Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); long[] A = new long[N]; for (int i = 0; i < N; i++) { A[i] = sc.nextInt(); } System.out.println( solve(N, A) ); } private static int solve(int N, long[] A) { int ans = 0; long a0 = A[0]; long sum; if( a0 > 0 ) { sum = A[0]; } else if( a0 < 0 ) { sum = A[0]; } else { long[] A_plus = Arrays.copyOf(A, N); A_plus[0] = 1; int sum_plus = solve(N, A_plus) + 1; long[] A_minus = Arrays.copyOf(A, N); A_minus[0] = -1; int sum_minus = solve(N, A_minus) + 1; return Math.min(sum_plus, sum_minus); } for (int i = 1; i < N; i++) { long a = A[i]; if( sum > 0 ) { // 次はminusになるのを期待 if( a + sum >= 0 ) { // sumが-1になるような値にまで変更する // a + sum が 5 の場合、6 だけ操作すると -1 にできる long diff = a + sum + 1; ans += diff; sum = -1; } else { sum += a; } } else { if( a + sum <= 0 ) { long diff = (a + sum) * -1 + 1; ans += diff; sum = 1; } else { sum += a; } } } return ans; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void ctsm(const long long &tmp, long long int &sm, long long int &ct) { if ((0LL <= sm + tmp) && (0LL < sm)) { ct += 1LL + sm + tmp; sm = -1LL; } else if ((sm + tmp <= 0LL) && (sm < 0LL)) { ct += 1LL - sm - tmp; sm = 1LL; } else sm = sm + tmp; } int main() { int n; if (scanf("%d", &n) < 1) return 0; long long int tmp; long long int sm = 0LL; long long int ct = 0LL; if (scanf("%lld", &tmp) < 1) return 0; sm = tmp == 0LL ? 1LL : sm + tmp; ct = tmp == 0LL ? 1LL : ct; long long int opsm = 0LL; long long int opct = 0LL; tmp = (-1LL) * tmp; opsm = 0LL <= tmp ? 1LL : -1LL; opct += abs(tmp) + 1LL; for (int i = 1; i < n; i++) { if (scanf("%lld", &tmp) < 1) return 0; ctsm(tmp, sm, ct); ctsm(tmp, opsm, opct); } printf("%lld\n", ct < opct ? ct : opct); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count = 0 sum_ = 0 for i in range(n): if sum_ * (sum_+a[i]) <0 or i == 0: sum_ += a[i] elif sum_ >= 0: count += sum_+a[i]+1 a[i] = -sum_-1 sum_ += a[i] elif sum_ < 0: count += abs(sum_+a[i])+1 a[i] = -sum_+1 sum_ += a[i] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { long long int n, i, a[100000], sum, count = 0, flag = 0; scanf("%lld", &n); for (i = 0; i < n; i++) { scanf("%lld", &a[i]); if (a[0] == 0 && a[i] != 0 && flag == 0) flag = i; } if (flag != 0) { if ((a[flag] > 0 && flag % 2 == 0) || (a[flag] < 0 && flag % 2 == 1)) a[0] = 1; else a[0] = -1; count++; } for (i = 0; i < n; i++) { if (i == 0) sum = a[0]; else { if (sum > 0 && sum + a[i] >= 0) { count += 1 + sum + a[i]; a[i] = -1 * sum - 1; sum = -1; } else if (sum < 0 && sum + a[i] <= 0) { count += 1 - sum - a[i]; a[i] = -1 * sum + 1; sum = 1; } else sum += a[i]; } } printf("%lld\n", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import System.IO import Data.List main = do n <- getLine as <- getLine >>= fmap read . words putStrLn . show . head . [xs | xs <- iterate mani as, jouken n xs] mani [] = [] mani [a] = [a-1, a+1] mani (a:as) = [(a-1) : x | x <- mani as] ++ [(a+1) : x | x <- mani as] subsum xs j = sum . take j $ xs jouken n xs = length [i | i <- [1 .. n-1], (subsum xs i) * (subsum xs (i+1)) >= 0] == 0
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int VX[] = {0, 1, 0, -1}; const int VY[] = {1, 0, -1, 0}; const long long MOD = pow(10, 9) + 7; int n; vector<int> a; int solve(bool sign) { int cost = 0; vector<int> x = a; for (int i = (1); i < (n); i++) { sign = !sign; x[i] += x[i - 1]; if (sign) { if (x[i] <= 0) { while (x[i] != 1) { x[i]++; cost++; } } } else { if (x[i] >= 0) { while (x[i] != -1) { x[i]--; cost++; } } } } return cost; } int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> n; for (int i = (0); i < (n); i++) { int in; cin >> in; a.push_back(in); } int s1 = solve(true), s2 = solve(false); cout << min(s1, s2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1000000000; const long long MOD = (long long)1e9 + 7; template <class T> inline T in() { T x; cin >> x; return x; } signed main() { long long n = in<long long>(); vector<long long> v(n, 0); for (long long i = 0; i < n; i++) { if (i == 0) cin >> v[i]; else { long long x = in<long long>(); v[i] = v[i - 1] + x; } } long long sign = v[0] / abs(v[0]); long long sum = 0; long long cnt = 0; for (long long i = 1; i < n; i++) { if (v[i] * sign >= 0) { long long d = (sign > 0 ? (v[i] + 1) * -1 : (v[i] - 1) * -1); sum += d; cnt += abs(d); } if (i < n - 1) v[i + 1] += sum; sign *= -1; } cout << cnt << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { double num[10 * 10 * 10 * 10 * 10]; int i, n, ssign; double sum = 0; double count = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%lf", &num[i]); } if (num[0] == 0) { num[0]++; count++; } for (i = 1; i < n; i++) { sum += num[i - 1]; while (1) { if (fabs(sum) > fabs(num[i])) { if (sum < 0) { num[i]++; count++; } else if (sum > 0) { num[i]--; count++; } } else if (fabs(sum) == fabs(num[i])) { if (sum < 0) { num[i]++; count++; } else { num[i]--; count++; } } else if (sum > 0 && num[i] > 0 && fabs(sum) < fabs(num[i])) { num[i]--; count++; } else if (sum < 0 && num[i] < 0 && fabs(sum) < fabs(num[i])) { num[i]++; count++; } else break; } } for (i = 0; i < n; i++) { sum += num[i]; if (sum == 0.0) { if ((sum - num[i]) > 0) num[i]--; else num[i]++; count++; } } printf("%.0f\n", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { cin.sync_with_stdio(false); int n; cin >> n; vector<ll> a(n); ll sum = 0; for (int i = 0; i < n; i++) { cin >> a[i]; } ll count = 0; sum = a[0]; for (int i = 1; i < n; i++) { if (sum < 0 && sum + a[i] <= 0) { count += abs(sum) - a[i] + 1; sum = 1; } else if (sum > 0 && sum + a[i] >= 0) { count += abs(sum + a[i] + 1); sum = -1; } else { sum += a[i]; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct edge { int to, cost; }; const int INF = 100000000; int main() { long long int n, a[100010], sum = 0, ans = 0; cin >> n; for (int i = 0; i < (n); i++) { cin >> a[i]; } if (a[0] >= 0) { sum += a[0]; for (int i = 1; i < n; i++) { int last = sum; sum += a[i]; if (i % 2 != 0) { if (sum > 0) { ans += abs(sum) + 1; sum = -1; } } else { if (sum < 0) { ans += abs(sum) + 1; sum = 1; } } if (i != 0 && (last - 1 == 0 || last + 1 == 0)) { if (last - 1 == 0) sum = 2; else sum = -2; } } if (sum == 0) { ans++; } } else { sum += a[0]; for (int i = 1; i < n; i++) { int last = sum; sum += a[i]; if (i % 2 != 0) { if (sum < 0) { ans += abs(sum) + 1; sum = 1; } } else { if (sum > 0) { ans += abs(sum) + 1; sum = -1; } } if (i != 0 && (last - 1 == 0 || last + 1 == 0)) { if (last - 1 == 0) sum = 2; else sum = -2; } } if (sum == 0) { ans++; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int plussum = 0; int minussum = 0; int plusans = 0; int minusans = 0; for (int i = 0; i < n; i++) { int a; cin >> a; plussum += a; minussum += a; if (i % 2 == 0) { if (plussum <= 0) { plusans += abs(plussum - a - 1) - a; plussum = 1; } if (minussum >= 0) { minusans += a + abs(minussum - a + 1); minussum = -1; } } else { if (plussum >= 0) { plusans += a + abs(plussum - a + 1); plussum = -1; } if (minussum <= 0) { minusans += abs(minussum - a - 1) - a; minussum = 1; } } } cout << min(minusans, plusans) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { long long int n, i, a[100000], sum, count = 0, flag = 0; scanf("%lld", &n); for (i = 0; i < n; i++) { scanf("%lld", &a[i]); if (a[0] == 0 && a[i] != 0 && flag == 0) flag = i; } if (flag != 0) { if ((a[flag] > 0 && flag % 2 == 0) || (a[flag] < 0 && flag % 2 == 1)) a[0] = 1; else a[0] = -1; count++; } else if (flag == 0 && a[0] == 0 && a[n - 1] == 0) { a[0]++; count++; } for (i = 0; i < n; i++) { if (i == 0) sum = a[0]; else { if (sum > 0 && sum + a[i] >= 0) { count = count + 1 + sum + a[i]; a[i] = -1 * sum - 1; sum = -1; } else if (sum < 0 && sum + a[i] <= 0) { count = count + 1 - sum - a[i]; a[i] = -1 * sum + 1; sum = 1; } else if (sum + a[i] == 0) { if (sum > 0) a[i]--; else if (sum < 0) a[i]++; count++; sum = sum + a[i]; } else sum = sum + a[i]; } } printf("%lld\n", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long wa = a[0]; long long ans = 0; for (int i = 1; i < n; i++) { if (wa > 0) { wa += a[i]; if (wa > 0) { ans += wa + 1; wa -= (wa + 1); } else if (wa == 0) { ans++; wa--; } } else if (wa < 0) { wa += a[i]; if (wa < 0) { ans += -wa + 1; wa += -wa + 1; } else if (wa == 0) { ans++; wa++; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> vec(n); for (int &x : vec) { cin >> x; } vector<int> v = vec; int a = 0; if (v[0] <= 0) { a += abs(v[0]) + 1; v[0] += abs(v[0]) + 1; } for (int i = 1; i < n; i++) { v[i] += v[i - 1]; if (v[i] >= 0) { a += abs(v[i]) + 1; v[i] -= abs(v[i]) + 1; } i++; if (i == n) break; v[i] += v[i - 1]; if (v[i] <= 0) { a += abs(v[i]) + 1; v[i] += abs(v[i]) + 1; } } vector<int> v2 = vec; int b = 0; if (v2[0] >= 0) { b += abs(v2[0]) + 1; v2[0] -= abs(v2[0]) + 1; } for (int i = 1; i < n; i++) { v2[i] += v2[i - 1]; if (v2[i] <= 0) { b += abs(v2[i]) + 1; v2[i] += abs(v2[i]) + 1; } i++; if (i == n) break; v2[i] += v2[i - 1]; if (v2[i] >= 0) { b += abs(v2[i]) + 1; v2[i] -= abs(v2[i]) + 1; } } cout << min(a, b) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long f(int sign, const vector<long long>& a) { long long cnt = 0; long long sum = 0; for (int i = 0; i < a.size(); i++) { sum += a[i]; if (sign * sum <= 0) { long long d = sign - sum; sum += d; cnt += abs(d); } cout << sign << " " << sum << " " << cnt << endl; sign *= -1; } return cnt; } int main(void) { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long sum[2]; sum[0] = f(1, a); cout << endl; sum[1] = f(-1, a); cout << min(sum[0], sum[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> v(n); for (__typeof(n) i = (0) - ((0) > (n)); i != (n) - ((0) > (n)); i += 1 - 2 * ((0) > (n))) cin >> v[i]; long long res = 0; long long som = v[0]; if (som > 0) { for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n)); i += 1 - 2 * ((1) > (n))) { som = som + v[i]; if (i % 2 == 1) { if (som < 0) continue; else { res += som + 1; som = -1; } } else { if (som > 0) continue; else { res += 1 - som; som = 1; } } } } else { for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n)); i += 1 - 2 * ((1) > (n))) { som = som + v[i]; if (i % 2 == 0) { if (som < 0) continue; else { res += som + 1; som = -1; } } else { if (som > 0) continue; else { res += 1 - som; som = 1; } } } } cout << res; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def resolve(SL): # L[0]!=0を起点とする cnt = 0 for i in range(len(SL)-1): s0 = SL[i] s1 = SL[i+1] if(s0>0 and s1>=0): SL[(i+1):] = [s-(s1+1) for s in SL[(i+1):]] cnt += (s1+1) elif(s0<0 and s1<=0): SL[(i+1):] = [s+(-s1+1) for s in SL[(i+1):]] cnt += (-s1+1) # print(SL) return cnt def ans(L): SL = [sum(L[:(i+1)]) for i in range(len(L))] c0,c1=0,0 if (L[0]>0): c0 = resolve(SL) c1 = (L[0]+1) + resolve(list(map(lambda x:x-(L[0]+1), SL))) elif (L[0]<0): c0 = resolve(L) c1 = (-L[0]+1) + resolve(list(map(lambda x:x+(-L[0]+1), SL))) else: c0 = 1 + resolve(list(map(lambda x:x+1, SL))) c1 = 1 + resolve(list(map(lambda x:x-1, SL))) return(min(c0,c1)) N = int(input()) L = [int(input(x)) for x in range(N)] print(ans(L))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- N = int(input()) a = [int(n) for n in input().split()] count_a = 0 #+start count_b = 0 #-start nowsum = a[0] if nowsum > 0: for n in range(1, N): if nowsum * (nowsum + a[n]) >= 0: count_a += abs(nowsum + a[n]) + 1 if nowsum < 0: nowsum = 1 else: nowsum = -1 else: nowsum += a[n] count_b += abs(a[0]) + 1 a[0] = a[0] / abs(a[0]) * -1 nowsum = a[0] for n in range(1, N): if nowsum * (nowsum + a[n]) >= 0: count_b += abs(nowsum + a[n]) + 1 if nowsum < 0: nowsum = 1 else: nowsum = -1 else: nowsum += a[n] print(min(count_a, count_b)) else: a[0] = 1 count_a += 1 nowsum = 1 for n in range(1, N): if nowsum * (nowsum + a[n]) >= 0: count_a += abs(nowsum + a[n]) + 1 if nowsum < 0: nowsum = 1 else: nowsum = -1 else: nowsum += a[n] a[0] = -1 count_b += 1 nowsum = -1 for n in range(1, N): if nowsum * (nowsum + a[n]) >= 0: count_b += abs(nowsum + a[n]) + 1 if nowsum < 0: nowsum = 1 else: nowsum = -1 else: nowsum += a[n] print(min(count_a, count_b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(9); int N; long long a[100000]; cin >> N; for (int i = 0; i < N; i++) cin >> a[i]; long long ans = 0; long long sum = a[0]; if (sum != 0) { for (int i = 1; i < N; i++) { if (sum > 0) { sum += a[i]; if (sum >= 0) { ans += sum + 1; sum = -1; } } else { sum += a[i]; if (sum <= 0) { ans += -sum + 1; sum = 1; } } } } else { sum = 1; ans = 1; for (int i = 1; i < N; i++) { if (sum > 0) { sum += a[i]; if (sum >= 0) { ans += sum + 1; sum = -1; } } else { sum += a[i]; if (sum <= 0) { ans += -sum + 1; sum = 1; } } } long long memo = ans; sum = -1; ans = 1; for (int i = 1; i < N; i++) { if (sum > 0) { sum += a[i]; if (sum >= 0) { ans += sum + 1; sum = -1; } } else { sum += a[i]; if (sum <= 0) { ans += -sum + 1; sum = 1; } } } ans = min(ans, memo); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; long long int A, all; unsigned long long score = 0; int buff; cin >> N; cin >> A; all = A; for (int i = 0; i < N - 1; i++) { cin >> A; if (all * (all + A) >= 0) { long long int buff; if (all > 0) { buff = 0 - 1 - all; } else { buff = 1 - all; } score += abs(A - buff); A = buff; } all += A; } cout << score << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = map(int, input().split()) b = 0 cnt_b = 0 c = 0 cnt_c = 0 for i,a in enumerate(A): b += a c += a if (b > 0) != ((i % 2) > 0): cnt_b += abs(b) + 1 b = 1 if ((i % 2) > 0) else -1 if (c > 0) == ((i % 2) > 0): cnt_c += abs(c) + 1 c = -1 if ((i % 2) > 0) else 1 print(min(cnt_b, cnt_c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int a[n], sum = 0, cnt = 0; for (int i = 0; i < n; i++) cin >> a[i]; sum = a[0]; for (int i = 1; i < n; i++) { if ((sum >= 0 && sum + a[i] >= 0) || (sum <= 0 && sum + a[i] <= 0)) { if (sum < 0) { long long int k = sum + a[i]; cnt += abs(k - 1); sum = 1; } else { long long int k = sum + a[i]; cnt += abs(k + 1); sum = -1; } } else sum += a[i]; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = [int(x) for x in input().split()] if A[0] < 0: sumP = 1 sumM = A[0] countP = -A[0] + 1 countM = 0 elif A[0] == 0: sumP = 1 sumM = -1 countP = 1 countM = 1 else: sumP = A[0] sumM = -1 countP = 0 countM = -A[0] + 1 for i in range(1, N): if sumP > 0: if A[i] + sumP >= 0: countP += A[i] + sumP + 1 sumP = -1 else: sumP += A[i] else: if A[i] + sumP <= 0: countP += -(A[i] + sumP) + 1 sumP = 1 else: sumP += A[i] if sumM > 0: if A[i] + sumM >= 0: countM += A[i] + sumM + 1 sumM = -1 else: sumM += A[i] else: if A[i] + sumM <= 0: countM += -(A[i] + sumM) + 1 sumM = 1 else: sumM += A[i] print(min(countP, countM))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int change_num(long long p[], int N) { int res = 0; long long sum = p[0]; for (int i = 1; i < N; i++) { if (sum * (sum + p[i]) < 0) { sum += p[i]; continue; } if (sum > 0 && sum + p[i] >= 0) { sum += p[i]; while (sum >= 0) { res++; sum--; } continue; } if (sum < 0 && sum + p[i] <= 0) { sum += p[i]; while (sum <= 0) { res++; sum++; } continue; } } return res; } int main() { int N; cin >> N; long long a[N]; for (int i = 0; i < N; i++) cin >> a[i]; int ans = 0; long long sum = a[0]; if (a[0] == 0) { int plus_ans; a[0] = 1; plus_ans = change_num(a, N) + 1; int minus_ans = 1; a[0] = -1; minus_ans = change_num(a, N) + 1; if (plus_ans < minus_ans) { ans = plus_ans; } else { ans = minus_ans; } } else { ans = change_num(a, N); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = a[0]; long long res1 = 0; long long res2 = 0; for (int i = 0; i < n; i++) { if (i == 0) { if (a[i] > 0) continue; else { sum = 1; res1 = 1 - a[0]; } } else if (i % 2 == 0) { if (sum + a[i] > 0) { sum += a[i]; continue; } else { res1 = res1 + 1 - sum; sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; continue; } else { res1 = res1 + sum + 1; sum = -1; } } } for (int i = 0; i < n; i++) { if (i == 0) { if (a[i] < 0) continue; else { sum = -1; res2 = a[0] + 1; } } else if (i % 2 == 0) { if (sum + a[i] < 0) { sum += a[i]; continue; } else { res2 = res2 + 1 + sum; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; continue; } else { res2 = res2 + 1 - sum; sum = 1; } } } cout << min(res1, res2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("-O3") using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); } const int inf = INT_MAX / 2; const long long infl = 1LL << 60; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } enum PosiNega { POSITIVE = 0, NEGATIVE = 1 }; int solve(int N, int *a, PosiNega odd_posinega) { int ans = 0; int sum = 0; PosiNega posi_nega = odd_posinega; for (int i = 0; i < N; i++) { sum += a[i]; if (POSITIVE == posi_nega) { if (0 >= sum) { ans += 1 - sum; sum = 1; } posi_nega = NEGATIVE; } else { if (0 <= sum) { ans += abs(-1 - sum); sum = -1; } posi_nega = POSITIVE; } } return ans; } void _main() { int N; cin >> N; int a[N]; for (int i = 0; i < N; i++) cin >> a[i]; int candidate1 = solve(N, a, POSITIVE); int candidate2 = solve(N, a, NEGATIVE); int ans = (candidate1 < candidate2) ? candidate1 : candidate2; cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long s[100005], h[100005]; long long n, ans = 0, sum = 0; long long slove(long long t) { for (int i = t; i <= n; i++) { sum = s[i] + s[i - 1]; if (sum >= 0 && s[i - 1] > 0) { ans += abs(sum + 1); s[i] = -1; } else if (sum <= 0 && s[i - 1] < 0) { ans += abs(sum - 1); s[i] = 1; } else s[i] = s[i] + s[i - 1]; } return ans; } int main() { long long all = 0; scanf("%lld", &n); for (int i = 1; i <= n; i++) scanf("%lld", &s[i]); if (s[1] == 0) { for (int i = 1; i <= n; i++) { if (s[i] == 0) all++; else break; } if (all == 1) ans++; else ans = 1 + 2 * (all - 1); printf("%lld\n", ans); if (s[all + 1] < 0) { ans += abs(s[all + 1] + 2); s[all + 1] = -1; printf("%lld", slove(all + 2)); } else if (s[all + 1] > 0) { ans += abs(s[all + 1] - 2); s[all + 1] = 1; printf("%lld", slove(all + 2)); } } else printf("%lld", slove(1)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const double PI = 3.1415926535897932384626433832795; int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; bool isDiffer(long long a, long long b) { if (((a > 0) && (b < 0)) || ((a < 0) && (b > 0))) return true; else return false; } int main() { ios::sync_with_stdio(false); long long n; cin >> n; vector<long long> v; for (int i = 0; i < n; i++) { long long t; cin >> t; v.push_back(t); } long long os = v[0]; long long ans = 0; for (int i = 1; i < n; i++) { if (!isDiffer(os, v[i] + os)) { long long ob = (os > 0) ? -1 : 1; ans += abs(ob - os - v[i]); v[i] = ob - os; } os += v[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; import java.util.Arrays; public class Main{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int [n]; for(int i = 0;i < n;i++){ a[i] = sc.nextInt(); } int[] sum = new int[n]; sum[0] = a[0]; int count = 0; if(sum[0] == 0){ count++; } count = Math.min(solve1(sum,a,count),solve2(sum,a,count)); System.out.println(count); } public static int solve1(int[] sum,int[] a,int count){ for(int i = 0;i < sum.length-1;i++){ sum[i+1] = sum[i] + a[i+1]; if((i+1) % 2 == 1){ if(sum[i+1] >= 0){ count += 1 + sum[i+1]; sum[i+1] = -1; } } if((i+1) % 2 == 0){ if(sum[i+1] <= 0){ count += 1 - sum[i+1]; sum[i+1] = 1; } } } return count; } public static int solve2(int[] sum,int[] a,int count){ for(int i = 0;i < sum.length-1;i++){ sum[i+1] = sum[i] + a[i+1]; if((i+1) % 2 == 1){ if(sum[i+1] <= 0){ count += 1 - sum[i+1]; sum[i+1] = 1; } } if((i+1) % 2 == 0){ if(sum[i+1] >= 0){ count += 1 + sum[i+1]; sum[i+1] = -1; } } } return count; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; vector<int> answer(2, 0); int sumi = 0; bool flag = true; cin >> t; vector<int> A(t); for (int i = 0; i < t; i++) { cin >> A[i]; } for (int j = 0; j < 2; j++) { for (int i = 0; i < t; i++) { sumi += A[i]; if (sumi == 0) { answer[j] += 1; if (flag) { sumi = -1; } else { sumi = 1; } } else if (sumi > 0 == flag) { answer[j] += abs(sumi) + 1; if (sumi > 0) { sumi = -1; } else { sumi = 1; } } flag = !flag; } flag = false; sumi = 0; } cout << min(answer[0], answer[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- ############# # Libraries # ############# import sys input = sys.stdin.readline import math #from math import gcd import bisect from collections import defaultdict from collections import deque from functools import lru_cache ############# # Constants # ############# MOD = 10**9+7 INF = float('inf') ############# # Functions # ############# ######INPUT###### def I(): return int(input().strip()) def S(): return input().strip() def IL(): return list(map(int,input().split())) def SL(): return list(map(str,input().split())) def ILs(n): return list(int(input()) for _ in range(n)) def SLs(n): return list(input().strip() for _ in range(n)) def ILL(n): return [list(map(int, input().split())) for _ in range(n)] def SLL(n): return [list(map(str, input().split())) for _ in range(n)] ######OUTPUT###### def P(arg): print(arg); return def Y(): print("Yes"); return def N(): print("No"); return def E(): exit() def PE(arg): print(arg); exit() def YE(): print("Yes"); exit() def NE(): print("No"); exit() #####Shorten##### def DD(arg): return defaultdict(arg) #####Inverse##### def inv(n): return pow(n, MOD-2, MOD) ######Combination###### kaijo_memo = [] def kaijo(n): if(len(kaijo_memo) > n): return kaijo_memo[n] if(len(kaijo_memo) == 0): kaijo_memo.append(1) while(len(kaijo_memo) <= n): kaijo_memo.append(kaijo_memo[-1] * len(kaijo_memo) % MOD) return kaijo_memo[n] gyaku_kaijo_memo = [] def gyaku_kaijo(n): if(len(gyaku_kaijo_memo) > n): return gyaku_kaijo_memo[n] if(len(gyaku_kaijo_memo) == 0): gyaku_kaijo_memo.append(1) while(len(gyaku_kaijo_memo) <= n): gyaku_kaijo_memo.append(gyaku_kaijo_memo[-1] * pow(len(gyaku_kaijo_memo),MOD-2,MOD) % MOD) return gyaku_kaijo_memo[n] def nCr(n,r): if(n == r): return 1 if(n < r or r < 0): return 0 ret = 1 ret = ret * kaijo(n) % MOD ret = ret * gyaku_kaijo(r) % MOD ret = ret * gyaku_kaijo(n-r) % MOD return ret ######Factorization###### def factorization(n): arr = [] temp = n for i in range(2, int(-(-n**0.5//1))+1): if temp%i==0: cnt=0 while temp%i==0: cnt+=1 temp //= i arr.append([i, cnt]) if temp!=1: arr.append([temp, 1]) if arr==[]: arr.append([n, 1]) return arr #####MakeDivisors###### def make_divisors(n): divisors = [] for i in range(1, int(n**0.5)+1): if n % i == 0: divisors.append(i) if i != n // i: divisors.append(n//i) return divisors #####MakePrimes###### def make_primes(N): max = int(math.sqrt(N)) seachList = [i for i in range(2,N+1)] primeNum = [] while seachList[0] <= max: primeNum.append(seachList[0]) tmp = seachList[0] seachList = [i for i in seachList if i % tmp != 0] primeNum.extend(seachList) return primeNum #####GCD##### def gcd(a, b): while b: a, b = b, a % b return a #####LCM##### def lcm(a, b): return a * b // gcd (a, b) #####BitCount##### def count_bit(n): count = 0 while n: n &= n -1 count += 1 return count #####ChangeBase##### def base_10_to_n(X, n): if X//n: return base_10_to_n(X//n, n)+[X%n] return [X%n] def base_n_to_10(X, n): return sum(int(str(X)[-i-1])*n**i for i in range(len(str(X)))) #####IntLog##### def int_log(n, a): count = 0 while n>=a: n //= a count += 1 return count ############# # Main Code # ############# N = I() A = IL() s = A[0] count1 = max(0,1-s) for i in range(1,N): s += A[i] if i%2: if s>-1: count1 += s+1 s = -1 else: if s<1: count1 += 1-s s = 1 s = A[0] count2 = max(0,s+1) for i in range(1,N): s += A[i] if i%2==0: if s>-1: count2 += s+1 s = -1 else: if s<1: count2 += 1-s s = 1 print(min(count1,count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { ll N = 0; cin >> N; vector<ll> A(N, 0); for (ll i = 0; i < N; i++) { cin >> A.at(i); } ll ans = 0; vector<ll> sum(N, 0); sum.at(0) = A.at(0); ll ansa = abs(A.at(0) + (abs(A.at(0)) / A.at(0))); vector<ll> suma(N, 0); suma.at(0) = -1 * (abs(A.at(0)) / A.at(0)); for (size_t i = 1; i < N; i++) { sum.at(i) = sum.at(i - 1) + A.at(i); if (sum.at(i) * sum.at(i - 1) < 0) { continue; } else { ans += abs(sum.at(i) + (abs(A.at(i - 1)) / A.at(i - 1))); sum.at(i) = -1 * (abs(A.at(i - 1)) / A.at(i - 1)); } } for (size_t i = 1; i < N; i++) { suma.at(i) = suma.at(i - 1) + A.at(i); if (suma.at(i) * suma.at(i - 1) < 0) { continue; } else { ansa += abs(suma.at(i) + (abs(A.at(i - 1)) / A.at(i - 1))); suma.at(i) = -1 * (abs(A.at(i - 1)) / A.at(i - 1)); } } cout << ans << endl; cout << min(ans, ansa) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
<?php error_reporting(0); $stdin = file_get_contents('php://stdin'); $line = explode("\n",$stdin); $fi = 0; $cnt = 0; $list = array(); $key = new stdclass(); foreach($line as $l) { if (strlen($l)==0) continue; if ($fi == 0) { $a = explode(" ",$l); $key->A = $a; $fi++; continue; } if ($fi > 0) { $a = explode(" ",$l); $key->X[] = $a; } } $cnt=0; $prev=null; $new=array(); foreach($key->X[0] as $v) { if ($prev != null) { //2回目以降処理 if ($prev > 0) { //前の数が正なら、この数を負にする必要がある if (($prev + $v) > 0) { //ダメなので-1まで減らす $wk = $prev + $v; $cnt += $wk+1; $prev = -1; $new[]=$v-$cnt; } else { $prev = $prev + $v; $new[]=$v; } } else { //前はマイナスなのでプラスにする必要がある if (($prev + $v) < 0) { $wk = $prev + $v; $cnt += 1-$wk; $prev = 1; $new[]=$v+$cnt; } else { $prev = $prev + $v; $new[]=$v; } } } else { $prev = $v; $new[]=$v; } } $chk=0; //合計が0になるかチェック foreach($new as $v) { $chk+=$v; } //ゼロなら最後にもう一度操作するので足す if ($chk==0) $cnt++; printf("%d\n",$cnt);
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) if a[0] < 0: for i in range(n): a[i] *= -1 a_orig = a[:] ans = 0 tot = [0 for i in range(n)] tot[0] = a[0] for i in range(1, n): tot[i] = tot[i-1] + a[i] if i % 2 == 0: if tot[i] <= 0: tot[i] = 1 a[i] = tot[i] - tot[i-1] else: if tot[i] >= 0: tot[i] = -1 a[i] = tot[i] - tot[i-1] for i in range(n): ans += abs(a[i]-a_orig[i]) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def rec(ary, n, i, sum, cnt) return cnt if i == n if sum < 0 sum += ary[i] if sum <= 0 diff = -sum+1 cnt += diff sum += diff end elsif sum > 0 sum += ary[i] if sum >= 0 diff = sum+1 cnt += diff sum -= diff end elsif sum == 0 # never if ary[i+1] > 0 sum -= 1 cnt += 1 else sum += 1 cnt += 1 end end return rec(ary, n, i+1, sum, cnt) end # main n = gets.to_i ary = gets.split(' ').map(&:to_i) puts rec(ary, n, 1, ary[0], 0)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long dy[4] = {1, 0, -1, 0}; long long dx[4] = {0, 1, 0, -1}; bool check(long long a, long long b) { if ((a <= 0 && b > 0) || (a >= 0 && b < 0)) return true; return false; } int32_t main() { long long n; cin >> n; vector<long long> v(n); long long sum = 0, cnt = 0; for (long long i = 0; i < n; i++) { cin >> v[i]; long long t = sum; sum += v[i]; if (sum == 0) { if (i > 0) { if (t > 0) { sum--; } else { sum++; } } else { for (long long j = 1; j < n; j++) { if (v[j] > 0) { sum += pow((-1), j); break; } else if (v[j] < 0) { sum += pow((-1), j + 1); break; } } } cnt++; continue; } if (i > 0) { if (!check(sum, t)) { if (sum > 0) { cnt += (sum + 1); sum -= (sum + 1); } else if (sum < 0) { cnt += (1 - sum); sum += (1 - sum); } } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N_MAX = 100000; int N; int a[N_MAX]; int All; int sum[N_MAX]; int sum2[N_MAX]; int main() { All = 0; cin >> N; for (int i = 0; i < N; i++) { cin >> a[i]; All += a[i]; sum[i] = All; sum2[i] = All; } int sigh = 1; int ans1 = 0; for (int i = 0; i < N; i++) { if (sum[i] == 0) { for (int j = i; j < N; j++) { sum[j] += sigh; } ans1 += 1; } else if (((sum[i]) / abs((sum[i]))) != sigh) { ans1 += (abs(sum[i]) + 1); int temp = sum[i]; for (int j = i; j < N; j++) { sum[j] += (abs(temp) + 1) * sigh; } } sigh *= -1; } sigh = -1; int ans2 = 0; for (int i = 0; i < N; i++) { if (sum2[i] == 0) { for (int j = i; j < N; j++) { sum2[j] += sigh; } ans2 += 1; } else if (((sum2[i]) / abs((sum2[i]))) != sigh) { ans2 += (abs(sum2[i]) + 1); int temp = sum2[i]; for (int j = i; j < N; j++) { sum2[j] += (abs(temp) + 1) * sigh; } } sigh *= -1; } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long int; const ll INF = (1LL << 32); const ll MOD = (ll)1e9 + 7; const double EPS = 1e-9; ll dx[8] = {1, 0, -1, 0, 1, -1, -1, 1}; ll dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; ll n; ll solve(vector<ll> a) { ll sum = a[0]; ll ans = 0; for (ll i = (1); i < (n); i++) { if (sum >= 0 and (sum + a[i]) >= 0) { while (sum + a[i] != -1) { a[i]--; ans++; } } else if (sum < 0 and (sum + a[i]) < 0) { while (sum + a[i] != 1) { a[i]++; ans++; } } sum += a[i]; } if (sum == 0) ans++; return ans; } signed main() { ios::sync_with_stdio(false); cin >> n; vector<ll> a; for (ll i = 0; i < n; i++) { ll x; cin >> x; a.push_back(x); } ll start = a[0]; auto ac = a; ll fa1 = INF; ll fa2 = INF; if (a[0] >= 0) { ll ans1 = solve(a); ac[0] = -1; ll ans2 = solve(ac); ans2 += start + 1; fa1 = min(ans1, ans2); } else { ll ans1 = solve(a); ac[0] = 1; ll ans2 = solve(ac); ans2 += start + 1; fa2 = min(ans1, ans2); } cout << min(fa1, fa2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 5; long long a[maxn]; int n, pos; long long pre_sum, ans = 0; bool slove() { long long sum = a[1]; if (a[1] == 0) { ans = 1; for (int i = 2; i <= n; i++) { if (a[i] > 0) { if (i % 2 == 0) { pre_sum = -1; pos = 2; return false; } else { pre_sum = 1; pos = 2; return false; } } else if (a[i] < 0) { if (i % 2 == 0) { pre_sum = 1; pos = 2; return false; } else { pre_sum = -1; pos = 2; return false; } } } } else { for (int i = 2; i <= n; i++) { if ((sum + a[i]) * sum >= 0) { pos = i; pre_sum = sum; return false; } sum += a[i]; } } return true; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%lld", &a[i]); if (slove()) printf("0"); else { for (int i = pos; i <= n; i++) { if ((pre_sum + a[i]) * pre_sum >= 0) { if (pre_sum < 0) { ans += abs(1 - pre_sum - a[i]); pre_sum = 1; } else if (pre_sum > 0) { ans += abs(-1 - pre_sum - a[i]); pre_sum = -1; } } else pre_sum += a[i]; } printf("%lld", ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; int a[100010]; int main() { int n; while (scanf("%d", &n) != EOF) { int sum = 0; for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } int tmp = -1; for (int i = 0; i < n; i++) { if (a[i] != 0) { tmp = i; break; } } if (tmp != 0 && a[tmp] > 0) { if (tmp % 2) a[0] = -1; else a[0] = 1; sum++; } else if (tmp != 0 && a[tmp] < 0) { if (tmp % 2) a[0] = 1; else a[0] = -1; sum++; } int oo = a[0], flag; if (a[0] > 0) flag = 1; else if (a[0] < 0) flag = -1; for (int i = 1; i < n; i++) { oo += a[i]; if (flag == 1) { if (oo >= 0) { sum += oo + 1; oo = -1; } flag = -1; } else if (flag == -1) { if (oo <= 0) { sum += 0 - oo + 1; oo = 1; } flag = 1; } } printf("%d\n", sum); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Text; using System.Linq; using System.Collections; using System.Collections.Generic; using static System.Console; using static System.Math; namespace AtCorder { public class Program { public static void Main(string[] args) { new Program().Solve(new ConsoleInput(Console.In, ' ')); } public void Solve(ConsoleInput cin) { var n = cin.ReadInt; var a = cin.ReadLongArray(n); var ans = 0L; var pre = a[0]; for(int i = 1; i < n; i++) { var now = pre + a[i]; if(pre * now < 0) { pre += a[i]; continue; } if(now >= 0) { ans += (now + 1); a[i] -= (now + 1); } else if(now < 0) { ans += (1 - now); a[i] += (1 - now); } pre += a[i]; } WriteLine(ans); } public long C(int X, int Y) { if (Y == 0 || Y == X) { return 1; } if (X < Y) { return 0; } var Pascal = new long[X + 1, X + 1]; for (int i = 0; i <= X; i++) { Pascal[i, 0] = 1L; Pascal[i, i] = 1L; } for (int i = 2; i <= X; i++) { for (int j = 1; j < i; j++) { Pascal[i, j] = Pascal[i - 1, j] + Pascal[i - 1, j - 1]; } } return Pascal[X, Y]; } public class ConsoleInput { private readonly System.IO.TextReader _stream; private char _separator = ' '; private Queue<string> inputStream; public ConsoleInput(System.IO.TextReader stream, char separator = ' ') { this._separator = separator; this._stream = stream; inputStream = new Queue<string>(); } public string Read { get { if (inputStream.Count != 0) return inputStream.Dequeue(); string[] tmp = _stream.ReadLine().Split(_separator); for (int i = 0; i < tmp.Length; ++i) inputStream.Enqueue(tmp[i]); return inputStream.Dequeue(); } } public string ReadLine { get { return _stream.ReadLine(); } } public int ReadInt { get { return int.Parse(Read); } } public long ReadLong { get { return long.Parse(Read); } } public double ReadDouble { get { return double.Parse(Read); } } public string[] ReadStrArray(long N) { var ret = new string[N]; for (long i = 0; i < N; ++i) ret[i] = Read; return ret; } public int[] ReadIntArray(long N) { var ret = new int[N]; for (long i = 0; i < N; ++i) ret[i] = ReadInt; return ret; } public long[] ReadLongArray(long N) { var ret = new long[N]; for (long i = 0; i < N; ++i) ret[i] = ReadLong; return ret; } } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main{ static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } public String next(){ try{ while(st==null||!st.hasMoreElements()){ st = new StringTokenizer(br.readLine()); } }catch(Exception e){ e.printStackTrace(); } return st.nextToken(); } public int nextInt(){ return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public double nextDouble(){ return Double.parseDouble(next()); } public String nextLine(){ String s = ""; try{ s = br.readLine(); }catch(Exception e){ e.printStackTrace(); } return s; } } public static void main(String[] args){ FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); int n= in.nextInt(); int[] a = new int[n]; int[] pre = new int[n]; for(int i=0;i<n;i++){ a[i] = in.nextInt(); if(i>0) pre[i] = pre[i-1]+a[i]; else pre[i]=a[i]; } int count=0; for(int i=1;i<n;i++){ if(pre[i]*pre[i-1]>=0){ if(pre[i]>=0){ int temp = pre[i]; count+=(temp+1); for(int j=i;j<n;j++) pre[j]+=-(temp+1); } else{ int temp = pre[i]; count+=-(temp-1); for(int j=i;j<n;j++){ pre[j]+=-(temp+1); } } } } out.println(count); out.flush(); out.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int flag[100005], k[100005]; long long a[100005], sum[100005], ans, b[100005], tot[100005], ant; int main() { int m = 0; scanf("%d", &n); scanf("%lld", &a[1]); b[1] = a[1]; sum[1] = a[1]; tot[1] = sum[1]; if (sum[1] > 0) flag[1] = 1; if (sum[1] < 0) flag[1] = 0; if (sum[1] == 0) m = 1; if (m == 0) { for (int i = 2; i <= n; i++) { scanf("%lld", &a[i]); sum[i] = a[i] + sum[i - 1]; if (sum[i] > 0) flag[i] = 1; if (sum[i] < 0) flag[i] = 0; if (flag[i - 1] == 1) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; flag[i] = 0; } } else { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; flag[i] = 1; } } } printf("%lld\n", ans); } else { flag[1] = 0; ans = 1; sum[1] = -1; for (int i = 2; i <= n; i++) { scanf("%lld", &a[i]); b[i] = a[i]; sum[i] = a[i] + sum[i - 1]; if (sum[i] > 0) flag[i] = 1; if (sum[i] < 0) flag[i] = 0; if (flag[i - 1] == 1) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; flag[i] = 0; } } else if (flag[i - 1] == 0) { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; flag[i] = 1; } } } k[1] = 1; tot[1] = 1; ant = 1; for (int i = 2; i <= n; i++) { tot[i] = b[i] + tot[i - 1]; if (tot[i] > 0) k[i] = 1; if (tot[i] < 0) k[i] = 0; if (k[i - 1] == 1) { if (tot[i] >= 0) { ant += tot[i] + 1; tot[i] = -1; k[i] = 0; } } else if (k[i - 1] == 0) { if (tot[i] <= 0) { ant = ans + 1 - tot[i]; tot[i] = 1; k[i] = 1; } } } printf("%lld\n", min(ant, ans)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int LINF = 1001002003004005006ll; const int INF = 1001001001; const int MOD = 1000000007; int main() { int N; cin >> N; vector<int> A(N); for (int i = 0; i < (N); ++i) { cin >> A[i]; } vector<int> dp(N), sum(N); int a = 0; if (A[0] > 0) { dp[0] = A[0]; } else { dp[0] = 1; a += 1 - A[0]; } sum[0] = dp[0]; for (int i = 1; i < N; ++i) { if (i % 2 == 0) { if (sum[i - 1] + A[i] > 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = 1; a += 1 - (sum[i - 1] + A[i]); } } else { if (sum[i - 1] + A[i] < 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; a += 1 + (sum[i - 1] + A[i]); } } } int b = 0; if (A[0] < 0) { dp[0] = A[0]; } else { dp[0] = -1; b += 1 + A[0]; } sum[0] = dp[0]; for (int i = 1; i < N; ++i) { if (i % 2 == 1) { if (sum[i - 1] + A[i] > 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = 1; b += 1 - (sum[i - 1] + A[i]); } } else { if (sum[i - 1] + A[i] < 0) { sum[i] = sum[i - 1] + A[i]; } else { sum[i] = -1; b += 1 + (sum[i - 1] + A[i]); } } } cout << min(a, b) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> sum(n); long long ans = 0; for (long long i = (0); i < (long long)(n); i++) { long long a; cin >> a; if (i == 0) { sum[i] = a; } else { if (sum[i - 1] > 0 && sum[i - 1] + a < 0) { sum[i] = a + sum[i - 1]; } else if (sum[i - 1] < 0 && sum[i - 1] + a > 0) { sum[i] = a + sum[i - 1]; } else if (sum[i - 1] > 0 && sum[i - 1] + a >= 0) { ans += (sum[i - 1] + a + 1); sum[i] = -1; } else if (sum[i - 1] < 0 && sum[i - 1] + a <= 0) { ans += (1 - (sum[i - 1] + a)); sum[i] = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) ans=0 a=list(map(int,input().split())) sum=a[0] for i in range(1,n): if (sum+a[i])*sum<0: sum+=a[i] else: if sum+a[i]>=1: ans+=abs(sum+a[i]+1) a[i]-=sum+a[i]+1 sum=-1 elif sum+a[i]<=-1: ans+=abs(sum+a[i]+1) a[i]+=sum+a[i] sum=1 else: if sum<0: ans+=1 a[i]+=1 sum=1 else: ans+=1 a[i]-=1 sum=-1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N=int(input()) A=list(map(int,input().split())) ind=1 res=10**10+1 for isplus in (True,False): cur=0 ans=0 for i in range(N): cur+=A[i] if isplus: if cur<=0: ans+=abs(cur-1) cur=1 isplus=False else: if cur>=0: ans+=abs(cur-(-1)) cur=-1 isplus=True if res>ans: res=ans print(res)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long res1 = 0, res2 = 0; long long sum1[n], sum2[n]; if (a[0] < 0) { sum1[0] = -a[0] + 1; sum2[0] = a[0]; res1 += abs(-a[0] + 1); } else if (a[0] > 0) { sum1[0] = a[0]; sum2[0] = -a[0] - 1; res2 += abs(-a[0] - 1); } else if (a[0] == 0) { sum1[0] = 1; res1 += 1; sum2[0] = -1; res2 += 1; } for (int i = 1; i < n; i++) { sum1[i] = sum1[i - 1] + a[i]; long long sum = sum1[i]; if (sum1[i] <= 0 && sum1[i - 1] < 0) { sum1[i] += -sum + 1; res1 += abs(-sum + 1); } else if (sum1[i] >= 0 && sum1[i - 1] > 0) { sum1[i] += -sum - 1; res1 += abs(-sum - 1); } sum2[i] = sum2[i - 1] + a[i]; sum = sum2[i]; if (sum2[i] <= 0 && sum2[i - 1] < 0) { sum2[i] += -sum + 1; res2 += abs(-sum + 1); } else if (sum2[i] >= 0 && sum2[i - 1] > 0) { sum2[i] += -sum - 1; res2 += abs(-sum - 1); } } cout << min(res1, res2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(a) for a in input().split()] times = 0 previous = a[0] for i in range(1, n): if previous < 0: if previous + a[i] > 0: previous = previous + a[i] else: times += 1 - (previous + a[i]) previous = 1 elif previous > 0: if previous + a[i] < 0: previous = previous + a[i] else: times += abs(-1 - (previous + a[i])) previous = -1 times2 = 0 if a[0] > 0: times2 += abs(-1 - a[0]) previous = -1 else: times2 += 1 - a[0] previous = 1 for i in range(1, n): if previous < 0: if previous + a[i] > 0: previous = previous + a[i] else: times2 += 1 - (previous + a[i]) previous = 1 elif previous > 0: if previous + a[i] < 0: previous = previous + a[i] else: times2 += abs(-1 - (previous + a[i])) previous = -1 print(min(times, times2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; __attribute__((constructor)) void initial() { cin.tie(0); ios::sync_with_stdio(false); } int main() { long long N; cin >> N; vector<long long> a; for (int i = 0; i < (N); i++) { long long ai; cin >> ai; a.push_back(ai); } long long changeCount = 0; long long sum = 0; bool nextSumPositive = a[0] > 0; if (a[0] == 0) { changeCount++; if (a[1] > 0) { a[0] = -1; } else { a[0] = 1; } } for (int i = 0; i < (N); i++) { sum += a[i]; if (nextSumPositive) { if (sum <= 0) { long long change = -sum + 1; changeCount += abs(change); sum += change; } } else { if (sum >= 0) { long long change = -sum - 1; changeCount += abs(change); sum += change; } } nextSumPositive = !nextSumPositive; } cout << changeCount << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import math n = int(input()) a = list(map(int, input().split())) cnt = 0 x = [] x.append(a[0]) for i in range(n-1): if x[i] > 0: if x[i]+a[i+1] > -1: cnt += math.fabs(x[i] + a[i+1]) + 1 x += [-1] else: x += [x[i] + a[i+1]] else: if x[i]+a[i+1] < +1: cnt += math.fabs(x[i] + a[i+1]) + 1 x += [1] else: x += [x[i] + a[i+1]] print(int(cnt))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline n = int(input()) a = [int(i) for i in input().split()] # i番目までの和が正(i: 奇数) res1 = 0 cum = 0 for i in range(n): cum += a[i] if i % 2 == 1: while cum <= 0: cum += 1 res1 += 1 else: while cum >= 0: cum -= 1 res1 += 1 # i番目までの和が負(i: 奇数) res2 = 0 cum = 0 for i in range(n): cum += a[i] if i % 2 == 0: while cum <= 0: cum += 1 res2 += 1 else: while cum >= 0: cum -= 1 res2 += 1 print(min(res1,res2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <boost/multiprecision/cpp_int.hpp> using namespace std; //#define int long long using bll = boost::multiprecision::cpp_int; using ll = long long; //constexpr int INF = 1e9;//INT_MAX=(1<<31)-1=2147483647 constexpr ll INF = (ll)1e18;//(1LL<<63)-1=9223372036854775807 constexpr ll MOD = (ll)1e9 + 7; constexpr double EPS = 1e-9; constexpr int dx[4]={1,0,-1,0}; constexpr int dy[4]={0,1,0,-1}; #define p(var) std::cout<<var<<std::endl #define PI (acos(-1)) #define rep(i, n) for(ll i=0, i##_length=(n); i< i##_length; ++i) #define repeq(i, n) for(ll i=1, i##_length=(n); i<=i##_length; ++i) #define all(v) (v).begin(), (v).end() #define uniq(v) (v).erase(unique((v).begin(), (v).end()), (v).end()); template<typename T> inline void pv(vector<T> v) { for(ll i=0, N=v.size(); i<N; i++) cout<< v[i] << (i==N-1 ? '\n' : ' '); } template<typename T> inline T gcd(T a, T b) { return b ? gcd(b,a%b) : a; } template<typename T> inline T lcm(T a, T b) { return a / gcd(a, b) * b; } template<typename T1, typename T2> inline T1 power(T1 x, T2 n){ return n ? power(x*x%MOD,n/2)*(n%2?x:1)%MOD : 1; } template<typename T1, typename T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template<typename T1, typename T2> inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template<typename T> class dvector : public std::vector<T> { public: dvector() : std::vector<T>() {} explicit dvector(size_t n, const T& value = T()) : std::vector<T>(n,value) {} dvector(const std::vector<T>& v) : std::vector<T>(v) {} T& operator[](size_t n){ return this->at(n); } }; template<typename T1, typename T2> ostream& operator<<(ostream& s, pair<T1, T2>& p) {return s << "(" << p.first << ", " << p.second << ")";} template<typename T> ostream& operator<<(ostream& s, dvector<T>& v) { for (int i = 0, len = v.size(); i < len; ++i){ s << v[i]; if (i < len - 1) s << "\t"; } return s; } template<typename T> ostream& operator<<(ostream& s, dvector< dvector<T> >& vv) { for (int i = 0, len = vv.size(); i < len; ++i){ s << vv[i] << endl; } return s; } template<typename T1, typename T2> ostream& operator<<(ostream& s, map<T1, T2>& m) { s << "{" << endl; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << endl; } s << "}" << endl; return s; } template<typename T> ostream& operator<<(ostream& s, set<T>& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}" << endl; return s; } template<typename T> ostream& operator<<(ostream& s, multiset<T>& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}" << endl; return s; } #ifdef LOCAL_DEV #define debug(var) std::cout<<#var" = "<<var<<std::endl #else #define debug(var) #endif #ifdef LOCAL_TEST #define vector dvector #endif /*-----8<-----8<-----*/ signed main() { ll N; cin>>N; vector<ll> a(N,0); rep(i,N)cin>>a[i]; vector<ll> rui(N+1,0); rep(i,N)rui[i+1]=rui[i]+a[i]; ll c,t=a[0]>0 ? 1 : -1; if([&]{ rep(i,N-1){ if(t==1){ if(rui[i+2]>0)return false; }else{ if(rui[i+2]<0)return false; } t*=-1; } return true; }()){ p(0);return 0; } //+ t=0; ll ansb=0; if(rui[1]>0){ }else{ t+=-rui[1]+1; ansb+=abs(-rui[1]+1); } c=-1; for(ll i=1;i<N;i++){ ll tt=rui[i+1]+t; if(c==1){ if(tt>0){ }else{ t+=-tt+1; ansb+=abs(-tt+1); } }else{ if(tt>0){ t+=-tt-1; ansb+=abs(-tt-1); }else{ } } c*=-1; } //- t=0; ll ansc=0; if(rui[1]>0){ t+=-rui[1]-1; ansc+=abs(-rui[1]-1); }else{ } c=1; for(ll i=1;i<N;i++){ ll tt=rui[i+1]+t; if(c==1){ if(tt>0){ }else{ t+=-tt+1; ansc+=abs(-tt+1); } }else{ if(tt>=0){ t+=-tt-1; ansc+=abs(-tt-1); }else{ } } c*=-1; } p(min(ansb,ansc)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n; long sum1 = 0; long sum2 = 0; long tmp; long count = 0; int a[100000]; char input[1000000]; int i = 0, j = 0; int cp = 0, tcp = 0; char tp[12]; tp[12] = '\0'; fgets(input, 1000000, stdin); n = atoi(input); fgets(input, 1000000, stdin); for (i = 0; i < n; i++) { while (input[cp] != ' ' && input[cp] != '\n') { tp[tcp] = input[cp]; tcp++; cp++; } tp[tcp] = '\0'; tcp = 0; cp++; a[i] = atoi(tp); } for (i = 0; i < n; i++) { if (i % 2 == 0) sum2 += a[i]; else sum1 += a[i]; } tmp = a[0]; if (sum1 == sum2) { if (a[0] < 0) { sum1++; } else { sum2++; } } for (i = 1; i < n; i++) { if (sum1 > sum2) { if (i % 2 == 0) { tmp += a[i]; while (tmp > -1) { count++; tmp--; } } else { tmp += a[i]; while (tmp < 1) { count++; tmp++; } } } else if (sum2 > sum1) { if (i % 2 == 1) { tmp += a[i]; while (tmp > -1) { count++; tmp--; } } else { tmp += a[i]; while (tmp < 1) { count++; tmp++; } } } } printf("%ld\n", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1 << 29, MOD = 1e9 + 7; int main() { int n; cin >> n; long a[n]; cin >> a[0]; long ans = 0; for (int i = 1; i < n; i++) { int x; cin >> x; if (a[0] == 0) { x > 0 ? a[0] = -1 : a[0] = 1; ans++; } a[i] = a[i - 1] + x; if (a[i] * a[i - 1] >= 0) { if (a[i - 1] > 0) { ans += a[i] + 1; a[i] = -1; } else { ans += 1 - a[i]; a[i] = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int inf = 1000000007; using namespace std; int main() { int n; cin >> n; vector<int> data(n); int ans = 0; for (int i = 0; i < n; i++) { cin >> data.at(i); } int64_t sum = data.at(0); int64_t sump = sum; for (int i = 1; i < n; i++) { sump += data.at(i); if (sum * sump >= 0) { int c = sump; if (c < 0) c *= -1; c++; ans += c; if (sump > 0) { data.at(i) -= c; sump -= c; } else { data.at(i) += c; sump += c; } } sum += data.at(i); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- """ https://abc059.contest.atcoder.jp/tasks/arc072_a """ import sys from sys import stdin input = stdin.readline def check_sign(n): if n > 0: return 1 elif n < 0: return -1 else: return 0 def solve(A): p_ans = 0 n_ans = 0 total = A[0] prev_sign = check_sign(total) # 最初をプラス側に振った場合の解 if prev_sign == 0: p_ans += 1 total += 1 prev_sign = 1 for a in A[1:]: total += a sign = check_sign(total) if sign == 0: total -= prev_sign p_ans += 1 elif prev_sign != sign: prev_sign = sign else: p_ans += (abs(total) + 1) if prev_sign < 0: total = 1 prev_sign = 1 else: total = -1 prev_sign = -1 # 最初をマイナス側に振った場合の解 if prev_sign == 0: n_ans += 1 total -= 1 prev_sign = -1 for a in A[1:]: total += a sign = check_sign(total) if sign == 0: total -= prev_sign n_ans += 1 elif prev_sign != sign: prev_sign = sign else: n_ans += (abs(total) + 1) if prev_sign < 0: total = 1 prev_sign = 1 else: total = -1 prev_sign = -1 return min(p_ans, n_ans) def main(args): n = int(input()) A = [int(x) for x in input().split()] ans = solve(A) print(ans) if __name__ == '__main__': main(sys.argv[1:])
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; const int MAX_N = int(1e5); long long n, a[MAX_N], dp[MAX_N]; void solve() { long long sum_diff = 0, ans = 0; for (long long i = 0; i < (long long)(n - 1); i++) { long long diff = 0; dp[i + 1] += sum_diff; if (dp[i] * dp[i + 1] > 0) { if (dp[i + 1] > 0) { diff = -1 - dp[i + 1]; sum_diff += diff; dp[i + 1] = -1; } else { diff = 1 - dp[i + 1]; sum_diff += diff; dp[i + 1] = 1; } } if (dp[i + 1] == 0) { sum_diff++, diff = 1; dp[i + 1] = 1; } ans += abs(diff); } cout << ans << endl; } int main() { cin >> n; for (long long i = 0; i < (long long)(n); i++) { cin >> a[i]; if (i == 0) dp[0] = a[0]; else dp[i] = dp[i - 1] + a[i]; } solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# vim: fileencoding=utf-8 def main(): n = int(input()) a = list(map(int, input().split())) ans = 0 p = 0 q = 0 flg = 0 if a[0] > 0: p = a[0] flg = 1 else: q = abs(a[0]) flg = -1 for i in a[1:]: # print(i, p, q, ans) if i > 0: p += i elif i < 0: q += abs(i) if flg == 1: if p >= q: t = p - q + 1 ans += t q += t flg = -1 elif flg == -1: if q >= p: t = q - p + 1 ans += t p += t flg = 1 print(ans) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!/usr/bin/env python3 n = int(input()) a = list(map(int,input().split())) cnt = 0 current_sum = a[0]#現在の操作後の値 for i in range(n-1): if current_sum * (current_sum + a[i+1]) < 0:#符号が違う current_sum += a[i+1] cnt += 0#そのまま elif current_sum < 0: cnt += 1 - (current_sum + a[i+1]) current_sum = 1 else: cnt += (current_sum + a[i+1]) +1 current_sum = -1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e9, MOD = 1e9 + 7; const double EPS = 1e-9, PI = 3.141592653589793; int main() { cin.tie(0); ios::sync_with_stdio(false); long long n, a[100001], seq, ans = 0, tmp; cin >> n; for (long long i = 0; i < n; i++) cin >> a[i]; seq = a[0]; for (long long i = 1; i < n; i++) { if (seq > 0) { seq += a[i]; if (seq >= 0) { tmp = seq; seq = -1; ans += tmp + 1; } } else { seq += a[i]; if (seq <= 0) { tmp = seq; seq = 1; ans += abs(tmp) + 1; } } } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int a[100000 + 100], b[100000 + 100]; int main() { int n; long long cnt = 0; scanf("%d", &n); scanf("%d", &a[1]); b[1] = a[1]; for (int i = 2; i <= n; i++) { scanf("%d", &a[i]); if (b[i - 1] < 0) { if (b[i - 1] + a[i] > 0) b[i] = b[i - 1] + a[i]; else { b[i] = 1; cnt += 1 - a[i] - b[i - 1]; } } else if (b[i - 1] > 0) { if (b[i - 1] + a[i] < 0) b[i] = b[i - 1] + a[i]; else { b[i] = -1; cnt += b[i - 1] + a[i] + 1; } } } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int arr[n]; for (int i = 0; i < n; i++) cin >> arr[i]; int sum = arr[0]; int sum1, sum2; int ans1 = 0, ans2 = 0; if (sum > 0) { sum1 = sum; sum2 = -1; ans1 = 0; ans2 = sum + 1; } else if (sum < 0) { sum2 = sum; sum1 = 1; ans2 = 0; ans1 = abs(sum) + 1; } else if (sum == 0) { sum1 = 1; sum2 = -1; ans2 = 1; ans1 = 1; } for (int i = 1; i < n; i++) { if (sum1 > 0) { sum1 = sum1 + arr[i]; if (sum1 < 0) continue; else { ans1 += sum1 + 1; sum1 = -1; } } else { sum1 = sum1 + arr[i]; if (sum1 > 0) continue; else { ans1 += abs(sum1) + 1; sum1 = 1; } } } for (int i = 1; i < n; i++) { if (sum2 > 0) { sum2 = sum2 + arr[i]; if (sum2 < 0) continue; else { ans2 += sum2 + 1; sum2 = -1; } } else { sum2 = sum2 + arr[i]; if (sum2 > 0) continue; else { ans2 += abs(sum2) + 1; sum2 = 1; } } } if (ans1 < ans2) cout << ans1; else cout << ans2; cout << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int,input().split())) ans1,ans2 = 0,0 res = A[0] for i in range(1,N): res += A[i] if i%2==1: if res >= 0: ans1 += res+1 res = -1 else: if res <= 0: ans1 -= res-1 res = 1 for i in range(1,N): res += A[i] if i%2==1: if res <= 0: ans2 -= res-1 res = 1 else: if res >= 0: ans2 += res+1 res = -1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <boost/range/irange.hpp> #include <boost/range/adaptors.hpp> using namespace std; using namespace boost; using namespace boost::adaptors; using uint = unsigned int; using ll = long long int; using ull = unsigned long long int; int main() { ll n; cin >> n; ll count{0}, s_now{0}, s_prev{0}; for (auto &&i: irange(0LL, n)){ ll a; cin >> a; s_now += a; // cout << " new s: " << s_now << endl; if (s_prev * s_now >= 0 && i != 0){ // cout << "kakikae because: " << s_prev * s_now << endl; ll target = s_prev < 0 ? 1 : -1; // cout << "from: " << s_now << " to: " << target << endl; count += abs(target - s_now); // cout << "count: " << count << endl; s_now = target; } s_prev = s_now; // cout << "old s: " << s_prev; } cout << count; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i as = gets.split.map(&:to_i) cnt1 = 0 sum = as[0] n.times.with_index(1) do |_,i| break if as[i].nil? if sum < 0 if sum + as[i] > 0 sum += as[i] next else x = 1 - sum - as[i] cnt1 += x sum = 1 end elsif sum > 0 if sum + as[i] < 0 sum += as[i] next else x = -1 - sum - as[i] cnt1 += x.abs sum = -1 end end end cnt2 = 0 sum = as[0] * -1 n.times.with_index(1) do |_,i| break if as[i].nil? if sum < 0 if sum + as[i] > 0 sum += as[i] next else x = 1 - sum - as[i] cnt2 += x sum = 1 end elsif sum > 0 if sum + as[i] < 0 sum += as[i] next else x = -1 - sum - as[i] cnt2 += x.abs sum = -1 end end end puts [cnt1, cnt2].min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int a[100010], n; long long s, cnt, ans = 1e9; int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); if (a[1] > 0) s = a[1]; else cnt = 1 - a[1], s = 1; for (int i = 2; i <= n; ++i) if (s * (s + a[i]) < 0) s += a[i]; else { cnt += abs(s + a[i]) + 1; s = ((s < 0) << 1) - 1; } ans = cnt; if (a[1] < 0) cnt = 0, s = a[1]; else cnt = a[1] - 1, s = -1; for (int i = 2; i <= n; ++i) if (s * (s + a[i]) < 0) s += a[i]; else { cnt += abs(s + a[i]) + 1; s = ((s < 0) << 1) - 1; } printf("%lld\n", std::min(ans, cnt)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) { cin >> a.at(i); } int cntp = 0; if (a.at(0) <= 0) { cntp = -1 * a.at(0) + 1; } int sum = max(1, a.at(0)); for (int i = (1); i < (int)(n); i++) { if (sum > 0) { if (sum + a.at(i) >= 0) { cntp += sum + a.at(i) + 1; sum = -1; } else { sum += a.at(i); } } else { if (sum + a.at(i) <= 0) { cntp += -1 * (sum + a.at(i)) + 1; sum = 1; } else { sum += a.at(i); } } } int cntm = 0; if (a.at(0) >= 0) { cntm = a.at(0) + 1; } int summ = min(-1, a.at(0)); for (int i = (1); i < (int)(n); i++) { if (summ > 0) { if (summ + a.at(i) >= 0) { cntm += summ + a.at(i) + 1; summ = -1; } else { summ += a.at(i); } } else { if (summ + a.at(i) <= 0) { cntm += -1 * (summ + a.at(i)) + 1; summ = 1; } else { summ += a.at(i); } } } cout << min(cntp, cntm) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); long[] a=new long[n]; for(int i=0;i<n;i++)a[i]=sc.nextLong(); long sum=0; long count=0; for(int i=0;i<n-1;i++){ if(i==0){ if(a[i]==0){ for(int j=1;j<n;j++){ if(a[j]>0){ if(j%2==0){ a[i]+=1; count++; break; }else{ a[i]-=1; count++; break; } }else if(a[j]<0){ if(j%2==0){ a[i]-=1; count++; break; }else{ a[i]+=1; count++; break; } } } if(a[i]==0){ a[i]=1; count++; } } } sum+=a[i]; if(sum>0){ if(sum+a[i+1]>=0){ count+=sum+a[i+1]+1; a[i+1]-=sum+a[i+1]+1; } }else if(sum<0){ if(sum+a[i+1]<=0){ count+=-1*(sum+a[i+1])+1; a[i+1]+=-1*(sum+a[i+1])+1; } } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int,input().split())) ans = 0 x = 0 S = [] S.append(A[0]) for i in range(1,n): if S[i - 1] == 0: S[i - 1] += 1 x = A[i] + S[i - 1] if S[i - 1] > 0: if x >= 0: x = - x - 1 ans += abs(x) S.append(-1) else: S.append(x) elif S[i - 1] < 0: if x <= 0: x = -x + 1 ans += abs(x) S.append(1) else: S.append(x) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int,input().split())) a = [A,A] res = [0,0] sum = 0 for check in range(2): sum = 0 if check == 1: if a[check][0] > 0: temp = -1 - a[check][0] a[check][0] += temp res[check] += temp * -1 elif a[check][0] < 0: temp = 1 - a[check][0] a[check][0] += temp res[check] += temp if a[check][0] == 0: if check == 0: a[check][0] += 1 else: a[check][0] -= 1 res[check] += 1 for i in range(n-1): sum += a[check][i] if sum * (sum + a[check][i+1]) >= 0: if sum > 0: temp = -1 - sum - a[check][i+1] a[check][i+1] += temp res[check] += temp * -1 else: temp = 1 - sum - a[check][i+1] a[check][i+1] += temp res[check] += temp print(min(res[0],res[1]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef int _loop_int; #define REP(i,n) for(_loop_int i=0;i<(_loop_int)(n);i++) int main(){ int n; cin >> n; int a[n]; REP(i,n) cin >> a[i]; long long sum = 0; long long count = 0; long long tmp = 0; REP(i,n){ if(i%2==0){ sum += a[i]; if(sum<=0){ count += abs(sum)+1; sum += abs(sum)+1; } } if(i%2==1){ sum += a[i]; if(sum>=0){ count += abs(sum)+1; sum -= abs(sum)+1; } } // cout << a[i] << ' '; } // cout << endl; int count2 = 0; sum = 0; REP(i,n){ if(i%2==1){ sum += a[i]; if(sum<=0){ count2 += abs(sum)+1; sum += abs(sum)+1; } } if(i%2==0){ sum += a[i]; if(sum>=0){ count2 += abs(sum)+1; sum -= abs(sum)+1; } } // cout << a[i] << ' '; } // cout << count << endl; cout << min(count,count2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; const long long INF = -10000000000; long long maxx(long long x, long long y, long long z) { return max(max(x, y), z); } long long minn(long long x, long long y, long long z) { return min(min(x, y), z); } long long gcd(long long x, long long y) { if (x % y == 0) return y; else return gcd(y, x % y); } long long lcm(long long x, long long y) { return x * (y / gcd(x, y)); } int main() { long long N; cin >> N; vector<long long> A(N); for (long long i = 0; i < N; i++) cin >> A[i]; long long cnt = 0; long long sum = A[0]; for (long long i = 1; i <= N - 1; i++) { if (abs(sum * 2 + A[i]) < abs(sum) + abs(sum + A[i])) sum += A[i]; else { if (sum < 0) { cnt += abs((-1) * (sum - 1 + A[i])); sum = 1; } else { cnt += abs((-1) * (sum + 1 + A[i])); sum = -1; } } } cout << cnt; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; int a[n]; for (int i = 0; i < n; ++i) { cin >> a[i]; } int tmp1 = 0, tmp2 = 0; int ans1 = 0, ans2 = 0; for (int i = 1; i <= n; ++i) { tmp1 += a[i - 1]; tmp2 += a[i - 1]; if (i % 2) { if (tmp1 <= 0) { ans1 += 1 - tmp1; tmp1 = 1; } if (tmp2 >= 0) { ans2 += 1 + tmp2; tmp2 = -1; } } else { if (tmp1 >= 0) { ans1 += 1 + tmp1; tmp1 = -1; } if (tmp2 <= 0) { ans2 += 1 - tmp2; tmp2 = 1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int count_operate(vector<int> a) { int N = a.size(); vector<int> s(N, 0); int retval = 0; s.at(0) = a.at(0); for (int i = 1; i < N; i++) { s.at(i) = a.at(i) + s.at(i - 1); if (s.at(i - 1) > 0 && s.at(i) >= 0) { retval += abs(s.at(i)) + 1; s.at(i) = -1; } else if (s.at(i - 1) < 0 && s.at(i) <= 0) { retval += abs(s.at(i)) + 1; s.at(i) = 1; } } return retval; }; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int retval; if (a[0] == 0) { a[0] = 1; int retval_p = count_operate(a); a[0] = -1; int retval_m = count_operate(a); retval = min(retval_m, retval_p); } else { retval = count_operate(a); } cout << retval << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const unsigned long long MOD = 1000000000 + 7; int main() { int n; cin >> n; int cnt = 0; int sum = 0; for (int i = 0; i < n; i++) { int a; cin >> a; int s = a + sum; if (a == 0 || s == 0) { if (sum <= 0) { cnt += 1 - s; sum = 1; } else { cnt += 1 + s; sum = 1; } } else if (sum < 0 && s < 0) { cnt += 1 - s; sum = 1; } else if (sum > 0 && s > 0) { cnt += 1 + s; sum = -1; } else { sum = s; } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { cin.sync_with_stdio(false); int n; cin >> n; vector<ll> a(n); ll sum = 0; for (int i = 0; i < n; i++) { cin >> a[i]; } ll count = 0; sum = a[0]; for (int i = 1; i < n; i++) { if (sum < 0 && sum + a[i] <= 0) { count += abs(sum) - a[i] + 1; sum = 1; } else if (sum > 0 && sum + a[i] >= 0) { count += abs(sum + a[i] + 1); sum = -1; } else { sum += a[i]; } } if (sum == 0) { count += 1; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans =0 for i in range(n-1): if a[i]>0: if sum(a[:i+2])<0: pass else: while sum(a[:i+2])>=0: a[i+1]-=1 ans+=1 else: if sum(a[:i+2])>0: pass else: while sum(a[:i+2])<=0: a[i+1]+=1 ans+=1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INFTY = 1001001001; int main() { int N; cin >> N; vector<long long> a(N + 1), b(N + 1); for (int i = 0; i < N; ++i) { cin >> a[i]; b[i] = a[i]; if (i != 0) { a[i] += a[i - 1]; b[i] += b[i - 1]; } } long long ans = INFTY; for (int sign = 0; sign < 2; ++sign) { if (sign) { for (int i = 0; i < N + 1; ++i) { a[i] = b[i]; } } long long v = 0, count = 0; for (int i = 0; i < N; ++i) { if (sign) { if (a[i] >= 0) { count += abs(-a[i] - 1); v -= abs(-a[i] - 1); } a[i + 1] += v; } else { if (a[i] <= 0) { count += abs(-a[i] + 1); v += abs(-a[i] + 1); } a[i + 1] += v; } sign = !(sign); } ans = min(ans, count); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; long long prevArraySum = a[0]; long long currentArraySum = a[0]; long long res = 0; if (a[0] == 0) { res = 1; prevArraySum = -1; currentArraySum = -1; for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } else { prevArraySum = currentArraySum; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } long long res1 = res; res = 1; prevArraySum = 1; currentArraySum = 1; for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } else { prevArraySum = currentArraySum; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } res = min(res, res1); } else { for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } else { prevArraySum = currentArraySum; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long long int a[N]; for (int i = 0; i < N; i++) { cin >> a[i]; } long long int x = 0, y = 0; long long int s = 0; for (int i = 0; i < N; i++) { s += a[i]; if (i % 2 == 1) { if (s > 0) { x += s + 1; s = -1; } } else { if (s < 0) { x += 1 - s; s = 1; } } } s = 0; for (int i = 0; i < N; i++) { s += a[i]; if (i % 2 == 0) { if (s > 0) { y += s + 1; s = -1; } } else { if (s < 0) { y += 1 - s; s = 1; } } } long long int ans = min(x, y); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int f(vector<int> a, int sign) { int ans = 0; if (sign > 0 && a.at(0) <= 0) { ans += -a.at(0) + 1; a.at(0) += -a.at(0) + 1; } if (sign < 0 && a.at(0) >= 0) { ans += a.at(0) + 1; a.at(0) -= a.at(0) + 1; } long long sum = a.at(0); for (int i = 1; i < a.size(); i++) { if (sum > 0 && a.at(i) + sum >= 0) { ans += a.at(i) + sum + 1; a.at(i) -= a.at(i) + sum + 1; } if (sum < 0 && a.at(i) + sum <= 0) { ans += -(a.at(i) + sum - 1); a.at(i) += -(a.at(i) + sum - 1); } sum += a.at(i); } return ans; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } cout << min(f(a, 1), f(a, -1)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int sum = 0, num = 0; for (int i = 0; i < n; i++) { int a; cin >> a; if (sum > 0) { while (sum + a >= 0) { a--; num++; } } else if (sum < 0) { while (sum + a <= 0) { a++; num++; } } sum += a; } cout << num << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; bool plus = a[0] >= 0 ? true : false; int cnt = 0; int cnt2 = 0; long long sum = 0; long long sum2 = 0; for (int i = 0; i < n; i++) { sum += a[i]; sum2 += a[i]; if (i % 2 == 0) { if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } if (sum2 >= 0) { cnt2 += sum2 + 1; sum2 = -1; } } else { if (sum2 <= 0) { cnt2 += abs(sum2) + 1; sum2 = 1; } if (sum >= 0) { cnt += sum + 1; sum = -1; } } } cout << min(cnt, cnt2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i A = gets.split.map(&:to_i) x = A[0] answer = 0 for i in 0..n-2 s = x + A[i+1] if x * s >= 0 if x < 0 answer = answer - s + 1 A[i+1] = A[i+1] - s + 1 else answer = answer + s + 1 A[i+1] = A[i+1] - s - 1 end end x = x + A[i+1] end puts answer
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sequence(lis, first_value): count = 0 now_sum = first_value pre_sum = first_value for num in lis[1:]: now_sum += num if now_sum == 0 or pre_sum * (now_sum) > 0: count += int(abs(now_sum) + 1) now_sum = -pre_sum/abs(pre_sum) pre_sum = now_sum return count n = int(input()) a = [int(i) for i in input().split()] if a[0] == 0: print(min(sequence(a, 1), sequence(a, -1))+1) else: print(sequence(a, a[0]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long gcd(long long x, long long y) { long long tmp = 0; if (x < y) { tmp = x; x = y; y = tmp; } while (y > 0) { long long r = x % y; x = y; y = r; } return x; } long long lcm(long long x, long long y) { return x / gcd(x, y) * y; } long long kaijo(long long k) { long long sum = 1; for (long long i = 1; i <= k; ++i) { sum *= i; sum %= 1000000000 + 7; } return sum; } int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long c = 0; long long sum = a[0]; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) >= 0) { int tmp = a[i]; a[i] = sum / abs(sum) * (-1) * (abs(sum) + 1); c += abs(tmp - a[i]); } sum += a[i]; } cout << c << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("-O3") using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); } const int inf = INT_MAX / 2; const long long infl = 1LL << 60; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } enum PosiNega { POSITIVE = 0, NEGATIVE = 1 }; int solve(int N, int *a, PosiNega odd_posinega) { long long ans = 0; long long sum = 0; PosiNega posi_nega = odd_posinega; for (int i = 0; i < N; i++) { sum += a[i]; if (POSITIVE == posi_nega) { if (0 >= sum) { ans += 1 - sum; sum = 1; } posi_nega = NEGATIVE; } else { if (0 <= sum) { ans += 1 + sum; sum = -1; } posi_nega = POSITIVE; } } return ans; } void _main() { int N; cin >> N; int a[N]; for (int i = 0; i < N; i++) cin >> a[i]; long long ans = min(solve(N, a, POSITIVE), solve(N, a, NEGATIVE)); cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long N; cin >> N; long a[100001]; for (long i = 0; i < N; i++) { cin >> a[i]; } long total0 = 0; long ops0 = 0; for (int i = 0; i < N; i++) { total0 += a[i]; if (total0 < 1) { total0 = 1; ops0 += 1 - a[i]; } total0 = -total0; } long total1 = 0; long ops1 = 0; for (int i = 0; i < N; i++) { total1 += a[i]; if (total1 > -1) { total1 = -1; ops1 += (a[i] + 1); } total1 = -total1; } printf("%d\n", min(ops0, ops1)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n + 1, 0); for (int i = 1; i <= n; i++) { cin >> a[i]; a[i] += a[i - 1]; } long long ans = 1LL << 50; for (int k = -1; k <= 1; k += 2) { int sign = k; long long plus = 0, minus = 0; for (int i = 1; i <= n; i++) { if (a[i] + plus - minus > 0) { if (sign == -1) minus += a[i] + plus - minus + 1; } else if (a[i] + plus - minus < 0) { if (sign == 1) plus += -(a[i] + plus - minus) + 1; } else { if (sign == -1) minus += 1; else if (sign == 1) plus += 1; } sign *= -1; } if (ans > plus + minus) ans = plus + minus; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] s = [0]*n s[0] = a[0] count = 0 for i in range(1,n): s[i] = s[i-1] + a[i] if s[i] == 0: tmp = -s[i-1]//abs(s[i-1]) s[i] += tmp count += abs(tmp) elif s[i] * s[i-1] > 0: tmp = (-s[i]) + (-s[i]//abs(s[i])) s[i] += tmp count += abs(tmp) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.not_nil!.to_i a = gets.not_nil!.split.map(&.to_i64) ans = [0, 1].map do |i| sum = 0 count = 0 n.times do |j| sum += a[j] if (i + j) % 2 == 0 if sum <= 0 count += -sum + 1 sum = 1 end else if sum >= 0 count += sum + 1 sum = -1 end end end count end.min puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) s = a[0] ans = 0 for i in range(n-1): if s > 0: s += a[i+1] if s >= 0: ans += abs(s) + 1 s = -1 """ print(i) print('s > 0') print(ans) print(s) """ elif s < 0: s += a[i+1] if s <= 0: ans += abs(s) + 1 s = 1 """ print(i) print('s < 0') print(ans) print(s) """ print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[1009]; int b[1009]; int main() { int n, hh, sum = 0; while (~scanf("%d", &n)) { int s = 0; for (int g = 0; g < n; g++) { scanf("%d", &a[g]); s += a[g]; b[g] = s; } int i; for (i = 1; i < n; i++) { if (b[i] > 0 && b[i - 1] > 0 || b[i] < 0 && b[i - 1] < 0 || b[i] == 0) { hh = abs(b[i]) + 1; if (b[i] < 0) { int x = abs(b[i] + 1); for (int j = i; j < n; j++) { b[j] = b[j] + x; } } else if (b[i] > 0) { int y = abs(b[i] + 1); for (int t = i; t < n; t++) { b[t] = b[t] - y; } } else if (b[i] == 0) { if (b[i - 1] > 0) { int c = 1; for (int t = i; t < n; t++) { b[t] = b[t] - c; } } if (b[i - 1] < 0) { int c = 1; for (int t = i; t < n; t++) { b[t] = b[t] + c; } } } sum += hh; } } printf("%d\n", sum); sum = 0; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = [int(x) for x in input().split()] count = 0 sum_before = A[0] for i in range(n): if i == 0: continue sum_for_i = sum_before + A[i] #print('[',i,']: before',sum_before,'after',sum_for_i, A) if sum_for_i == 0 and sum_before > 0: #print("case 1") A[i] -= 1 count += 1 elif sum_for_i == 0 and sum_before <0: #print("case 2") A[i] += 1 count += 1 elif sum_before >0 and sum_for_i>0: #print("case 3") count += (abs(A[i])+1) A[i] -= (abs(A[i])+1) elif sum_before <0 and sum_for_i<0: #print("case 4") count += (abs(A[i])+1) A[i] += (abs(A[i])+1) #print('[',i,']: ',A, 'count', count) sum_before += A[i] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
//ヘッダー #include<bits/stdc++.h> using namespace std; //型定義 typedef long long ll; //定数 const int INF=1e+9; const int MOD=1e+9+7; //REPマクロ #define REP(i,n) for(ll i=0;i<(ll)(n);i++) #define REPD(i,n) for(ll i=n-1;i>=0;i--) #define REP2(i,a,b) for(ll i=a;i<(ll)(b);i++) #define REPD2(i,a,b) for(ll i=a;i>(ll)(b);i--) // 多次元 vector 生成 template<class T> vector<T> make_vec(size_t a){ return vector<T>(a); } template<class T, class... Ts> auto make_vec(size_t a, Ts... ts){ return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...)); } //vectorの扱い #define ALL(x) (x).begin(),(x).end() //sortなどの引数省略 #define SIZE(x) ((ll)(x).size()) //size #define MAX(x) *max_element(ALL(x)) //最大値 #define MIN(x) *min_element(ALL(x)) //最小値 int main(){ ll n; cin>>n; vector<ll> a(n); ll sum=0; ll ans=0; REP(i,n) cin>>a[i]; REP(i,n){ ll tmp=sum; sum+=a[i]; if(tmp>0&&sum>0){ ans+=(sum+1); sum=-1; }else if(tmp<0&&sum<0){ ans+=abs(sum-1); sum=1; }else if(sum==0){ ans++; if(tmp<0){ sum++; }else{ sum--; } } } cout<<ans<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long int; using ull = unsigned long long int; using P = pair<ll, ll>; using P3 = pair<P, int>; using PP = pair<P, P>; constexpr ll INF = 1LL << 60; constexpr ll MOD = ll(1e9) + 7; constexpr int di[] = {0, 1, 0, -1}; constexpr int dj[] = {1, 0, -1, 0}; constexpr int di8[] = {0, 1, 1, 1, 0, -1, -1, -1}; constexpr int dj8[] = {1, 1, 0, -1, -1, -1, 0, 1}; constexpr double EPS = 1e-9; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 1; i < n; i++) a[i] += a[i - 1]; ll s = 0, ans1 = 0, ans2 = 0; for (int i = 0; i < n; i++) { if (i % 2) { if (a[i] + s <= 0) { ans1 += abs(a[i] + s) + 1; s = abs(a[i]) + 1; } } else { if (a[i] + s >= 0) { ans1 += abs(a[i] + s) + 1; s = -(abs(a[i]) + 1); } } } s = 0; for (int i = 0; i < n; i++) { if (i % 2) { if (a[i] + s >= 0) { ans2 += abs(a[i] + s) + 1; s = -(abs(a[i]) + 1); } } else { if (a[i] + s <= 0) { ans2 += abs(a[i] + s) + 1; s = abs(a[i]) + 1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long long A[N]; for (int i = 0; i < N; i++) cin >> A[i]; bool loop = true; long long delta = 0; while (loop) { int sum[N]; bool sign = (A[0] > 0); sum[0] = A[0]; loop = false; for (int i = 1; i < N; i++) { sum[i] = sum[i - 1] + A[i]; sign = !sign; if (sign && sum[i] <= 0) { int dd = 1 - sum[i]; delta += abs(dd); A[i] = A[i] + dd; sum[i] = 1; loop = true; } else if (!sign && sum[i] >= 0) { int dd = -1 - sum[i]; delta += abs(dd); A[i] = A[i] + dd; sum[i] = -1; loop = true; } } } cout << delta << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { long long n; cin >> n; vector<long long> a(n); cin >> a[0]; long long pos = 0, ans = 0; if (a[0] == 0) a[0]++, ans++; if (a[0] > 0) pos = 1; for (long long i = 1; i < n; i++) { cin >> a[i]; a[i] += a[i - 1]; pos = 1 - pos; if (pos == 1 && a[i] <= 0) ans += 1 - a[i], a[i] = 1; if (pos == 0 && a[i] >= 0) ans += a[i] + 1, a[i] = -1; } cout << ans << '\n'; } signed main() { ios::sync_with_stdio(0); cin.tie(0); long long T = 1; while (T--) solve(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
parseInt(x) = parse(Int, x) function main() n = readline() |> parseInt a = map(parseInt, split(readline())) b = Array{Int}(n) b[1] = a[1] k = 0 for i in 2:n b[i] = a[i]+b[i-1] if b[i]*b[i-1] >= 0 if b[i-1] < 0 k += abs(b[i]-1) b[i] = 1 else k += abs(b[i]+1) b[i] = -1 end end end c = Array{Int}(n) l = 0 if a[1] > 0 c[1] = -1 l += abs(a[1]+1) else c[1] = 1 l += abs(a[1]-1) end for i in 2:n c[i] = a[i]+c[i-1] if c[i]*c[i-1] >= 0 if c[i-1] < 0 l += abs(c[i]-1) c[i] = 1 else l += abs(c[i]+1) c[i] = -1 end end end d = Array{Int}(n) m = 0 if a[1] > 0 d[1] = 1 m += abs(a[1]-1) else d[1] = -1 m += abs(a[1]+1) end for i in 2:n d[i] = a[i]+d[i-1] if d[i]*d[i-1] >= 0 if d[i-1] < 0 m += abs(d[i]-1) d[i] = 1 else m += abs(d[i]+1) d[i] = -1 end end end print(min(k,l,m)) end main()