnt); } prtln(ans); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.*; import java.util.*; public class Main { static StringBuilder sb = new StringBuilder(); static FastScanner sc = new FastScanner(System.in); static int INF = 12345678; static long MOD = 1000000007; static int[] y4 = {0, 1, 0, -1}; static int[] x4 = {1, 0, -1, 0}; static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1}; static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1}; static long[] F;//factorial static boolean[] isPrime; static int[] primes; static char[][] map; static int N, M; static long T; static int[] A; public static void main(String[] args) { int n = sc.nextInt(); long[] a = sc.nextLongArray(n); long ans_1 = 0;//初期値正 long ans_2 = 0; long sum_1 = 0; long sum_2 = 0; for (int i = 0; i < n; i++) { if(i%2==1){ if(sum_1 + a[i] >= 0){ ans_1 += abs(sum_1 + a[i]) + 1; sum_1 = -1; }else{ sum_1 += a[i]; } if(sum_2 + a[i] <= 0){ ans_2 += abs(sum_2 + a[i]) + 1; sum_2 = 1; }else{ sum_2 += a[i]; } }else{ if(sum_2 + a[i] >= 0){ ans_2 += abs(sum_2 + a[i]) + 1; sum_2 = -1; }else{ sum_2 += a[i]; } if(sum_1 + a[i] <= 0){ ans_1 += abs(sum_1 + a[i]) + 1; sum_1 = 1; }else{ sum_1 += a[i]; } } } System.out.println(min(ans_1,ans_2)); } static class Dijkstra { long initValue = -1; Node[] nodes; int n; long[] d; Dijkstra(int n) { this.n = n; nodes = new Node[n]; for (int i = 0; i < n; i++) nodes[i] = new Node(i); d = new long[n]; Arrays.fill(d, initValue); } Dijkstra(int n, int edge, boolean isDirectedGraph) { this.n = n; nodes = new Node[n]; for (int i = 0; i < n; i++) nodes[i] = new Node(i); d = new long[n]; Arrays.fill(d, initValue); if (isDirectedGraph) { for (int ei = 0; ei < edge; ei++) { int f = sc.nextInt() - 1; int t = sc.nextInt() - 1; long c = sc.nextLong(); addEdge(f, t, c); } } else { for (int ei = 0; ei < edge; ei++) { int f = sc.nextInt() - 1; int t = sc.nextInt() - 1; long c = sc.nextLong(); addEdge(f, t, c); addEdge(t, f, c); } } } void addEdge(int f, int t, long c) { nodes[f].edges.add(new Edge(t, c)); } long[] solve(int s) { d[s] = 0; //最短距離と頂点を持つ PriorityQueue<Dis> q = new PriorityQueue<>(); q.add(new Dis(s, 0)); while (!q.isEmpty()) { Dis now = q.poll(); int nowId = now.p; long nowC = now.cos; for (Edge edge : nodes[nowId].edges) { int to = edge.toId; long needsCost = edge.toCost + nowC; if (d[to] == initValue || needsCost < d[to]) { d[to] = needsCost; q.add(new Dis(to, needsCost)); } } } return d; } //O( E ^ 2) 辺が密の時用 long[] solve2(int s) { boolean[] used = new boolean[n]; long[][] cost = new long[n][n]; Main.fill(cost, initValue); Arrays.fill(d, initValue); d[s] = 0; for (Node node : nodes) { for (Edge edge : node.edges) { int fromId = node.id; int toId = edge.toId; long toCost = edge.toCost; cost[fromId][toId] = toCost; } } while (true) { int v = -1; //まだ使われていない頂点のうち、距離が最小のものを探す。 for (int u = 0; u < n; u++) if (!used[u] && (v == -1 || d[u] < d[v])) v = u; if (v == -1) break; used[v] = true; for (int u = 0; u < n; u++) d[u] = Math.min(d[u], d[v] + cost[v][u]); } return d; } static class Dis implements Comparable<Dis> { //現在地点 最短距離 int p; long cos; Dis(int p, long cost) { this.p = p; cos = cost; } public int compareTo(Dis d) { if (cos != d.cos) { if (cos > d.cos) return 1; else if (cos == d.cos) return 0; else return -1; } else { return p - d.p; } } } static class Node { int id; List<Edge> edges; Node(int id) { edges = new ArrayList<>(); this.id = id; } } static class Edge { int toId; long toCost; Edge(int id, long cost) { toId = id; toCost = cost; } } } public static long toLong(int[] ar) { long res = 0; for (int i : ar) { res *= 10; res += i; } return res; } public static int toInt(int[] ar) { int res = 0; for (int i : ar) { res *= 10; res += i; } return res; } //k個の次の組み合わせをビットで返す 大きさに上限はない 110110 -> 111001 public static int nextCombSizeK(int comb, int k) { int x = comb & -comb; //最下位の1 int y = comb + x; //連続した下の1を繰り上がらせる return ((comb & ~y) / x >> 1) | y; } public static int keta(long num) { int res = 0; while (num > 0) { num /= 10; res++; } return res; } public static long getHashKey(int a, int b) { return (long) a << 32 | b; } public static boolean isOutofIndex(int x, int y) { if (x < 0 || y < 0) return true; if (map[0].length <= x || map.length <= y) return true; return false; } public static void setPrimes() { int n = 100001; isPrime = new boolean[n]; List<Integer> prs = new ArrayList<>(); Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for (int i = 2; i * i <= n; i++) { if (!isPrime[i]) continue; prs.add(i); for (int j = i * 2; j < n; j += i) { isPrime[j] = false; } } primes = new int[prs.size()]; for (int i = 0; i < prs.size(); i++) primes[i] = prs.get(i); } public static void revSort(int[] a) { Arrays.sort(a); reverse(a); } public static void revSort(long[] a) { Arrays.sort(a); reverse(a); } public static int[][] copy(int[][] ar) { int[][] nr = new int[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) for (int j = 0; j < ar[0].length; j++) nr[i][j] = ar[i][j]; return nr; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int lowerBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int upperBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long lowerBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long upperBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } //次の順列に書き換える、最大値ならfalseを返す public static boolean nextPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] < A[pos + 1]) break; } if (pos == -1) return false; //posより大きい最小の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] > A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //次の順列に書き換える、最小値ならfalseを返す public static boolean prevPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] > A[pos + 1]) break; } if (pos == -1) return false; //posより小さい最大の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] < A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //↓nCrをmod計算するために必要。 ***factorial(N)を呼ぶ必要がある*** static long ncr(int n, int r) { if (n < r) return 0; else if (r == 0) return 1; factorial(n); return F[n] / (F[n - r] * F[r]); } static long ncr2(int a, int b) { if (b == 0) return 1; else if (a < b) return 0; long res = 1; for (int i = 0; i < b; i++) { res *= a - i; res /= i + 1; } return res; } static long ncrdp(int n, int r) { if (n < r) return 0; long[][] dp = new long[n + 1][r + 1]; for (int ni = 0; ni < n + 1; ni++) { dp[ni][0] = dp[ni][ni] = 1; for (int ri = 1; ri < ni; ri++) { dp[ni][ri] = dp[ni - 1][ri - 1] + dp[ni - 1][ri]; } } return dp[n][r]; } static long modNcr(int n, int r) { if (n < r) return 0; long result = F[n]; result = result * modInv(F[n - r]) % MOD; result = result * modInv(F[r]) % MOD; return result; } public static long modSum(long... lar) { long res = 0; for (long l : lar) res = (res + l % MOD) % MOD; return res; } public static long modDiff(long a, long b) { long res = a - b; if (res < 0) res += MOD; res %= MOD; return res; } public static long modMul(long... lar) { long res = 1; for (long l : lar) res = (res * l) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiv(long a, long b) { long x = a % MOD; long y = b % MOD; long res = (x * modInv(y)) % MOD; return res; } static long modInv(long n) { return modPow(n, MOD - 2); } static void factorial(int n) { F = new long[n + 1]; F[0] = F[1] = 1; // for (int i = 2; i <= n; i++) // { // F[i] = (F[i - 1] * i) % MOD; // } // for (int i = 2; i <= 100000; i++) { F[i] = (F[i - 1] * i) % MOD; } for (int i = 100001; i <= n; i++) { F[i] = (F[i - 1] * i) % MOD; } } static long modPow(long x, long n) { long res = 1L; while (n > 0) { if ((n & 1) == 1) { res = res * x % MOD; } x = x * x % MOD; n >>= 1; } return res; } //↑nCrをmod計算するために必要 static int gcd(int n, int r) { return r == 0 ? n : gcd(r, n % r); } static long gcd(long n, long r) { return r == 0 ? n : gcd(r, n % r); } static <T> void swap(T[] x, int i, int j) { T t = x[i]; x[i] = x[j]; x[j] = t; } static void swap(int[] x, int i, int j) { int t = x[i]; x[i] = x[j]; x[j] = t; } public static void reverse(int[] x) { int l = 0; int r = x.length - 1; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(long[] x) { int l = 0; int r = x.length - 1; while (l < r) { long temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(int[] x, int s, int e) { int l = s; int r = e; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } static int length(int a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int length(long a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int cou(boolean[] a) { int res = 0; for (boolean b : a) { if (b) res++; } return res; } static int cou(String s, char c) { int res = 0; for (char ci : s.toCharArray()) { if (ci == c) res++; } return res; } static int countC2(char[][] a, char c) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == c) co++; return co; } static int countI(int[] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) if (a[i] == key) co++; return co; } static int countI(int[][] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == key) co++; return co; } static void fill(int[][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(long[][] a, long v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(int[][][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) for (int k = 0; k < a[0][0].length; k++) a[i][j][k] = v; } static int max(int... a) { int res = Integer.MIN_VALUE; for (int i : a) { res = Math.max(res, i); } return res; } static long max(long... a) { long res = Long.MIN_VALUE; for (long i : a) { res = Math.max(res, i); } return res; } static int max(int[][] ar) { int res = Integer.MIN_VALUE; for (int i[] : ar) res = Math.max(res, max(i)); return res; } static int min(int... a) { int res = Integer.MAX_VALUE; for (int i : a) { res = Math.min(res, i); } return res; } static long min(long... a) { long res = Long.MAX_VALUE; for (long i : a) { res = Math.min(res, i); } return res; } static int min(int[][] ar) { int res = Integer.MAX_VALUE; for (int i[] : ar) res = Math.min(res, min(i)); return res; } static int sum(int[] a) { int cou = 0; for (int i : a) cou += i; return cou; } static int abs(int a) { return Math.abs(a); } static long abs(long a) { return Math.abs(a); } static class FastScanner { private BufferedReader reader = null; private StringTokenizer tokenizer = null; public FastScanner(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); tokenizer = null; } public String next() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } /*public String nextChar(){ return (char)next()[0]; }*/ public String nextLine() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken("\n"); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public int[] nextIntArrayDec(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt() - 1; } return a; } public int[][] nextIntArray2(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextInt(); } } return a; } public int[][] nextIntArray2Dec(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextInt() - 1; } } return a; } //複数の配列を受け取る public void nextIntArrays2ar(int[] a, int[] b) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt(); b[i] = sc.nextInt(); } } public void nextIntArrays2arDec(int[] a, int[] b) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt() - 1; b[i] = sc.nextInt() - 1; } } //複数の配列を受け取る public void nextIntArrays3ar(int[] a, int[] b, int[] c) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt(); b[i] = sc.nextInt(); c[i] = sc.nextInt(); } } //複数の配列を受け取る public void nextIntArrays3arDecLeft2(int[] a, int[] b, int[] c) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt() - 1; b[i] = sc.nextInt() - 1; c[i] = sc.nextInt(); } } public Integer[] nextIntegerArray(int n) { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public char[] nextCharArray(int n) { char[] a = next().toCharArray(); return a; } public char[][] nextCharArray2(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = next().toCharArray(); } return a; } //スペースが入っている場合 public char[][] nextCharArray2s(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = nextLine().replace(" ", "").toCharArray(); } return a; } public char[][] nextWrapCharArray2(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + next() + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } //スペースが入ってる時用 public char[][] nextWrapCharArray2s(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + nextLine().replace(" ", "") + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public long[][] nextLongArray2(int h, int w) { long[][] a = new long[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextLong(); } } return a; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
def re(k1,l,s): r=0 for i in range(0,n): if s==1: s=0 k1+=l[i] if k1>=0: r+=k1+1 k1=-1 continue if s==0: s=1 k1+=l[i] if k1<=0: r+=abs(k1)+1 k1=1 return r n=int(input()) l=list(map(int,input().split())) ans=0 k1=0 ans=min(re(k1,l,1),re(k1,l,0)) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int[] A = new int[N + 1]; A[0] = 0; for (int i= 1; i <= N; ++i) { A[i] = sc.nextInt(); } sc.close(); long sum1 = 0; long sum2 = 0; long ans1 = 0; long ans2 = 0; for (int i= 1; i <= N; ++i) { sum1 += A[i]; if (i % 2 == 0 && sum1 >= 0) { ans1 += Math.abs(sum1) +1; sum1 = -1; } else if (i % 2 != 0 && sum1 <= 0) { ans1 += Math.abs(sum1) + 1; sum1 = 1; } } for (int i= 1; i <= N; ++i) { sum2 += A[i]; if (i % 2 == 0 && sum2 <= 0) { ans2 += Math.abs(sum2) +1; sum2 = 1; } else if (i % 2 != 0 && sum2 >= 0) { ans2 += Math.abs(sum2) + 1; sum2 = -1; } } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Scanner; import java.util.Arrays; public class Main{ static int n; static long[] a; static final boolean DEBUG = false; public static void main(String[] args){ Scanner sc = new Scanner(System.in); n = sc.nextInt(); a = new long[n]; for(int i = 0; i < n; i++){ a[i] = sc.nextInt(); } long count = 0, count2 = 0; long sum = a[0]; long sum2 = a[0] < 0 ? 1 : -1; count2 = Math.abs(sum2 - a[0]); if(a[0] == 0){ sum = 1; count = count2 = 1; sum2 = -1; } for(int i = 1; i < n; i++){ long val = a[i], val2 = a[i]; if(!((sum > 0 && sum + a[i] < 0) || (sum < 0 && sum + a[i] > 0))){ val = -sum + ((sum < 0) ? 1 : -1); count += Math.abs(val - a[i]); } if(!((sum2 > 0 && sum2 + a[i] < 0) || (sum2 < 0 && sum2 + a[i] > 0))){ val2 = -sum2 + ((sum2 < 0) ? 1 : -1); count2 += Math.abs(val2 - a[i]); } sum += val; sum2 += val2; } if(DEBUG){ System.out.println(Arrays.toString(a)); } System.out.println(Math.min(count, count2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
//package AtCoder.Indeed10; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; public class Main { public static void main(String[] args) { int n = in.NI(); List<Long> q = new ArrayList<>(n); for (int i=0;i<n;i++) q.add(in.NL()); long fans = Long.MAX_VALUE; long sign = 1; long presum = 0; long ans = func(n, q, sign, presum); fans = Long.min(fans, ans); sign = -1; presum = 0; ans = func(n, q, sign, presum); fans = Long.min(fans, ans); out.println(fans); out.close(); } private static long func(final int n, final List<Long> q, long sign, long presum) { long ans =0; for (int i=0;i<n;i++) { presum+=q.get(i); if (presum*sign > 0) { sign = sign*-1L; continue; } if (presum==0) { if (sign==1) {ans++; presum++;} else {ans++; presum--;} } else if (presum>0) { ans += (1+presum); presum = -1; } else { ans += (1-presum); presum = 1; } sign = sign * -1L; } return ans; } static InputStream inputStream = System.in; static OutputStream outputStream = System.out; static InputReader in = new InputReader(inputStream); static PrintWriter out = new PrintWriter(outputStream); static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int NI() { return Integer.parseInt(next()); } public long NL() { return Long.parseLong(next()); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.lang.Character.Subset; import java.math.BigDecimal; import java.text.DecimalFormat; import java.time.temporal.ValueRange; import java.util.AbstractMap; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparator; import java.util.Deque; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.Objects; import java.util.PriorityQueue; import java.util.Queue; import java.util.Set; import java.util.Stack; import java.util.TreeMap; import java.util.TreeSet; import static java.util.Comparator.*; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; MyInput in = new MyInput(inputStream); PrintWriter out = new PrintWriter(outputStream); Solver solver = new Solver(in, out); solver.solve(); out.close(); } // ====================================================================== static class Solver { MyInput in; PrintWriter out; public Solver(MyInput in, PrintWriter out) { this.in = in; this.out = out; } // ====================================================================== public void solve() { int N = ni(); long a, sum_P = 0, sum_M=0, cnt_P = 0, cnt_M = 0;; for (int i = 0; i < N; i++) { a = nl(); if(i % 2 == 0) { sum_P += a; if(sum_P <= 0) { cnt_P += (-sum_P + 1); sum_P = 1; } sum_M += a; if(sum_M >= 0) { cnt_M += (sum_M + 1); sum_M = -1; } } else { sum_P += a; if(sum_P >= 0) { cnt_P += (sum_P + 1); sum_P = -1; } sum_M += a; if(sum_M <= 0) { cnt_M += (-sum_M + 1); sum_M = 1; } } } cnt_P += (sum_P == 0 ? 1 : 0); cnt_M += (sum_M == 0 ? 1 : 0); prn(Math.min(cnt_P, cnt_M)); } // ----------------------------------------- // Integer のキーに対して、カウントを管理する(カウントを足したり、引いたりする) static class MapCounter { private Map<Integer, Long> map = new HashMap<>(); public MapCounter() {} // キーのカウントに値を足す public void add(int key) { add(key, 1); } public void add(int key, int cnt) { Long val = map.get(key); if(val == null) { map.put(key, (long)cnt); } else { map.put(key, val + cnt); } } // キーのカウントから値を引く public void sub(int key) { sub(key, 1); } public void sub(int key, int cnt) { Long val = map.get(key); if(val == null) { map.put(key, (long)-cnt); } else { map.put(key, val - cnt); } } // キーのカウントを取得する(なければ NULLを返す) public Long getCountwithNull(int key) { return map.get(key); } // キーのカウントを取得する(なければ 0 を返す) public Long getCount(int key) { Long val = map.get(key); if(val == null) return 0L; else return val; } public Set<Integer> getKey() { return map.keySet(); } // 登録されているキーの数を返す public int getKeyCount() { return map.keySet().size(); } } // ----------------------------------------- // 配列のバイナリーサーチ 1 boolean isRightMin(int[] a, boolean f, int index, int key) { if (f && a[index] >= key) return true; // 以上 else if (!f && a[index] > key) return true; // より大きい else return false; } // 配列 a の中で key 以上(f=true)または、より大きく(f=false)、一番小さい値を返す int binarySearchRightMin(int[] a, boolean f, int key) { int ng = -1; //「index = 0」が条件を満たすこともあるので、初期値は -1 int ok = (int)a.length; // 「index = a.length-1」が条件を満たさないこともあるので、初期値は a.length() /* ok と ng のどちらが大きいかわからないことを考慮 */ while (Math.abs(ok - ng) > 1) { int mid = (ok + ng) / 2; if (isRightMin(a, f, mid, key)) ok = mid; // 下半分を対象とする else ng = mid; // 上半分を対象とする } return ok; // ← ここで返すのは isOK() が true の時にセットする方(ok / ng) } // ----------------------------------------- // 配列のバイナリーサーチ 2 boolean isLeftMax(int[] a, boolean f, int index, int key) { if (f && a[index] <= key) return true; // 以下 else if (!f && a[index] < key) return true; // より小さい else return false; } // 配列 a の中で key 以下(f=true)または、より小さい(f=false)、一番大きい値を返す int binarySearchLeftMax(int[] a, boolean f, int key) { int ng = -1; //「index = 0」が条件を満たすこともあるので、初期値は -1 int ok = (int)a.length; // 「index = a.length-1」が条件を満たさないこともあるので、初期値は a.length() /* ok と ng のどちらが大きいかわからないことを考慮 */ while (Math.abs(ok - ng) > 1) { int mid = (ok + ng) / 2; if (isLeftMax(a, f, mid, key)) ng = mid; // 上半分を対象とする else ok = mid; // 下半分を対象とする } return ng; // ← ここで返すのは isOK() が true の時にセットする方(ok / ng) } // ----------------------------------------- // オイラーツアー(部分木対応) static class EulerTour { Graph g; List<Integer> euler_tour = new ArrayList<>(); int[] begin, end; int k = 0, root = 0; void dfs(int v,int p, PrintWriter out) { out.println("v = " + v + " p = " + p); begin[v] = k; euler_tour.add(v); k++; if(!g.contains(v)) { return; } for(int i : g.get(v)) { if(i != p) { dfs(i, v, out); euler_tour.add(v); k++; } } end[v]=k; } // 初期化 public void init(int p_cnt, int root, Graph g, PrintWriter out) { begin = new int[p_cnt + 1]; end = new int[p_cnt + 1]; this.root = root; this.g = g; dfs(root, -1, out); } // 部分木の頂点を渡すと、オイラーツアーの部分木を返す public List getPartTour(int v) { return euler_tour.subList(begin[v], end[v]); } // 部分木の頂点を渡すと、頂点のリストを返す public List<Integer> getPartList(int v) { Set<Integer> set = new TreeSet<>(); set.addAll(getPartTour(v)); List<Integer> ans = new ArrayList<>(); for(Integer p : set) { ans.add(p); } return ans; } } // ----------------------------------------- // グラフのリンクリスト static class Graph { // 頂点に紐づく頂点のリスト private Map<Integer, List<Integer>> data = new HashMap<Integer, List<Integer>>(); // // 全ての頂点のセット // private Set<Integer> point = new TreeSet<>(); // 頂点と頂点の繋がりを追加する void add(int key, int value) { List<Integer> list = data.get(key); if(list == null) { list = new ArrayList<Integer>(); data.put(key, list); } list.add(value); // point.add(key); // point.add(value); } // 指定された頂点に紐づく、頂点のリストを返す List<Integer> get(int key) { return data.get(key); } // 頂点 key が登録されているか? boolean contains(int key) { return data.containsKey(key); } // 頂点のセットを返す Set<Integer> keySet() { return data.keySet(); } // 頂点 key_1 と 頂点 key_2 がつながっていれば true を返す boolean isConnect(int key_1, int key_2) { List<Integer> list = data.get(key_1); if(list == null) return false; else return list.contains(key_2); } // 指定された頂点から、すべての頂点への距離を返す List<PP> distList(int key) { List<PP> dist = new ArrayList<>(); // 頂点と距離のペアのリスト Set<Integer> mark = new HashSet<>(); // 処理したら入れる Stack<PP> stack = new Stack<>(); // スタックの宣言 stack.push(new PP(key, 0)); // スタートをスタックに保存 while(!stack.isEmpty()) { PP wk = stack.pop(); // スタックから次の頂点を取得 int pp = wk.getKey(); int dd = wk.getVal(); mark.add(pp); // 通過マーク dist.add(new PP(pp, dd)); // 距離を登録 List<Integer> list = get(pp); // つながっている頂点のリストを取得 for(int next : list) { if(mark.contains(next)) continue; stack.push(new PP(next, dd + 1)); } } return dist; } // ダンプ void dump(PrintWriter out) { for(int key : data.keySet()) { out.print(key + " : "); for(int val : data.get(key)) { out.print(val + " "); } out.println(""); } } } // ----------------------------------------- // 重さを持ったグラフのリンクリスト static class GraphWith { // キーに紐づくリストに、頂点番号と重さのペアを持つ private Map<Integer, List<PP>> data = new HashMap<Integer, List<PP>>(); // 指定された頂点に紐づく、頂点と重さのペアを追加する void add(int key, PP p) { List<PP> list = data.get(key); if(list == null) { list = new ArrayList<PP>(); data.put(key, list); } list.add(p); } // 頂点に紐づく、頂点と重さのペアのリストを返す List<PP> get(int key) { return data.get(key); } // グラフの存在チェック(重さは関係しない) // 頂点 key と 頂点 value がつながっていれば true を返す boolean contains(int key, int value) { List<PP> list = data.get(key); if(list == null) return false; boolean ans = false; for(PP p : list) { if(p.getKey() == value) { ans = true; break; } } return ans; } } // ----------------------------------------- // グラフのリンクリスト(Long) static class GraphLong { private Map<Long, List<Long>> G = new HashMap<Long, List<Long>>(); void add(long key, long value) { List<Long> list = G.get(key); if(list == null) { list = new ArrayList<Long>(); G.put(key, list); } list.add(value); } List<Long> get(long key) { return G.get(key); } } // ----------------------------------------- // 重さを持ったグラフのリンクリスト(Long) static class GraphLongWith { private Map<Long, List<PPL>> G = new HashMap<Long, List<PPL>>(); void add(long key, PPL p) { List<PPL> list = G.get(key); if(list == null) { list = new ArrayList<PPL>(); G.put(key, list); } list.add(p); } List<PPL> get(long key) { return G.get(key); } } // ----------------------------------------- void prn(String s) { out.println(s); } void prn(int i) { out.println(i); } void prn(long i) { out.println(i); } void prr(String s) { out.print(s); } int ni() { return in.nextInt(); } long nl() { return in.nextLong(); } double nd() { return in.nextDouble(); } String ns() { return in.nextString(); } int[] ndi(int n) { int[] ans = new int[n]; for(int i=0; i < n; i++) { ans[i] = ni(); } return ans; } long[] ndl(int n) { long[] ans = new long[n]; for(int i=0; i < n; i++) { ans[i] = nl(); } return ans; } double[] ndd(int n) { double[] ans = new double[n]; for(int i=0; i < n; i++) { ans[i] = nd(); } return ans; } String[] nds(int n) { String[] ans = new String[n]; for(int i=0; i < n; i++) { ans[i] = ns(); } return ans; } int[][] nddi(int n, int m) { int[][] ans = new int[n][m]; for(int i=0; i < n; i++) { for(int j=0; j < m; j++) { ans[i][j] = ni(); } } return ans; } long[][] nddl(int n, int m) { long[][] ans = new long[n][m]; for(int i=0; i < n; i++) { for(int j=0; j < m; j++) { ans[i][j] = nl(); } } return ans; } } static class PP{ public int key, val; public PP(int key, int val) { this.key = key; this.val = val; } public int getKey() { return key; } public void setKey(int key) { this.key = key; } public int getVal() { return val; } public void setVal(int val) { this.val = val; } } static class PPL { public long key, val; public PPL(long key, long val) { this.key = key; this.val = val; } public long getKey() { return key; } public void setKey(long key) { this.key = key; } public long getVal() { return val; } public void setVal(long val) { this.val = val; } } static class PPDL { public long key; public long[] val; public PPDL(long key, long[] val) { this.key = key; this.val = val; } public long getKey() { return key; } public void setKey(long key) { this.key = key; } public long[] getVal() { return val; } public void setVal(long[] val) { this.val = val; } public void dump(PrintWriter out) { out.print("key = " + key + " val "); for(int i=0; i < val.length; i++) { out.print("[" + val[i] + "] "); } out.println(""); } } // HashMap のキーに使う static final class PPKEY{ private final int key, val; public PPKEY(int key, int val) { this.key = key; this.val = val; } public int getKey() { return key; } public int getVal() { return val; } @Override public boolean equals(Object obj) { if (obj instanceof PPKEY) { PPKEY dest = (PPKEY) obj; return this.key == dest.key && this.val == dest.val; } else { return false; } } @Override public int hashCode() { return Objects.hash(key, val); } } // HashMap のキーに使う static final class PPLKEY{ private final long key, val; public PPLKEY(long key, long val) { this.key = key; this.val = val; } public long getKey() { return key; } public long getVal() { return val; } @Override public boolean equals(Object obj) { if (obj instanceof PPKEY) { PPKEY dest = (PPKEY) obj; return this.key == dest.key && this.val == dest.val; } else { return false; } } @Override public int hashCode() { return Objects.hash(key, val); } } // ====================================================================== static class Pair<K, V> extends AbstractMap.SimpleEntry<K, V> { /** serialVersionUID. */ private static final long serialVersionUID = 6411527075103472113L; public Pair(final K key, final V value) { super(key, value); } } static class MyInput { private final BufferedReader in; private static int pos; private static int readLen; private static final char[] buffer = new char[1024 * 8]; private static char[] str = new char[500 * 8 * 2]; private static boolean[] isDigit = new boolean[256]; private static boolean[] isSpace = new boolean[256]; private static boolean[] isLineSep = new boolean[256]; static { for (int i = 0; i < 10; i++) { isDigit['0' + i] = true; } isDigit['-'] = true; isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true; isLineSep['\r'] = isLineSep['\n'] = true; } public MyInput(InputStream is) { in = new BufferedReader(new InputStreamReader(is)); } public int read() { if (pos >= readLen) { pos = 0; try { readLen = in.read(buffer); } catch (IOException e) { throw new RuntimeException(); } if (readLen <= 0) { throw new MyInput.EndOfFileRuntimeException(); } } return buffer[pos++]; } public int nextInt() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; int ret = 0; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public long nextLong() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; long ret = 0L; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public double nextDouble() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; double ret = 0; if (str[0] == '-') { i = 1; } int cnt = 0; for (; i < len; i++) { if(str[i] == '.') { cnt = 10; continue; } if(cnt == 0) { ret = ret * 10 + str[i] - '0'; } else { ret = ret + ((double)(str[i] - '0') / cnt); cnt *= 10; } } if (str[0] == '-') { ret = -ret; } return ret; } public String nextString() { String ret = new String(nextDChar()).trim(); return ret; } public char[] nextDChar() { int len = 0; len = reads(len, isSpace); char[] ret = new char[len + 1]; for (int i=0; i < len; i++) ret[i] = str[i]; ret[len] = 0x00; return ret; } public char nextChar() { while (true) { final int c = read(); if (!isSpace[c]) { return (char) c; } } } int reads(int len, boolean[] accept) { try { while (true) { final int c = read(); if (accept[c]) { break; } if (str.length == len) { char[] rep = new char[str.length * 3 / 2]; System.arraycopy(str, 0, rep, 0, str.length); str = rep; } str[len++] = (char) c; } } catch (MyInput.EndOfFileRuntimeException e) { } return len; } static class EndOfFileRuntimeException extends RuntimeException { } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <algorithm> using namespace std; typedef long long ll; int main(){ int n; cin >> n; int a[n+1]; for(int i=1; i<=n; i++) cin >> a[i]; ll p1=0, p2=0, sum1=0, sum2=0; for(int i=1; i<=n; i++){ sum1 += a[i]; sum2 += a[i]; if(i%2){ p1 += max(-sum1+1, 1LL*0); sum1 = max(1LL, sum1); p2 += max(sum2+1, 1LL*0); sum2 = min(-1LL, sum2); } else{ p1 += max(sum1+1, 1LL*0); sum1 = min(-1LL, sum1); p2 += max(-sum2+1, 1LL*0); sum2 = max(1LL, sum2); } } cout << min(p1, p2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define ll long long using namespace std; int main(){ int n; cin >> n; ll a[n], sum, res1 = 0, res2 = 0; for(int i = 0; i < n; i++) cin >> a[i]; // odd is - sum = 0; for(int i = 0; i < n; i++){ sum += a[i]; if(i % 2){ if(sum >= 0) res1 += 1 + sum, sum = -1; }else{ if(sum <= 0) res1 += 1 - sum, sum = 1; } } // odd is + sum = 0; for(int i = 0; i < n; i++){ sum += a[i]; if(i % 2){ if(sum <= 0) res2 += 1 - sum, sum = 1; }else{ if(sum >= 0) res2 += 1 + sum, sum = -1; } } cout << min(res1, res2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) arr = list(map(int , input().split())) cur = 0 a = 0 b = 0 prea=0 preb=0 resa = 0 resb =0 for i in range(0 , n): prea = prea+arr[i] if (i% 2 ==0 and prea<=0): resa = resa-prea+1 prea=1 if i%2 ==1 and prea>=0: resa = resa+prea+1 prea=-1 for i in range(0 , n): preb = preb+arr[i] if (i%2==1 and preb<=0): resb = resb+(-preb+1) preb=1 if i%2 ==0 and preb>=0: resb =resb+ preb+1 preb=-1 print(min(resa , resb))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.Scanner; public class Main { void run() { try (Scanner sc = new Scanner(System.in)) { int n = sc.nextInt(); int[] a = new int[n]; for(int i=0;i<n;i++) { a[i] = sc.nextInt(); } long sum1 = 0; long cnt1 = 0; // a[0] > 0 for(int i=0;i<n;i++) { sum1 += a[i]; if(i%2==0 && sum1 <= 0) { cnt1 += (1-sum1); sum1 = 1; }else if(i%2==1 && sum1 >= 0) { cnt1 += (1+sum1); sum1 = -1; } } long sum2 = 0; long cnt2 = 0; // a[0] < 0 for(int i=0;i<n;i++) { sum2 += a[i]; if(i%2==1 && sum2 <= 0) { cnt2 += (1-sum2); sum2 = 1; }else if(i%2==0 && sum2 >= 0) { cnt2 += (1+sum2); sum2 = -1; } } System.out.println(Math.min(cnt1, cnt2)); } } public static void main(String[] args) { new Main().run(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) A = list(map(int, input().split())) ans = 1e16 for s in (1, -1): res, acc = 0, 0 for a in A: acc += a if acc * s <= 0: res += abs(acc-s) acc = s s *= -1 ans = min(ans, res) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> #define REP(i,n) for(int i=0,i##_len=(n);i<i##_len;++i) #define rep(i,a,b) for(int i=int(a);i<int(b);++i) using namespace std; signed main(){ int N;cin>>N; vector<long long> A(N); REP(i, N) cin >> A[i]; long long ans=LLONG_MAX; int sig[2]={1,-1}; REP(j,2){ long long sum=0; long long count=0; REP(i,N){ sum+=A[i]; if(sig[(i^j)&1]*sum>=0){ count+=llabs(sum)+1; sum=-sig[(i^j)&1]; } } ans=min(ans,count); } cout<<ans<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans=10**15 for i in [1,-1]: b=0 c=0 for j in a: b+=j if b*i<=0: c+=abs(b-i) b=i i*=-1 ans=min(ans,c) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for(int i = 0; i<n; i++) { a[i] = sc.nextInt(); } long min = Long.MAX_VALUE; long tmp = 0; long cnt = 0; for(int i = 0; i<n; i++) { tmp+=a[i]; System.err.println(i+" "+tmp); if(i%2==0) { if(tmp<=0) { cnt += 1 - tmp; tmp = 1; } }else { if(tmp>=0) { cnt += tmp + 1; tmp = -1; } } } min = cnt; cnt = 0; tmp = 0; System.err.println(min); for(int i = 0; i<n; i++) { tmp+=a[i]; if(i%2==1) { if(tmp<=0) { cnt += 1 - tmp; tmp = 1; } }else { if(tmp>=0) { cnt += tmp + 1; tmp = -1; } } } min = Math.min(min, cnt); System.out.println(min); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
N = int(input()) a = list(map(int, input().split())) total = 0 values = [] for s in (1, -1): xs = a[::] signs = [s * (-1) ** i for i in range(N)] total = 0 for i in range(N): if (total + xs[i]) * signs[i] <= 0: xs[i] = signs[i] - total total += xs[i] values.append(sum(abs(a[i] - xs[i]) for i in range(N))) print(min(values))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
N = int(input()) A = tuple(map(int,input().split())) def solve(f): acc = 0 cnt = 0 for a in A: acc += a if f and acc <= 0: cnt += 1 - acc acc = 1 elif not f and acc >= 0: cnt += acc + 1 acc = -1 f = not f return cnt print(min(solve(True),solve(False)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define int long long signed main(){ int n; cin>>n; vector<int> A(n); for(int &i:A) cin>>i; int j,k,l=100000000000000000; for(int a=0;a<2;a++){ k=0,j=0; for(int i=0;i<n;i++){ k+=A[i]; if(((i+a)%2*2-1)*k<=0){ j+=1+abs(k); k=(i+a)%2*2-1; } } l=min(l,j); } cout<<l<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.util.*; public class Main { public static void main (String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextInt(); } sc.close(); // +-+-+...の場合 long sum1 = 0; long count1 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0) { if (sum1 <= 0) { count1 += (1 - sum1); sum1 = 1; } } else { if (0 <= sum1) { count1 += (sum1 + 1); sum1 = -1; } } } // -+-+_...の場合 long sum2 = 0; long count2 = 0; for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0) { if (0 <= sum2) { count2 += (sum2 + 1); sum2 = -1; } } else { if (sum2 <= 0) { count2 += (1 - sum2); sum2 = 1; } } } System.out.println(Math.min(count1, count2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #define REP(i, n) for (int i = 0; i < n; ++i) using namespace std; using ll = long long; ll sum1,sum2,cost1,cost2; int main() { int n; cin >> n; REP(i,n) { int cur; cin >> cur; sum1 += cur, sum2 += cur; if (i&1) { if (sum1<=0) cost1 += 1-sum1, sum1 = 1; if (sum2>=0) cost2 += sum2+1, sum2 = -1; } else { if (sum1>=0) cost1 += sum1+1, sum1 = -1; if (sum2<=0) cost2 += 1-sum2, sum2 = 1; } } cout << min(cost1, cost2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin>>n; long long int a[n],sum1=0,sum2=0,cost1=0,cost2=0; for(int i=0;i<n;i++){ cin>>a[i]; sum1+=a[i]; sum2+=a[i]; if(i%2==0 && sum1>=0){ cost1+=1+sum1; sum1=-1; } else if(i%2==1 && sum1<=0){ cost1+=1-sum1; sum1=1; } if(i%2==0 && sum2<=0){ cost2+=1-sum2; sum2=1; } else if(i%2==1 && sum2>=0){ cost2+=1+sum2; sum2=-1; } } cout<<min(cost1,cost2); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) a = [int(x) for x in input().split()] def check(a, t): ans = 0 x = 0 for i in a: x += i if t == True and x < 1: ans += 1 - x x = 1 elif t == False and x > -1: ans += x + 1 x = -1 t = not t return ans print(min(check(a, True), check(a, False)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> V(N); for (int i = 0, a, sum = 0; i < N && cin >> a; i++) V.at(i) = sum += a; long long cnt1 = 0; for (int i = 0, j = 0; i < N; i++) { int tmp = V.at(i) + j; if (!(i % 2) && tmp >= 0) cnt1 += abs(-1 - tmp), j += -1 - tmp; if (i % 2 && tmp <= 0) cnt1 += 1 - tmp, j += 1 - tmp; } long long cnt2 = 0; for (int i = 0, j = 0; i < N; i++) { int tmp = V.at(i) + j; if (i % 2 && tmp >= 0) cnt2 += abs(-1 - tmp), j += -1 - tmp; if (!(i % 2) && tmp <= 0) cnt2 += 1 - tmp, j += 1 - tmp; } cout << min(cnt1, cnt2) << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) a = list(map(int,input().split())) trueans = float('inf') for k in [-1,1]: sign = k ans = 0 s = 0 for i in range(n): s += a[i] if s == 0: s = sign ans += 1 elif s//abs(s) == sign: pass else: ans += abs(sign-s) s = sign sign *= -1 trueans = min(ans,trueans) print(trueans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <algorithm> #define maxn 100000 #define ll long long int a[maxn]; ll det(int n, int a[], int l) { int sum = 0; ll rez = 0; for (int i = 1; i <= n; i++, l = 1 - l) { sum += a[i]; if (l == 0 && sum <= 0) { rez += 1 - sum; sum = 1; } else if (l == 1 && sum >= 0) { rez += 1 + sum; sum = -1; } } return rez; } int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); ll c1 = det(n, a, 0); ll c2 = det(n, a, 1); ll rez = std::min(c1, c2); printf("%lld", rez); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define rep(i, n) for (int i = 0; i < (n); ++i) typedef long long ll; using namespace std; int n, a[100010]; ll calc(ll s) { ll sum = 0, res = 0; for (int i = 0; i < n; ++i, s *= -1) { sum += a[i]; if (sum * s > 0) continue; res += abs(sum - s); sum += s * abs(sum - s); } return res; } int main() { cin >> n; rep(i, n) cin >> a[i]; cout << min(calc(1), calc(-1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef pair<int,int>pa; const int N=2e5+100; const int mod=1e9+7; ll a[N]; int n; ll slove(ll f) { ll sum=0,ans=0; for(int i=1;i<=n;i++){ sum+=a[i]; if(sum*f<=0) { ans+=abs(f-sum); sum=f; } f=-f; } return ans; } int main() { ios::sync_with_stdio(0);cin.tie(0); cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; } ll ans=min(slove(1),slove(-1)); cout<<ans<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> int a[1000005]; int n; long long calc(int mod){ long long sum = 0, res = 0; for (int i = 0; i < n; i++){ sum += a[i]; if (i%2 == mod && sum <= 0) { res += 1-sum; sum = 1; } else if (i%2 != mod && sum >= 0){ res += sum+1; sum=-1; } } return res; } int main(){ std::cin.tie(0); std::cin >> n; for(int i=0; i<n; i++) std::cin >> a[i]; std::cout << std::min(calc(0), calc(1)) <<'\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
CORRECT
python3
n = int(input()) As = list(map(int, input().split())) rs = [] for m in {0, 1}: r = 0 s = 0 for i in range(n): A = As[i] if i%2 == m: if s+A >= 0: r += s+A+1 s = -1 else: s += A else: if s+A <= 0: r += -(s+A)+1 s = +1 else: s += A #print(m, r) rs.append(r) r = min(rs) print(r)