Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
def judge(count):
idx = 0
wa = a[0]
for i in range(2,n+1):
if count == -1:
if wa + a[i-1] < 0:
wa += a[i-1]
else:
check = wa + a[i-1] + 1
j = a[i-1]
a[i-1] = j - check
idx += check
wa = -1
elif count == 1:
if wa +a[i-1] > 0:
wa += a[i-1]
else:
check = 1 - wa - a[i-1]
j = a[i-1]
a[i-1] = check+ j
idx += check
wa = 1
count *= -1
return idx
if a[0] > 0:
b = judge(-1)
print(b)
elif a[0] < 0:
c = judge(1)
print(c)
else:
a[0] = 1
b = judge(-1)
a[0] = -1
c = judge(1)
print(min(b,c))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // 要復習
#include <bits/stdc++.h>
using namespace std;
#define _GLIBCXX_DEBUG
int64_t main()
{
int64_t n;
cin >> n;
int64_t a[n], b[n];
for (int64_t i = 0; i < n; i++)
{
cin >> a[i];
b[i] = a[i];
}
//positive-negative-positive... case
int64_t case1, total;
if (a[0] > 0)
{
case1 = 0;
total = a[0];
}
else //if (a[0] <= 0)
{
case1 = 1 - a[0];
total = 1;
}
for (int64_t i = 1; i < n; i++)
{
int64_t ttmp = total + a[i];
int64_t atmp = a[i];
if ((ttmp * total) < 0 && ttmp != 0)
{
total = ttmp;
}
else
{
if (total > 0)
{
a[i] = -total - 1;
}
else
{
a[i] = -total + 1;
}
total += a[i];
}
case1 += abs(a[i] - atmp);
}
//negative-positive... case
int64_t case2;
if (b[0] < 0)
{
case2 = 0;
total = b[0];
}
else //if (a[0] >= 0)
{
case2 = -1 - b[0];
total = -1;
}
for (int64_t i = 1; i < n; i++)
{
int64_t ttmp = total + b[i];
int64_t atmp = b[i];
if ((ttmp * total) < 0 && ttmp != 0)
{
total = ttmp;
}
else
{
if (total > 0)
{
b[i] = -total - 1;
}
else
{
b[i] = -total + 1;
}
total += b[i];
}
case2 += abs(b[i] - atmp);
}
cout << min(case1, case2) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <class T>
int former(const vector<T> &v, T x) {
return upper_bound(v.begin(), v.end(), x) - v.begin() - 1;
}
template <class T>
int latter(const vector<T> &v, T x) {
return lower_bound(v.begin(), v.end(), x) - v.begin();
}
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
const long long LLINF = 1LL << 60;
const int INTINF = 1 << 30;
const int MAX = 510000;
const int MOD = 1000000007;
long long fac[MAX], finv[MAX], inv[MAX];
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
long long COM(int n, int k) {
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
struct UnionFind {
vector<long long> par;
UnionFind(long long n) : par(n, -1) {}
void init(long long n) { par.assign(n, -1); }
long long root(long long x) {
if (par[x] < 0)
return x;
else
return par[x] = root(par[x]);
}
bool issame(long long x, long long y) { return root(x) == root(y); }
bool merge(long long x, long long y) {
x = root(x);
y = root(y);
if (x == y) return false;
if (par[x] > par[y]) swap(x, y);
par[x] += par[y];
par[y] = x;
return true;
}
long long size(long long x) { return -par[root(x)]; }
};
template <typename T>
vector<T> dijkstra(int s, vector<vector<pair<int, T> > > &G) {
const T INF = numeric_limits<T>::max();
using P = pair<T, int>;
int n = G.size();
vector<T> d(n, INF);
vector<int> b(n, -1);
priority_queue<P, vector<P>, greater<P> > q;
d[s] = 0;
q.emplace(d[s], s);
while (!q.empty()) {
P p = q.top();
q.pop();
int v = p.second;
if (d[v] < p.first) continue;
for (auto &e : G[v]) {
int u = e.first;
T c = e.second;
if (d[u] > d[v] + c) {
d[u] = d[v] + c;
b[u] = v;
q.emplace(d[u], u);
}
}
}
return d;
}
vector<vector<int> > bfs(vector<string> &s, int sy, int sx, char wall,
int dir) {
int h = s.size(), w = s.front().size();
vector<vector<int> > dp(h, vector<int>(w, -1));
using P = pair<int, int>;
queue<P> q;
dp[sy][sx] = 0;
q.emplace(sy, sx);
int dy[] = {1, -1, 0, 0, 1, 1, -1, -1};
int dx[] = {0, 0, 1, -1, 1, -1, 1, -1};
auto in = [&](int y, int x) { return 0 <= y && y < h && 0 <= x && x < w; };
while (!q.empty()) {
int y, x;
tie(y, x) = q.front();
q.pop();
for (int k = 0; k < dir; k++) {
int ny = y + dy[k], nx = x + dx[k];
if (!in(ny, nx) || s[ny][nx] == wall) continue;
if (~dp[ny][nx]) continue;
dp[ny][nx] = dp[y][x] + 1;
q.emplace(ny, nx);
}
}
return dp;
}
int64_t power(int64_t x, int64_t n, int64_t mod) {
int64_t ret = 1;
while (n > 0) {
if (n & 1) (ret *= x) %= mod;
(x *= x) %= mod;
n >>= 1;
}
return ret;
}
vector<int> sieve_of_eratosthenes(int n) {
vector<int> primes(n);
for (int i = 2; i < n; ++i) primes[i] = i;
for (int i = 2; i * i < n; ++i)
if (primes[i])
for (int j = i * i; j < n; j += i) primes[j] = 0;
return primes;
}
std::vector<long long> divisor(long long n) {
std::vector<long long> ret;
for (long long i = 1; i * i <= n; ++i) {
if (n % i == 0) {
ret.push_back(i);
if (i != 1 && i * i != n) {
ret.push_back(n / i);
}
}
}
return ret;
}
const int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
const int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
int main(void) {
long long n;
cin >> n;
vector<long long> a(n);
for (long long i = 0, i_len = (n); i < i_len; ++i) cin >> a[i];
long long sum = 0;
long long count = 0;
long long ans = 0;
for (long long i = 0, i_len = (n); i < i_len; ++i) {
sum += a[i];
if (i % 2 == 0)
if (sum < 0) ans += 1 - sum;
if (i % 2 != 0)
if (sum > 0) ans += sum + 1;
}
sum = 0;
for (long long i = 0, i_len = (n); i < i_len; ++i) {
sum += a[i];
if (i % 2 == 0)
if (sum < 0) count += sum + 1;
if (i % 2 != 0)
if (sum > 0) count += 1 - sum;
}
chmin(ans, count);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int ms = 1e5 + 9;
int val;
int main() {
int f = 0;
long long soma = 0, ans = 0;
int n;
cin >> n;
cin >> soma;
if (soma < 0) f = 1;
for (int i = 0; i < n - 1; i++) {
cin >> val;
soma += val;
if (f) {
if (soma == 0) {
ans += 1;
soma++;
} else if (soma < 0) {
ans += ((-soma) + 1);
soma = 1;
}
} else {
if (soma == 0) {
ans++;
soma--;
} else if (soma > 0) {
ans += (soma + 1);
soma = -1;
}
}
f = 1 - f;
}
cout << ans << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ABC059C
{
class Program
{
static void Main(string[] args)
{
int N = int.Parse(Console.ReadLine());
long[] x = new long[N];
var target = Console.ReadLine().Split(' ');
for(int i=0;i<N;i++) x[i] = long.Parse(target[i]);
long count = 0;
if(x[0] != 0){
count = solve(x, x[0]);
} else {
count = solve(x, 1) + 1;
long tmp = solve(x, -1) + 1;
if (count > tmp) count = tmp;
}
Console.WriteLine(count);
}
static long solve(long[] x, long a){
long total = a;
long count = 0;
for(int i=1; i<x.Length;i++){
long tmp = 0;
if(total > 0){
tmp = (long)Math.Min(0, -total-1-x[i]);
} else {
tmp = (long)Math.Max(0, -total+1-x[i]);
}
count += (long)Math.Abs(tmp);
total += x[i] + tmp;
}
return count;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
bool PN(T x) {
if (x <= 1) return false;
if (x == 2) return true;
for (int i = 2; i < sqrt(x) + 1; i++)
if (x % i == 0) return false;
return true;
}
const long long MOD = 1e9 + 7;
void solve() {
int n;
cin >> n;
int a[n];
long long sum = 0;
long long sum2 = 0;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long ans = 0;
long long ans2 = 0;
for (int i = 0; i < n; ++i) {
if (i == 0) {
sum += a[i];
continue;
}
if (sum > 0) {
sum += a[i];
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else if (sum < 0) {
continue;
} else {
ans++;
sum = -1;
}
} else if (sum < 0) {
sum += a[i];
if (sum > 0) {
continue;
} else if (sum < 0) {
ans += abs(sum) + 1;
sum = 1;
} else {
ans++;
sum = 1;
}
}
}
for (int i = 0; i < n; ++i) {
if (i == 0) {
sum2 = -(a[i]) / abs(a[i]);
ans2 += abs(a[i] + 1);
continue;
}
if (sum2 > 0) {
sum2 += a[i];
if (sum2 > 0) {
ans2 += sum2 + 1;
sum2 = -1;
} else if (sum2 < 0) {
continue;
} else {
ans2++;
sum2 = -1;
}
} else if (sum2 < 0) {
sum2 += a[i];
if (sum2 > 0) {
continue;
} else if (sum < 0) {
ans2 += abs(sum2) + 1;
sum2 = 1;
} else {
ans2++;
sum2 = 1;
}
}
}
cout << min(ans, ans2) << endl;
}
int main() {
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | def rec(ary, n, i, sum, cnt)
return cnt if i == n
if sum < 0
sum += ary[i]
if sum <= 0
diff = -sum+1
cnt += diff
sum += diff
end
elsif sum > 0
sum += ary[i]
if sum >= 0
diff = sum+1
cnt += diff
sum -= diff
end
end
return rec(ary, n, i+1, sum, cnt)
end
# main
n = gets.to_i
ary = gets.split(' ').map(&:to_i)
puts rec(ary, n, 1, ary[0], 0) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1 << 30;
const long long LINF = 1LL << 50;
const int NIL = -1;
const int MAX = 10000;
const int mod = 1000000007;
const double pi = 3.141592653589;
int main() {
int N;
cin >> N;
vector<long long> a(N);
for (int i = 0; i < N; i++) cin >> a[i];
vector<long long> sum(N);
sum[0] = a[0];
for (int i = 1; i < N; i++) sum[i] = sum[i - 1] + a[i];
vector<int> cum(2), cnt(2);
for (int i = 0; i < N; i++) {
int i1 = i % 2, i2 = (i + 1) % 2;
if (sum[i] + cum[i1] <= 0) {
int d = abs(sum[i] + cum[i1]) + 1;
cnt[i1] += d;
cum[i1] += d;
}
if (sum[i] + cum[i2] >= 0) {
int d = abs(sum[i] + cum[i2]) + 1;
cnt[i2] += d;
cum[i2] -= d;
}
}
cout << min(cnt[0], cnt[1]) << '\n';
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n], cntplus = 0, cntplus1 = 0, cntminus = 0, cntminus1 = 0;
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] > 0) {
long long s = a[0];
for (int i = 1; i < n; i++) {
if (i % 2) {
if (0 <= s + a[i]) {
cntplus += s + a[i] + 1;
a[i] = -1 - s;
}
} else {
if (s + a[i] <= 0) {
cntplus += 1 - (s + a[i]);
a[i] = 1 - s;
}
}
s += a[i];
}
s = -1;
cntplus1 += a[0] + 1;
for (int i = 1; i < n; i++) {
if (i % 2) {
if (s + a[i] <= 0) {
cntplus1 += 1 - (s + a[i]);
a[i] = 1 - s;
}
} else {
if (0 <= s + a[i]) {
cntplus1 += s + a[i] + 1;
a[i] = -1 - s;
}
}
s += a[i];
}
cout << min(cntplus, cntplus1) << endl;
} else {
long long s = a[0];
for (int i = 1; i < n; i++) {
if (i % 2) {
if (s + a[i] <= 0) {
cntminus += 1 - (s + a[i]);
a[i] = 1 - s;
}
} else {
if (0 <= s + a[i]) {
cntminus += s + a[i] + 1;
a[i] = -1 - s;
}
}
s += a[i];
}
s = 1;
cntminus1 += -a[0] + 1;
for (int i = 1; i < n; i++) {
if (i % 2) {
if (0 <= s + a[i]) {
cntminus1 += s + a[i] + 1;
a[i] = -1 - s;
}
} else {
if (s + a[i] <= 0) {
cntminus1 += 1 - (s + a[i]);
a[i] = 1 - s;
}
}
s += a[i];
}
cout << min(cntminus, cntminus1) << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const double eps = 1e-10;
const int MAX = 200000;
int n;
int count(int flag, vector<long long> a) {
int c = 0;
long long sum = 0;
for (int i = 0; i < n; i++) {
sum = sum + a[i];
if (sum == 0) {
if (flag) {
c--;
sum--;
} else {
c++;
sum++;
}
} else if (sum > 0) {
if (flag) {
c += (sum + 1);
sum = -1;
}
} else {
if (!flag) {
c += (-sum + 1);
sum = 1;
}
}
flag = !flag;
}
return c;
}
int main() {
long long t;
vector<long long> a;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> t;
a.push_back(t);
}
cout << min(count(0, a), count(1, a)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Text;
using System.Linq;
using System.Collections;
using System.Collections.Generic;
using static System.Console;
using static System.Math;
namespace AtCorder
{
public class Program
{
public static void Main(string[] args)
{
new Program().Solve(new ConsoleInput(Console.In, ' '));
}
public void Solve(ConsoleInput cin)
{
var n = cin.ReadInt;
var a = cin.ReadLongArray(n);
var ans = 0L;
var pre = a[0];
var now = a[0];
for(int i = 1; i < n; i++)
{
now += a[i];
if(pre * now < 0)
{
pre += a[i];
continue;
}
if(now > 0)
{
ans += a[i] + (pre + 1);
now -= a[i] + (pre + 1);
a[i] = -1 * (pre + 1);
}
else
{
ans += -1 * (pre - 1) - a[i];
now += -1 * (pre - 1) - a[i];
a[i] = -1 * (pre - 1);
}
pre += a[i];
}
WriteLine(ans);
}
public long C(int X, int Y)
{
if (Y == 0 || Y == X)
{
return 1;
}
if (X < Y)
{
return 0;
}
var Pascal = new long[X + 1, X + 1];
for (int i = 0; i <= X; i++)
{
Pascal[i, 0] = 1L;
Pascal[i, i] = 1L;
}
for (int i = 2; i <= X; i++)
{
for (int j = 1; j < i; j++)
{
Pascal[i, j] = Pascal[i - 1, j] + Pascal[i - 1, j - 1];
}
}
return Pascal[X, Y];
}
public class ConsoleInput
{
private readonly System.IO.TextReader _stream;
private char _separator = ' ';
private Queue<string> inputStream;
public ConsoleInput(System.IO.TextReader stream, char separator = ' ')
{
this._separator = separator;
this._stream = stream;
inputStream = new Queue<string>();
}
public string Read
{
get
{
if (inputStream.Count != 0) return inputStream.Dequeue();
string[] tmp = _stream.ReadLine().Split(_separator);
for (int i = 0; i < tmp.Length; ++i)
inputStream.Enqueue(tmp[i]);
return inputStream.Dequeue();
}
}
public string ReadLine { get { return _stream.ReadLine(); } }
public int ReadInt { get { return int.Parse(Read); } }
public long ReadLong { get { return long.Parse(Read); } }
public double ReadDouble { get { return double.Parse(Read); } }
public string[] ReadStrArray(long N) { var ret = new string[N]; for (long i = 0; i < N; ++i) ret[i] = Read; return ret; }
public int[] ReadIntArray(long N) { var ret = new int[N]; for (long i = 0; i < N; ++i) ret[i] = ReadInt; return ret; }
public long[] ReadLongArray(long N) { var ret = new long[N]; for (long i = 0; i < N; ++i) ret[i] = ReadLong; return ret; }
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = [int(x) for x in input().split()]
count=0
for i in range(1,N):
if sum(A[0:i])*sum(A[0:i+1]) >=0:
count += abs(sum(A[0:i])+A[i])+1
if sum(A[0:i])<0:
A[i]=-sum(A[0:i])+1
else:
A[i]=-sum(A[0:i])-1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long LINF = 1LL << 60;
const int INF = 1 << 30;
int main() {
long long n, l;
cin >> n;
vector<long long> a(n);
cin >> a[0];
for (long long i = 1; i < n; i++) {
cin >> l;
a[i] = a[i - 1] + l;
}
long long tmp = 0;
long long count = 0;
for (long long i = 0; i < n - 1; i++) {
if (i == 0 && a[i] <= 0) {
count += abs(a[i] - 1);
tmp -= a[i] - 1;
}
if ((a[i] + tmp) * (a[i + 1] + tmp) >= 0) {
if ((a[i + 1] + tmp) <= 0) {
count += abs(a[i + 1] + tmp - 1);
tmp -= (a[i + 1] + tmp - 1);
} else {
count += abs(a[i] + tmp + 1);
tmp -= (a[i] + tmp + 1);
}
}
}
if (a[n - 1] + tmp == 0) {
count++;
}
long long ans = count;
count = 0;
tmp = 0;
for (long long i = 0; i < n - 1; i++) {
if (i == 0 && a[i] >= 0) {
count += abs(1 + a[i]);
tmp -= 1 + a[i];
}
if ((a[i] + tmp) * (a[i + 1] + tmp) >= 0) {
if ((a[i + 1] + tmp) <= 0) {
count += abs(a[i + 1] + tmp - 1);
tmp -= (a[i + 1] + tmp - 1);
} else {
count += abs(a[i] + tmp + 1);
tmp -= (a[i] + tmp + 1);
}
}
}
if (a[n - 1] + tmp == 0) {
count++;
}
ans = min(ans, count);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
cnt = 0
w = A[0]
for i in range(n - 1):
nw = w + A[i + 1]
if w > 0:
if nw >= 0:
cnt += nw + 1
chg = -(nw + 1)
elif w < 0:
if nw <= 0:
cnt += 1 - nw
chg = 1 - nw
w = nw + chg
chg = 0
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100001];
long long c[100001];
long long s[100001];
long long solve(bool plus, long long ans) {
if (plus == 1) {
if (a[0] <= 0) {
a[0] = 1;
ans = 1;
s[0] = 1;
} else
s[0] = a[0];
} else {
if (a[0] >= 0) {
a[0] = -1;
ans = 1;
s[0] = 1;
} else
s[0] = a[0];
}
for (int i = 0; i < n - 1; i++) {
long long t = s[i] + a[i + 1];
if (s[i] * t >= 0) {
if (s[i] < 0) {
long long b = a[i + 1];
s[i + 1] = 1;
a[i + 1] = s[i + 1] - s[i];
ans += (a[i + 1] - b);
} else if (s[i] > 0) {
long long b = a[i + 1];
s[i + 1] = -1;
a[i + 1] = s[i + 1] - s[i];
ans += (b - a[i + 1]);
}
} else {
s[i + 1] = t;
}
}
return ans;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
c[i] = a[i];
}
long long ans1 = solve(1, 0);
for (int i = 0; i < n; i++) {
a[i] = c[i];
}
long long ans2 = solve(0, 0);
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = __int64_t;
int dx[] = {1, 0, -1, 0};
int dy[] = {0, 1, 0, -1};
int DX[] = {1, 1, 0, -1, -1, -1, 0, 1};
int DY[] = {0, -1, -1, -1, 0, 1, 1, 1};
void solve() {
int n;
ll x, sum = 0, count = 0;
cin >> n;
for (int(i) = 0; (i) < (n); (i)++) {
cin >> x;
if (i > 0) {
ll temp;
if (sum < 0) {
if (sum + x < 0) {
temp = (sum + x) * (-1) + 1;
x += temp;
count += temp;
} else if (sum + x == 0) {
x++;
count++;
}
} else {
if (sum + x > 0) {
temp = (sum + x) * (-1) - 1;
x += temp;
count += abs(temp);
} else if (sum + x == 0) {
x--;
count++;
}
}
}
sum += x;
}
cout << count << endl;
}
int main() {
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long _set(long long N, long long pos) { return N = N | (1 << pos); }
long long _reset(long long N, long long pos) { return N = N & ~(1 << pos); }
bool _check(long long N, long long pos) { return (bool)(N & (1 << pos)); }
bool _upper(char a) { return a >= 'A' && a <= 'Z'; }
bool _lower(char a) { return a >= 'a' && a <= 'z'; }
bool _digit(char a) { return a >= '0' && a <= '9'; }
long long dx[] = {1, -1, 0, 0, -1, -1, 1, 1};
long long dy[] = {0, 0, 1, -1, -1, 1, -1, 1};
long long a[100010];
int main() {
long long n;
cin >> n;
long long cnt = 0, ans = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
cnt += a[i];
if (i % 2) {
if (cnt > 0) ans += cnt + 1, cnt = -1;
} else {
if (cnt < 0) ans -= cnt - 1, cnt = 1;
}
}
long long a2 = 0;
cnt = 0;
for (int i = 0; i < n; i++) {
cnt += a[i];
if (i % 2 == 0) {
if (cnt > 0) a2 += cnt + 1, cnt = -1;
} else {
if (cnt < 0) a2 -= cnt - 1, cnt = 1;
}
}
cout << min(ans, a2) << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) {
cin >> a[i];
}
int allsum = 0, sum = 0, count = 0;
for (int i = 0; i < N; i++) {
allsum += a[i];
}
if (allsum == 0) {
sum++;
count++;
}
for (int i = 0; i < N - 1; i++) {
sum += a[i];
if (a[i + 1] < 0 && sum < 0) {
if (0 <= a[i + 1] - sum) {
count += sum;
sum *= -1;
} else {
count += a[i + 1];
a[i + 1] *= -1;
}
} else if (0 <= a[i + 1] && 0 <= sum) {
if (0 <= a[i + 1] - sum) {
count += sum;
sum *= -1;
} else {
count += a[i + 1];
a[i + 1] *= -1;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
cin >> n;
int i;
long a[n], su, cnt;
su = 0;
cnt = 0;
for (i = 0; i < n; i++) {
cin >> a[i];
}
for (i = 0; i < n; i++) {
su += a[i];
if (a[0] >= 0) {
if (i % 2 == 0) {
if (su <= 0) {
cnt += 1 - su;
su = 1;
}
} else {
if (su >= 0) {
cnt += su + 1;
su = -1;
}
}
} else {
if (i % 2 == 0) {
if (su >= 0) {
cnt += su + 1;
su = -1;
}
} else {
if (su >= 0) {
cnt += su + 1;
su = -1;
}
}
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
def 解():
iN = int(input())
aA = [int(_) for _ in input().split()]
iL = len(aA)
iStart = 0
if sum(aA[0::2]) < sum(aA[1::2]):
iStart = 1
iC = 0
aD = [0]*iL
if 0 % 2 == iStart :
if aA[0] < 0:
aA[0] = 1
iC += -1 * aA[0] + 1
else:
if 0 < aA[0] :
aA[0] = -1
iC += aA[0] + 1
aD[0] = aA[0]
for i in range(1,iL):
aD[i] = aD[i-1]+aA[i]
if i % 2 == iStart:
if aD[i] <= 0:
iC += -1*aD[i] +1
aD[i] = 1
else:
if aD[i] >= 0:
iC += aD[i] +1
aD[i] = -1
print(iC)
解()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double PI = 3.1415926535897932384626433832795;
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
bool isDiffer(long long a, long long b) {
if (b == 0) return false;
if (((a > 0) && (b < 0)) || ((a < 0) && (b > 0)))
return true;
else
return false;
}
int main() {
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> v[2];
for (int i = 0; i < n; i++) {
long long t;
cin >> t;
v[0].push_back(t);
v[1].push_back(t);
}
long long ans[2] = {0};
for (int j = 0; j < 2; j++) {
long long ob = (j == 0) ? -1 : 1;
if (isDiffer(ob, v[j][0])) {
ans[j] += llabs(ob - v[j][0]);
v[j][0] = ob;
}
long long os = v[j][0];
for (int i = 1; i < n; i++) {
if (!isDiffer(os, v[j][i] + os)) {
long long ob = (os >= 0) ? -1 : 1;
ans[j] += llabs(ob - os - v[j][i]);
v[j][i] = ob - os;
}
os += v[j][i];
}
}
cout << min(ans[0], ans[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5, Inf = 0x3f3f3f3f;
int a[N], n;
long long sum[N];
int main() {
ios::sync_with_stdio(false);
cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i];
int cost = 0, ans = Inf;
for (int i = 1; i <= n; ++i) {
sum[i] = sum[i - 1] + a[i];
if (i & 1) {
if (sum[i] >= 0) cost += sum[i] + 1, sum[i] = -1;
} else {
if (sum[i] <= 0) cost += -sum[i] + 1, sum[i] = 1;
}
}
ans = min(ans, cost);
cost = 0;
for (int i = 1; i <= n; ++i) {
sum[i] = sum[i - 1] + a[i];
if (!(i & 1)) {
if (sum[i] >= 0) cost += sum[i] + 1, sum[i] = -1;
} else {
if (sum[i] <= 0) cost += -sum[i] + 1, sum[i] = 1;
}
}
ans = min(ans, cost);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cumulative=[0]
for i in range(n):
cumulative.append(cumulative[i] + a[i])
cumulative.pop(0)
#print(cumulative)
def plus():
change = 0
cnt = 0
for i, val in enumerate(cumulative):
#print(i, val+change, change)
if i % 2 == 0:
if val + change > 0:
pass
else:
temp = change
change += 1 - (val + change)
cnt += abs(1 - (val + temp))
else:
if val + change < 0:
pass
else:
temp = change
change += -1 - (val + change)
cnt += abs(-1 - (val + temp))
#print(cnt)
#print(change)
return cnt
def minus():
change = 0
cnt = 0
for i, val in enumerate(cumulative):
#print(i, val+change, change)
if i % 2 == 0:
if val + change < 0:
pass
else:
temp = change
change += -1 - (val + change)
cnt += abs(-1 - (val + temp))
#print('+', abs(-1 - (val + temp)))
else:
if val + change > 0:
pass
else:
temp = change
change += 1 - (val + change)
cnt += abs(1 - (val + temp))
#print('+', abs(1 - (val + temp)))
#print(cnt)
#print(change)
return cnt
if a[0] > 0:
print(plus())
elif a[0] < 0:
print(minus())
else:
print(min(plus(), minus())) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main{
public static void main(String[]args){
Scanner sc = new Scanner(System.in);
int N = Integer.parseInt(sc.nextLine());
long ans = 0;
long now = sc.nextInt();
for(int i = 1; i < N; i++){
int A = sc.nextInt();
if(now > 0 && now+A >= 0){
ans += now+A+1;
now = -1;
}else if(now < 0 && now+A <= 0){
ans += Math.abs(now+A)+1;
now = 1;
}else{
now = now+A;
}
}
System.out.println(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AtCoder
{
class Program
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
int[] a = new int[n];
int[] sum = new int[n];
string[] lines = Console.ReadLine().Split(' ');
for (int i = 0; i < n; i++)
{
a[i] = int.Parse(lines[i]);
}
int ans = 0;
int diff = 0;
int sign = (a[0] == 0 ? 0 : (a[0] > 0 ? 1 : -1));
sum[0] = a[0];
for (int i = 1; i < n; i++)
{
if (sum[i-1] + a[i] > 0)
{
if (sign > 0)
{
diff = +(sum[i-1] + 1);
ans += diff;
sum[i] = sum[i-1] - diff;
}
else
{
sum[i] = a[i] + sum[i-1];
}
}
else if (sum[i-1] + a[i] < 0)
{
if (sign < 0)
{
diff = -(sum[i - 1] - 1);
ans += diff;
sum[i] = sum[i - 1] + diff;
}
else
{
sum[i] = a[i] + sum[i - 1];
}
}
else if (sum[i-1] + a[i] == 0)
{
if (sign > 0)
{
diff = +(sum[i - 1]);
ans += diff;
sum[i] = sum[i - 1] - diff;
}
else
{
diff = -(sum[i - 1] );
ans += diff;
sum[i] = sum[i - 1] + diff;
}
}
if (sign == 0)
{
sign = (a[i] > 0 ? 1 : -1);
}
else
{
sign = -sign;
}
}
Console.WriteLine(ans);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long N;
cin >> N;
long a[100001];
for (long i = 0; i < N; i++) {
cin >> a[i];
}
long total0 = 0;
long ops0 = 0;
for (int i = 0; i < N; i++) {
total0 += a[i];
if (total0 < 1) {
total0 = 1;
ops0 += 1 - total0;
}
total0 = -total0;
}
long total1 = 0;
long ops1 = 0;
for (int i = 0; i < N; i++) {
total1 += a[i];
if (total1 > -1) {
total1 = -1;
ops1 += (total1 + 1);
}
total1 = -total1;
}
printf("%d\n", min(ops0, ops1));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ans = 0
o = 0
for i in range(n):
if i == 0:
if a[i] == 0:
f = "+"
a[i] = 1
elif a[0] > 0:
f = "+"
elif a[0] < 0:
f = "-"
else:
o += a[i-1]
if f == "+":
if a[i] + o > 0:
c = -1 - o
ans += abs(c - a[i])
a[i] = c
f = "-"
else:
if a[i] + o == 0:
a[i] -= 1
ans += 1
f = "-"
elif f == "-":
if a[i] + o < 0:
c = 1 - o
ans += abs(c - a[i])
a[i] = c
f = "+"
else:
if a[i] + o == 0:
a[i] += 1
ans += 1
f = "+"
#print(a)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, i, j, sum, res, sumprev;
cin >> n;
sum = res = 0;
long long arr[n];
long long sumprevarr[n];
for (i = 0; i < n; i++) cin >> arr[i];
sum = res = 0;
sumprev = 0;
for (i = 0; i < n; i++) {
sum += arr[i];
if ((sum == 0) && (sumprev > 0)) {
arr[i]--;
sum--;
res++;
} else if ((sum == 0) && (sumprev < 0)) {
arr[i]++;
sum++;
res++;
} else if ((sumprev > 0) && (sum > 0)) {
long long d = sum - 0;
arr[i] = arr[i] - d - 1;
if ((d + 1) < sumprevarr[i - 1]) {
sum = sum - d - 1;
res = res + d + 1;
} else {
res = res + sumprevarr[i - 1];
}
} else if ((sumprev < 0) && (sum < 0)) {
long long d = 0 - sum;
if ((d + 1) < sumprevarr[i - 1]) {
arr[i] += (d + 1);
sum = sum + d + 1;
res = res + d + 1;
} else {
res = res + sumprevarr[i - 1];
}
}
sumprev = sum;
sumprevarr[i] += (abs(sum) + 1);
}
cout << res;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int cnt1 = 0;
int acu1[n];
for (int i = 0; i < n; i++) {
if (i < 1)
acu1[i] = a[i];
else
acu1[i] = a[i] + acu1[i - 1];
if (i & 1 && acu1[i] >= 0) {
cnt1 += acu1[i] + 1;
acu1[i] = -1;
} else if (!(i & 1) && acu1[i] <= 0) {
cnt1 += -acu1[i] + 1;
acu1[i] = 1;
}
}
int cnt2 = 0;
int acu2[n];
for (int i = 0; i < n; i++) {
if (i < 1)
acu2[i] = a[i];
else
acu2[i] = a[i] + acu2[i - 1];
if (!(i & 1) && acu2[i] >= 0) {
cnt2 += acu2[i] + 1;
acu2[i] = -1;
} else if (i & 1 && acu2[i] <= 0) {
cnt2 += -acu2[i] + 1;
acu2[i] = 1;
}
}
cout << (min(cnt1, cnt2)) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n], b[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
b[i] = a[i];
}
long long sum = 0, cnt_first = 0, cnt_second = 0;
for (int i = 0; i < n; i += 2) {
while (sum + a[i] <= 0) {
a[i]++;
cnt_first++;
}
sum += a[i];
if (i != n - 1) {
while (sum + a[i + 1] >= 0) {
a[i + 1]--;
cnt_first++;
}
sum += a[i + 1];
}
}
sum = 0;
for (int i = 0; i < n; i += 2) {
while (sum + b[i] >= 0) {
b[i]--;
cnt_second++;
}
sum += b[i];
if (i != n - 1) {
while (sum + b[i + 1] <= 0) {
b[i + 1]++;
cnt_second++;
}
sum += b[i + 1];
}
}
cout << ((cnt_first < cnt_second) ? cnt_first : cnt_second) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | nums = int(input())
ary = list(map(int,input().split()))
#puls no toki
if ary[0] < 0 :
ary[0] = ary[0] + ary[0] +1
elif ary[0] == 0:
ary[0] += 1
sum = ary[0]
count = 0
for i in range (1,nums):
sum += ary[i]
if i % 2 == 1:
if sum > 0 :
count += abs(sum)+1
sum = -1
elif sum == 0:
sum = -1
count += 1
elif i % 2 == 0:
if sum < 0:
count += abs(sum)+1
sum = 1
elif sum == 0:
sum = 1
count += 1
result_plus = count
#minus no toki
sum = ary[0]
if ary[0] > 0:
ary[0] = ary[0] - ary[0] -1
elif ary[0] == 0:
ary[0] -= 1
count = 0
for i in range(1,nums):
sum += ary[i]
if i % 2 == 1:
if sum < 0:
count += abs(sum)+1
sum = 1
elif sum == 0:
count += 1
sum = 1
if i % 2 == 0:
if sum > 0:
count += abs(sum)+1
sum = -1
elif sum == 0:
count += 1
sum = -1
result_minus = count
if result_plus > result_minus:
print(result_minus)
else:
print(result_plus) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
ans = 1e9
for ini in (A[0], -A[0]):
acc = ini
res = 0
for a in A[1:]:
if acc + a == 0:
acc = 1 if acc < 0 else -1
res += 1
elif (acc < 0) != (acc + a > 0):
ope = -(acc + a + (1 if acc + a > 0 else -1))
acc = acc + a + ope
res += abs(ope)
else:
acc += a
ans = min(ans, res)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #
# Written by NoKnowledgeGG @YlePhan
# ('ω')
#
#import math
#mod = 10**9+7
#import itertools
#import fractions
#import numpy as np
#mod = 10**4 + 7
"""def kiri(n,m):
r_ = n / m
if (r_ - (n // m)) > 0:
return (n//m) + 1
else:
return (n//m)"""
""" n! mod m 階乗
mod = 1e9 + 7
N = 10000000
fac = [0] * N
def ini():
fac[0] = 1 % mod
for i in range(1,N):
fac[i] = fac[i-1] * i % mod"""
"""mod = 1e9+7
N = 10000000
pw = [0] * N
def ini(c):
pw[0] = 1 % mod
for i in range(1,N):
pw[i] = pw[i-1] * c % mod"""
"""
def YEILD():
yield 'one'
yield 'two'
yield 'three'
generator = YEILD()
print(next(generator))
print(next(generator))
print(next(generator))
"""
"""def gcd_(a,b):
if b == 0:#結局はc,0の最大公約数はcなのに
return a
return gcd_(a,a % b) # a = p * b + q"""
"""def extgcd(a,b,x,y):
d = a
if b!=0:
d = extgcd(b,a%b,y,x)
y -= (a//b) * x
print(x,y)
else:
x = 1
y = 0
return d"""
def readInts():
return list(map(int,input().split()))
mod = 10**9 + 7
def main():
n = int(input())
A = readInts()
Cost = 0
# 符号 positive?
#po_ = True
# 変わったか変わってないか
if A[0] > 0: # if positive
po_ = True
elif A[0] == 0: # negative
po_ = True
A[0] += 1
Cost += 1
else:
po_ = False
ANS = [0] * (n+1)
ANS[0] = A[0]
for i in range(1,n):
#print(ANS[i-1],po_,ANS[i-1] + A[i],Cost)
if ANS[i-1]+A[i] > 0 and not po_: # sumがpositiveで前がnegativeだった
po_ = True
ANS[i] = ANS[i-1] + A[i]
# これで終わり
elif ANS[i-1]+A[i] > 0 and po_: # posi : posi ?
# 負にしなければならない
Cost += abs(-1 - (ANS[i-1]+A[i])) # 先にこれやれ
A[i] += -1 - (ANS[i-1] + A[i])
# -4
ANS[i] = ANS[i-1] + A[i]
po_ = False
elif ANS[i-1]+A[i] < 0 and not po_: #nega : nega
# -1 はここ
# print(A[i])
Cost += abs(1 - (ANS[i-1]+A[i])) # 先にこれやれ
A[i] += 1 - (ANS[i-1] + A[i])
ANS[i] = ANS[i-1] + A[i]
po_ = True
elif ANS[i-1]+A[i] == 0 and po_: # nega: pos
po_ = False
A[i] -= 1
Cost += 1
ANS[i] = ANS[i-1] + A[i]
elif ANS[i-1]+A[i] < 0 and po_:
po_ = False
ANS[i] = ANS[i-1] + A[i]
elif ANS[i-1]+A[i] == 0 and not po_:
po_ = True
A[i] += 1
Cost += 1
ANS[i] = ANS[i-1] + A[i]
print(Cost)
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
arr=list(map(int,input().split()))
ans=0
lsum=arr[0]
if arr[0]>0:
for i in range(1,n):
if i%2==1:
if arr[i]<-lsum:
lsum+=arr[i]
else:
ans+=(abs(lsum)+1)+arr[i]
lsum=-1
else:
if abs(lsum)<arr[i]:
lsum+=arr[i]
else:
ans+=(abs(lsum)+1)-arr[i]
lsum=1
elif arr[0]<0:
for i in range(1,n):
if i%2==0:
if arr[i]<-lsum:
lsum+=arr[i]
else:
ans+=(abs(lsum)+1)+arr[i]
lsum=-1
else:
if abs(lsum)<arr[i]:
lsum+=arr[i]
else:
ans+=(abs(lsum)+1)-arr[i]
lsum=1
else:
ans1=1
ans2=1
lsum=1
for i in range(1,n):
if i%2==1:
if arr[i]<-lsum:
lsum+=arr[i]
else:
ans1+=(abs(lsum)+1)+arr[i]
lsum=-1
else:
if abs(lsum)<arr[i]:
lsum+=arr[i]
else:
ans1+=(abs(lsum)+1)-arr[i]
lsum=1
lsum=-1
for i in range(1,n):
if i%2==1:
if arr[i]<-lsum:
lsum+=arr[i]
else:
ans2+=(abs(lsum)+1)+arr[i]
lsum=-1
else:
if abs(lsum)<arr[i]:
lsum+=arr[i]
else:
ans2+=(abs(lsum)+1)-arr[i]
lsum=1
ans=min(ans1,ans2)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
unsigned long long n, a;
unsigned long long ans;
unsigned long long bef;
signed main() {
cin >> n;
cin >> a;
bef = a;
for (unsigned long long i = 1; i < n; i++) {
cin >> a;
if (bef > 0) {
if (bef + a < 0) {
bef += a;
continue;
}
ans += bef + a + 1;
bef = -1;
} else {
if (bef + a > 0) {
bef += a;
continue;
}
ans -= bef + a - 1;
bef = 1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
if a[0]>0:
P=0
SUMP=a[0]
else:
P=1-a[0]
SUMP=1
for i in range(1,n):
if i%2==0:
if SUMP+a[i]>=1:
P+=0
SUMP=SUMP+a[i]
else:
P+=1-(SUMP+a[i])
SUMP=1
elif i%2==1:
if SUMP+a[i]<=(-1):
P+=0
SUMP=SUMP+a[i]
else:
P+=SUMP+a[i]+1
SUMP=(-1)
if a[0]<0:
N=0
SUMN=a[0]
else:
N=1-a[0]
SUMN=(-1)
for i in range(1,n):
if i%2==1:
if SUMN+a[i]>=1:
N+=0
SUMN=SUMN+a[i]
else:
N+=1-(SUMN+a[i])
SUMN=1
elif i%2==0:
if SUMN+a[i]<=(-1):
N+=0
SUMN=SUMN+a[i]
else:
N+=SUMN+a[i]+1
SUMN=(-1)
print(min(P,N)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n), b(n);
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 0; i < n - 1; i++) a[i + 1] += a[i];
b = a;
long long sum1, sum2;
sum1 = sum2 = 0;
int i = 0;
while (1) {
int t;
if (a[i] <= 0) {
t = -a[i] + 1;
sum1 += t;
for (int j = i; j < n; j++) a[j] += t;
}
i++;
if (i == n) break;
if (a[i] >= 0) {
t = a[i] + 1;
sum1 += t;
for (int j = i; j < n; j++) a[j] -= t;
}
i++;
if (i == n) break;
}
i = 0;
while (1) {
int t;
if (b[i] >= 0) {
t = b[i] + 1;
sum2 += t;
for (int j = i; j < n; j++) b[j] -= t;
}
i++;
if (i == n) break;
if (b[i] <= 0) {
t = -b[i] + 1;
sum2 += t;
for (int j = i; j < n; j++) b[j] += t;
}
i++;
if (i == n) break;
}
cout << (min(sum1, sum2)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vl = vector<ll>;
using vvl = vector<vector<ll>>;
using pl = pair<ll, ll>;
using vpl = vector<pl>;
using vvpl = vector<vpl>;
const ll MOD = 1000000007;
const ll MOD9 = 998244353;
const int inf = 1e9 + 10;
const ll INF = 4e18;
const ll dy[8] = {1, 0, -1, 0, 1, 1, -1, -1};
const ll dx[8] = {0, -1, 0, 1, 1, -1, 1, -1};
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
ll n;
cin >> n;
ll res = inf;
ll ans = 0;
ll tmp = 0;
vl v(n);
for (ll i = 0; i < n; i++) cin >> v[i];
for (ll i = 0; i < n; i++) {
tmp += v[i];
if (i % 2 == 0) {
if (tmp >= 0) {
ans += tmp + 1;
tmp = -1;
}
} else {
if (tmp <= 0) {
ans += 1 - tmp;
tmp = 1;
}
}
}
chmin(res, ans);
ans = 0;
tmp = 0;
for (ll i = 0; i < n; i++) {
tmp += v[i];
if (i % 2 == 1) {
if (tmp >= 0) {
ans += tmp + 1;
tmp = -1;
}
} else {
if (tmp <= 0) {
ans += 1 - tmp;
tmp = 1;
}
}
}
chmin(res, ans);
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int posi(long long x) {
if (x > 0LL) return 1;
if (x < 0LL) return -1;
return 0;
}
int main() {
int N;
cin >> N;
vector<long long> a(N);
for (auto &i : a) cin >> i;
long long ans = 0, tmp = 0;
long long sum = a[0];
for (int i = 1; i < N; i++) {
if (posi(sum + a[i]) * posi(sum) != -1) {
tmp += abs(sum + a[i]) + 1LL;
sum = (sum > 0LL) ? -1LL : 1LL;
} else
sum += a[i];
}
ans = tmp;
tmp = abs(a[0]) + 1LL;
sum = (a[0] > 0) ? -1LL : 1LL;
for (int i = 1; i < N; i++) {
if (posi(sum + a[i]) * posi(sum) != -1) {
tmp += abs(sum + a[i]) + 1LL;
sum = (sum > 0LL) ? -1LL : 1LL;
} else
sum += a[i];
}
ans = min(ans, tmp);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const constexpr int INF = 1e9;
int N;
string s;
void solve() {
vector<int> v(N);
long long minV = INF;
for (int i = 0; i < N; ++i) cin >> v[i];
long long cnt = 0;
int tmp = v[0];
if (v[0] < 0) {
cnt += -v[0] + 1;
v[0] = 1;
}
int sum = v[0];
v[0] = tmp;
for (int i = 1; i < N; ++i) {
sum += v[i];
if (i % 2 != 0 && sum > 0) {
cnt += sum + 1;
sum = -1;
}
if (i % 2 == 0 && sum < 0) {
cnt += -sum + 1;
sum = 1;
}
}
minV = min(minV, cnt);
cnt = 0;
sum = 0;
if (v[0] > 0) {
cnt += v[0] + 1;
v[0] = -1;
}
sum = v[0];
for (int i = 1; i < N; ++i) {
sum += v[i];
if (i % 2 != 0 && sum < 0) {
cnt += -sum + 1;
sum = 1;
}
if (i % 2 == 0 && sum > 0) {
cnt += sum + 1;
sum = -1;
}
if (sum == 0) {
if (i % 2 == 0)
sum = 1;
else
sum = -1;
cnt++;
}
}
cout << min(minV, cnt) << endl;
}
int main() {
cin >> N;
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 300000000;
const long long MOD = 1000000007;
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
int n;
cin >> n;
long long a[100100];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long ans = INF;
for (int i = 0; i < 2; ++i) {
long long count = 0;
int su = 0;
for (int j = 0; j < n; ++j) {
su += a[j];
if (i == 0) {
if (j % 2 == 0 && su <= 0) {
count += abs(-su + 1);
su = 1;
} else if (j % 2 == 1 && su >= 0) {
count += abs(-su - 1);
su = -1;
}
}
if (i == 1) {
if (j % 2 == 0 && su >= 0) {
count += abs(-su + 1);
su = -1;
} else if (j % 2 == 1 && su <= 0) {
count += abs(-su - 1);
su = 1;
}
}
}
ans = min(ans, count);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"os"
"strings"
"strconv"
)
func main() {
sc := bufio.NewScanner(os.Stdin)
sc.Buffer(make([]byte, 64*1024*1024), 64*1024*1024)
sc.Scan()
n, _ := strconv.Atoi(sc.Text())
sc.Scan()
aArr := strings.Split(sc.Text(), " ")
a := make([]int, n)
for i := 0; i < n; i++ {
a[i], _ = strconv.Atoi(aArr[i])
}
cnt := 0
sum := a[0]
for i := 1; i < n; i++ {
if (sum+a[i])*sum < 0 {
sum += a[i]
continue
} else if sum == 0{
cnt += 1
}else if sum+a[i] < 0 {
cnt += 1-(sum+a[i])
sum = 1
} else if sum+a[i] > 0{
cnt += 1+sum+a[i]
sum = -1
} else {
cnt += 1
if sum > 0 {
sum = -1
} else {
sum = 1
}
}
}
fmt.Println(cnt)
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using LL = long long;
template <typename T1, typename T2>
using P = pair<T1, T2>;
using Pii = P<int, int>;
using Pdd = P<double, double>;
template <typename T>
using V = vector<T>;
using Vi = V<int>;
using Vll = V<LL>;
using Vs = V<string>;
template <typename T1, typename T2>
using M = map<T1, T2>;
using Mii = M<int, int>;
using Msi = M<string, int>;
const int MOD = 1000000007;
const int INF = 1999999999;
const LL INFLL = 999999999999999LL;
const double EPS = 1e-10;
const int DX[8] = {-1, 0, 1, 0, -1, -1, 1, 1};
const int DY[8] = {0, -1, 0, 1, -1, 1, 1, -1};
const double PI = 3.141592653589793;
void SCAN(int *a) { scanf("%d", a); }
void SCAN(int *a, int n) {
for (int(i) = 0; (i) < (n); (i)++) {
scanf("%d", &a[i]);
}
}
void SCAN(Pii *a) {
scanf("%d", &a->first);
scanf("%d", &a->second);
}
void SCAN(LL *a) { scanf("%lld", a); }
void SCAN(LL *a, int n) {
for (int(i) = 0; (i) < (n); (i)++) {
scanf("%lld", &a[i]);
}
}
void SCAN(char *c) { scanf(" %c", c); }
void SCAN(char *c, int n) {
for (int(i) = 0; (i) < (n); (i)++) {
scanf(" %c", &c[i]);
}
}
void PRINT(int a) { printf("%d\n", a); }
void PRINT(int *a, int s, char c = '\n') {
for (int(i) = 0; (i) < (s); (i)++) {
if (i == s - 1) {
c = '\n';
}
printf("%d%c", a[i], c);
}
}
void PRINT(Vi a, char c = '\n') {
for (int(i) = 0; (i) < (a.size()); (i)++) {
if (i == a.size() - 1) {
c = '\n';
}
printf("%d%c", a[i], c);
}
}
void PRINT(LL a) { printf("%lld\n", a); }
void PRINT(LL *a, int s, char c = '\n') {
for (int(i) = 0; (i) < (s); (i)++) {
if (i == s - 1) {
c = '\n';
}
printf("%lld%c", a[i], c);
}
}
void PRINT(double a) { printf("%.15f\n", a); }
void PRINT(double *a, int s, char c = '\n') {
for (int(i) = 0; (i) < (s); (i)++) {
if (i == s - 1) {
c = '\n';
}
printf("%f%c", a[i], c);
}
}
void PRINT(char a) { printf("%c\n", a); }
void PRINT(string a) { printf("%s\n", a.c_str()); }
template <typename A>
void UNIQUE(vector<A> &a, int mode = 0) {
if (mode == 0) {
sort((a).begin(), (a).end(), greater<A>());
} else {
sort((a).begin(), (a).end());
}
a.erase(unique((a).begin(), (a).end()), a.end());
}
template <typename A, size_t N, typename T>
void FILL(A (&array)[N], const T &val) {
fill((T *)array, (T *)(array + N), val);
}
template <typename T>
int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
long double pascalTri(int n, int r) {
long double tri[n + 1][n + 1];
for (int(i) = 0; (i) < (n + 1); (i)++) {
for (int(j) = 0; (j) < (n + 1); (j)++) {
tri[i][j] = 0;
}
}
for (int(i) = 0; (i) < (n + 1); (i)++) {
for (int(j) = 0; (j) < (n + 1); (j)++) {
if (j > i) {
break;
}
if (j == 0 || j == i) {
tri[i][j] = 1;
} else {
tri[i][j] = (tri[i - 1][j - 1] + tri[i - 1][j]);
}
}
}
return tri[n][r];
}
LL GCD(LL a, LL b) {
LL t;
LL r;
if (a < b) {
t = a;
a = b;
b = t;
}
if (b == 0) {
return a;
}
while (a % b != 0) {
r = a % b;
a = b;
b = r;
}
return b;
}
LL LCM(LL a, LL b) {
LL ab = (a * b) % MOD;
return ab / GCD(a % b, b);
}
LL BMPow(int x, int n, int m = 0) {
LL ans = 1;
LL p = x;
if (m == 0) {
while (n > 0) {
if (n & 1 == 1) {
ans *= p;
}
p *= p;
n >>= 1;
}
} else {
while (n > 0) {
if (n & 1 == 1) {
ans = (ans * p) % m;
}
p = (p * p) % m;
n >>= 1;
}
}
return ans;
}
LL modInv(LL x, int m) { return BMPow(x, m - 2, m); }
LL factorial(int x, int m = 0) {
LL a = 1;
if (m == 0) {
for (int(i) = (x); (i) >= (1); (i)--) {
a *= i;
}
} else {
for (int(i) = (x); (i) >= (1); (i)--) {
a = (a * i) % m;
}
}
return a;
}
P<Vll, Vll> primeFactor(LL n) {
Vll p, e;
LL m = n;
int c;
for (LL i = 2; i * i <= n; i++) {
if (m % i != 0) {
continue;
}
c = 0;
while (m % i == 0) {
c++;
m /= i;
}
p.push_back(i);
e.push_back(c);
}
if (m > 1) {
p.push_back(m);
e.push_back(1);
}
return make_pair(p, e);
}
template <typename T>
using coordinate = P<T, T>;
template <typename T>
using coordinateSet = V<coordinate<T>>;
template <typename T>
coordinate<double> centroidPolygon(coordinateSet<T> &a) {
coordinate<double> G;
G.first = 0.;
G.second = 0.;
int n = a.size();
for (auto &(i) : a) {
G.first += i.first;
G.second += i.second;
}
G.first /= n;
G.second /= n;
return G;
}
double area(coordinate<int> a, coordinate<int> b, coordinate<int> c) {
return ((b.first - a.first) * (c.second - a.second) -
(b.second - a.second) * (c.first - a.first)) /
2.;
}
int checkCross(coordinate<int> v1, coordinate<int> v2, coordinate<int> a,
coordinate<int> b) {
if (area(a, b, v1) * area(a, b, v2) >= 0) {
return 0;
}
if (area(v1, v2, a) * area(v1, v2, b) >= 0) {
return 0;
}
return 1;
}
struct edge {
int src;
int dst;
int weight;
edge() : src(0), dst(0), weight(0) {}
edge(int s, int d, int w) : src(s), dst(d), weight(w) {}
};
using edges = V<edge>;
using graph = V<edges>;
void add_edge(edges &g, int s, int d, int w = 1) { g.push_back(edge(s, d, w)); }
void add_edge(graph &g, int s, int d, int w = 1) {
g[s].push_back(edge(s, d, w));
}
V<Vi> floyd(const graph &g) {
int i, j, k;
int n = g.size();
V<Vi> dist(n, Vi(n, INF / 2));
for (int(i) = 0; (i) < (n); (i)++) {
dist[i][i] = 0;
}
for (int(i) = 0; (i) < (n); (i)++) {
for (auto &e : g[i]) {
dist[e.src][e.dst] = e.weight;
}
}
for (int(k) = 0; (k) < (n); (k)++) {
for (int(i) = 0; (i) < (n); (i)++) {
for (int(j) = 0; (j) < (n); (j)++) {
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
return dist;
}
Vi dijkstra(graph &g, int s) {
int i, j, k;
int n = g.size();
int visit[n];
Vi dist(n);
priority_queue<Pii, V<Pii>, greater<Pii>> q;
for (int(i) = 0; (i) < (n); (i)++) {
visit[i] = 0;
dist[i] = INF / 2;
}
dist[s] = 0;
q.push(make_pair(0, s));
int nv;
int min_cost = 0;
while (!q.empty()) {
int d, t;
tie(d, t) = q.top();
q.pop();
if (visit[t] == 1) {
continue;
}
visit[t] = 1;
dist[t] = d;
for (auto &e : g[t]) {
if (dist[e.dst] <= d + e.weight) {
continue;
}
q.push(make_pair(d + e.weight, e.dst));
}
}
return dist;
}
template <typename T>
struct binaryIndexedTree {
private:
int n;
V<T> x;
public:
binaryIndexedTree(int num = 0) : n(num), x(n, 0) {}
void add(int a, T w) {
for (int i = a; i < n; i |= i + 1) {
if (x[i] < w) {
x[i] = w;
}
}
}
T maximum(int a) {
T m = -1;
for (int k = a - 1; k >= 0; k = (k & (k + 1)) - 1) {
m = max(m, x[k]);
}
return m;
}
};
struct unionFind {
private:
Vi data;
public:
unionFind(int size) : data(size, -1) {}
bool unionSet(int x, int y) {
x = root(x);
y = root(y);
if (x != y) {
if (data[y] < data[x]) {
swap(x, y);
}
data[x] += data[y];
data[y] = x;
}
return x != y;
}
bool findSet(int x, int y) { return root(x) == root(y); }
int root(int x) { return ((data[x] < 0) ? x : (data[x] = root(data[x]))); }
int size(int x) { return -data[root(x)]; }
};
int sums[100005];
int main() {
int i, j;
int n;
SCAN(&n);
int a[n], b[n];
SCAN(a, n);
for (int(i) = 0; (i) < (n); (i)++) {
b[i] = a[i];
}
FILL(sums, 0);
sums[0] = a[0];
for (int(i) = (1); (i) < (n); (i)++) {
sums[i] = (sums[i - 1] + a[i]);
}
int cnt1 = 0;
int temp;
if (a[0] == 0) {
cnt1++;
a[0]++;
sums[0] = a[0];
for (int(i) = (1); (i) < (n); (i)++) {
sums[i] = (sums[i - 1] + a[i]);
}
}
for (int(i) = (1); (i) < (n); (i)++) {
if (sums[i] * sums[i - 1] >= 0) {
if (sums[i - 1] < 0) {
temp = abs(sums[i] - 1);
cnt1 += temp;
a[i] += temp;
} else {
temp = abs(sums[i] + 1);
cnt1 += temp;
a[i] -= temp;
}
for (int(j) = (i); (j) < (n); (j)++) {
sums[j] = (sums[j - 1] + a[j]);
}
}
}
int cnt2 = 0;
if (b[0] > 0) {
temp = abs(sums[i] + 1);
cnt2 += temp;
b[i] -= temp;
} else if (b[0] < 0) {
temp = abs(sums[i] - 1);
cnt2 += temp;
b[i] += temp;
} else {
cnt2++;
b[0]--;
}
sums[0] = b[0];
for (int(i) = (1); (i) < (n); (i)++) {
sums[i] = (sums[i - 1] + b[i]);
}
for (int(i) = (1); (i) < (n); (i)++) {
if (sums[i] * sums[i - 1] >= 0) {
if (sums[i - 1] < 0) {
temp = abs(sums[i] - 1);
cnt2 += temp;
b[i] += temp;
} else {
temp = abs(sums[i] + 1);
cnt2 += temp;
b[i] -= temp;
}
for (int(j) = (i); (j) < (n); (j)++) {
sums[j] = (sums[j - 1] + b[j]);
}
}
}
PRINT((cnt1 < cnt2) ? cnt1 : cnt2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long dy[4] = {1, 0, -1, 0};
long long dx[4] = {0, 1, 0, -1};
bool check(long long a, long long b) {
if ((a <= 0 && b > 0) || (a >= 0 && b < 0)) return true;
return false;
}
int32_t main() {
long long n;
cin >> n;
vector<long long> v(n);
long long sum = 0, cnt = 0;
for (long long i = 0; i < n; i++) {
cin >> v[i];
long long t = sum;
sum += v[i];
if (i > 0) {
if (!check(sum, t)) {
if (sum > 0) {
cnt += (sum + 1);
sum -= (sum + 1);
} else if (sum < 0) {
cnt += (1 - sum);
sum += (1 - sum);
}
} else if (sum == 0) {
if (t > 0) {
sum--;
} else {
sum++;
}
cnt++;
}
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
if (scanf("%d", &n) < 1) return 0;
long long int tmp;
long long int sm = 0;
long long int cnt = 0;
for (int i = 0; i < n; i++) {
if (scanf("%lld", &tmp) < 1) return 0;
if ((0 <= sm + tmp) && (0 < sm)) {
cnt = cnt + (1 + sm + tmp);
sm = -1;
} else if ((sm + tmp <= 0) && (sm < 0)) {
cnt = cnt + (1 - sm - tmp);
sm = 1;
} else
sm = sm + tmp;
}
printf("%lld\n", cnt);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #
# Written by NoKnowledgeGG @YlePhan
# ('ω')
#
#import math
#mod = 10**9+7
#import itertools
#import fractions
#import numpy as np
#mod = 10**4 + 7
"""def kiri(n,m):
r_ = n / m
if (r_ - (n // m)) > 0:
return (n//m) + 1
else:
return (n//m)"""
""" n! mod m 階乗
mod = 1e9 + 7
N = 10000000
fac = [0] * N
def ini():
fac[0] = 1 % mod
for i in range(1,N):
fac[i] = fac[i-1] * i % mod"""
"""mod = 1e9+7
N = 10000000
pw = [0] * N
def ini(c):
pw[0] = 1 % mod
for i in range(1,N):
pw[i] = pw[i-1] * c % mod"""
"""
def YEILD():
yield 'one'
yield 'two'
yield 'three'
generator = YEILD()
print(next(generator))
print(next(generator))
print(next(generator))
"""
"""def gcd_(a,b):
if b == 0:#結局はc,0の最大公約数はcなのに
return a
return gcd_(a,a % b) # a = p * b + q"""
"""def extgcd(a,b,x,y):
d = a
if b!=0:
d = extgcd(b,a%b,y,x)
y -= (a//b) * x
print(x,y)
else:
x = 1
y = 0
return d"""
def readInts():
return list(map(int,input().split()))
mod = 10**9 + 7
def main():
n = int(input())
A = readInts()
# 符号 positive?
#po_ = True
# 変わったか変わってないか
if A[0] >= 0: # if positive
po_ = True
else: # negative
po_ = False
Cost = 0
ANS = [0] * (n+1)
ANS[0] = A[0]
for i in range(1,n):
#print(ANS[i-1],po_,ANS[i-1] + A[i],Cost)
if ANS[i-1]+A[i] > 0 and not po_: # sumがpositiveで前がnegativeだった
po_ = True
ANS[i] = ANS[i-1] + A[i]
# これで終わり
elif ANS[i-1]+A[i] > 0 and po_: # posi : posi ?
# 負にしなければならない
Cost += abs(-1 - (ANS[i-1]+A[i])) # 先にこれやれ
A[i] += -1 - (ANS[i-1] + A[i])
# -4
ANS[i] = ANS[i-1] + A[i]
po_ = False
elif ANS[i-1]+A[i] < 0 and not po_: #nega : nega
# -1 はここ
# print(A[i])
Cost += abs(1 - (ANS[i-1]+A[i])) # 先にこれやれ
A[i] += 1 - (ANS[i-1] + A[i])
ANS[i] = ANS[i-1] + A[i]
po_ = True
elif ANS[i-1]+A[i] == 0 and po_: # nega: pos
po_ = False
A[i] -= 1
Cost += 1
ANS[i] = ANS[i-1] + A[i]
elif ANS[i-1]+A[i] < 0 and po_:
po_ = False
ANS[i] = ANS[i-1] + A[i]
elif ANS[i-1]+A[i] == 0 and not po_:
po_ = True
A[i] += 1
Cost += 1
ANS[i] = ANS[i-1] + A[i]
print(Cost)
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 200010;
long long n, m, md, ans;
long long a[maxn], pre[maxn];
;
long long read() {
long long s = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
s = s * 10 + ch - '0';
ch = getchar();
}
return s * f;
}
int main() {
md = 0, ans = 0;
memset(pre, 0, sizeof(pre));
n = read();
for (int i = 1; i <= n; i++) {
a[i] = read();
pre[i] = a[i];
pre[i] += pre[i - 1];
}
if (pre[1] != 0) {
for (int i = 1; i < n; i++) {
long long tmp = md;
if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) {
if ((pre[i] + tmp) < 0) {
md += (1ll - (pre[i + 1] + tmp));
ans += (1ll - (pre[i + 1] + tmp));
} else {
md -= ((pre[i + 1] + tmp) + 1ll);
ans += (1ll + (pre[i + 1] + tmp));
}
}
}
} else {
long long ans1 = 0, ans2 = 0;
md = 0, ans = 0;
pre[0] = -1;
for (int i = 0; i < n; i++) {
long long tmp = md;
if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) {
if ((pre[i] + tmp) < 0) {
md += (1ll - (pre[i + 1] + tmp));
ans1 += (1ll - (pre[i + 1] + tmp));
} else {
md -= ((pre[i + 1] + tmp) + 1ll);
ans1 += (1ll + (pre[i + 1] + tmp));
}
}
}
md = 0, ans = 0;
pre[0] = 1ll;
for (int i = 0; i < n; i++) {
int tmp = md;
if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) {
if ((pre[i] + tmp) < 0) {
md += (1ll - (pre[i + 1] + tmp));
ans2 += (1ll - (pre[i + 1] + tmp));
} else {
md -= ((pre[i + 1] + tmp) + 1ll);
ans2 += (1ll + (pre[i + 1] + tmp));
}
}
}
ans = min(ans1, ans2);
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) {
cin >> a[i];
}
long long s = a[0];
long long ss = a[0];
long long ans = 0;
for (int i = 1; i < n; i++) {
s = ss;
ss = s + a[i];
if (ss * s < 0) continue;
if (ss == 0) {
ans += 1;
ss = -s / abs(s);
} else {
ans += abs(ss - (-ss / abs(ss)));
ss = -ss / abs(ss);
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) {
cin >> a[i];
}
vector<long long> copy_a = a;
long long count = 0;
long long sum = 0;
if (a[0] != 0) {
for (int i = 0; i < n - 1; i++) {
sum += a[i];
if (sum < 0 && sum + a[i + 1] <= 0) {
long long na = 1 - sum;
count += abs(na - a[i + 1]);
a[i + 1] = na;
}
if (sum > 0 && sum + a[i + 1] >= 0) {
long long na = -1 - sum;
count += abs(na - a[i + 1]);
a[i + 1] = na;
}
}
} else if (a[0] == 0) {
a[0] = 1;
long long count1 = 1;
for (int i = 0; i < n - 1; i++) {
sum += a[i];
if (sum < 0 && sum + a[i + 1] <= 0) {
long long na = 1 - sum;
count1 += abs(na - a[i + 1]);
a[i + 1] = na;
}
if (sum > 0 && sum + a[i + 1] >= 0) {
long long na = -1 - sum;
count1 += abs(na - a[i + 1]);
a[i + 1] = na;
}
}
copy_a[0] = -1;
long long count2 = 1;
long long sum2 = 0;
for (int i = 0; i < n - 1; i++) {
sum2 += copy_a[i];
if (sum2 < 0 && sum2 + copy_a[i + 1] <= 0) {
long long na = 1 - sum2;
count2 += abs(na - copy_a[i + 1]);
copy_a[i + 1] = na;
}
if (sum2 > 0 && sum2 + copy_a[i + 1] >= 0) {
long long na = -1 - sum2;
count2 += abs(na - copy_a[i + 1]);
copy_a[i + 1] = na;
}
}
count = min(count1, count2);
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
map<int, int> mp;
vector<int> V;
list<int> L;
stack<int> S;
queue<int> Q;
deque<int> dq;
static const int MAX = 1e5;
static const int NMAX = 50;
static const int MMAX = 50;
int N;
long long a, cunt, sum;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
cin >> N;
cin >> a;
sum += a;
for (int i = 1; i < N; i++) {
cin >> a;
if (sum * a >= 0) {
cunt += sum + a + 1;
sum = (sum > 0 ? -1 : 1);
} else if (sum * a < 0 && abs(sum) >= abs(a)) {
cunt += abs(sum) - abs(a) + 1;
sum = (sum > 0 ? -1 : 1);
} else
sum += a;
}
cout << cunt << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | structure LI = LargeInt
structure SC = StringCvt
structure T = TextIO
fun nextInt () = valOf (T.scanStream (LI.scan SC.DEC) T.stdIn)
fun solve ([] : LI.int list) _ cnt = cnt
| solve (x :: xs) sum cnt =
let
val sum' = sum + x
in
if sum > 0 andalso sum' < 0 orelse sum < 0 andalso sum' > 0 then
solve xs sum' cnt
else if sum >= 0 andalso sum' >= 0 then
solve xs ~1 (cnt + sum' + 1)
else
solve xs 1 (cnt - sum' + 1)
end
val () =
let
val n = LI.toInt (nextInt ())
val x1 = nextInt ()
val xs = List.tabulate (n - 1, fn _ => nextInt ())
val cnt = if x1 <> 0 then solve xs x1 0
else LI.min (solve xs 1 1, solve xs ~1 1)
in
print (LI.toString cnt ^ "\n")
end
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n=int(input())
a=list(map(int,input().split()))
r=[0]
for i in range(n):
r.append(r[i]+a[i])
r.pop(0)
pm=[1-2*(i%2) for i in range(n)]
mp=[1-2*((i+1)%2) for i in range(n)]
sum1,sum2=0,0
sousa1,sousa2=0,0
for i in range(n):
if np.sign(r[i]+sousa1) != pm[i]:
sum1+=abs(pm[i]-r[i]-sousa1)
sousa1+=1-2*(i%2)-r[i]
for i in range(n):
if np.sign(r[i]+sousa2) != mp[i]:
sum2+=abs(mp[i]-r[i]-sousa2)
sousa2+=1-2*((i+1)%2)-r[i]
print(min(sum1,sum2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long int> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
vector<long long int> B(N);
B[0] = A[0];
for (int i = 1; i < N; i++) B[i] = B[i - 1] + A[i];
long long int ans = 0;
long long int base = 0;
for (int i = 1; i < N; i++) {
if ((B[i] + base) * (B[i - 1] + base) > 0) {
if (B[i] + base > 0) {
if (B[i] + base > B[i - 1] + base) {
ans += abs(B[i - 1] + base) + 1;
base -= abs(B[i - 1] + base) + 1;
} else {
ans += abs(B[i] + base) + 1;
base -= abs(B[i] + base) + 1;
}
continue;
} else if (B[i] + base < 0) {
if (B[i] + base < B[i - 1] + base) {
ans += abs(B[i - 1] + base) + 1;
base += abs(B[i - 1] + base) + 1;
} else {
ans += abs(B[i] + base) + 1;
base += abs(B[i] + base) + 1;
}
continue;
}
}
if (B[i - 1] + base == 0) {
if (B[i] + base > 0) {
ans += 1;
base -= 1;
continue;
} else if (B[i] + base < 0) {
ans += 1;
base += 1;
continue;
}
}
if (i == N - 1 && B[i] + base == 0) ans++;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < (n); i++) cin >> a[i];
int cnt = 0;
int s = 0;
for (int i = 1; i < n; i++) {
s += a[i - 1];
int t = 0, u;
if (s > 0) {
u = (-1) * s - 1;
if (u < a[i]) {
t = a[i] - u;
a[i] = u;
}
} else {
u = (-1) * s + 1;
if (u > a[i]) {
t = u - a[i];
a[i] = u;
}
}
cnt += t;
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double PI = 3.1415926535897932384626433832795;
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
bool isDiffer(long long a, long long b) {
if (b == 0) return false;
if (((a > 0) && (b < 0)) || ((a < 0) && (b > 0)))
return true;
else
return false;
}
int main() {
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> v;
for (int i = 0; i < n; i++) {
long long t;
cin >> t;
v.push_back(t);
}
long long ans = 0;
if (v[0] == 0) {
v[0] = 1;
ans += 1;
}
long long os = v[0];
for (int i = 1; i < n; i++) {
if (!isDiffer(os, v[i] + os)) {
long long ob = (os >= 0) ? -1 : 1;
ans += abs(ob - os - v[i]);
v[i] = ob - os;
}
os += v[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (auto& e : a) cin >> e;
int can1 = 0, can2 = 0;
for (int i = 0, acc1 = 0, acc2 = 0; i < n; i++) {
acc1 += a[i], acc2 += a[i];
if (i % 2 == 0) {
if (acc1 <= 0) {
can1 += -acc1 + 1;
acc1 = 1;
}
if (acc2 >= 0) {
can2 += acc2 + 1;
acc2 = -1;
}
} else {
if (acc1 >= 0) {
can1 += acc1 + 1;
acc1 = -1;
}
if (acc2 <= 0) {
can2 += -acc2 + 1;
acc2 = 1;
}
}
}
cout << min(can1, can2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
long long sum = a.at(0);
long long op = 0;
for (int j = 1; j < n; j++) {
if (sum > 0) {
sum += a.at(j);
while (sum >= 0) {
op++;
sum--;
}
} else {
sum += a.at(j);
while (sum <= 0) {
op++;
sum++;
}
}
}
cout << op << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
count=0
if abs(A[1]-A[0])!=0:
tmp=A[1]+A[0]
else:
count+=abs(-1-(A[1]+A[0]))
tmp=-1
for i in range(2,n):
if tmp<0:
if tmp+A[i]<=0:
count+= abs(1-(A[i]+tmp))
tmp=1
else:
tmp+=A[i]
continue
else:
if tmp+A[i]>=0:
count+=abs(-1-(A[i]+tmp))
tmp=-1
else:
tmp+=A[i]
continue
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long[] a = new long[N];
long[] aNegative = new long[N];
for (int i = 0; i < N; i++) {
a[i] = sc.nextLong();
aNegative[i] -= a[i];
}
long cnt = Math.min(cntCal(a), cntCal(aNegative));
System.out.println(cnt);
}
public static long cntCal(long[] a){
long sum = 0;
int cnt = 0;
for (int i = 0; i < a.length; i++) {
long tmpSum = sum + a[i];
if (sum > 0) {
while (tmpSum >= 0) {
tmpSum = sum + --a[i];
cnt++;
}
} else {
while (tmpSum <= 0) {
tmpSum = sum + ++a[i];
cnt++;
}
}
sum = sum + a[i];
}
return cnt;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
as = gets.chomp.split.map(&:to_i)
ans_o = ans_e = 0
sum_o = sum_e = as[0]
1.upto(n-1) do |i|
sum_e += as[i]
sum_o += as[i]
if i.even?
until sum_e > 0
ans_e += 1
sum_e += 1
end
until sum_o < 0
ans_o += 1
sum_o -= 1
end
else
until sum_e < 0
ans_e += 1
sum_e -= 1
end
until sum_o > 0
ans_o += 1
sum_o += 1
end
end
end
puts [ans_e,ans_o].min
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int calc(vector<int>& t, bool topPlus) {
int sum = 0;
int cnt = 0;
for (int i = 0; i < t.size(); ++i) {
sum += t.at(i);
if ((i % 2 == 0 && topPlus == true) || (i % 2 == 1 && topPlus == false)) {
if (sum > 0) continue;
cnt += abs(sum) + 1;
sum = 1;
} else {
if (sum < 0) continue;
cnt += abs(sum) + 1;
sum = -1;
}
}
return cnt;
}
int main() {
int N;
cin >> N;
vector<int> t(N);
for (long unsigned i = 0; i < N; ++i) {
cin >> t.at(i);
}
int cnt1 = calc(t, true);
int cnt2 = calc(t, false);
int cnt = min(cnt1, cnt2);
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N, count = 0;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
int su = A[0];
bool plus = A[0] > 0;
for (int i = 1; i < N; i++) {
plus = !plus;
su += A[i];
if (plus) {
if (su <= 0) {
count += abs(su) + 1;
su = 1;
}
} else {
if (su >= 0) {
count += abs(su) + 1;
su = -1;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
now_a = a[0]
count = 0
'''
True = positive
False = negative
'''
# sign = True
# if now_a < 0:
# sign = False
#
# for i in range(1, n):
# next_a = now_a + a[i]
# if sign:
# if next_a >= 0:
# count += next_a + 1
# now_a = -1
# else:
# now_a = next_a
# sign = False
# else:
# if next_a <= 0:
# count += abs(next_a) + 1
# now_a = 1
# else:
# now_a = next_a
# sign = True
# print(count)
sa = a[0]
sign = True
if sa < 0:
sign = False
for i in range(1, n):
na = sum(a[:i+1])
if sign:
if na >= 0:
a[i] += -1 * (na + 1)
count += na + 1
sign = False
elif not sign:
if na <= 0:
a[i] += 1 - na
count += 1 - na
sign = True
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N_MAX = 100000;
int N;
int a[N_MAX];
int All;
int sum[N_MAX];
int sum2[N_MAX];
int dif = 0;
int main() {
All = 0;
cin >> N;
for (int i = 0; i < N; i++) {
cin >> a[i];
All += a[i];
sum[i] = All;
sum2[i] = All;
}
int sigh = 1;
int ans1 = 0;
dif = 0;
for (int i = 0; i < N; i++) {
if (sum[i] + dif == 0) {
dif += sigh;
ans1 += 1;
} else if (((sum[i] + dif) / abs((sum[i] + dif))) != sigh) {
ans1 += (abs(sum[i] + dif) + 1);
int temp = sum[i] + dif;
dif += (abs(temp) + 1) * sigh;
}
sigh *= -1;
}
sigh = -1;
int ans2 = 0;
dif = 0;
for (int i = 0; i < N; i++) {
if (sum2[i] + dif == 0) {
dif += sigh;
ans2 += 1;
} else if (((sum2[i] + dif) / abs((sum2[i] + dif))) != sigh) {
ans2 += (abs(sum2[i] + dif) + 1);
int temp = sum2[i] + dif;
dif += (abs(temp) + 1) * sigh;
}
sigh *= -1;
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import math
n = int(input())
a = list(map(int, input().split()))
cnt = 0
x = []
x.append(a[0])
if a[0] == 0:
cnt += 1
if a[1] > 0:
x[0] = -1
else:
x[0] = 1
for i in range(n-1):
if x[i] > 0:
if x[i]+a[i+1] > -1:
tmp = int(math.fabs(x[i] + a[i+1]) + 1)
a[i+1] = a[i+1] - tmp
cnt += tmp
x += [x[i] + a[i+1]]
else:
if x[i]+a[i+1] < +1:
tmp = int(math.fabs(x[i] + a[i+1]) + 1)
a[i+1] = a[i+1] + tmp
cnt += tmp
x += [x[i] + a[i+1]]
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
long[] a = null;
try(Scanner sc = new Scanner(System.in)){
// N入力 aスペース区切り入力
a = new long[sc.nextInt()];
for(int i = 0; i < a.length; i ++) {
a[i] = sc.nextLong();
}
}
long start = a[0];
boolean isNaturalNum = true;
if(start < 0) {
isNaturalNum = false;
}
long ret = 0L;
for(int i = 1; i < a.length; i++) {
long temp2 = start + a[i];
if(isNaturalNum) {
if(temp2 >= 0) {
ret += Math.abs(start + a[i]) + 1 ;
start = -1;
} else {
//OK
start = temp2;
}
isNaturalNum = false;
} else {
if(temp2 <= 0) {
ret += Math.abs(start + a[i]) + 1;
start = 1;
} else {
start = temp2;
}
isNaturalNum = true;
}
}
System.out.println(ret);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long mod = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long now = (a[0] == 0) ? 1LL : a[0];
long long tmp_ans1 = (a[0] == 0) ? abs(a[0]) + 1LL : 0;
for (int i = 1; i < n; ++i) {
if (now >= 0 && now + a[i] >= 0) {
tmp_ans1 += now + a[i] + 1LL;
now = -1LL;
} else if (now < 0 && now + a[i] <= 0) {
tmp_ans1 += abs(now + a[i]) + 1LL;
now = 1LL;
} else {
now += a[i];
}
}
now = (a[0] < 0) ? 1LL : -1LL;
long long tmp_ans2 = abs(a[0]) + 1LL;
for (int i = 1; i <= n; ++i) {
if (now >= 0 && now + a[i] >= 0) {
tmp_ans2 += now + a[i] + 1LL;
now = -1LL;
} else if (now < 0 && now + a[i] <= 0) {
tmp_ans2 += abs(now + a[i]) + 1LL;
now = 1LL;
} else {
now += a[i];
}
}
cout << min(tmp_ans1, tmp_ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ruisekiwa = []
tmp = 0
for x in a:
tmp += x
ruisekiwa.append(tmp)
ans = tmp = cnt = 0
for x, y in zip(ruisekiwa, ruisekiwa[1:]):
x += tmp
y += tmp
if (x == abs(x) and y != abs(y)) or (x != abs(x) and y == abs(y)) and y != 0:
cnt += 1
else:
hoge = 0
if y > 0:
hoge += -1-y
elif y < 0:
hoge += 1-y
else:
if x > 0:
hoge = -1
else:
hoge = 1
tmp += hoge
ans += abs(hoge)
if len(ruisekiwa) - 1 == cnt:
print('0')
else:
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
long long sum = 0;
long long ans = 0;
for (int i = 0; i < n; i++) {
int x;
cin >> x;
if (i == 0) {
sum += x;
continue;
}
long long tmp = sum;
sum += x;
if (tmp * sum < 0) continue;
ans += 1 + abs(sum);
if (tmp < 0)
sum = 1;
else
sum = -1;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int a[100001];
int sumo[100001];
int sume[100001];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i + 1];
}
int anso = 0;
int anse = 0;
sumo[0] = 0;
sume[0] = 0;
for (int i = 1; i <= n; i++) {
if (i % 2 == 0) {
if (sume[i - 1] + a[i] > 0) sume[i] = sume[i - 1] + a[i];
if (sume[i - 1] + a[i] <= 0) {
sume[i] = 1;
anse += (1 - (sume[i - 1] + a[i]));
}
if (sumo[i - 1] + a[i] < 0) sumo[i] = sumo[i - 1] + a[i];
if (sumo[i - 1] + a[i] >= 0) {
sumo[i] = -1;
anso += sumo[i - 1] + a[i] + 1;
}
} else if (i % 2 == 1) {
if (sumo[i - 1] + a[i] > 0) sumo[i] = sumo[i - 1] + a[i];
if (sumo[i - 1] + a[i] <= 0) {
sumo[i] = 1;
anso += (1 - (sumo[i - 1] + a[i]));
}
if (sume[i - 1] + a[i] < 0) sume[i] = sume[i - 1] + a[i];
if (sume[i - 1] + a[i] >= 0) {
sume[i] = -1;
anse += (sume[i - 1] + a[i] + 1);
}
}
}
int ans;
ans = min(anso, anse);
printf("%d", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
int n;
cin >> n;
vector<ll> a(n);
for (int i = (0); i < (n); ++i) cin >> a[i];
ll sum = a[0];
ll ans = 0;
for (int i = (1); i < (n); ++i) {
sum += a[i];
if (sum * (sum - a[i]) < 0)
;
else {
if (sum == 0) {
if (sum - a[i] < 0) {
sum = 1;
ans++;
} else {
ans++;
sum = -1;
}
} else if (sum > 0) {
ans += (sum - (-1));
sum = -1;
} else {
ans += (1 - sum);
sum = 1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
*a, = map(int, input().split())
if a[0]:
ans = 0
e0 = 1 if a[0] > 0 else -1
S = a[0]
for i in range(1, n):
e = e0 * int((i % 2-0.5)*2)
n = max(e*(S+a[i])+1, 0)
S += a[i]+(-e*n)
ans += n
print(ans)
else:
ans = [0, 0]
for e0 in [1, -1]:
a[0] = e0*1
S = a[0]
for i in range(1, n):
e = e0 * int((i % 2-0.5)*2)
n = max(e*(S+a[i])+1, 0)
S += a[i]+(-e*n)
ans[int(e0/2+0.5)] += n
print(min(ans))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
long[] s1 = new long[n];
long[] s2 = new long[n];
int sum1 = 0;
int sum2 = 0;
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
s1[0] = a[0];
for (int i = 1; i < n; i++) {
s1[i] = s1[i-1] + a[i];
}
s2 = s1.clone();
int count = 0;
// - + - + となる場合
while (s1[0] >= 0) {
s1[0]--;
count++; sum1++;
}
for (int i = 1; i < n; i++) {
s1[i] -= count;
}
for (int i = 1; i < n; i++) {
count = 0;
// iが奇数の場合は正にする
if (i % 2 != 0) {
while (s1[i-1]*s1[i] >= 0) {
s1[i]++;
count++; sum1++;
}
for (int j = i+1; j < n; j++) {
s1[j] += count;
}
}
// iが偶数の場合は負にする
else {
while (s1[i-1]*s1[i] >= 0) {
s1[i]--;
count++; sum1++;
}
for (int j = i+1; j < n; j++) {
s1[j] -= count;
}
}
}
count = 0;
// + - + - となる場合
while (s2[0] <= 0) {
s2[0]++;
count++; sum2++;
}
for (int i = 1; i < n; i++) {
s2[i] += count;
}
for (int i = 1; i < n; i++) {
count = 0;
if (i % 2 != 0) {
while (s2[i-1]*s2[i] >= 0) {
s2[i]--;
count++; sum2++;
}
for (int j = i+1; j < n; j++) {
s2[j] -= count;
}
}
else {
while (s2[i-1]*s2[i] >= 0) {
s2[i]++;
count++; sum2++;
}
for (int j = i+1; j < n; j++) {
s2[j] += count;
}
}
}
System.out.println(Math.min(sum1, sum2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
b=0
count=0
x=0
if A[0]>0:
x=-1
else:
x=1
for a in A:
b+=a
if x==1:
if b<0:
x=-1
else:
count+=1+b
b=-1
x=-1
else:
if b>0:
x=1
else:
count+=1-b
b=1
x=1
print(count if b!=0 else count+1) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] nums = new long[n];
for(int i = 0; i < n; i++){
nums[i] = sc.nextLong();
}
long result = 0;
long sum = 0;
// + - + -
for(int i = 0; i < n; i++){
if(i % 2 == 0 && sum + nums[i] <= 0){
result += Math.abs(1 - (sum + nums[i]));
sum = 1;
}
else if(i % 2 == 1 && sum + nums[i] >= 0){
result += Math.abs(-1 - (sum + nums[i]));
sum = -1;
}
else{
sum += nums[i];
}
}
int result2 = 0;
sum = 0;
// - + - +
for(int i = 0; i < n; i++){
if(i % 2 == 1 && sum + nums[i] <= 0){
result2 += Math.abs(1 - (sum + nums[i]));
sum = 1;
}
else if(i % 2 == 0 && sum + nums[i] >= 0){
result2 += Math.abs(-1 - (sum + nums[i]));
sum = -1;
}
else{
sum += nums[i];
}
}
System.out.println(Math.min(result, result2));
sc.close();
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int abs(int x) {
if (x < 0)
return -x;
else
return x;
}
int main(void) {
int n;
int a[100000];
int i, j;
int sum = 0;
int ans = 0;
char sign;
scanf("%d", &n);
for (i = 0; i < n; i++) scanf("%d", &a[i]);
for (i = 0; i < n; i++) {
if (a[i] > 0) {
sign = 'p';
break;
} else if (a[i] < 0) {
sign = 'm';
break;
} else
continue;
}
for (; i < n; i++) {
sum += a[i];
if (sum == 0) {
for (j = i + 1; j < n; j++) {
if (sum == a[j])
continue;
else if (sign == 'p') {
sum++;
ans++;
i = j;
break;
} else if (sign == 'm') {
sum--;
ans++;
i = j;
break;
}
}
i = j;
ans++;
} else if (sum > 0 && sign == 'p')
sign = 'm';
else if (sum < 0 && sign == 'm')
sign = 'p';
else {
if (sign == 'p') {
ans += abs(sum) + 1;
sum += abs(sum) + 1;
sign = 'm';
} else if (sign == 'm') {
ans += abs(sum) + 1;
sum -= abs(sum) + 1;
sign = 'p';
}
}
}
printf("%d\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INTMAX = 2147483647;
const int64_t LLMAX = 9223372036854775807;
const int MOD = 1000000007;
template <class T>
inline bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
inline void swap(int64_t& a, int64_t& b) {
a ^= b;
b ^= a;
a ^= b;
}
inline void swap(int& a, int& b) {
a ^= b;
b ^= a;
a ^= b;
}
int main() {
int n;
int64_t ans = 0;
int64_t s, last, a;
cin >> n;
cin >> a;
s = a;
for (int i{1}; i < (int)(n); i++) {
cin >> a;
if ((s ^ (s + a)) >= 0 || !(s + a)) {
if (s < 0) {
ans += 1LL - (s + a);
s = 1;
} else {
ans += abs((-1LL) - (s + a));
s = -1;
}
} else {
s += a;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
arr = [int(x) for x in input().split()]
def exec(sign):
a = [x for x in arr]
res = 0
if a[0] == 0:
a[0] = 1
res += 1
x = 0
for i in range(n-1):
x += a[i]
tmp = sign - (x + a[i+1])
if sign < 0:
tmp = min(tmp, 0)
else:
tmp = max(tmp, 0)
res += abs(tmp)
a[i+1] += tmp
sign *= (-1)
return res
print(min(exec(1), exec(-1)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int ans = 0;
int sum = a[0];
for (int i = 1; i < n; i++) {
int sum_t = sum + a[i];
if (sum > 0 && sum_t >= 0) {
while (sum_t >= 0) {
a[i]--;
sum_t--;
ans++;
}
} else if (sum < 0 && sum_t <= 0) {
while (sum_t <= 0) {
a[i]++;
sum_t++;
ans++;
}
}
sum += a[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
al = list(map(int, input().split()))
m = n//2
mm = n % 2
temp = al[0]
res = 0
def ddd(temp,al,m,mm,res):
if temp > 0 and mm ==1:
for i in range(1,m+1):
temp +=al[i*2-1]
if temp <0:
pass
else:
res += temp+1
temp = -1
temp +=al[i*2]
if temp >0:
pass
else:
res +=1-temp
temp = 1
return(res)
if temp > 0 and mm ==0:
for i in range(1,m):
temp +=al[i*2-1]
if temp <0:
pass
else:
res += temp+1
temp = -1
temp +=al[i*2]
if temp >0:
pass
else:
res +=1-temp
temp = 1
temp += al[n-1]
if temp <0:
pass
else:
res += temp+1
temp = -1
return(res)
if temp < 0 and mm ==1:
for i in range(1,m+1):
temp +=al[i*2-1]
if temp >0:
pass
else:
res += 1-temp
temp = 1
temp +=al[i*2]
if temp <0:
pass
else:
res +=temp+1
temp = -1
return(res)
if temp < 0 and mm ==0:
for i in range(1,m):
temp +=al[i*2-1]
if temp >0:
pass
else:
res += 1-temp
temp = 1
temp +=al[i*2]
if temp <0:
pass
else:
res +=temp+1
temp = -1
temp += al[n-1]
if temp >0:
pass
else:
res += 1-temp
temp = 1
return(res)
print(ddd(temp,al,m,mm,res)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
import numpy as np
na = np.array(a).cumsum()
cnt = 0
hoge = 0
if(na[0] > 0):
for i in range(n):
delta = abs(na[i]) + 1
na[i] += hoge
if(i % 2 == 0 and na[i] <= 0):
cnt = cnt + delta
hoge += delta
elif(i % 2 == 1 and na[i] >= 0):
cnt = cnt + delta
hoge -= delta
else:
na[i]
else:
for i in range(n):
delta = abs(na[i]) + 1
na[i] += hoge
if(i % 2 == 1 and na[i] <= 0):
cnt = cnt + delta
hoge += delta
elif(i % 2 == 0 and na[i] >= 0):
cnt = cnt + delta
hoge -= delta
else:
na[i]
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long> a(n);
long long wa = 0;
int now_sign = 0;
int pre_sign = 0;
long long count = 0;
long long min_count = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
pre_sign = 1;
wa = a[0];
if (wa != 0)
now_sign = wa / abs(wa);
else
now_sign = 0;
if (now_sign != pre_sign) {
count += abs(a[0]) + 1;
}
for (int i = 1; i < n; i++) {
wa += a[i];
if (wa != 0)
now_sign = wa / abs(wa);
else
now_sign = 0;
if (now_sign == pre_sign || now_sign == 0) {
count += abs(wa) + 1;
wa = -1 * pre_sign;
now_sign = -1 * pre_sign;
}
pre_sign = now_sign;
}
min_count = count;
count = 0;
pre_sign = -1;
wa = a[0];
if (wa != 0)
now_sign = wa / abs(wa);
else
now_sign = 0;
if (now_sign != pre_sign) {
count += abs(a[0]) + 1;
}
for (int i = 1; i < n; i++) {
wa += a[i];
if (wa != 0)
now_sign = wa / abs(wa);
else
now_sign = 0;
if (now_sign == pre_sign || now_sign == 0) {
count += abs(wa) + 1;
wa = -1 * pre_sign;
now_sign = -1 * pre_sign;
}
pre_sign = now_sign;
}
min_count = min(min_count, count);
cout << min_count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <class T, class S>
void cmin(T &a, const S &b) {
if (a > b) a = b;
}
template <class T, class S>
void cmax(T &a, const S &b) {
if (a < b) a = b;
}
using namespace std;
signed main() {
long long int n;
cin >> n;
vector<long long int> v(n);
bool flag = false;
for (long long int i = 0; i < n; i++) cin >> v[i];
vector<long long int> sum(n);
long long int ans = 0;
for (long long int i = 0; i < n; i++) sum[i] = v[i];
for (long long int i = 0; i < n; i++) {
if (!i) {
if (sum[0] > 0)
flag = true;
else if (sum[0] < 0)
flag = false;
else {
sum[0] = 1;
ans++;
flag = true;
}
continue;
}
sum[i] += sum[i - 1];
if (flag) {
if (sum[i] < 0)
flag = false;
else {
ans += (abs(sum[i]) + 1);
sum[i] = -1;
flag = false;
}
} else {
if (sum[i] > 0)
flag = true;
else {
ans += (abs(sum[i]) + 1);
sum[i] = 1;
flag = true;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
using namespace std;
const int INF = 1000000007;
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
int64_t N;
cin >> N;
int64_t A[N], sum[N] = {};
cin >> A[0];
sum[0] = A[0];
for(int i=1;i<N;i++){
cin >> A[i];
sum[i] = sum[i-1] + A[i];
}
int64_t num = INF;
for(int i=1;i<N;i++){
if(sum[i-1]*sum[i] >= 0){
num = i;
break;
}
}
if(num == INF){
cout << 0 << endl;
return 0;
}
int64_t ans1 = 0, ans2 = 0;
int64_t sumt = 1;
int64_t sa = 0;
for(int i=0;i<N;i++){
sumt *= -1;
sum[i] += sa;
if(sumt*sum[i] <= 0){
sa += sumt-sum[i];
ans1 += abs(sumt-sum[i]);
}
}
sumt = -1;
sa = 0;
for(int i=0;i<N;i++){
sumt *= -1;
sum[i] += sa;
if(sumt*sum[i] <= 0){
sa += sumt-sum[i];
ans2 += abs(sumt-sum[i]);
}
}
cout << min(ans1, ans2) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++) cin >> a[i];
vector<int> a1;
a1 = a;
int sum1 = 0, ans1 = 0;
for (int i = 1; i <= n; i++) {
sum1 += a1[i];
if (i % 2 == 1 && sum1 <= 0) {
int plus = 1 - sum1;
sum1 = 1;
ans1 += plus;
continue;
}
if (i % 2 == 0 && sum1 >= 0) {
int minus = 1 + sum1;
sum1 = -1;
ans1 += minus;
}
}
vector<int> a2;
a2 = a;
int sum2 = 0, ans2 = 0;
for (int i = 1; i <= n; i++) {
sum2 += a2[i];
if (i % 2 == 1 && sum2 >= 0) {
int minus = 1 + sum2;
sum2 = -1;
ans2 += minus;
continue;
} else if (i % 2 == 0 && sum2 <= 0) {
int plus = 1 - sum2;
sum2 = 1;
ans2 += plus;
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
long long power(long long a, long long b) {
long long r = 1;
for (long long i = 0; i < (b); i++) {
r *= a;
}
return r;
}
int main(void) {
long long N, a[100100], ans = 0;
scanf("%lld", &N);
for (long long i = 0; i < (N); i++) scanf("%lld", a + i);
for (long long i = 1; i < N; i++) {
a[i] = a[i] + a[i - 1];
if (a[i] == 0) {
if (a[i - 1] < 0)
a[i]++;
else
a[i]--;
ans++;
} else if (a[i - 1] * a[i] > 0) {
ans += ((a[i]) >= (0) ? (a[i]) : (-(a[i]))) + 1;
if (a[i - 1] < 0)
a[i] = 1;
else
a[i] = -1;
}
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long int> A(N);
long long int s = 0LL;
vector<long long int> V(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
s += A[i];
V[i] = s;
}
long long int tmp1 = 0LL;
long long int tmp2 = 0LL;
for (int i = 0; i < N - 1; i++) {
if (i % 2 == 0) {
if (V[i] > 0)
continue;
else {
tmp1 += abs(1LL - V[i]);
V[i] = 1LL;
V[i + 1] = 1LL + A[i + 1];
}
} else {
if (V[i] < 0)
continue;
else {
tmp1 += abs(-1LL - V[i]);
V[i] = -1LL;
V[i + 1] = -1LL + A[i + 1];
}
}
}
for (int i = 0; i < N - 1; i++) {
if (i % 2 == 1) {
if (V[i] > 0)
continue;
else {
tmp2 += abs(1LL - V[i]);
V[i] = 1LL;
V[i + 1] = 1LL + A[i + 1];
}
} else {
if (V[i] < 0)
continue;
else {
tmp2 += abs(-1LL - V[i]);
V[i] = -1LL;
V[i + 1] = -1LL + A[i + 1];
}
}
}
cout << min(tmp1, tmp2);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static int32_t n;
static vector<int32_t> a;
static int32_t calcCost(bool isPlus) {
int32_t sum = 0, cost = 0;
for (int32_t i = 0; i < n; i++) {
if (isPlus && sum + a[i] < 1) {
cost += abs(a[i] - (1 - sum));
sum += 1 - sum;
} else if (!isPlus && sum + a[i] > -1) {
cost += abs(a[i] - (-1 - sum));
sum += -1 - sum;
} else {
sum += a[i];
}
isPlus = !isPlus;
}
return cost;
}
int main() {
cin >> n;
a.resize(n);
for (int32_t i = 0; i < n; i++) cin >> a[i];
cout << min(calcCost(true), calcCost(false)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int signs[2] = {-1, 1}, cnt[2] = {0, 0};
for (int i = 0; i < 2; i++) {
long long sum = 0;
int sign = signs[i];
for (int j = 0; j < n; j++) {
sum += a[j];
if (sum == 0) {
sum += sign;
cnt[i]++;
} else if (sum * sign < 0) {
cnt[i] = cnt[i] + abs(sum) + 1;
sum = sum + sum * (-1) + sign;
}
sign *= -1;
}
}
cout << (cnt[0] < cnt[1] ? cnt[0] : cnt[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a;
for (int i = 0; i < n; i++) {
int ai;
cin >> ai;
a.push_back(ai);
}
int count = 0;
if (a.at(0) == 0) {
a.at(0) = 1;
count = 1;
}
for (int i = 0; i < n - 1; i++) {
int sum = accumulate(a.begin(), a.begin() + i + 1, 0);
int sum_next = accumulate(a.begin(), a.begin() + i + 2, 0);
if (sum > 0 && sum_next >= 0) {
int diff = sum_next + 1;
count += diff;
a.at(i + 1) -= diff;
} else if (sum < 0 && sum_next <= 0) {
int diff = -sum_next + 1;
count += diff;
a.at(i + 1) += diff;
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # sys.stdin.readline
import sys
input = sys.stdin.readline
class AtCoder:
def main(self):
n = int(input())
a = list(map(int, input().split()))
even_plus_ans = 0
before = a[0]
if a[0] < 0:
even_plus_ans -= a[0] - 1
before = 1
for i in range(1, n):
if i % 2 == 0:
v = a[i] + before
if v > 0:
before = v
elif v <= 0:
before = 1
even_plus_ans -= v - 1
else:
v = a[i] + before
if v < 0:
before = v
elif v >= 0:
before = -1
even_plus_ans += v + 1
odd_plus_ans = 0
before = a[0]
if a[0] >= 0:
odd_plus_ans += a[0] + 1
before = -1
for i in range(1, n):
if i % 2 != 0:
v = a[i] + before
if v > 0:
before = v
elif v <= 0:
before = 1
odd_plus_ans -= v - 1
else:
v = a[i] + before
if v < 0:
before = v
elif v >= 0:
before = -1
odd_plus_ans += v + 1
print(min(even_plus_ans, odd_plus_ans))
# Run main
if __name__ == '__main__':
AtCoder().main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools
from collections import deque
sys.setrecursionlimit(10**7)
inf = 10**20
mod = 10**9 + 7
DR = [1, -1, 0, 0]
DC = [0, 0, 1, -1]
def LI(): return [int(x) for x in sys.stdin.readline().split()]
def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]
def LF(): return [float(x) for x in sys.stdin.readline().split()]
def LS(): return sys.stdin.readline().split()
def I(): return int(sys.stdin.readline())
def F(): return float(sys.stdin.readline())
def S(): return input()
def main():
N = I()
A = LI()
cumsum = [0]
for i in range(N):
cumsum.append(A[i] + cumsum[i])
cumsum = cumsum[1:]
prev_plus = cumsum[0] > 0
cnt = 0
total_sum = 0
for i, c in enumerate(cumsum):
if i == 0:
continue
c = c + total_sum
if prev_plus:
# if minus, ignore
if c < 0:
pass
else:
cnt += (c - (-1))
total_sum -= (c - (-1))
else:
if c > 0:
pass
else:
cnt += (1 - c)
total_sum += (1 - c)
prev_plus = not prev_plus
print(cnt)
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def solve():
ans = 0
N = int(input())
A = list(map(int, input().split()))
total = A[0]
if total==0:
for i in range(1,N):
if A[i]!=0:
total = pow(-1,i)*A[i]//abs(A[i])
break
else:
return N
for i in range(1,N):
new_total = total+A[i]
if total*(new_total)>=0:
new_total = (-1)*total//abs(total)
ans += abs(new_total-(total+A[i]))
total = new_total
return ans
print(solve()) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
/**
* https://abc059.contest.atcoder.jp/tasks/arc072_a
*/
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = Integer.parseInt(sc.next());
long[] a = new long[N];
for(int i=0; i<N; i++) a[i] = sc.nextLong();
sc.close();
long sum = a[0];
long ans = 0;
for(int i=1; i<N; i++){
if(sum>0 && sum+a[i]>=0){
ans += Math.abs(-1-sum-a[i]);
sum = -1;
}else if(sum<0 && sum+a[i]<=0){
ans += Math.abs(1-sum-a[i]);
sum = 1;
}else{
sum = sum + a[i];
}
}
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <cstdlib>
#include <utility>
#include <cstdio>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <cmath>
#include <set>
#include <map>
using ll = long long;
using itn = int;
using namespace std;
int GCD(int a, int b){
return b ? GCD(b, a%b) : a;
}
int main() {
int n;
cin >> n;
ll a[n];
for(int i=0; i<n; i++){
cin >> a[i];
}
ll asum[n+1]={};
for(int i=0; i<n; i++){
asum[i+1] = asum[i]+a[i];
}
ll cnt=0;
ll accSum=0;
for(int i=1; i<n; i++){
asum[i+1]+=accSum;
if(asum[i+1]*asum[i]>0){
ll s=abs(asum[i+1])+1;
cnt+=s;
asum[i+1]<0 ? accSum+=s : accSum+=-1*s;
asum[i+1]<0 ? asum[i+1]=1 : asum[i+1]=-1;
}else if(asum[i+1]*asum[i]==0){
cnt+=1;
asum[i]<0 ? asum[i+1]=1,accSum+=1 : asum[i+1]=-1,accSum+=-1;
}
}
cout << cnt << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long a[100005], dp[100005];
cin >> n;
long long sum = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
dp[i] = sum;
}
long long diff = 0, ans = 0;
if (dp[0] == 0) {
if (dp[1] < 0)
diff++, ans++;
else
diff--, ans++;
}
for (int i = 1; i < n; i++) {
if (dp[i] + diff == 0) {
if (dp[i - 1] + diff < 0) diff++, ans++;
if (dp[i - 1] + diff > 0) diff--, ans++;
continue;
}
if ((dp[i - 1] + diff) / llabs(dp[i - 1] + diff) ==
(dp[i] + diff) / llabs(dp[i] + diff)) {
if (dp[i] + diff >= 0) {
ans += llabs(dp[i] + diff) + 1;
diff -= llabs(dp[i] + diff) + 1;
} else {
ans += llabs(dp[i] + diff) + 1;
diff += llabs(dp[i] + diff) + 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=[int(i) for i in input().split()]
check=a[0]
ans=0
if check==0:
for i in range(1,n):
if check+a[i]==0:
continue
elif check+a[i]>0:
check=-1
ans=1
break
else:
check=1
ans=1
break
for i in range(1,n):
check2=check+a[i]
if check<0:
if check2>0:
check=check2
else:
ans+=(abs(check2)+1)
check=1
else:
if check2<0:
check=check2
else:
ans+=(abs(check2)+1)
check=-1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int, input().split()))
s = []
ss = a[0]
cnt = 0
c = 1
if(a[0] != 0):
s.append(a[0])
else:
while (a[c] == 0):
c += 1
cnt += 2
cnt -= 1
if(np.sign(a[c]) == 1):
ss = -1
for i in range(c):
if(i%2 != c%2):
s.append(-1)
else:
s.append(1)
else:
ss = 1
for i in range(c):
if(i%2 != c%2):
s.append(1)
else:
s.append(-1)
for i in range(c, n):
ss += a[i]
if(ss == 0):
if(np.sign(s[i-1]) == -1):
ss += 1
cnt += 1
s.append(1)
else:
ss -= 1
cnt += 1
s.append(-1)
elif(np.sign(s[i-1]) == np.sign(ss)):
if(np.sign(s[i-1]) == -1):
cnt += 1 - ss
ss = 1
s.append(1)
else:
cnt += abs(-1-ss)
ss = -1
s.append(-1)
else:
s.append(ss)
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[1000000];
int min(long long a, long long b) {
int t = a;
if (b <= t) t = b;
return t;
}
int main() {
int n;
cin >> n;
for (int t = 0; t < n; t++) cin >> a[t];
int sum = 0;
long long x = 0;
for (int t = 0; t < n; t++) {
sum += a[t];
if (t % 2 == 1 && sum >= 0) {
long long s = sum + 1;
sum = -1;
x += s;
} else if (t % 2 == 0 && sum <= 0) {
long long s = 1 - sum;
sum = 1;
x += s;
}
}
long long positive_x = x;
x = 0;
sum = 0;
for (int t = 0; t < n; t++) {
sum += a[t];
if (t % 2 == 0 && sum >= 0) {
long long s = sum + 1;
sum = -1;
x += s;
} else if (t % 2 == 1 && sum <= 0) {
long long s = 1 - sum;
sum = 1;
x += s;
}
}
long long negative_x = x;
long long result = min(positive_x, negative_x);
cout << result << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
long long sum = a.at(0);
long long op_1 = 0;
for (int j = 1; j < n; j++) {
if (sum > 0) {
sum += a.at(j);
if (sum >= 0) {
op_1 += (sum + 1);
sum = -1;
}
} else {
sum += a.at(j);
if (sum <= 0) {
op_1 += (-1 * sum + 1);
sum = 1;
}
}
}
sum = a.at(0);
long long op_2 = 0;
if (sum > 0) {
sum = -1;
op_2 += (sum + 1);
} else {
sum = 1;
op_2 += (sum * -1 + 1);
}
for (int j = 1; j < n; j++) {
if (sum > 0) {
sum += a.at(j);
if (sum >= 0) {
op_2 += sum + 1;
sum = -1;
}
} else {
sum += a.at(j);
if (sum <= 0) {
op_2 += -1 * sum + 1;
sum = 1;
}
}
}
cout << (op_1 > op_2 ? op_2 : op_1) << endl;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.