Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } int sum_ = a[0]; int count = 0; if (a[0] > 0) { for (int i = 1; i < n; ++i) { if (i % 2 == 1) { while (sum_ + a[i] >= 0) { a[i]--; count++; } } else { while (sum_ + a[i] <= 0) { a[i]++; count++; } } sum_ += a[i]; } } else { for (int i = 1; i < n; ++i) { if (i % 2 == 1) { while (sum_ + a[i] <= 0) { a[i]++; count++; } } else { while (sum_ + a[i] >= 0) { a[i]--; count++; } } sum_ += a[i]; } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> using namespace std; long long int ans1, ans2, sum1, sum2; int n, i; long long int a[100005]; int main() { cin >> n; for (i = 1; i <= n; i++) { cin >> a[i]; } if (a[1] > 0) { sum1 = a[1]; ans2 = a[1] + 1; sum2 = -1; } else if (a[1] == 0) { sum1 = 1; ans1 = ans2 = 1; sum2 = -1; } else { sum1 = 1; ans1 = abs(a[1]) + 1; sum2 = a[1]; } for (i = 2; i <= n; i++) { if (sum1 > 0) { if (a[i] + sum1 >= 0) { ans1 += a[i] + sum1 + 1; sum1 = -1; } else { sum1 += a[i]; } } else { if (a[i] + sum1 <= 0) { ans1 += abs(sum1 + a[i]) + 1; sum1 = 1; } else { sum1 += a[i]; } } } if (sum1 == 0) { ans1++; } for (i = 2; i <= n; i++) { if (sum2 > 0) { if (a[i] + sum2 >= 0) { ans2 += a[i] + sum2 + 1; sum2 = -1; } else { sum2 += a[i]; } } else { if (a[i] + sum2 <= 0) { ans2 += abs(sum2 + a[i]) + 1; sum2 = 1; } else sum2 += a[i]; } } if (sum2 == 0) { ans2++; } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) sa = input().split() a = [0 for i in range(n)] sumeven = 0 sumodd = 0 for i,sai in enumerate(sa): a[i] = int(sai) if i % 2 == 0: sumeven += a[i] else: sumodd += a[i] ret = 0 sm = 0 for i,ai in enumerate(a): if sumeven < sumodd: if i % 2 == 1: ret += max(-sm+1-ai,0) sm += max(ai, -sm+1) else: ret += max(sm+1 + ai, 0) sm += min(ai, -(sm+1)) elif sumeven > sumodd: if i % 2 == 0: ret += max(-sm+1-ai,0) sm += max(ai, -sm+1) else: ret += max(sm+1 + ai, 0) sm += min(ai, -(sm+1)) else: if a[0] > 0: if i % 2 == 1: ret += max(-sm+1-ai,0) sm += max(ai, -sm+1) else: ret += max(sm+1 + ai, 0) sm += min(ai, -(sm+1)) else: if i % 2 == 0: ret += max(-sm+1-ai,0) sm += max(ai, -sm+1) else: ret += max(sm+1 + ai, 0) sm += min(ai, -(sm+1)) print(ret)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
# -*- coding:utf-8 -*- n = int(raw_input()) numlist = (raw_input()).split(' ') count = 0 if (int(numlist[0]) == 0): if (int(numlist[1]) > 0): numlist[0] = -1 else: numlist[0] = 1 sumlist = [int(numlist[0])] for i in range(1, n): sumlist.append(sumlist[i-1] + int(numlist[i])) while (True): if (sumlist[i-1] > 0 and sumlist[i] > 0): #i-1,i番目までのsumがともに正 numlist[i] = int(numlist[i]) - (sumlist[i] + 1) count += sumlist[i] + 1 sumlist[i] = -1 elif (sumlist[i-1] < 0 and sumlist[i] < 0): #i-1,i番目までのsumがともに負 numlist[i] = int(numlist[i]) + ((-1)*sumlist[i] + 1) count += (-1)*sumlist[i] + 1 sumlist[i] = 1 elif (sumlist[i] == 0): #i番目までのsum=0 if (sumlist[i-1] > 0): numlist[i] = int(numlist[i]) - 1 sumlist[i] -= 1 if (sumlist[i-1] < 0): numlist[i] = int(numlist[i]) + 1 sumlist[i] += 1 count += 1 else: break #print numlist #print sumlist print count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans=10**10 s=0 cnt=0 for i in range(n): s+=a[i] if i%2==1: if s<=0: cnt += -s + 1 s = 1 else: if s>=0: cnt += s + 1 s = -1 ans=min(ans,cnt) s=0 cnt=0 for i in range(n): s+=a[i] if i%2==0: if s<=0: cnt += -s + 1 s = 1 else: if s>=0: cnt += s + 1 s = -1 ans=min(ans,cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) L = np.array([int(i) for i in input().split()]) count = 0 s = L[0] # print(L) loopnum = n//2 if n%2 == 0: loopnum -= 1 #+-+-... for i in range(loopnum): s = s + L[2*i+1] if s >= 0: subt = s + 1 count += subt s = s - subt s = s + L[2*i+2] if s < 0: subt = s - 1 count -= subt s = s - subt if n%2 == 0: s = s + L[-1] if s >= 0: subt = s + 1 count += subt cand1 = count count = 0 s = L[0] #-+-+... for i in range(loopnum): s = s + L[2*i+1] if s <= 0: subt = s - 1 count -= subt s = s - subt s = s + L[2*i+2] if s > 0: subt = s + 1 count += subt s = s - subt if n%2 == 0: s = s + L[-1] if s <= 0: subt = s - 1 count -= subt cand2 = count #print(cand1) #print(cand2) print(min(cand1,cand2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long ans = 0; for (int i = 1; i < n; i++) { long long tmp = sum + a[i]; if (sum > 0 && tmp > 0) { ans += tmp + 1; sum = -1; } else if (sum < 0 && tmp < 0) { ans += -tmp + 1; sum = 1; } else if (tmp == 0) { ans++; if (sum < 0) sum = 1; else sum = -1; } else sum = tmp; } long long sum2 = -1 * a[0] / abs(a[0]); long long ans2 = a[0] + 1; for (int i = 1; i < n; i++) { long long tmp = sum2 + a[i]; if (sum2 > 0 && tmp > 0) { ans2 += tmp + 1; sum2 = -1; } else if (sum2 < 0 && tmp < 0) { ans2 += -tmp + 1; sum2 = 1; } else if (tmp == 0) { ans2++; if (sum2 < 0) sum2 = 1; else sum2 = -1; } else sum2 = tmp; } cout << min(ans2, ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) cnt = 0 sum = [0]*n sum[0] = a[0] for i in range(1,n): sum[i] = sum[i-1]+a[i] if sum[i]*sum[i-1]<0: continue elif sum[i-1]*a[i]<0: cnt += abs(sum[i-1])-abs(a[i])+1 sum[i] = -sum[i-1]//abs(sum[i-1]) else: cnt += abs(sum[i-1])+abs(a[i])+1 sum[i] = -sum[i-1]//abs(sum[i-1]) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np input() a = list(map(int, input().split())) def calc(a): value = a[0] sign = value >= 0 result = 0 for i in a[1:]: value += i diff = 0 if sign and value >= 0: diff = value + 1 elif not sign and value < 0: diff = value - 1 result += abs(diff) sign = not sign value -= diff if value == 0: diff += sign value += diff result += diff return result r1 = calc(a[:]) diff = -a[0] - a[0] // abs(a[0]) a[0] += diff r2 = calc(a[:]) + abs(diff) print(min(r1, r2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template <class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } int main() { long long int N; cin >> N; vector<long long int> a(N); for (int i = 0; i < N; i++) cin >> a[i]; vector<long long int> rui(N); for (int i = 0; i < N; i++) { if (i == 0) rui[i] = a[i]; else { rui[i] = rui[i - 1] + a[i]; } } long long int tmp1 = 0; long long int ct1 = 0; long long int tmp2 = 0; long long int ct2 = 0; long long int now = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (rui[i] + tmp1 > 0) continue; else if (rui[i] + tmp1 == 0) { tmp1 += 1; ct1 += 1; } else { tmp1 += abs(rui[i]) + 1; ct1 += abs(rui[i]) + 1; } } else { if (rui[i] + tmp1 < 0) continue; else if (rui[i] + tmp1 == 0) { tmp1 -= 1; ct1 += 1; } else { tmp1 += -(abs(rui[i]) + 1); ct1 += abs(rui[i]) + 1; } } } for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (rui[i] + tmp2 < 0) continue; else if (rui[i] + tmp2 == 0) { tmp2 -= 1; ct2 += 1; } else { tmp2 += -(abs(rui[i]) + 1); ct2 += abs(rui[i]) + 1; } } else { if (rui[i] + tmp2 > 0) continue; else if (rui[i] + tmp2 == 0) { tmp2 += 1; ct2 += 1; } else { tmp2 += (abs(rui[i]) + 1); ct2 += abs(rui[i]) + 1; } } } long long int ans = min(ct1, ct2); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string divide[4] = {"dream", "dreamer", "erase", "eraser"}; int main() { int N, C, K; cin >> N >> C >> K; vector<int> T(N); for (int i = 0; i < N; i++) { cin >> T.at(i); } int sum = 0; int cnt1 = 0; for (int i = 0; i < N; i++) { sum += T.at(i); if (i % 2 == 0) { if (sum <= 0) { cnt1 += -sum + 1; sum = 1; } } else { if (sum >= 0) { cnt1 += sum + 1; sum = -1; } } } int cnt2 = 0; sum = 0; for (int i = 0; i < N; i++) { sum += T.at(i); if (i % 2 == 1) { if (sum <= 0) { cnt1 += -sum + 1; sum = 1; } } else { if (sum >= 0) { cnt1 += sum + 1; sum = -1; } } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j; vector<int> a; int sum, count, count2; cin >> n; a.resize(n); for (int i = 0; i < n; i++) { cin >> a[i]; } count = 0; count2 = 0; sum = 0; if (a[0] <= 0) { sum = 1; count += abs(a[0]) + 1; } else { sum = a[0]; } for (int i = 0; i < n - 1; i++) { if (sum + a[i + 1] == 0) { count++; if (sum < 0) sum = 1; else sum = -1; } else if (sum < 0 && (sum + a[i + 1]) < 0) { j = 1 - sum; count += j - a[i + 1]; sum = 1; } else if (sum > 0 && (sum + a[i + 1]) > 0) { j = sum + 1; count += j + a[i + 1]; sum = -1; } else { sum += a[i + 1]; } } if (a[0] >= 0) { sum = -1; count2 += abs(a[0]) + 1; } else { sum = a[0]; } for (int i = 0; i < n - 1; i++) { if (sum + a[i + 1] == 0) { count2++; if (sum < 0) sum = 1; else sum = -1; } else if (sum < 0 && (sum + a[i + 1]) < 0) { j = 1 - sum; count2 += j - a[i + 1]; sum = 1; } else if (sum > 0 && (sum + a[i + 1]) > 0) { j = sum + 1; count2 += j + a[i + 1]; sum = -1; } else { sum += a[i + 1]; } } cout << min(count, count2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = 1 << 29; int main() { int n; cin >> n; vector<ll> a(n), b(n); for (int i = 0; i < int(n); i++) { ll aa; cin >> aa; a[i] = aa; b[i] = aa; } ll countmin = INF; ll count = 0LL; ll sum = 0LL; for (int i = 0; i < int(n); i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0LL) { count += llabs(sum) + 1LL; sum = 1LL; } } if (i % 2 == 1) { if (sum >= 0LL) { count += llabs(sum) + 1LL; sum = -1LL; } } } countmin = min(countmin, count); count = 0LL; sum = 0LL; for (int i = 0; i < int(n); i++) { sum += b[i]; if (i % 2 == 0) { if (sum >= 0LL) { count += llabs(sum) + 1LL; sum = -1LL; } } if (i % 2 == 1) { if (sum <= 0LL) { count += llabs(sum) + 1LL; sum = 1LL; } } } countmin = min(countmin, count); cout << countmin << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> #include<algorithm> #include<math.h> #include<string> #include<tuple> #include<vector> #include<cstdlib> #include<cstdint> #include<stdio.h> #include<cmath> #include<limits> #include<iomanip> #include<ctime> #include<climits> #include<random> #include<queue> #include<map> using namespace std; template <class T> using V = vector<T>; template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } const long long INF = 1LL << 60; const double pi=acos(-1); using ll = long long; using db = long double; using st = string; using ch = char; using vll = V<ll>; using vpll =V<pair<ll,ll>>; using vst = V<st>; using vdb = V<db>; using vch = V<ch>; using graph = V<V<int>>; using pq = priority_queue<ll>; #define FOR(i,a,b) for(ll i=(a);i<(b);i++) #define bgn begin() #define en end() #define SORT(a) sort((a).bgn,(a).en) #define REV(a) reverse((a).bgn,(a).en) #define fi first #define se second #define sz size() #define gcd(a,b) __gcd(a,b) #define pb(a) push_back(a); #define ALL(a) (a).begin(),(a).end() ll Sum(ll n) { ll m=0; while(n){ m+=n%10; n/=10; } return m; } const int MAX = 510000; // change const int MOD = 1000000007; long long fac[MAX], finv[MAX], inv[MAX]; void Comuse() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } #define comuse Comuse() ll combi(int n, int k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } ll perm(int n,int k){ if(n < k) return 0; if(n < 0 || k < 0) return 0; return fac[n] * (finv[k] % MOD) % MOD; } ll modpow(ll a,ll n,ll mod){ ll ans=1; while(n>0){ if(n&1){ ans=ans*a%mod; } a=a*a%mod; n>>=1; } return ans; } ll modinv(ll a, ll mod) { return modpow(a, mod - 2, mod); } ll modcombi(int n,int k,int mod){ ll ans=1; for(ll i=n;i>n-k;i--){ ans*=i; ans%=mod; } for(ll i=1;i<=k;i++){ ans*=modinv(i,mod); ans%=mod; } return ans; } ll lcm(ll a,ll b){ ll n; n=a/gcd(a,b)*b; return n; } vll div(ll n){ vll ret; for(ll i=1;i*i<=n;i++){ if(n%i==0){ ret.push_back(i); if(i*i!=n){ ret.push_back(n/i); } } } SORT(ret); return (ret); } vector<bool> isprime(MAX+100,true); void primeuse(){ isprime[0]=false; isprime[1]=false; for(int i=2;i<MAX+50;i++){ int up=sqrt(i)+1; for(int j=2;j<up;j++){ if(i%j==0){ isprime[i]=false; } } } } void bf(ll n,string s){ for(ll i=0;i<n;i++){ cout<<s; } cout<<"\n"; } void Solve(); const int MAX_N = 131072; //segment tree int NN; int seg[MAX_N*2-1]; void seguse(){ for(int i=0;i<2*NN-1;i++){ seg[i]=INT_MAX; } } signed main(){ cin.tie(0); ios::sync_with_stdio(false); cout<<setprecision(20)<<fixed; Solve(); } /****************************************\ | Thank you for viewing my code:) | | Written by RedSpica a.k.a. RanseMirage | | Twitter:@asakaakasaka | \****************************************/ //segtreeの葉の先頭の添え字はN-1 void Solve(){ ll n; cin>>n; vll A(n); vll B(n); FOR(i,0,n){ cin>>A[i]; } ll ans=0; ll all=A[0]; bool can=true; FOR(i,1,n){ if((all+A[i])*all>=0){ can=false; break; } } if(can){ cout<<"0\n"; return; } B[0]=A[0]; FOR(i,1,n){ B[i]=B[i-1]+A[i]; if(B[i]*B[i-1]<0){ continue; } ans+=abs(B[i])+1; if(B[i-1]<0){ B[i]=1; } else{ B[i]=-1; } } cout<<ans<<"\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC target("avx") using namespace std; const int cm = 1 << 17; char cn[cm], *ci = cn + cm, ct; inline char getcha() { if (ci - cn == cm) { fread_unlocked(cn, 1, cm, stdin); ci = cn; } return *ci++; } inline int getint() { int A = 0; if (ci - cn + 16 > cm) while ((ct = getcha()) >= '0') A = A * 10 + ct - '0'; else while ((ct = *ci++) >= '0') A = A * 10 + ct - '0'; return A; } int main() { int N = getint(); int s1 = 0; long long kotae1 = 0; int s2 = 0; long long kotae2 = 0; int a = 0; for (int i = 0; i < (N / 2); i++) { a = getint(); s1 += a; s2 += a; if (s1 <= 0) { kotae1 += 1 - s1; s1 = 1; } if (s2 >= 0) { kotae2 += s2 + 1; s2 = -1; } a = getint(); s1 += a; s2 += a; if (s2 <= 0) { kotae2 += 1 - s2; s2 = 1; } if (s1 >= 0) { kotae1 += s1 + 1; s1 = -1; } } if (N & 1) { a = getint(); s1 += a; s2 += a; if (s1 <= 0) { kotae1 += 1 - s1; s1 = 1; } if (s2 >= 0) { kotae2 += s2 + 1; s2 = -1; } } printf("%d", min(kotae1, kotae2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long sumi = 0, val1 = 0; int ne = 0; if (a.at(0) == 0) { while (a.at(ne) == 0) { if (ne == 0) val1++; else val1 += 2; ne++; if (ne == n) break; } } long long val2 = val1; for (int i = ne; i < n; i++) { if (a.at(0) == 0 && sumi == 0) { if (ne % 2 == 0) sumi = -1; else sumi = 1; } if (i == 0) { sumi = a.at(i); continue; } if (i % 2 == 1) { if (sumi + a.at(i) < 0) sumi += a.at(i); else { val1 += (sumi + a.at(i) + 1); sumi = -1; } } else { if (sumi + a.at(i) > 0) sumi += a.at(i); else { val1 += (abs(sumi + a.at(i)) + 1); sumi = 1; } } } sumi = 0; for (int i = ne; i < n; i++) { if (a.at(0) == 0 && sumi == 0) { if (ne % 2 == 0) sumi = 1; else sumi = -1; } if (i == 0) { sumi = a.at(i); continue; } if (i % 2 == 1) { if (sumi + a.at(i) > 0) sumi += a.at(i); else { val2 += (abs(sumi + a.at(i)) + 1); sumi = 1; } } else { if (sumi + a.at(i) < 0) sumi += a.at(i); else { val2 += (sumi + a.at(i) + 1); sumi = -1; } } } cout << min(val1, val2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) cum_A = [0] * N ans = 0 if A[0] == 0: ans += 1 cum_A[0] = 1 else: cum_A[0] = A[0] for i in range(1,N): if cum_A[i-1] < 0: if cum_A[i-1] + A[i] >= 1: cum_A[i] = cum_A[i-1] + A[i] else: ans += 1 - (cum_A[i-1] + A[i]) cum_A[i] = 1 else: if cum_A[i-1] + A[i] <= -1: cum_A[i] = cum_A[i-1] + A[i] else: ans += 1 + (cum_A[i-1] + A[i]) cum_A[i] = -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main { static StringBuilder sb = new StringBuilder(); static FastScanner sc = new FastScanner(System.in); static int INF = 12345678; static long MOD = 1000000007; static int[] y4 = {0, 1, 0, -1}; static int[] x4 = {1, 0, -1, 0}; static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1}; static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1}; static long[] F;//factorial static boolean[] isPrime; static int[] primes; static char[][] map; static int N, M; static long T; static int[] A; public static void main(String[] args) { int n = sc.nextInt(); long[] a = sc.nextLongArray(n); long ans_1 = 0;//初期値正 long ans_2 = 0; long sum_1 = a[0]; long sum_2 = a[0]; for (int i = 1; i < n; i++) { if(i%2==1){ if(sum_1 + a[i] >= 0){ ans_1 += sum_1 + a[i] + 1; sum_1 = -1; }else{ sum_1 += a[i]; } if(sum_2 + a[i] <= 0){ ans_2 += abs(sum_2 + a[i]) + 1; sum_2 = 1; }else{ sum_2 += a[i]; } }else{ if(sum_2 + a[i] >= 0){ ans_2 += sum_2 + a[i] + 1; sum_2 = -1; }else{ sum_2 += a[i]; } if(sum_1 + a[i] <= 0){ ans_1 += abs(sum_1 + a[i]) + 1; sum_1 = 1; }else{ sum_1 += a[i]; } } } System.out.println(min(ans_1,ans_2)); } static class Dijkstra { long initValue = -1; Node[] nodes; int n; long[] d; Dijkstra(int n) { this.n = n; nodes = new Node[n]; for (int i = 0; i < n; i++) nodes[i] = new Node(i); d = new long[n]; Arrays.fill(d, initValue); } Dijkstra(int n, int edge, boolean isDirectedGraph) { this.n = n; nodes = new Node[n]; for (int i = 0; i < n; i++) nodes[i] = new Node(i); d = new long[n]; Arrays.fill(d, initValue); if (isDirectedGraph) { for (int ei = 0; ei < edge; ei++) { int f = sc.nextInt() - 1; int t = sc.nextInt() - 1; long c = sc.nextLong(); addEdge(f, t, c); } } else { for (int ei = 0; ei < edge; ei++) { int f = sc.nextInt() - 1; int t = sc.nextInt() - 1; long c = sc.nextLong(); addEdge(f, t, c); addEdge(t, f, c); } } } void addEdge(int f, int t, long c) { nodes[f].edges.add(new Edge(t, c)); } long[] solve(int s) { d[s] = 0; //最短距離と頂点を持つ PriorityQueue<Dis> q = new PriorityQueue<>(); q.add(new Dis(s, 0)); while (!q.isEmpty()) { Dis now = q.poll(); int nowId = now.p; long nowC = now.cos; for (Edge edge : nodes[nowId].edges) { int to = edge.toId; long needsCost = edge.toCost + nowC; if (d[to] == initValue || needsCost < d[to]) { d[to] = needsCost; q.add(new Dis(to, needsCost)); } } } return d; } //O( E ^ 2) 辺が密の時用 long[] solve2(int s) { boolean[] used = new boolean[n]; long[][] cost = new long[n][n]; Main.fill(cost, initValue); Arrays.fill(d, initValue); d[s] = 0; for (Node node : nodes) { for (Edge edge : node.edges) { int fromId = node.id; int toId = edge.toId; long toCost = edge.toCost; cost[fromId][toId] = toCost; } } while (true) { int v = -1; //まだ使われていない頂点のうち、距離が最小のものを探す。 for (int u = 0; u < n; u++) if (!used[u] && (v == -1 || d[u] < d[v])) v = u; if (v == -1) break; used[v] = true; for (int u = 0; u < n; u++) d[u] = Math.min(d[u], d[v] + cost[v][u]); } return d; } static class Dis implements Comparable<Dis> { //現在地点 最短距離 int p; long cos; Dis(int p, long cost) { this.p = p; cos = cost; } public int compareTo(Dis d) { if (cos != d.cos) { if (cos > d.cos) return 1; else if (cos == d.cos) return 0; else return -1; } else { return p - d.p; } } } static class Node { int id; List<Edge> edges; Node(int id) { edges = new ArrayList<>(); this.id = id; } } static class Edge { int toId; long toCost; Edge(int id, long cost) { toId = id; toCost = cost; } } } public static long toLong(int[] ar) { long res = 0; for (int i : ar) { res *= 10; res += i; } return res; } public static int toInt(int[] ar) { int res = 0; for (int i : ar) { res *= 10; res += i; } return res; } //k個の次の組み合わせをビットで返す 大きさに上限はない 110110 -> 111001 public static int nextCombSizeK(int comb, int k) { int x = comb & -comb; //最下位の1 int y = comb + x; //連続した下の1を繰り上がらせる return ((comb & ~y) / x >> 1) | y; } public static int keta(long num) { int res = 0; while (num > 0) { num /= 10; res++; } return res; } public static long getHashKey(int a, int b) { return (long) a << 32 | b; } public static boolean isOutofIndex(int x, int y) { if (x < 0 || y < 0) return true; if (map[0].length <= x || map.length <= y) return true; return false; } public static void setPrimes() { int n = 100001; isPrime = new boolean[n]; List<Integer> prs = new ArrayList<>(); Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for (int i = 2; i * i <= n; i++) { if (!isPrime[i]) continue; prs.add(i); for (int j = i * 2; j < n; j += i) { isPrime[j] = false; } } primes = new int[prs.size()]; for (int i = 0; i < prs.size(); i++) primes[i] = prs.get(i); } public static void revSort(int[] a) { Arrays.sort(a); reverse(a); } public static void revSort(long[] a) { Arrays.sort(a); reverse(a); } public static int[][] copy(int[][] ar) { int[][] nr = new int[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) for (int j = 0; j < ar[0].length; j++) nr[i][j] = ar[i][j]; return nr; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int lowerBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int upperBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long lowerBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long upperBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } //次の順列に書き換える、最大値ならfalseを返す public static boolean nextPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] < A[pos + 1]) break; } if (pos == -1) return false; //posより大きい最小の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] > A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //次の順列に書き換える、最小値ならfalseを返す public static boolean prevPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] > A[pos + 1]) break; } if (pos == -1) return false; //posより小さい最大の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] < A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //↓nCrをmod計算するために必要。 ***factorial(N)を呼ぶ必要がある*** static long ncr(int n, int r) { if (n < r) return 0; else if (r == 0) return 1; factorial(n); return F[n] / (F[n - r] * F[r]); } static long ncr2(int a, int b) { if (b == 0) return 1; else if (a < b) return 0; long res = 1; for (int i = 0; i < b; i++) { res *= a - i; res /= i + 1; } return res; } static long ncrdp(int n, int r) { if (n < r) return 0; long[][] dp = new long[n + 1][r + 1]; for (int ni = 0; ni < n + 1; ni++) { dp[ni][0] = dp[ni][ni] = 1; for (int ri = 1; ri < ni; ri++) { dp[ni][ri] = dp[ni - 1][ri - 1] + dp[ni - 1][ri]; } } return dp[n][r]; } static long modNcr(int n, int r) { if (n < r) return 0; long result = F[n]; result = result * modInv(F[n - r]) % MOD; result = result * modInv(F[r]) % MOD; return result; } public static long modSum(long... lar) { long res = 0; for (long l : lar) res = (res + l % MOD) % MOD; return res; } public static long modDiff(long a, long b) { long res = a - b; if (res < 0) res += MOD; res %= MOD; return res; } public static long modMul(long... lar) { long res = 1; for (long l : lar) res = (res * l) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiv(long a, long b) { long x = a % MOD; long y = b % MOD; long res = (x * modInv(y)) % MOD; return res; } static long modInv(long n) { return modPow(n, MOD - 2); } static void factorial(int n) { F = new long[n + 1]; F[0] = F[1] = 1; // for (int i = 2; i <= n; i++) // { // F[i] = (F[i - 1] * i) % MOD; // } // for (int i = 2; i <= 100000; i++) { F[i] = (F[i - 1] * i) % MOD; } for (int i = 100001; i <= n; i++) { F[i] = (F[i - 1] * i) % MOD; } } static long modPow(long x, long n) { long res = 1L; while (n > 0) { if ((n & 1) == 1) { res = res * x % MOD; } x = x * x % MOD; n >>= 1; } return res; } //↑nCrをmod計算するために必要 static int gcd(int n, int r) { return r == 0 ? n : gcd(r, n % r); } static long gcd(long n, long r) { return r == 0 ? n : gcd(r, n % r); } static <T> void swap(T[] x, int i, int j) { T t = x[i]; x[i] = x[j]; x[j] = t; } static void swap(int[] x, int i, int j) { int t = x[i]; x[i] = x[j]; x[j] = t; } public static void reverse(int[] x) { int l = 0; int r = x.length - 1; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(long[] x) { int l = 0; int r = x.length - 1; while (l < r) { long temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(int[] x, int s, int e) { int l = s; int r = e; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } static int length(int a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int length(long a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int cou(boolean[] a) { int res = 0; for (boolean b : a) { if (b) res++; } return res; } static int cou(String s, char c) { int res = 0; for (char ci : s.toCharArray()) { if (ci == c) res++; } return res; } static int countC2(char[][] a, char c) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == c) co++; return co; } static int countI(int[] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) if (a[i] == key) co++; return co; } static int countI(int[][] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == key) co++; return co; } static void fill(int[][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(long[][] a, long v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(int[][][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) for (int k = 0; k < a[0][0].length; k++) a[i][j][k] = v; } static int max(int... a) { int res = Integer.MIN_VALUE; for (int i : a) { res = Math.max(res, i); } return res; } static long max(long... a) { long res = Long.MIN_VALUE; for (long i : a) { res = Math.max(res, i); } return res; } static int max(int[][] ar) { int res = Integer.MIN_VALUE; for (int i[] : ar) res = Math.max(res, max(i)); return res; } static int min(int... a) { int res = Integer.MAX_VALUE; for (int i : a) { res = Math.min(res, i); } return res; } static long min(long... a) { long res = Long.MAX_VALUE; for (long i : a) { res = Math.min(res, i); } return res; } static int min(int[][] ar) { int res = Integer.MAX_VALUE; for (int i[] : ar) res = Math.min(res, min(i)); return res; } static int sum(int[] a) { int cou = 0; for (int i : a) cou += i; return cou; } static int abs(int a) { return Math.abs(a); } static long abs(long a) { return Math.abs(a); } static class FastScanner { private BufferedReader reader = null; private StringTokenizer tokenizer = null; public FastScanner(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); tokenizer = null; } public String next() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } /*public String nextChar(){ return (char)next()[0]; }*/ public String nextLine() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken("\n"); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public int[] nextIntArrayDec(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt() - 1; } return a; } public int[][] nextIntArray2(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextInt(); } } return a; } public int[][] nextIntArray2Dec(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextInt() - 1; } } return a; } //複数の配列を受け取る public void nextIntArrays2ar(int[] a, int[] b) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt(); b[i] = sc.nextInt(); } } public void nextIntArrays2arDec(int[] a, int[] b) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt() - 1; b[i] = sc.nextInt() - 1; } } //複数の配列を受け取る public void nextIntArrays3ar(int[] a, int[] b, int[] c) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt(); b[i] = sc.nextInt(); c[i] = sc.nextInt(); } } //複数の配列を受け取る public void nextIntArrays3arDecLeft2(int[] a, int[] b, int[] c) { for (int i = 0; i < a.length; i++) { a[i] = sc.nextInt() - 1; b[i] = sc.nextInt() - 1; c[i] = sc.nextInt(); } } public Integer[] nextIntegerArray(int n) { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public char[] nextCharArray(int n) { char[] a = next().toCharArray(); return a; } public char[][] nextCharArray2(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = next().toCharArray(); } return a; } //スペースが入っている場合 public char[][] nextCharArray2s(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = nextLine().replace(" ", "").toCharArray(); } return a; } public char[][] nextWrapCharArray2(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + next() + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } //スペースが入ってる時用 public char[][] nextWrapCharArray2s(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + nextLine().replace(" ", "") + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public long[][] nextLongArray2(int h, int w) { long[][] a = new long[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nextLong(); } } return a; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "fmt" "strconv" ) func stringToInt(s string) int { i, _ := strconv.Atoi(s) return i } func min(a, b int) int { if a < b { return a } else { return b } } func main() { var n int fmt.Scan(&n) a := make([]int, 0, 0) f := make([]int, 0, 0) for i := 0; i < n; i++ { tmp := 0 fmt.Scan(&tmp) a = append(a, tmp) } f = append(f, a[0]) for i := 1; i < n; i++ { f = append(f, f[i-1]+a[i]) } f1 := make([]int, 0, 0) f2 := make([]int, 0, 0) for i := 0; i < n; i++ { f1 = append(f1, f[i]) f2 = append(f2, f[i]) } num := 0 tmpNum := 0 for i := 0; i < n; i++ { tmpNum = 0 if i%2 == 1 { if f1[i] <= 0 { tmpNum = 1 - f1[i] for j := i; j < n; j++ { f1[j] += tmpNum } } } else { if f1[i] >= 0 { tmpNum = f1[i] + 1 for j := i; j < n; j++ { f1[j] -= tmpNum } } } num += tmpNum } num1 := num num = 0 tmpNum = 0 for i := 0; i < n; i++ { tmpNum = 0 if i%2 == 0 { if f2[i] <= 0 { tmpNum = 1 - f2[i] for j := i; j < n; j++ { f2[j] += tmpNum } } } else { if f2[i] >= 0 { tmpNum = f2[i] + 1 for j := i; j < n; j++ { f2[j] -= tmpNum } } } num += tmpNum } num2 := num fmt.Println(min(num1, num2)) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T, class U> inline void chmin(T &t, U f) { if (t > f) t = f; } template <class T, class U> inline void chmax(T &t, U f) { if (t < f) t = f; } int n; void solve() { cin.tie(0); ios::sync_with_stdio(false); cin >> n; vector<long long> v(n); long long ans1 = 0, ans2 = 0; long long sum = 0; for (int i = (int)(0); i < (int)(n); i++) { cin >> v[i]; } for (int i = (int)(0); i < (int)(n); i++) { sum += v[i]; if (i % 2 == 0) { if (sum < 0) { ans1 += abs(1 - sum); sum = 1; } } else { if (sum > 0) { ans1 += abs(sum + 1); sum = -1; } } } sum = 0; for (int i = (int)(0); i < (int)(n); i++) { sum += v[i]; if (i % 2 == 1) { if (sum < 0) { ans2 += abs(1 - sum); sum = 1; } } else { if (sum > 0) { ans2 += abs(sum + 1); sum = -1; } } } if (ans1 > ans2) { cout << ans2 << endl; } else { cout << ans1 << endl; } } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, i, j, ans = 0, sum = 0; cin >> n; vector<long long> a(n); for (i = 0; i < n; i++) { cin >> a[i]; } sum += a[0]; if (sum > 0) { for (i = 1; i < n; i++) { if (i % 2 == 1) { sum += a[i]; if (sum >= 0) { ans += (sum + 1); sum = -1; } } else { sum += a[i]; if (sum <= 0) { ans += 1 - sum; sum = 1; } } } } else { for (i = 1; i < n; i++) { if (i % 2 == 1) { sum += a[i]; if (sum <= 0) { ans += 1 - sum; sum = 1; } } else { sum += a[i]; if (sum >= 0) { ans += sum + 1; sum = -1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=list(map(int,input().split())) l.append(0) a1=0 b1=0 a2=0 b2=0 for i in range(n): b1+=l[i] b2+=l[i] if i%2==0: if b1>=0: a1+=abs(-1-b1) b1=-1-l[i+1] if b2=<0: a2+=abs(1-b2) b2=1-l[i+1] else: if b1<=0: a1+=abs(1-b1) b1=1-l[i+1] if b2>=0: a2+=abs(-1-b2) b2=-1-l[i+1] print(min(a1,a2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<int> num; long long sequence(int s) { long long sum = s; long long res = 0; for (int i = 1; i < num.size(); i++) { if (sum > 0) { if (sum + num[i] >= 0) { res += 1 + num[i] + sum; sum = -1; } else { sum += num[i]; } } else { if (sum + num[i] <= 0) { res += 1 - num[i] - sum; sum = 1; } else { sum += num[i]; } } } return res; } int main() { int n; scanf("%d", &n); num.resize(n); for (int i = 0; i < n; i++) scanf("%d", &num[i]); long long ans1; long long ans2; if (num[0] == 0) { ans1 = sequence(1) + 1; ans2 = sequence(-1) + 1; } else if (num[0] > 0) { ans1 = sequence(num[0]); ans2 = sequence(-1) + num[0] + 1; } else { ans1 = sequence(1) + abs(num[0]) + 1; ans2 = sequence(num[0]); } printf("%d", min(ans1, ans2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { bool ch = false; long long N, i; long long ans = 0, count = 0; cin >> N; long long a[N]; cin >> a[0]; ans += a[0]; if (ans > 0) ch = true; else ch = false; if (ans == 0) { count += 1; ans = -1; } for (i = 1; i < N; i++) { cin >> a[i]; if (ch) { if (ans >= -a[i]) { count += ans + a[i] + 1; ans = -1; } else ans += a[i]; ch = false; } else { if (ans <= -a[i]) { count += -ans - a[i] + 1; ans = 1; } else ans += a[i]; ch = true; } } long long con = 0; if (a[0] > 0) { ans = -1; ch = false; } else { ans = 1; ch = true; } con = a[0] + 1; for (i = 1; i < N; i++) { if (ch) { if (ans >= -a[i]) { con += ans + a[i] + 1; ans = -1; } else ans += a[i]; ch = false; } else { if (ans <= -a[i]) { con += -ans - a[i] + 1; ans = 1; } else ans += a[i]; ch = true; } } cout << min(count, con) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; #define mod 1000000007 #define ll long long #define mp make_pair #define pb push_back #define ff first #define ss second #define set0(a) memset ((a), 0 , sizeof(a)) #define set1(a) memset((a),-1,sizeof (a)) #define pi pair<int, int> #define ps pair<string, string> #define pl pair<long, long> #define pll pair<long long, long long> #define vll vector<long long> #define vl vector<long> #define vi vector<int> #define vs vector<string> #define vps vector< ps > #define vpi vector< pi > #define vpl vector< pl > #define vpll vector< pll > #define flash ios_base::sync_with_stdio(false); cin.tie(NULL); #define tc(t) for(long long l=0;l<t;l++) #define rep(i,s,n,d) for(long long i=s;i<n;i=i+d) bool sortbysec(const pll &a, const pll &b) { return (a.second < b.second); } void func(void) { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); } int main(){ ll n; cin>>n; ll a[n]; rep(i,0,n,1){ cin>>a[i]; } ll count1=0; if(a[0]==0){ if(a[1]>0){ a[0]=-1; } else a[0]=1; count1++; } ll sum[n]={}; sum[0]=a[0]; rep(i,1,n,1){ sum[i]=sum[i-1]+a[i]; } ll sum1=a[0]; rep(i,1,n,1){ ll d=0; ll dif=0; if(sum1>0){ if(a[i]+sum1>=0){ d=-1; dif=abs(a[i]+sum1-d); count1=count1+dif; sum1=d; } else{ sum1=sum1+a[i]; } } else{ if(a[i]+sum1<=0){ d=1; dif=abs(a[i]+sum1-d); count1=count1+dif; sum1=d; } else{ sum1=sum1+a[i]; } } } cout<<count1<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MAXN = 100 * 1000 + 10; int main() { long long n, f = 0, z = 0, s = 0, sum = 0; cin >> n; long long b[n]; for (long long i = 0; i < n; i++) { cin >> b[i]; if (i % 2 == 0) { f += b[i]; } else { z += b[i]; } } if (f >= z) { if (b[0] <= 0) { s += -1 * b[0] + 1; b[0] = 1; } } else { if (b[0] >= 0) { s += b[0] + 1; b[0] = -1; } } for (long long i = 0; i < n - 1; i++) { sum += b[i]; if (sum < 0 && sum + b[i + 1] < 0) { s += -1 * (sum + b[i + 1]); b[i + 1] += -1 * (sum + b[i + 1]); } else if (sum > 0 && sum + b[i + 1] >= 0) { s += sum + b[i + 1]; b[i + 1] -= sum + b[i + 1]; } if (sum + b[i + 1] == 0) { if (sum < 0) { b[i + 1] += 1; } else { b[i + 1] -= 1; } s++; } } cout << s; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[1004], temp[1004]; long long solve() { long long ans = 0; for (int i = (2); i <= (int)(n); ++i) { if (a[i - 1] > 0) { if (a[i] + a[i - 1] < 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] + 1 + a[i - 1]); a[i] = -1; } else { if (a[i] + a[i - 1] > 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] - 1 + a[i - 1]); a[i] = 1; } } return ans; } int main() { scanf("%d", &n); for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]); long long ans = 0; if (!a[1]) { a[1] = 1; memcpy(temp, a, sizeof(temp)); ans = solve() + 1; memcpy(a, temp, sizeof(a)); a[1] = -1; ans = min(ans, solve() + 1); } else ans = solve(); printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int atcoder() { int n; cin >> n; long long ans = 0; long long a[110000] = {}; long long notzero = 0; for (int i = 0; i < n; ++i) { cin >> a[i]; if (notzero == i && a[i] == 0) notzero++; } long long tmpsum = a[0]; if (notzero % 2 == 1) { if (a[notzero] > 0) { ans++; tmpsum = -1; } else { ans++; tmpsum = 1; } } else if (notzero % 2 == 0 && notzero != 0) { if (a[notzero] > 0) { ans++; tmpsum = 1; } else { ans++; tmpsum = -1; } } for (auto i = 1; i < n; ++i) { if (tmpsum * (a[i] + tmpsum) >= 0) { if (a[i] + tmpsum > 0) { ans += a[i] + tmpsum + 1; tmpsum = -1; } else if (a[i] + tmpsum < 0) { ans += -(a[i] + tmpsum) + 1; tmpsum = 1; } else { ans++; if (tmpsum < 0) tmpsum = 1; else if (tmpsum > 0) tmpsum = -1; } } else tmpsum += a[i]; } cout << ans << "\n"; return 0; } int main() { cin.tie(0); ios::sync_with_stdio(false); atcoder(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws Exception { // Your code here! BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] str_a = br.readLine().split(" "); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(str_a[i]); } int sum = 0; int count = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { if (sum >= 0) { count += sum + 1; sum = -1; } } else { if (sum <= 0) { count += 1 - sum; sum = 1; } } } int count2 = 0; sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum >= 0) { count2 += sum + 1; sum = -1; } } else { if (sum <= 0) { count2 += 1 - sum; sum = 1; } } } System.out.println(count>=count2?count2:count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<long long> a(n); cin >> a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; a[i] += a[i - 1]; } if (a[0] < 0) { for (int i = 0; i < n; i++) { a[i] *= -1; } } long long ans = 0, def = 0; if (a[0] == 0) { ans++; def++; } for (int i = 1; i < n; i++) { if (i % 2 == 0 && a[i] + def <= 0) { ans += 1 - (a[i] + def); def += 1 - (a[i] + def); } else if (i % 2 == 1 && a[i] + def >= 0) { ans += a[i] + def + 1; def -= a[i] + def + 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long n; cin >> n; vector<long> a(n + 1); for (long i = 1; i <= n; i++) cin >> a.at(i); long ans = 0; for (long i = 1; i <= n - 1; i++) { if (abs(a.at(i + 1)) > abs(a.at(i)) && a.at(i + 1) * a.at(i) < 0) { a.at(i + 1) += a.at(i); } else { ans += abs(a.at(i + 1) - ((abs(a.at(i)) + 1) * -1 * a.at(i) / abs(a.at(i)))); a.at(i + 1) = -1 * a.at(i) / abs(a.at(i)); } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from functools import reduce N =int(input()) A = list(map(int, input().split())) def check(A): arr1 = [0]*N ans1 = 0 for i in range(len(A)): if i ==0: arr1[0] = A[0] else: arr1[i] += arr1[i-1] + A[i] if arr1[i]*arr1[i-1] >0: if arr1[i-1] >=0: #-に arr1[i] = -1 elif arr1[i-1] <=0: # 無理やり+にする. arr1[i] = 1 print(arr1[i-1],arr1[i]) ans1 += abs(A[i])+1 ans2 = 0 arr2 = [0]*N #change head. for i in range(len(A)): if i ==0: if A[0]>=0: arr2[0] = -1 elif A[0]<=0: arr2[0] = 1 ans2 += abs(A[0])+1 else: arr2[i] += arr2[i-1] + A[i] if arr2[i]*arr2[i-1] >0: if arr2[i-1]>=0: arr2[i] = -1 elif arr2[i-1]<=0: arr2[i] = 1 print(arr2[i-1],arr2[i]) ans2 += abs(A[i])+1 return min(ans1,ans2) print(check(A))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; i++) cin >> a[i]; long long now = 0; long long ans1 = 0; for (long long i = 0; i < n; i++) { now += a[i]; if (i % 2 == 0) { if (now < 0) { ans1 += 1 - now; now = 1; } } if (i % 2 == 1) { if (now > 0) { ans1 += now + 1; now = -1; } } } now = 0; long long ans2 = 0; for (long long i = 0; i < n; i++) { now += a[i]; if (i % 2 == 1) { if (now <= 0) { ans2 += 1 - now; now = 1; } } if (i % 2 == 0) { if (now >= 0) { ans2 += now + 1; now = -1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- # 整数の入力 n=int(input()) a=input().split() counter=0 # 出力 for i in range(1,n): S=0 for j in range(0,i): S=S+int(a[j]) if S<0 and S+int(a[i])<0: counter=counter-S-int(a[i])+1 a[i]=-S+1 elif S>0 and S+int(a[i])>0: counter=counter+S+int(a[i])+1 a[i]=-S-1 print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <algorithm> #include <string> #define int long long using namespace std; int main() { int n; int A[100001]; cin >> n; for(int i = 0; i < n; i++) { cin >> A[i]; } int sum = 0; int counter = 0; // 偶数番目が正 for(int i = 0; i < n; i++) { sum += A[i]; if(i % 2 == 0) { while(sum <= 0){ sum++; counter++; } } else { while(sum >= 0){ sum--; counter++; } } } int counterNeg = 0; sum = 0; for(int i = 0; i < n; i++) { sum += A[i]; if(i % 2 == 1) { while(sum <= 0){ sum++; counterNeg++; } } else { while(sum >= 0){ sum--; counterNeg++; } } } cout << min(counter, counterNeg) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int[] A = new int[N]; for (int i = 0; i < N; ++i) { A[i] = sc.nextInt(); } sc.close(); int sum1 = 0; int sum2 = 0; int ans1 = 0; int ans2 = 0; for (int i = 1; i < N; ++i) { sum1 += A[i]; if (i % 2 == 0 && sum1 >= 0) { ans1 += sum1 +1; sum1 = -1; } else if (i % 2 != 0 && sum1 <= 0) { ans1 += Math.abs(sum1) + 1; sum1 = 1; } } for (int i = 1; i < N; ++i) { sum2 += A[i]; if (i % 2 == 0 && sum2 <= 0) { ans2 += sum1 +1; sum2 = 1; } else if (i % 2 != 0 && sum2 >= 0) { ans2 += Math.abs(sum2) + 1; sum2 = -1; } } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long int; template <class T> ostream &operator<<(ostream &os, vector<T> &v) { for (auto i = v.begin(); i != v.end(); i++) { os << *i << " "; } return os; } ll gcd(ll a, ll b) { ll tmp; if (b > a) { tmp = a; a = b; b = tmp; } while (a % b != 0) { tmp = b; b = a % b; a = tmp; } return b; } ll lcm(ll a, ll b) { return a * b / gcd(a, b); } int main(void) { ll n; vector<ll> v; cin >> n; for (int i = 0; i < n; i++) { ll x; cin >> x; v.push_back(x); } ll cnt = 0; if (v[0] == 0) { if (v[1] > 0) { v[0] = -1; } else if (v[1] < 0) { v[0] = 1; } cnt++; } ll sum = v[0]; ll prev = v[0]; for (int i = 1; i < n; i++) { sum += v[i]; if (prev >= 0 and sum >= 0) { cnt += abs(-1 - sum); sum += -1 - sum; } else if (prev <= 0 and sum <= 0) { cnt += abs(1 - sum); sum += abs(1 - sum); } prev = sum; } std::cout << cnt << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input().strip()) A = list(map(int, input().strip().split(" "))) s = A[0] count = 0 if s == 0: if n == 1: count += 1 else: count += 1 if A[1] > 0: s = -1 else: s = 1 for a in A[1:]: prev = s sign = prev > 0 s += a if s == 0: count += 1 if sign: # previous is positive s = -1 else: # prev is negative s = 1 elif sign == (s > 0): # previous and current have the same sign count += abs(s)+1 if s > 0: s = -1 else: s = 1 else: pass print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int j = 0; j < N; j++) { cin >> a[j]; } int c1 = 0, c2 = 0; int sum = 0; for (int i = 0; i < N; i++) { sum += a[i]; if (i % 2 == 1 && sum >= 0) { c1 += sum + 1; sum = -1; } if (i % 2 == 0 && sum <= 0) { c1 += -sum + 1; sum = 1; } } sum = 0; for (int i = 0; i < N; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { c2 += -sum + 1; sum = 1; } if (i % 2 == 0 && sum >= 0) { c2 += sum + 1; sum = -1; } } cout << c1 << " " << c2 << endl; cout << min(c1, c2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int a[100005] = {0}; long long int solve(long long int n, long long int sum) { long long int ans = 0; for (int i = 1; i < n; ++i) { long long int s = sum + a[i]; if ((s ^ sum) >= 0 || s == 0) { ans += abs(s) + 1; s = (sum < 0 ? 1 : -1); } sum = s; } return ans; } int main() { int n; cin >> n; for (int i = 0; i < n; ++i) cin >> a[i]; long long int ans = 0; if (a[0] != 0) ans = solve(n, a[0]); else { ans = solve(n, 1) + 1; ans = min(solve(n, -1) + 1, ans); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { long long n, now = 0, ans = 0; bool flag; scanf("%ld", &n); long long a[n]; scanf("%ld", &a[0]); now = a[0]; if (now < 0) { flag = false; } else { flag = true; } for (long long i = 1; i < n; i++) { scanf("%ld", &a[i]); now += a[i]; if (flag) { if (now >= 0) { ans += (-1 - now) * (-1); now = -1; } flag = false; } else { if (now <= 0) { ans += 1 - now; now = 1; } flag = true; } } printf("%ld", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); bool fla = false; for (int i = 0; i < N; i++) { if (a.at(i) != 0) { if ((a.at(i) > 0) && (i % 2 == 0)) fla = true; else if ((a.at(i) < 0) && (i % 2 == 1)) fla = true; break; } } int64_t t = 0LL, res = 0LL; for (int i = 0; i < N; i++) { int b = a.at(i); if (fla) { if (t + b <= 0) { b = t * -1 + 1; res += b - a.at(i); } } else { if (t + b >= 0) { b = t * -1 - 1; res += abs(b - a.at(i)); } } t += b; fla = !fla; } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) { try{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int N = Integer.parseInt(br.readLine()); String[] inputString = br.readLine().split(" "); int[] input = new int[N]; for(int i = 0 ; i < N ; i++){ input[i] = Integer.parseInt(inputString[i]); } int result = 0; int base = input[0]; if(base == 0){ result += 1; for(int i = 1 ; i < N ; i++){ if(input[i] != 0){ int k = input[i] * input[i]; k = (int) Math.sqrt(k) / (int)input[i]; base = (i%2 == 0)? k : -k; }else if(i == N-1){ base = 1; } } } for(int i = 1 ; i < N ; i++){ int temp = base; base += input[i]; if(temp*base >= 0){ result += Math.sqrt(base*base)+1; base = (temp > 0)? -1 : 1; } } System.out.println(result); }catch(Exception e){ e.printStackTrace(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long int check(long int sum, long int ans, vector<int> T, int N, bool pre_pm) { for (int i = 1; i < N; i++) { if (pre_pm) { sum += T.at(i); while (0 <= sum) { sum--; ans++; } pre_pm = false; } else { sum += T.at(i); while (sum <= 0) { sum++; ans++; } pre_pm = true; } } return ans; } int main() { int N; vector<int> T; cin >> N; for (int i = 0; i < N; i++) { int tmp; cin >> tmp; T.push_back(tmp); } long int ans = 0; long int sum = 0; bool pre_pm; sum = T.at(0); if (0 <= sum) { pre_pm = true; if (!sum) { sum++; ans++; } long int tmp1 = check(sum, ans, T, N, pre_pm); pre_pm = false; long int tmp2 = check(-1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } else { pre_pm = false; long int tmp1 = check(sum, ans, T, N, pre_pm); pre_pm = true; long int tmp2 = check(1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using lint = long long; using P = pair<int, int>; using vec = vector<lint>; using mat = vector<vector<int>>; constexpr int MOD = 1000000007; const int INF = 1 << 30; int main() { int n; cin >> n; vec a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; lint res = INF; lint tres = 0; lint cur = 0; for (int i = 0; i < (int)(n); i++) { if (i % 2 == 0) { if (cur + a[i] <= 0) { tres += abs(1 - (cur + a[i])); cur = 1; } else { cur += a[i]; } } else { if (cur + a[i] >= 0) { tres += abs((cur + a[i]) + 1); cur = -1; } else { cur += a[i]; } } } res = min(res, tres); tres = 0; cur = 0; for (int i = 0; i < (int)(n); i++) { if (i % 2 == 1) { if (cur + a[i] <= 0) { tres += abs(1 - (cur + a[i])); cur = 1; } else { cur += a[i]; } } else { if (cur + a[i] >= 0) { tres += abs((cur + a[i]) + 1); cur = -1; } else { cur += a[i]; } } } res = min(res, tres); cout << res << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int sum = a[0]; int cnt = 0; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) { sum += a[i]; continue; } if (sum > 0) { cnt += a[i] + sum + 1; a[i] = -(sum + 1); } else if (sum < 0) { cnt += -sum + 1 - a[i]; a[i] = -sum + 1; } sum += a[i]; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = LONG_LONG_MAX; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; long long ans = INF; long long sum = 0; long long count = 0; for (int i = 0; i < (n); i++) { sum += a[i]; if (i % 2 == 0) { if (sum < 1) { count += (1 - sum); sum = 1; } } else { if (sum > -1) { count += (sum - (-1)); sum = -1; } } } ans = min(ans, count); sum = 0; count = 0; for (int i = 0; i < (n); i++) { sum += a[i]; if (i % 2 != 0) { if (sum < 1) { count += (1 - sum); sum = 1; } } else { if (sum > -1) { count += (sum - (-1)); sum = -1; } } } ans = min(ans, count); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; int i; for (i = 0; i < n; i++) { cin >> a[i]; } long long sum = 0; int cnt = 0; if (a[0] > 0) { for (i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum <= 0) { sum++; cnt++; } } else { while (sum >= 0) { sum--; cnt++; } } } } else { for (i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { sum--; cnt++; } } else { while (sum <= 0) { sum++; cnt++; } } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; int a[n]; long long int s = 0; long long int ans = 400000000000000000; int i; for (i = 0; i < n; i++) cin >> a[i]; s = a[0]; long long int p = 0; if (s > 0) { for (i = 1; i < n; i++) { if (i % 2) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } s = -1; ans = min(ans, p); p = a[0] + 1; for (i = 1; i < n; i++) { if (i % 2 == 0) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } ans = min(ans, p); cout << ans << endl; } else if (s < 0) { for (i = 1; i < n; i++) { if (i % 2 == 0) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } s = -1; ans = min(ans, p); p = a[0] + 1; for (i = 1; i < n; i++) { if (i % 2 == 1) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } ans = min(ans, p); cout << ans << endl; } else { p = 1; s = 1; for (i = 1; i < n; i++) { if (i % 2) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } s = -1; ans = min(ans, p); p = 1; for (i = 1; i < n; i++) { if (i % 2 == 0) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } ans = min(ans, p); cout << ans << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Text; using System.Collections.Generic; using System.Linq; class Program { static List<long> rep; static void Main(string[] args){ //入力を受け取る var N = long.Parse(Console.ReadLine()); var A = Console.ReadLine().Split().Select(a => long.Parse(a)).ToArray(); var B = A; long ans = 0; long sum = A[0]; for(int i =1 ;i <N; i++){ if(sum > 0){ if(sum+A[i] >= 0){ var aim = sum*(-1)-1; ans += (long) Math.Abs(A[i]-aim); A[i] = aim; } }else{ if(sum+A[i] <= 0){ var aim = sum*(-1)+1; ans += (long) Math.Abs(A[i]-aim); A[i] = aim; } } sum += A[i]; } long ans2 = (long)Math.Abs(B[0])+1; long sum2 = 0; if(B[0] > 0){ sum2 = -1; }else{ sum2 = 1; } for(int i =1 ;i <N; i++){ if(sum2 > 0){ if(sum2+B[i] >= 0){ var aim = sum2*(-1)-1; ans2 += (long) Math.Abs(B[i]-aim); B[i] = aim; } }else{ if(sum2+B[i] <= 0){ var aim = sum2*(-1)+1; ans2 += (long) Math.Abs(B[i]-aim); B[i] = aim; } } sum2 += B[i]; } if(ans2 < ans){ Console.WriteLine(ans2); }else{ Console.WriteLine(ans); }   } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int flag[100005], k[100005]; long long a[100005], sum[100005], ans, b[100005], tot[100005], ant; int main() { int m = 0; scanf("%d", &n); scanf("%lld", &a[1]); b[1] = a[1]; sum[1] = a[1]; tot[1] = sum[1]; if (sum[1] > 0) flag[1] = 1; if (sum[1] < 0) flag[1] = 0; if (sum[1] == 0) m = 1; if (m == 0) { for (int i = 2; i <= n; i++) { scanf("%lld", &a[i]); sum[i] = a[i] + sum[i - 1]; if (sum[i] > 0) flag[i] = 1; if (sum[i] < 0) flag[i] = 0; if (flag[i - 1] == 1) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; flag[i] = 0; } } else { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; flag[i] = 1; } } } printf("%lld\n", ans); } else { for (int i = 2; i <= n; i++) { scanf("%lld", &a[i]); flag[1] = 0; b[i] = a[i]; sum[i] = a[i] + sum[i - 1]; if (sum[i] > 0) flag[i] = 1; if (sum[i] < 0) flag[i] = 0; if (flag[i - 1] == 1) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; flag[i] = 0; } } else { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; flag[i] = 1; } } } k[1] = 1; for (int i = 2; i <= n; i++) { tot[i] = b[i] + tot[i - 1]; if (tot[i] > 0) k[i] = 1; if (tot[i] < 0) k[i] = 0; if (k[i - 1] == 1) { if (tot[i] >= 0) { ant += tot[i] + 1; tot[i] = -1; k[i] = 0; } } else { if (tot[i] <= 0) { ant += 1 - tot[i]; tot[i] = 1; k[i] = 1; } } } printf("%lld\n", min(ant, ans)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int sum = 0, prev = 0; long long int ans = 0; for (int i = 0; i < n; i++) { int a; cin >> a; sum += a; if (prev > 0) { if (sum >= 0) { ans += abs(sum) + 1; sum = -1; } } else if (prev < 0) { if (sum <= 0) { ans += abs(sum) + 1; sum = 1; } } prev = sum; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000]; int n; void solve() { long long sum0 = a[0]; long long sum1; long long ans1 = 0; long long ans2 = 0; if (a[0] == 0) { ans1++; sum0 = 1; } else { sum0 = a[0]; } for (int i = 1; i < n; i++) { sum1 = sum0 + a[i]; if (sum1 * sum0 < 0) { } else if (sum1 * sum0 > 0) { ans1 += abs(sum1) + 1; sum1 = -1 * sum0 / abs(sum0); } else { ans1++; sum1 = -1 * sum0 / abs(sum0); } sum0 = sum1; } if (a[0] == 0) { ans2++; sum0 = -1; } else { sum0 = a[0]; } for (int i = 1; i < n; i++) { sum1 = sum0 + a[i]; if (sum1 * sum0 < 0) { } else if (sum1 * sum0 > 0) { ans2 += abs(sum1) + 1; sum1 = -1 * sum0 / abs(sum0); } else { ans2++; sum1 = -1 * sum0 / abs(sum0); } sum0 = sum1; } cout << min(ans1, ans2) << endl; return; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.PrintWriter; import java.util.Scanner; public class Main{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); final int MOD = 1000000007; final int INF = 1100000000; //入力 int n = sc.nextInt(); int[] a = new int[n]; for(int i = 0; i < n; i++){ a[i] = sc.nextInt(); } sc.close(); //処理 long ans = (1 << 30); boolean bool = true; for(int count = 0; count < 2; count++){ long temp = 0; bool ^= true; boolean f = bool; long sum = 0; for(int i = 0; i < n; i++){ sum += (long)a[i]; if(sum > 0 == f){ //nothing }else{ temp += (long)Math.abs(sum) + 1; if(f){ sum = 1; }else{ sum = -1; } } f ^= true; } ans = Math.min(ans, temp); } //出力 out.println(ans); out.flush(); } static class Pair{ int w,v; public Pair(int a, int b){ this.w = a; this.v = b; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int alpha[26]; const int INF = 10000000; int main() { int n; cin >> n; vector<string> S(n); for (int i = 0; i < n; i++) { cin >> S[i]; } for (int i = 0; i < 26; i++) { alpha[i] = INF; } for (char c = 'a'; c <= 'z'; c++) { if (alpha[c - 'a'] == 0) continue; for (int i = 0; i < n; i++) { int cnt = 0; for (int j = 0; j < S[i].length(); j++) { if (S[i][j] == c) { cnt++; } } alpha[c - 'a'] = min(alpha[c - 'a'], cnt); } } string ans = ""; for (char c = 'a'; c <= 'z'; c++) { int temp = alpha[c - 'a']; while (temp > 0) { ans += c; temp--; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n), b(n); for (long long(i) = (0); (i) < (long long)(n); ++(i)) cin >> a[i], b[i] = a[i]; long long sum = a[0]; long long ans = 0; if (sum == 0) sum++, ans++; for (int i = 1; i < n; ++i) { if ((sum > 0 and sum + a[i] < 0) or (sum < 0 and sum + a[i] > 0)) { sum += a[i]; } else { if (sum > 0) { sum += a[i]; for (; sum >= 0; --sum) { ++ans; } } else { sum += a[i]; for (; sum <= 0; ++sum) { ++ans; } } } } long long ans2 = 0; sum = a[0]; if (sum == 0) sum--, ans2++; if (sum > 0) { for (; sum >= 0; --sum) { ++ans2; } } else { for (; sum <= 0; ++sum) { ++ans2; } } for (int i = 1; i < n; ++i) { if ((sum > 0 and sum + a[i] < 0) or (sum < 0 and sum + a[i] > 0)) { sum += a[i]; } else { if (sum > 0) { sum += a[i]; for (; sum >= 0; --sum) { ++ans2; } } else { sum += a[i]; for (; sum <= 0; ++sum) { ++ans2; } } } } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n; int sequence[100000]; int counter_even; int counter_odd; int sum; scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d", &sequence[i]); } counter_even = 0; sum = 0; for (int i = 0; i < n; i++) { sum += sequence[i]; if (0 == (i + 1) % 2) { if (sum < 0) { counter_even = counter_even + abs(sum) + 1; sum = 1; } } else { if (sum >= 0) { counter_even = counter_even + abs(sum) + 1; sum = -1; } } } if (0 == sum) { counter_even++; } counter_odd = 0; sum = 0; for (int i = 0; i < n; i++) { sum += sequence[i]; if (1 == (i + 1) % 2) { if (sum < 0) { counter_odd = counter_odd + abs(sum) + 1; sum = 1; } } else { if (sum >= 0) { counter_odd = counter_odd + abs(sum) + 1; sum = -1; } } } if (0 == sum) { counter_odd++; } if (counter_even < counter_odd) { printf("%d\n", counter_even); } else { printf("%d\n", counter_odd); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from itertools import accumulate import copy def sol(acmA, sign=1): add = 0 ans = 0 sumA = acmA[0] for i in range(1,N): acmA[i] += add if sign == 1: if (i%2==0 and acmA[i-1]<0 and 0<acmA[i]) or (i%2==1 and 0<acmA[i-1] and acmA[i]<0) :continue else: if (i%2==1 and acmA[i-1]<0 and 0<acmA[i]) or (i%2==0 and 0<acmA[i-1] and acmA[i]<0) :continue tmp_add = -acmA[i]-1 if acmA[i] > 0 else -acmA[i]+1 #print(i, tmp_add, acmA[i]) acmA[i] += tmp_add sumA += acmA[i] add += tmp_add ans +=abs(tmp_add) if sumA == 0: return ans +1 else: return ans N = int(input()) A = list(map(int,input().split())) acmA = list(accumulate(A)) acmA2 = copy.deepcopy(acmA) print(min(sol(acmA, 1),sol(acmA2,-1))) #print(acmA)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using static Assistant.Input; using static Assistant.Debug; using System.Linq; using Assistant; namespace ABC059C { class Program { static void Main(string[] args) { var n = RInt; var a = RInts; long ans = 0; if (a[0] != 0) { ans = cand(a[0], a); } else { ans = Math.Min(cand(1, a), cand(-1, a)) + 1; } Console.WriteLine(ans); } static long cand(long sum, int[] a) { long ret = 0; for (int i = 1; i < a.Length; i++) { if (sum < 0) { sum += a[i]; if (sum < 1) { ret += 1 - sum; sum = 1; } } else if (sum > 0) { sum += a[i]; if (sum > -1) { ret += sum + 1; sum = -1; } } } return ret; } } } namespace Assistant { static class Input { static List<string> line = new List<string>(); static int index = 0; static String RNext() { if (line.Count <= index) line.AddRange(Console.ReadLine().Split()); return line[index++]; } public static int RInt => int.Parse(RNext()); public static long RLong => long.Parse(RNext()); public static int[] RInts => Console.ReadLine().Split().Select(int.Parse).ToArray(); public static long[] RLongs => Console.ReadLine().Split().Select(long.Parse).ToArray(); public static string RString => RNext(); //以下未テスト public static int[] RIntsC(int c) => Enumerable.Repeat(0, c).Select(x => int.Parse(RNext())).ToArray(); public static long[] RLongsC(int c) => Enumerable.Repeat(0, c).Select(x => long.Parse(RNext())).ToArray(); public static char[][] RMap(int h) => Enumerable.Repeat(0, h).Select(x => Console.ReadLine().ToCharArray()).ToArray(); } public struct Mlong { long _v; const long mod = 1000000007; public Mlong(long n = 0) : this() { _v = n >= mod ? n % mod : n; } public static implicit operator Mlong(long _x) => new Mlong(_x); public static implicit operator long(Mlong _x) => _x._v; public static Mlong operator +(Mlong m1, Mlong m2) { long m = m1._v + m2._v; return m >= mod ? m - mod : m; } public static Mlong operator -(Mlong m1, Mlong m2) { long m = m1._v - m2._v; return m >= 0 ? m : m + mod; } public static Mlong operator *(Mlong m1, Mlong m2) => m1._v * m2._v % mod; public static Mlong operator /(Mlong m1, Mlong m2) => m1._v * ModPow(m2._v, mod - 2) % mod; public static long ModPow(long a, long n) { if (n == 0) return 1; else if (n % 2 == 1) return a * ModPow(a, n - 1) % mod; else return ModPow(a * a % mod, n / 2); } static Mlong[] fac, finv, inv; public static void nCkInit(int max) { fac = new Mlong[max]; finv = new Mlong[max]; inv = new Mlong[max]; fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < max; i++) { fac[i] = fac[i - 1] * i; inv[i] = mod - inv[mod % i] * (mod / i); finv[i] = finv[i - 1] * inv[i]; } } public static Mlong nCk(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * finv[k] * finv[n - k]; } } static class Debug { static public void Draw2D<T>(T[,] map, int mode = 1) { #if DEBUG int W = map.GetLength(0); int H = map.GetLength(1); string[,] map2 = new string[W + 1, H + 1]; for (int i = 0; i < W + 1; i++) { for (int j = 0; j < H + 1; j++) { if (i == 0 && j == 0) map2[i, j] = 0.ToString(); else if (i == 0) map2[i, j] = (j - 1).ToString(); else if (j == 0) map2[i, j] = (i - 1).ToString(); else map2[i, j] = map[i - 1, j - 1].ToString(); } } for (int i = 0; i < W + 1; i++) { for (int j = 0; j < H + 1; j++) { if (mode == 0) Console.Write(map2[i, j].Last()); if (mode == 1) Console.Write(map2[i, j] + " "); } Console.WriteLine(); } Console.WriteLine(); #endif } public static void Draw1D<T>(T[] array, int mode = 0) { #if DEBUG Console.WriteLine(string.Join(" ", array)); #endif } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100050]; int sum[100050]; int main() { int n; scanf("%d", &n); int cnt1 = 0, cnt2 = 0; memset(sum, 0, sizeof(sum)); for (int i = 0; i < n; i++) { scanf("%d", &a[i]); sum[i] = sum[i - 1] + a[i]; } int lazy1 = 0, lazy2 = 0; for (int i = 0; i < n; i++) { int sum1 = sum[i], sum2 = sum[i]; sum1 += lazy1; sum2 += lazy2; if (i % 2 == 0 && sum1 <= 0) { lazy1 += 1 - sum1; cnt1 += 1 - sum1; } if (i % 2 == 0 && sum2 >= 0) { lazy2 -= 1 + sum2; cnt2 += sum2 + 1; } if (i % 2 == 1 && sum1 >= 0) { lazy1 -= 1 + sum1; cnt1 += sum1 + 1; } if (i % 2 == 1 && sum2 <= 0) { lazy2 += 1 - sum2; cnt2 += 1 - sum2; } } printf("%d\n", min(cnt1, cnt2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
(defun read-num (&optional (stream *standard-input*)) (parse-integer (read-line stream))) (defun read-list-from-string (str) (read-from-string (concatenate 'string "(" str ")"))) (defun read-list (&optional (stream *standard-input*)) (read-list-from-string (read-line stream))) (defun satisfy-num (acc val) (if (> acc 0) (if (< (+ acc val) 0) 0 (- (+ 1 val acc))) (if (> (+ acc val) 0) 0 (- 1 val acc)))) (defun count-shift (len) (let ((acc (read)) (sum 0)) (dotimes (n (1- len) sum) (let* ((e (read)) (shift (satisfy-num acc e))) (incf sum (abs shift)) (incf acc (+ e shift)))))) (defun solve (len) (format t "~D~%" (count-shift len))) (solve (read-num))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long ans = 0, sum = 0, tmp; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; bool sign; if (a[0] == 0 && a[1] >= 0) { sum = -1; sign = false; ans++; } else if (a[0] == 0 && a[1] < 0) { sum = 1; sign = true; ans++; } for (int i = 1; i < n; i++) { tmp = sum + a[i]; if (sign && tmp >= 0) { sum = -1; sign = false; ans += abs(tmp) + 1; } else if (!sign && tmp <= 0) { sum = 1; sign = true; ans += abs(tmp) + 1; } else if ((sign && tmp < 0) || (!sign && tmp > 0)) { sum += a[i]; sign = !sign; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr auto INF = 100000000000; constexpr auto mod = 1000000007; struct edge { int to, cost; }; long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, long long m) { long long b = m, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= m; if (u < 0) u += m; return u; } long long int c(long long int a, long long int b, long long int m) { long long int ans = 1; for (long long int i = 0; i < b; i++) { ans *= a - i; ans %= m; } for (long long int i = 1; i <= b; i++) { ans *= modinv(i, m); ans %= m; } return ans; } void dijkdtra(int s, int v, vector<int>& d, vector<vector<edge>>& G) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> que; d[s] = 0; que.push(pair<int, int>(0, s)); while (!que.empty()) { pair<int, int> p = que.top(); que.pop(); int V = p.second; if (d[V] < p.first) continue; for (int i = 0; i < G[V].size(); i++) { edge e = G[V][i]; if (d[e.to] > d[V] + e.cost) { d[e.to] = d[V] + e.cost; que.push(pair<int, int>(d[e.to], e.to)); } } } } long long int binary_search(vector<int>& s, long long int a) { long long int l = -1; long long int r = (int)s.size(); while (r - l > 1) { long long int mid = l + (r - l) / 2; if (s[mid] >= a) r = mid; else l = mid; } return r; } int k(long long n) { int x = 0; while (n) { x += n % 10; n /= 10; } return x; } long long max(long long x, long long y) { if (x < y) return y; return x; } int main() { long long n, ans; cin >> n; vector<long long> a(n), t(n), s(n); for (int i = (0); i < (n); i++) { cin >> a[i]; t[i] = a[i]; s[i] = a[i]; } long long int w = a[0]; if (w <= 0) { w = 1; a[0] = 1; } for (int i = (1); i < (n); i++) { if (i % 2 == 0) { if (abs(w) >= a[i]) { a[i] = abs(w) + 1; } w += a[i]; } else { if (w >= abs(a[i])) { a[i] = -1 * (w + 1); } w += a[i]; } } w = t[0]; if (w >= 0) { w = -1; t[0] = -1; } for (int i = (1); i < (n); i++) { if (i % 2 == 1) { if (abs(w) >= t[i]) { t[i] = abs(w) + 1; } w += t[i]; } else { if (w >= abs(t[i])) { t[i] = -1 * (w + 1); } w += t[i]; } } long long cost1 = 0, cost2 = 0; for (int i = (0); i < (n); i++) { cost1 += abs(s[i] - a[i]); cost2 += abs(s[i] - t[i]); } ans = min(cost1, cost2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#!/usr/bin/env ruby STDIN.gets.chomp.to_i array = STDIN.gets.chomp.split(' ').map(&:to_i) def get_answer(first, array) ans = 0 sum = first array.each do |a| if sum >= 0 if sum + a < 0 sum += a else ans += (-1 - (sum + a)).abs sum = -1 end else # sumがマイナス if sum + a > 0 sum += a else ans += (1 - (sum + a)).abs sum = 1 end end #puts "#{i}: sum = #{sum}, ans = #{ans}" end return ans end first = array.shift if first == 0 ans = [get_answer(1, array), get_answer(-1, array)].min + 1 else ans = get_answer(first, array) end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; int main(int argc, char const *argv[]) { int n; std::cin >> n; std::vector<int> v(n); std::vector<int> sums(2, 0); for (size_t i = 0; i < n; i++) { std::cin >> v[i]; sums[i % 2] += v[i]; } ull ans = 0; if (sums[0] > sums[1] && v[0] <= 0) { ans = ans + abs(v[0]) + 1; v[0] = 1; } else if (sums[0] < sums[1] && v[0] >= 0) { ans = ans + abs(v[0]) + 1; v[0] = -1; } else if (v[0] == 0) { ans += 1; v[0] = 1; } ll now, pre; now = pre = v[0]; for (size_t i = 1; i < n; i++) { now += v[i]; if (pre * now >= 0) { if (pre > 0) { ans = ans + abs(now) + 1; now = -1; } else if (pre < 0) { ans = ans + abs(now) + 1; now = 1; } } pre = now; } std::cout << ans << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] change = 0 if a[0]==0: i=0 while a[i]==0: i+=1 if a[i]<0: a[i-1]=1 for idx in range(i-2,-1,-1): a[idx]=a[i-1]*-1 if a[i]>0: a[i-1]=-1 for idx in range(i-2,-1,-1): a[idx]=a[i-1]*-1 change += i #print(a) d=[a[0]] cd=[a[0]] for i in range(1,n): val = 0 tempsum = sum+a[i] d.append(tempsum) if sum < 0 and tempsum <=0: val = 1 - tempsum if sum > 0 and tempsum >=0: val = -1 - tempsum sum = tempsum + val cd.append(sum) change += abs(val) #print(d) #print(cd) print(change)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) L = [0 for _ in range(n)] L[0] = a[0] for i in range(1, n): L[i] = L[i-1] + a[i] delay = 0 all_over = 0 anti_delay = 0 anti_all_over = 0 if a[0] != 0: antiL = L[:] sign = (a[0] > 0) - (a[0] < 0) for i in range(1, n): L[i] += delay if L[i] <= 0 and sign == -1: delay += 1 - L[i] all_over += 1 - L[i] L[i] = 1 elif L[i] >= 0 and sign == 1: delay -= L[i] + 1 all_over += L[i] + 1 L[i] = -1 sign *= -1 if antiL[0] < 0: sign = 1 anti_delay = 1 - antiL[0] anti_all_over = 1 - antiL[0] else: sign = -1 anti_delay = antiL[0] - 1 anti_all_over = antiL[0] - 1 for i in range(1, n): antiL[i] += anti_delay if antiL[i] <= 0 and sign == -1: anti_delay += 1 - antiL[i] anti_all_over += 1 - antiL[i] antiL[i] = 1 elif antiL[i] >= 0 and sign == 1: anti_delay -= antiL[i] + 1 anti_all_over += antiL[i] + 1 antiL[i] = -1 sign *= -1 print(min(anti_all_over, all_over)) else: posL = L[:] negL = L[:] pos_delay, neg_delay = 1, -1 pos_all_over, neg_all_over = 1, 1 sign = 1 for i in range(1, n): posL[i] += pos_delay if posL[i] <= 0 and sign == -1: pos_delay += 1 - posL[i] pos_all_over += 1 - posL[i] posL[i] = 1 elif posL[i] >= 0 and sign == 1: pos_delay -= posL[i] + 1 pos_all_over += posL[i] + 1 posL[i] = -1 sign *= -1 sign = -1 for i in range(1, n): negL[i] += neg_delay if negL[i] <= 0 and sign == -1: neg_delay += 1 - negL[i] neg_all_over += 1 - negL[i] negL[i] = 1 elif negL[i] >= 0 and sign == 1: neg_delay -= negL[i] + 1 neg_all_over += negL[i] + 1 negL[i] = -1 sign *= -1 print(min(pos_all_over, neg_all_over))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } const double EPS = 1e-10; const double PI = acos(-1.0); const long long mod = 1000000007; int main() { int N; cin >> N; vector<long long> A(N), B; for (int i = (0); i < (N); ++i) { cin >> A[i]; } B = A; long long sum = A[0]; long long num = 0; for (int i = 1; i < N; i++) { if (sum > 0) { if (sum + A[i] >= 0) { num += abs(A[i] + sum) + 1; sum = -1; } else { sum += A[i]; } } else if (sum < 0) { if (sum + A[i] <= 0) { num += abs(A[i] + sum) + 1; sum = 1; } else { sum += A[i]; } } } sum = (A[0] > 0) ? -1 : 1; long long num2 = abs(A[0]) + 1; for (int i = 1; i < N; i++) { if (sum > 0) { if (sum + A[i] >= 0) { num2 += abs(A[i] + sum) + 1; sum = -1; } else { sum += A[i]; } } else if (sum < 0) { if (sum + A[i] <= 0) { num2 += abs(A[i] + sum) + 1; sum = 1; } else { sum += A[i]; } } } cout << min(num, num2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int pm; int cnt = 0; int currentSum = 0; for (int i = 0; i < n; i++) { currentSum += a[i]; if (a[0] > 0) { if (i % 2 == 0) { if (currentSum > 0) continue; else { while (currentSum <= 0) { currentSum++; cnt++; } } } else { if (currentSum < 0) continue; else { while (currentSum >= 0) { currentSum--; cnt++; } } } } else { if (i % 2 == 0) { if (currentSum < 0) continue; else { while (currentSum >= 0) { currentSum--; cnt++; } } } else { if (currentSum > 0) continue; else { while (currentSum <= 0) { currentSum++; cnt++; } } } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; void d_err() { cerr << endl; } template <typename H, typename... T> void d_err(H h, T... t) { cerr << h << " "; d_err(t...); } long long INF = 1e16; int inf = 1e9; long long MOD = 1e9 + 7; int main() { cin.tie(0); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); int N; cin >> N; long long ap[N], an[N]; long long s = 0; for (int i = (0); i < (N); ++i) { long long A; cin >> A; s += A; ap[i] = s; an[i] = s; } long long ans_p = 0; bool p = false; for (int i = (0); i < (N); ++i) { p ^= 1; long long c = 0; if (p) { if (ap[i] > 0) continue; c = -ap[i] + 1; ap[i + 1] += c; ans_p += c; } else { if (ap[i] < 0) continue; c = ap[i] + 1; ap[i + 1] -= c; ans_p += c; } } long long ans_n = 0; p = true; for (int i = (0); i < (N); ++i) { p ^= 1; if (p) { if (an[i] > 0) continue; long long c = -an[i] + 1; an[i + 1] += c; ans_n += c; } else { if (an[i] < 0) continue; long long c = an[i] + 1; an[i + 1] += c; ans_n += c; } } cout << min(ans_p, ans_n) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int INF = 1e9; using namespace std; int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = 0, ans = 0; if (a[0] > 0) { for (long long i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { ans += (1 - sum); sum = 1; } else if (i % 2 == 1 && sum >= 0) { ans += sum + 1; sum = -1; } } } else { for (long long i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { ans += (1 - sum); sum = 1; } else if (i % 2 == 0 && sum >= 0) { ans += sum + 1; sum = -1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); int count = 0; if (a.at(0) == 0) { a.at(0) = 1; count++; } int sum = a.at(0); for (int i = 1; i < N; i++) { if (sum > 0 && sum + a.at(i) >= 0) { while (sum + a.at(i) >= 0) { a.at(i)--; count++; } } else if (sum < 0 && sum + a.at(i) <= 0) { while (sum + a.at(i) <= 0) { a.at(i)++; count++; } } sum += a.at(i); } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import std.stdio, std.conv, std.functional, std.string; import std.algorithm, std.array, std.container, std.typecons; import std.numeric, std.math; import core.bitop; string FMT_F = "%.10f"; static string[] s_rd; T RD(T = long)() { while(!s_rd.length) s_rd = readln.chomp.split; string res = s_rd[0]; s_rd.popFront; return res.to!T; } string RDR()() { return readln.chomp; } T[] ARR(T = long)(in string str, T fix = 0) { auto r = str.split.to!(T[]); r[] += fix; return r; } size_t[] MAKE_IDX(alias less = "a < b", Range)(Range range) { auto idx = new size_t[](range.length); makeIndex!(less)(range, idx); return idx;} size_t MIN_POS(alias less = "a < b", Range)(Range range) { auto r = minPos!(less)(range); return range.length - r.length; } bool inside(T)(T x, T b, T e) { return x >= b && x < e; } bool minimize(T)(ref T x, T y) { if (x > y) { x = y; return true; } else { return false; } } bool maximize(T)(ref T x, T y) { if (x < y) { x = y; return true; } else { return false; } } long mod = 10^^9 + 7; void moda(ref long x, long y) { x = (x + y) % mod; } void mods(ref long x, long y) { x = ((x + mod) - (y % mod)) % mod; } void modm(ref long x, long y) { x = (x * y) % mod; } void main() { auto n = RD; auto a = RDR.ARR; long f(long x) { auto dp = new long[](n+1); dp[1] = x; long cnt; foreach (i; 1..n) { dp[i+1] = dp[i] + a[i]; if (-sgn(dp[i+1]) != sgn(dp[i])) { cnt += abs(dp[i+1]) + 1; dp[i+1] = -sgn(dp[i]); } } //stderr.writeln(dp); //stderr.writeln(cnt); return cnt; } long ans1 = f(a[0]); long ans2 = f(-sgn(a[0])) + abs(a[0]) + 1; writeln(min(ans1, ans2)); stdout.flush(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=list(map(int,input().split())) if l[0]!=0: count=0 suml=l[0] for i in range(1,n): if suml>0 and suml+l[i]<0: suml+=l[i] continue elif suml<0 and suml+l[i]>0: suml+=l[i] continue elif suml>0 and suml+l[i]>=0: count+=suml+l[i]+1 suml=-1 else: count+=-suml-l[i]+1 suml=1 print(count) else: count=1 suml1=1 for i in range(1,n): if suml1>0 and suml1+l[i]<0: suml1+=l[i] continue elif suml1<0 and suml1+l[i]>0: suml1+=l[i] continue elif suml1>0 and suml1+l[i]>=0: count+=suml1+l[i]+1 suml1=-1 else: count+=-suml1-l[i]+1 suml1=1 k1=count count=1 suml2=-1 for i in range(1,n): if suml2>0 and suml2+l[i]<0: suml2+=l[i] continue elif suml2<0 and suml2+l[i]>0: suml2+=l[i] continue elif suml2>0 and suml2+l[i]>=0: count+=suml2+l[i]+1 suml2=-1 else: count+=-suml2-l[i]+1 suml2=1 k2=count print(min(k1,k2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a[100010]; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } int total = 0, count_f = 0, count_l = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { total += a[i]; if (total <= 0) { count_f += 1 - total; total = 1; } } else { total += a[i]; if (total >= 0) { count_f += 1 + total; total = -1; } } } total = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { total += a[i]; if (total >= 0) { count_l += 1 + total; total = -1; } } else { total += a[i]; if (total <= 0) { count_l += 1 - total; total = 1; } } } cout << min(count_f, count_l) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from numpy import cumsum,copy n = int(input()) a = cumsum([int(i) for i in input().split()]) b = copy(a) ans1 = ans2 = 0 sign = 1 for i in range(n): if a[i] * sign <= 0: k = abs(a[i] - sign) a += sign*k ans1 += k sign *= -1 sign = -1 for i in range(n): if b[i] * sign <= 0: k = abs(b[i] - sign) b += sign*k ans2 += k sign *= -1 print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int sum = 0; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } sum += a[0]; int count = 0; bool pos = true; if (sum == 0) { count++; sum = -1; } if (sum <= 0) { pos = false; } for (int i = 1; i < n; i++) { if (!pos) { sum += a[i]; if (sum <= 0) { count += abs(sum) + 1; sum = 1; } pos = true; } else { sum += a[i]; if (sum >= 0) { count += sum + 1; sum = -1; } pos = false; } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys import math INF = 10**9+7 def k(i): if(i == 1): return 1 else: return(i * k(i-1)) def comb(n, r): if(n == r or r == 1): return 1 else: return k(n) / (k(n-r) * k(r)) stdin = sys.stdin def na(): return map(int, stdin.readline().split()) def ns(): return stdin.readline().strip() def nsl(): return list(stdin.readline().strip()) def ni(): return int(stdin.readline()) def nil(): return list(map(int, stdin.readline().split())) n = ni() a = nil() sum = 0 c = 0 for i in range(0, n-1): sum += a[i] sum2 = sum + a[i+1] if(sum * sum2 >= 0): k = abs(sum2) + 1 h = k - (abs(sum) - 1) l = k - h if sum > 0 : a[i] -= l sum -= l a[i + 1] -= h else: a[i] += l sum += l a[i + 1] += h c += h+l print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; char m[51][51]; int num[51][51] = {0}; int count(bool b, vector<int> a) { int n = a.size(); int sum = 0; int cnt = 0; for (int i = 0; i < n; i++) { int nsum = a[i] + sum; if ((i % 2 == 1) ^ b) { if (nsum >= 0) { cnt += nsum + 1; nsum = -1; } } else if (nsum <= 0) { cnt += -nsum + 1; nsum = 1; } sum = nsum; } return cnt; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } cout << min(count(true, a), count(false, a)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
n=int(raw_input()) a=map(int,raw_input().split(' ')) c=0 for i in range(n): s=sum(a[0:i+1]) if s==0: if i==n-1: a[i]+=1 c+=1 elif a[i+1]>=0: a[i]-=1 c+=1 else: a[i]+=1 c+=1 if i==(n-1): break s=sum(a[0:i+1]) n_s=s+a[i+1] if s*n_s>0: if s>=0: while n_s>=0: a[i+1]-=1 c+=1 n_s=s+a[i+1] else: while n_s<=0: a[i+1]+=1 c+=1 n_s=s+a[i+1] print a print c,a
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) lis=[] now=0 for num in a: now+=num lis.append(now) ans=10**10 cnt=0 sm=0 for i in range(len(lis)): if i%2==0: if lis[i]+sm >= 0: add = lis[i]+sm+1 cnt+= add sm-=add else: if lis[i]+sm <= 0: add = 1-lis[i]-sm cnt+= add sm+=add ans=min(ans,cnt) cnt=0 sm=0 for i in range(len(lis)): if i%2==1: if lis[i]+sm >= 0: add = lis[i]+sm+1 cnt+= add sm-=add else: if lis[i]+sm <= 0: add = 1-lis[i]-sm cnt+= add sm+=add ans=min(ans,cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
fun main(args: Array<String>) { val N = nextInt() val A = listOfLong() val B = A.toMutableList() var sum = A[0] var sign = A[0].sign() fun resolv(init: Long = 0L): Long { var ans = init for (n in 1 until N) { val now = sum + A[n] when (now.sign()) { 1 -> if (sign != -1) { ans += (1 + now) sum = -1 } else sum = now -1 -> if (sign != 1) { ans += (1 - now) sum = 1 } else sum = now 0 -> if (sign == 1) { ans += 1 sum = -1 } else { ans += 1 sum = 1 } } sign = sum.sign() } return ans } val ans1 = resolv() sum = A[0] sign = A[0].sign() val ans2 = if (sign == -1) { sum = 1 sign = 1 resolv((1 - A[0])) } else { sum = -1 sign = -1 resolv((1 + A[0])) } println(Math.min(ans1, ans2)) } fun Long.sign() = if (this > 0) 1 else if (this < 0) -1 else 0 fun next() = readLine()!! fun nextInt(delta: Int = 0) = Integer.parseInt(next()) + delta fun listOfString() = next().split(" ") fun listOfInt() = listOfString().map(String::toInt) fun listOfLong() = listOfString().map(String::toLong)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int solve(int *a, int n) { int count = 0; int calc = 0; int state, pstate; for (int i = 0; i < n; i++) cout << a[i] << " "; cout << endl; if (a[0] < 0) state = -1; if (a[0] > 0) state = 1; for (int i = 1; i < n; i++) { pstate = state; int tmp = a[i] + calc; if (tmp < 0) state = -1; if (tmp == 0) state = 0; if (tmp > 0) state = 1; if (pstate == state) { if (state == -1) { count += 1 - tmp; calc += 1 - tmp; state = 1; } else if (state == 1) { count += tmp + 1; calc += -1 - tmp; state = -1; } } if (state == 0) { if (pstate == -1) { count += 1; calc += 1; state = 1; } else if (pstate == 1) { count += 1; calc += -1; state = -1; } } } return count; } int main() { int n; int ans; int *a; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 1; i < n; i++) a[i] = a[i - 1] + a[i]; if (a[0] == 0) { int bs, cs; int *b = new int[n]; int *c = new int[n]; for (int i = 0; i < n; i++) b[i] = a[i] + 1; for (int i = 0; i < n; i++) c[i] = a[i] - 1; bs = solve(b, n); cs = solve(c, n); ans = bs < cs ? bs : cs; } else ans = solve(a, n); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class C { public: template <typename T> int sgn(T val) { return (T(0) < val) - (val < T(0)); } void solve(std::istream& in, std::ostream& out) { ios::sync_with_stdio(false); int n; in >> n; vector<long long int> a(n), p(n); for (int i = 0; i < n; ++i) { in >> a[i]; } long long int steps = 0; long long int steps2 = 0; p[0] = a[0]; if (a[0] != 0) { for (int i = 0; i < n - 1; ++i) { p[i + 1] = p[i] + a[i + 1]; if (sgn(p[i]) != -sgn(p[i + 1])) { steps += abs(p[i + 1]) + 1; p[i + 1] = -sgn(p[i]); } } } else { p[0] = 1; for (int i = 0; i < n - 1; ++i) { p[i + 1] = p[i] + a[i + 1]; if (sgn(p[i]) != -sgn(p[i + 1])) { steps += abs(p[i + 1]) + 1; p[i + 1] = -sgn(p[i]); } } p[0] = -1; for (int i = 0; i < n - 1; ++i) { p[i + 1] = p[i] + a[i + 1]; if (sgn(p[i]) != -sgn(p[i + 1])) { steps2 += abs(p[i + 1]) + 1; p[i + 1] = -sgn(p[i]); } } steps = min(steps, steps2); } if (p[n - 1] == 0) { } out << steps << endl; } }; int main() { C solver; std::istream& in(std::cin); std::ostream& out(std::cout); solver.solve(in, out); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# coding: utf-8 # Here your code N = int(input()) a = [int(i) for i in input().split()] result_1 = 0 before_sum =a[0] if a[0] == 0: before_sum = 1 result_1 += 1 after_sum =a[0] for i in range(1,N): before_sum = after_sum after_sum = before_sum + a[i] if before_sum * after_sum > 0: if after_sum < 0: result_1 += 1 - after_sum after_sum = 1 elif after_sum > 0: result_1 += 1 + after_sum after_sum = -1 elif before_sum * after_sum == 0: result_1 += 1 if before_sum < 0: after_sum = 1 else: after_sum = -1 if a[0] < 0: before_sum = 1 elif a[0] >= 0: before_sum = -1 after_sum =a[0] result_2 = 1 + abs(before_sum) for i in range(1,N): before_sum = after_sum after_sum = before_sum + a[i] if before_sum * after_sum > 0: if after_sum < 0: result_2 += 1 - after_sum after_sum = 1 elif after_sum > 0: result_2 += 1 + after_sum after_sum = -1 elif before_sum * after_sum == 0: result_2 += 1 if before_sum < 0: after_sum = 1 else: after_sum = -1 print(min(result_1,result_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; int C[200000]; long long count = 0; cin >> N; for (int i = 0; i < N; i++) { cin >> C[i]; } int sum = C[0]; for (int i = 1; i < N; i++) { if (sum < 0) { sum += C[i]; while (sum <= 0) { sum++; count++; } continue; } if (sum > 0) { sum += C[i]; while (sum >= 0) { sum--; count++; } continue; } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> inline T GCD(T a, T b) { T c; while (b != 0) { c = a % b; a = b; b = c; } return a; } template <typename T> inline T LCM(T a, T b) { T c = GCD(a, b); a /= c; return a * b; } template <typename T> inline T nCr(T a, T b) { T i, r = 1; for (i = 1; i <= b; i++) { r *= (a + 1 - i); r /= i; } return r; } template <typename T> inline T nHr(T a, T b) { return nCr(a + b - 1, b); } template <typename T> inline T POW(T a, T b) { int i, r = 1; for (i = 1; i <= b; i++) { r *= a; } return r; } int main(void) { cin.tie(0); ios::sync_with_stdio(false); long long n, a[100000], sum[100001], ans = 0; cin >> n; sum[0] = 0; for (int i = 0; i < (n); ++i) { cin >> a[i]; sum[i + 1] = sum[i] + a[i]; if (i != 0 and sum[i] * sum[i + 1] >= 0) { ans += (sum[i] > 0 ? sum[i + 1] + 1 : 1 - sum[i + 1]); sum[i + 1] = (sum[i] > 0 ? -1 : 1); } } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) as_ = list(map(int, input().split())) ans = 0 sum_ = as_[0] if sum_ == 0 and as_[1] <= 0: sum_ += 1 ans += 1 elif sum_ == 0 and as_[1] < 0: sum_ += 1 ans += 1 else: pass for i in range(1, n): new_sum_ = sum_+as_[i] if sum_ > 0 and new_sum_ >= 0: as_[i] -= (1+new_sum_) ans += 1+new_sum_ sum_ = -1 elif sum_ < 0 and new_sum_ <= 0: as_[i] += (1-new_sum_) ans += 1-new_sum_ sum_ = 1 else: sum_ = new_sum_ print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = pow(10, 9) + 7; long long mod(long long A, long long M) { return (A % M + M) % M; } const long long INF = 1LL << 60; template <class T> bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } long long divCeil(long long A, long long B) { return (A + (B - 1)) / B; } long long myctoi(char C) { return C - '0'; } char myitoc(long long N) { return '0' + N; } signed main() { long long N; cin >> N; vector<long long> A(N); for (long long i = 0; i < N; i++) { cin >> A.at(i); } long long ans0 = 0, sum = 1; for (long long i = 0; i < N; i++) { long long s = sum; sum += A.at(i); if (s > 0 && sum >= 0) { ans0 += 1 + sum; sum = -1; } else if (s < 0 && sum <= 0) { ans0 += 1 - sum; sum = 1; } } long long ans1 = 0; sum = -1; for (long long i = 0; i < N; i++) { long long s = sum; sum += A.at(i); if (s > 0 && sum >= 0) { ans1 += 1 + sum; sum = -1; } else if (s < 0 && sum <= 0) { ans1 += 1 - sum; sum = 1; } } cout << min(ans0, ans1) - 1 << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n + 1, 0); for (int i = 1; i <= n; i++) { cin >> a[i]; a[i] += a[i - 1]; } long long ans = 1LL << 50; for (int k = -1; k <= 1; k += 2) { int sign = k; int plus = 0, minus = 0; for (int i = 1; i <= n; i++) { if (a[i] + plus - minus > 0) { if (sign == -1) minus += a[i] + plus - minus + 1; } else if (a[i] + plus - minus < 0) { if (sign == 1) plus += -(a[i] + plus - minus) + 1; } else { if (sign == -1) minus += a[i] + plus - minus + 1; else if (sign == 1) plus += -(a[i] + plus - minus) + 1; } sign *= -1; } if (ans > plus + minus) ans = plus + minus; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N=int(input()) a=input().split() ma=list(map(int,a)) A1=ma[0] if ma[0]>0: NEXT=-1-ma[0] elif ma[0]<0: NEXT=1-ma[0] ans=0 for k in range(1,N): if ma[0] > 0: if k%2 ==0: if NEXT<=ma[k]: NEXT=NEXT-ma[k]-2 else: ans+=abs(ma[k]-NEXT) NEXT=-2 elif k%2 ==1: if NEXT>=ma[k]: NEXT=NEXT-ma[k]+2 else: ans+=abs(ma[k]-NEXT) NEXT=2 elif ma[0]<0: if k%2 ==1: if NEXT<=ma[k]: NEXT=NEXT-ma[k]-2 else: ans+=abs(ma[k]-NEXT) NEXT=-2 elif k%2 ==0: if NEXT>=ma[k]: NEXT=NEXT-ma[k]+2 else: ans+=abs(ma[k]-NEXT) NEXT=2 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { double num[10 * 10 * 10 * 10 * 10]; int i, n, ssign; double sum = 0; double count = 0; double fsum, fnum; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%lf", &num[i]); } if (num[0] == 0) { num[0]++; count++; } for (i = 1; i < n; i++) { sum += num[i - 1]; fsum = fabs(sum); fnum = fabs(num[i]); while (1) { if (fsum > fnum) { if (sum < 0) { num[i]++; count++; } else if (sum > 0) { num[i]--; count++; } } else if (fsum == fnum) { if (sum < 0) { num[i]++; count++; } else { num[i]--; count++; } } else if (fsum < fnum && sum > 0 && num[i] > 0) { num[i]--; count++; } else if (fsum < fnum && sum < 0 && num[i] < 0) { num[i]++; count++; } else break; } } for (i = 0; i < n; i++) { sum += num[i]; if (sum == 0.0) { if ((sum - num[i]) > 0) num[i]--; else num[i]++; count++; } } printf("%.0f\n", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys from itertools import accumulate read = sys.stdin.read readline = sys.stdin.readline readlines = sys.stdin.readlines sys.setrecursionlimit(10 ** 9) INF = 1 << 60 MOD = 1000000007 def solve(A): ans = 0 s = A[0] for a in A[1:]: prev, s = s, s + a if prev > 0 and s >= 0: ans += s + 1 s = -1 if prev < 0 and s <= 0: ans += -s + 1 s = 1 return ans def main(): N, *A = map(int, read().split()) if A[0] != 0: ans = solve(A) else: A[0] = 1 ans1 = solve(A) A[0] = -1 ans2 = solve(A) ans = min(ans1, ans2) print(ans) return if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; int main() { int n; cin >> n; vector<long long> a(n + 1); vector<long long> tot(n + 1, 0); vector<long long> tota(n + 1, 0); for (int i = 1; i <= (int)(n); i++) { cin >> a.at(i); } long long count = 0; for (int i = 1; i <= (int)(n); i++) { if (i == 1) { if (a.at(1) < 0) { count += (1 - a.at(1)); tot.at(1) = 1; continue; } tot.at(1) = a.at(1); continue; } if (tot.at(i - 1) > 0) { long long sum = tot.at(i - 1) + a.at(i); if (sum >= 0) { tot.at(i) = -1; count += sum + 1; } else tot.at(i) = tot.at(i - 1) + a.at(i); } if (tot.at(i - 1) < 0) { long long big = tot.at(i - 1) + a.at(i); if (big <= 0) { tot.at(i) = 1; count += (1 - big); } else tot.at(i) = tot.at(i - 1) + a.at(i); } } long long count2 = 0; for (int i = 1; i <= (int)(n); i++) { if (i == 1) { if (a.at(1) > 0) { count2 += (1 + a.at(1)); tota.at(1) = -1; continue; } tota.at(1) = a.at(1); continue; } if (tota.at(i - 1) > 0) { long long sum = tota.at(i - 1) + a.at(i); if (sum >= 0) { tota.at(i) = -1; count2 += sum + 1; } else tota.at(i) = tota.at(i - 1) + a.at(i); } if (tota.at(i - 1) < 0) { long long big = tota.at(i - 1) + a.at(i); if (big <= 0) { tota.at(i) = 1; count2 += (1 - big); } else tota.at(i) = tota.at(i - 1) + a.at(i); } } cout << min(count, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> A(n, 0); for (int i = 0; i<n; i++) cin >> A[i]; long long cnt1=0, acm1=0, cnt2=0, acm2=0; for(int i = 0; i<n; i++) { acm1+=A[i]; acm2+=A[i]; if(i%2) { if(acm1>0); else { cnt1 += abs(acm1) + 1; acm1 = 1; } if(acm2<0); else { cnt2 += abs(acm2) + 1; acm2 = -1; } else { if(acm1<0); else { cnt1 += abs(acm1) + 1; acm1 = -1; } if(acm2>0); else { cnt2 += abs(acm2) + 1; acm2 = 1; } } cout << min(cnt1, cnt2) << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sign(X): if X==0: return 0 else: return [-1,1][X>0] N = int(input()) A = [int(T) for T in input().split()] Count = 0 SumNow = 0 SumRes = 0 for TA in range(0,N): SumNow += A[TA] if SumNow==0 or sign(SumNow)==sign(SumRes): if SumNow==0 and sign(SumRes)==1: Count += 1 SumNow = -1 elif SumNow==0 and sign(SumRes)==-1: Count += 1 SumNow = 1 elif sign(SumNow)==1 and sign(SumRes)==1: Count += SumNow+1 SumNow = -1 elif sign(SumNow)==-1 and sign(SumRes)==-1: Count += 1-SumNow SumNow = 1 SumRes = SumNow print(Count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using namespace std; int main() { int n; cin >> n; long long int a[n]; long long int sum = 0; for (long long i = 0; i < n; i++) { int x; cin >> x; sum += x; a[i] = sum; } int f = 1; long long int ans1 = 0, ans2 = 0; long long int fix = 0; for (long long i = 0; i < n; i++) { if (f == 1) { if (a[i] + fix <= 0) { ans1 += 1 - (fix + a[i]); fix += 1 - (fix + a[i]); } f = -1; cout << a[i] + fix << endl; } else { if (a[i] + fix >= 0) { ans1 += (fix + a[i]) + 1; fix -= ((fix + a[i]) + 1); } f = 1; } } f = -1; fix = 0; for (long long i = 0; i < n; i++) { if (f == 1) { if (a[i] + fix <= 0) { ans2 += 1 - (fix + a[i]); fix += 1 - (fix + a[i]); } f = -1; } else { if (a[i] + fix >= 0) { ans2 += (fix + a[i]) + 1; fix -= ((fix + a[i]) + 1); } f = 1; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> A(n), sum(n); for (long long i = (0); i < (long long)(n); i++) cin >> A[i]; long long cnt1 = 0; if (A[0] > 0) { sum[0] = A[0]; } else { sum[0] = 1; cnt1 += abs(1 - A[0]); } for (long long i = (1); i < (long long)(n); i++) { if (sum[i - 1] > 0) { if (sum[i - 1] + A[i] < 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; cnt1 += abs(sum[i - 1] + A[i] - (-1)); } } else { if (sum[i - 1] + A[i] > 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; cnt1 += abs(1 - (sum[i - 1] + A[i])); } } } long long cnt2 = 0; if (A[0] < 0) { sum[0] = A[0]; } else { sum[0] = 1; cnt2 += abs(A[0] - (-1)); } for (long long i = (1); i < (long long)(n); i++) { if (sum[i - 1] > 0) { if (sum[i - 1] + A[i] < 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; cnt2 += abs(sum[i - 1] + A[i] - (-1)); } } else { if (sum[i - 1] + A[i] > 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; cnt2 += abs(1 - (sum[i - 1] + A[i])); } } } long long cnt3 = 0; if (A[n - 1] > 0) { sum[n - 1] = A[n - 1]; } else { sum[n - 1] = 1; cnt3 += abs(1 - A[n - 1]); } for (long long i = n - 2; i >= 0; i--) { if (sum[i + 1] > 0) { if (sum[i + 1] + A[i] < 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = -1; cnt3 += abs(sum[i + 1] + A[i] - (-1)); } } else { if (sum[i + 1] + A[i] > 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = -1; cnt3 += abs(1 - (sum[i + 1] + A[i])); } } } long long cnt4 = 0; if (A[n - 1] < 0) { sum[n - 1] = A[n - 1]; } else { sum[n - 1] = -1; cnt4 += abs(A[n - 1] - (-1)); } for (long long i = n - 2; i >= 0; i--) { if (sum[i + 1] > 0) { if (sum[i + 1] + A[i] < 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = -1; cnt4 += abs(sum[i + 1] + A[i] - (-1)); } } else { if (sum[i + 1] + A[i] > 0) { sum[i] = sum[i + 1] + A[i]; } else { sum[i] = -1; cnt4 += abs(1 - (sum[i + 1] + A[i])); } } } cout << min(min(cnt1, cnt2), min(cnt3, cnt4)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count = 0 sum_i = a[0] if sum_i < 0: sum_i = 1 pos_count = 1 - sum_i for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: pos_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: pos_count += sum_i + 1 sum_i = -1 sum_i = a[0] neg_count = 0 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: neg_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: neg_count += sum_i + 1 sum_i = -1 elif sum_i > 0: sum_i = a[0] pos_count = 0 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: pos_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: pos_count += sum_i + 1 sum_i = -1 sum_i = -1 neg_count = sum_i + 1 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: neg_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: neg_count += sum_i + 1 sum_i = -1 else: sum_i = 1 pos_count = 1 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: pos_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: pos_count += sum_i + 1 sum_i = -1 sum_i = -1 neg_count = 1 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: neg_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: neg_count += sum_i + 1 sum_i = -1 if neg_count < pos_count: count = neg_count else: count = pos_count print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] nums = new int[n]; for(int i = 0; i < n; i++){ nums[i] = sc.nextInt(); } int result = 0; int sum = 0; // + - + - for(int i = 0; i < n; i++){ if(i % 2 == 0 && sum + nums[i] <= 0){ result += Math.abs(1 - (sum + nums[i])); sum = 1; } else if(i % 2 == 1 && sum + nums[i] >= 0){ result += Math.abs(-1 - (sum + nums[i])); sum = -1; } else{ sum += nums[i]; } } int result2 = 0; sum = 0; // - + - + for(int i = 0; i < n; i++){ if(i % 2 == 1 && sum + nums[i] <= 0){ result2 += Math.abs(1 - (sum + nums[i])); sum = 1; } else if(i % 2 == 0 && sum + nums[i] >= 0){ result2 += Math.abs(-1 - (sum + nums[i])); sum = -1; } else{ sum += nums[i]; } } System.out.println(Math.min(result, result2)); sc.close(); } }