Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
template <typename T>
void putv(vector<T>& V) {
for (auto x : V) cout << x << " ";
cout << endl;
}
template <class T>
vector<T> getv(long long n) {
vector<T> Vector_temp;
for (int(i) = 0; (i) < (n); (i)++) {
T input;
cin >> input;
Vector_temp.emplace_back(input);
}
return Vector_temp;
}
long long gcd(long long c, long long b) {
while (1) {
if (c % b != 0) {
long long tmp = b;
b = c % b;
c = tmp;
} else {
return b;
}
}
}
int main() {
long long n;
cin >> n;
vector<long long> a((n), 0);
;
a = getv<long long>(n);
long long sum = 0;
sum = a[0];
int b = -1;
if (sum > 0) {
b = 1;
}
long long ans = 0;
for (int(i) = 1; (i) < n; (i)++) {
sum += a[i];
if (b > 0) {
if (sum >= 0) {
ans += sum + 1;
cout << (sum + 1) << endl;
;
sum = -1;
}
b = -1;
} else {
if (sum <= 0) {
ans += ((-sum) + 1);
cout << ((-sum) + 1) << endl;
sum = 1;
}
b = 1;
}
}
cout << (ans) << endl;
;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int MOD = pow(10, 9) + 7;
using namespace std;
int in() {
int temp;
scanf("%d", &temp);
return temp;
}
long long lin() {
long long temp;
scanf("%lld", &temp);
return temp;
}
int main() {
int N = in();
vector<int> vec;
vector<int> csum;
vec.push_back(in());
csum.push_back(vec.back());
for (auto i = 1; i < N; i++) {
vec.push_back(in());
csum.push_back(csum.back() + vec.back());
}
int cumOper = 0;
int sign = 1;
int count = 0;
int signi;
for (auto i = 0; i < N; i++) {
if ((csum[i] + cumOper) == 0) {
count++;
cumOper -= sign;
}
signi = (csum[i] + cumOper) / abs(csum[i] + cumOper);
if (signi != sign) {
sign = signi;
continue;
}
if (sign == 1) {
count += (csum[i] + cumOper + 1);
cumOper += (-1) * (csum[i] + cumOper + 1);
} else {
count += (-(csum[i] + cumOper) + 1);
cumOper += (1) * (-(csum[i] + cumOper) + 1);
}
sign = -sign;
}
int temp = count;
sign = -1;
count = 0;
signi;
for (auto i = 0; i < N; i++) {
if ((csum[i] + cumOper) == 0) {
count++;
cumOper -= sign;
}
signi = (csum[i] + cumOper) / abs(csum[i] + cumOper);
if (signi != sign) {
sign = signi;
continue;
}
if (sign == 1) {
count += (csum[i] + cumOper + 1);
cumOper += (-1) * (csum[i] + cumOper + 1);
} else {
count += (-(csum[i] + cumOper) + 1);
cumOper += (1) * (-(csum[i] + cumOper) + 1);
}
sign = -sign;
}
cout << min(count, temp) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> data(N);
for (int i = 0; i < N; i++) {
cin >> data[i];
}
int count_odd, count_even;
count_odd = 0;
count_even = 0;
for (int i = 0; i < N; i++) {
if (i % 2 == 0) {
if (data[i] >= 0) {
count_odd += (data[i] + 1);
}
} else {
if (data[i] <= 0) {
count_odd -= (data[i] - 1);
}
}
}
for (int i = 0; i < N; i++) {
if (i % 2 == 0) {
if (data[i] <= 0) {
count_even -= (data[i] - 1);
}
} else {
if (data[i] >= 0) {
count_even += (data[i] + 1);
}
}
}
cout << min(count_even, count_odd) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, const char* argv[]) {
int n;
cin >> n;
int a[100010];
for (int i = 0; i < n; ++i) cin >> a[i];
long long int res = 0;
bool plus = false;
long long int sum = a[0];
if (a[0] > 0)
plus = true;
else if (a[0] < 0)
plus = false;
int j = 1;
while (sum == 0) {
if (a[j] > 0) {
++res;
sum = (j % 2 == 0) ? 1 : -1;
plus = (j % 2 == 0) ? true : false;
} else if (a[j] < 0) {
++res;
sum = (j % 2 == 0) ? -1 : 1;
plus = (j % 2 == 0) ? false : true;
}
++j;
if (j == n) {
cout << 1 + 2 * (n - 1) << endl;
return 0;
}
}
for (int i = 0; i < n - 1; ++i) {
if (sum + a[i + 1] > 0) {
if (plus == true) {
res += sum + a[i + 1] + 1;
sum = -1;
plus = false;
} else {
sum += a[i + 1];
plus = true;
}
} else if (sum + a[i + 1] < 0) {
if (plus == false) {
res += -(sum + a[i + 1] - 1);
sum = 1;
plus = true;
} else {
sum += a[i + 1];
plus = false;
}
} else if (sum + a[i + 1] == 0) {
if (plus == true) {
++res;
sum = -1;
plus = false;
} else {
++res;
sum = 1;
plus = true;
}
}
cout << "sum : " << sum << " a[i] : " << a[i] << " ans : " << res << endl;
;
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import functools
n=int(input())
a=list(map(int,input().split()))
ans=0
res=0#0が正、1が負
if a[0]<0:
res=1
for i in range(n-1):
aa=functools.reduce(lambda x,y:x+y,a[:i+2])
if aa<0:
if res==1:
adj = 1-aa
a[i+1]=a[i+1]+adj
ans=ans+abs(adj)
res = 0
else:
res=1
if aa>0:
if res==0:
adj = -1-aa
a[i+1]=a[i+1]+adj
ans=ans+abs(adj)
res = 1
else:
res=0
if aa==0:
if res == 1:
a[i+1]=a[i+1]+1
ans+=1
res=0
else:
a[i+1]=a[i+1]-1
ans+=1
res=1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long gcd(long long x, long long y) {
long long tmp = 0;
if (x < y) {
tmp = x;
x = y;
y = tmp;
}
while (y > 0) {
long long r = x % y;
x = y;
y = r;
}
return x;
}
long long lcm(long long x, long long y) { return x / gcd(x, y) * y; }
long long kaijo(long long k) {
long long sum = 1;
for (long long i = 1; i <= k; ++i) {
sum *= i;
sum %= 1000000000 + 7;
}
return sum;
}
int main() {
int n;
cin >> n;
int a[n];
long long k = 0;
cin >> a[0];
long long sum = a[0];
for (int i = 1; i < n; i++) {
cin >> a[i];
if (sum * (sum + a[i]) >= 0) {
long long tmp;
if (sum < 0) {
tmp = (sum - 1) * (-1);
k += tmp - a[i];
sum += tmp;
} else {
tmp = (sum + 1) * (-1);
k += a[i] - tmp;
sum += tmp;
}
} else {
sum += a[i];
}
}
cout << k << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long s1, a1 = 0, s2, a2 = 0;
if (a[0] > 0) {
s1 = a[0];
s2 = -1;
a2 = a[0] + 1;
} else if (a[0] < 0) {
s1 = 1;
s2 = a[0];
a1 = 1 - a[0];
} else {
s1 = 1;
s2 = -1;
a1 = 1;
a2 = 1;
}
for (int i = 1; i < n; ++i) {
if (s1 > 0) {
if (s1 + a[i] >= 0) {
a1 += s1 + a[i] + 1;
s1 = -1;
} else
s1 += a[i];
} else {
if (s1 + a[i] <= 0) {
a1 = 1 - a1 - a[i];
s1 = 1;
} else
s1 += a[i];
}
}
for (int i = 1; i < n; ++i) {
if (s2 > 0) {
if (s2 + a[i] >= 0) {
a2 += s2 + a[i] + 1;
s2 = -1;
} else
s2 += a[i];
} else {
if (s2 + a[i] <= 0) {
a2 = 1 - a2 - a[i];
s2 = 1;
} else
s2 += a[i];
}
}
cout << min(a1, a2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | object Main extends App {
import scala.math._
val n = readInt
val a = readLine.split(" ").map{_.toInt}
//start != 0
def solve(start:Int):Long = {
var ans:Long = 0
var sum:Long = start.toLong
for (i <- 1 until n) {
val presum = sum
sum += a(i)
if (sum == 0) {
ans += 1
sum = -presum/abs(presum)
} else {
val check = (presum/abs(presum))*(sum/abs(sum))
if (check > 0) {
ans += abs(sum)+1
sum = -sum/abs(sum)
}
}
}
ans
}
if (a(0) == 0) println(min(solve(1),solve(-1))+1)
else println(solve(a(0)))
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #
# Written by NoKnowledgeGG @YlePhan
# ('ω')
#
#import math
#mod = 10**9+7
#import itertools
#import fractions
#import numpy as np
#mod = 10**4 + 7
"""def kiri(n,m):
r_ = n / m
if (r_ - (n // m)) > 0:
return (n//m) + 1
else:
return (n//m)"""
""" n! mod m 階乗
mod = 1e9 + 7
N = 10000000
fac = [0] * N
def ini():
fac[0] = 1 % mod
for i in range(1,N):
fac[i] = fac[i-1] * i % mod"""
"""mod = 1e9+7
N = 10000000
pw = [0] * N
def ini(c):
pw[0] = 1 % mod
for i in range(1,N):
pw[i] = pw[i-1] * c % mod"""
"""
def YEILD():
yield 'one'
yield 'two'
yield 'three'
generator = YEILD()
print(next(generator))
print(next(generator))
print(next(generator))
"""
"""def gcd_(a,b):
if b == 0:#結局はc,0の最大公約数はcなのに
return a
return gcd_(a,a % b) # a = p * b + q"""
"""def extgcd(a,b,x,y):
d = a
if b!=0:
d = extgcd(b,a%b,y,x)
y -= (a//b) * x
print(x,y)
else:
x = 1
y = 0
return d"""
def readInts():
return list(map(int,input().split()))
mod = 10**9 + 7
def main():
n = int(input())
A = readInts()
# 符号 positive?
#po_ = True
# 変わったか変わってないか
if A[0] >= 0: # if positive
po_ = True
else: # negative
po_ = False
Cost = 0
ANS = [0] * (n+1)
ANS[0] = A[0]
for i in range(1,n):
#print(ANS[i-1],po_,ANS[i-1] + A[i],Cost)
if ANS[i-1]+A[i] > 0 and not po_: # sumがpositiveで前がnegativeだった
po_ = True
ANS[i] = ANS[i-1] + A[i]
# これで終わり
elif ANS[i-1]+A[i] > 0 and po_: # posi : posi ?
# 負にしなければならない
Cost += abs(-1 - (ANS[i-1]+A[i])) # 先にこれやれ
A[i] += -1 - (ANS[i-1] + A[i])
# -4
ANS[i] = ANS[i-1] + A[i]
po_ = False
elif ANS[i-1]+A[i] < 0 and not po_: #nega : nega
# -1 はここ
# print(A[i])
Cost += abs(1 - (ANS[i-1]+A[i])) # 先にこれやれ
A[i] += 1 - (ANS[i-1] + A[i])
ANS[i] = ANS[i-1] + A[i]
po_ = True
elif ANS[i-1]+A[i] == 0 and po_: # nega: pos
po_ = False
A[i] += 1
Cost += 1
ANS[i] = ANS[i-1] + A[i]
elif ANS[i-1]+A[i] < 0 and po_:
po_ = False
ANS[i] = ANS[i-1] + A[i]
print(Cost)
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def sequence(lis, first_value):
count = 0
now_sum = first_value
pre_sum = first_value
for num in lis[1:]:
now_sum += num
while now_sum == 0 or now_sum * pre_sum > 0:
now_sum -= pre_sum/abs(pre_sum)
count += 1
pre_sum = now_sum
return count
n = int(input())
a = [int(i) for i in input().split()]
if a[0] == 0:
print(min(sequence(a, 1), sequence(a, -1))+1)
else:
print(sequence(a, a[0])) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from functools import reduce
N =int(input())
A = list(map(int, input().split()))
def check(A):
arr1 = [0]*N
ans1 = 0
for i in range(len(A)):
if i ==0:
arr1[0] = A[0]
else:
arr1[i] += arr1[i-1] + A[i]
if arr1[i]*arr1[i-1] >0:
if arr1[i-1] >=0: #-に
arr1[i] = -1
elif arr1[i-1] <=0: # 無理やり+にする.
arr1[i] = 1
ans1 += abs(A[i])+1
ans2 = 0
arr2 = [0]*N
#change head.
for i in range(len(A)):
if i ==0:
if A[0]>=0:
arr2[0] = -1
elif A[0]<=0:
arr2[0] = 1
ans2 += abs(A[0])+1
else:
arr2[i] += arr2[i-1] + A[i]
if arr2[i]*arr2[i-1] >0:
if arr2[i-1]>=0:
arr2[i] = -1
elif arr2[i-1]<=0:
arr2[i] = 1
ans2 += abs(A[i])+1
return min(ans1,ans2)
print(check(A))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
currentSum = 0
count1 = 0
count2 = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count1 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count1 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count1 += 1
currentSum = -1
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count2 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count2 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count2 += 1
currentSum = 1
print(min(count1, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
temp = a[0]
ans = 0
for i in range(1, n):
if temp*(temp + a[i]) < 0:
temp += a[i]
else:
if temp > 0:
ans += (temp + a[i] + 1)
temp = -1
elif temp < 0:
ans += abs(temp + a[i]) + 1
temp = 1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
import numpy as np
ans = 0
sum0 = a[0]
sum1 = a[0]
for i in range(1, n):
sum1 += a[i]
if np.sign(sum0) != np.sign(sum1) and sum1 != 0: #合計の符号が逆となっており、0でない
sum0 = sum1
pass
elif sum1 == 0: #合計が0になった場合は、符号が逆になるよう1か-1を足す
sum1 -= 1 * np.sign(sum0)
ans += 1
sum0 = sum1
elif np.sign(sum0) == np.sign(sum1): #符号が同じ場合は、+1か-1になるまで足す
if np.sign(sum1) == 1:
while sum1 >= 0:
sum1 -= 1
ans += 1
else:
while sum1 <= 0:
sum1 += 1
ans += 1
sum0 = sum1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
a1 = [a[0]] * n
b = a[0]
ans = 0
def f(x):
if x == 0:
return 0
else:
return x // abs(x)
for i in range(1, n):
if a1[i - 1] * a[i] >= 0:
a1[i] = -a[i]
else:
a1[i] = a[i]
if b * (b + a1[i]) >= 0:
a1[i] = -f(a1[i - 1]) - b
if b + a1[i] == 0:
a1[i] += f(a1[i])
ans += abs(a1[i] - a[i])
b += a1[i]
a2 = [0] * n
ans1 = abs(-f(a2[0]) - a2[0])
a2[0] = -f(a[0])
b1 = a2[0]
for i in range(1, n):
if a2[i - 1] * a[i] >= 0:
a2[i] = -a[i]
else:
a2[i] = a[i]
if b * (b + a2[i]) >= 0:
a2[i] = -f(a2[i - 1]) - b1
if b1 + a2[i] == 0:
a2[i] += f(a2[i])
ans1 += abs(a2[i] - a[i])
b1 += a2[i]
print(min(ans1, ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int, input().split()))
c1 = 0
a0 = a[0]
if a0 == 0:
a[0] = 1
c1 += 1
sum = a[0]
for i in range(1, n):
if np.sign(sum) == -np.sign(sum + a[i]):
sum += a[i]
else:
if sum > 0:
c1 += sum + a[i] + 1
sum = -1
else:
c1 += -sum - a[i] + 1
sum = 1
c2 = 0
if a0 == 0:
a[0] = -1
c2 += 1
else:
c2 += a[0] + 1
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
sum = a[0]
for i in range(1, n):
if np.sign(sum) == -np.sign(sum + a[i]):
sum += a[i]
else:
if sum > 0:
c2 += sum + a[i] + 1
sum = -1
else:
c2 += -sum - a[i] + 1
sum = 1
print(min(c1, c2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
void chmin(T &a, T b) {
if (a > b) a = b;
}
template <typename T>
void chmax(T &a, T b) {
if (a < b) a = b;
}
int in() {
int x;
scanf("%d", &x);
return x;
}
long long lin() {
long long x;
scanf("%lld", &x);
return x;
}
int main() {
int n;
cin >> n;
vector<long long> a(n);
long long ans = 0, ans1 = 0, ans2 = 0, acum = 0;
for (int i = 0; i < n; ++i) cin >> a[i];
acum = a[0];
if (a[0] <= 0) {
acum = 1;
ans1 += 1 - a[0];
}
for (int i = 1; i <= n - 1; ++i) {
if (i % 2 == 0) {
if (acum + a[i] > 0) {
acum += a[i];
} else {
ans1 += 1 - (acum + a[i]);
acum = 1;
}
} else {
if (acum + a[i] < 0) {
acum += a[i];
} else {
ans1 += 1 + (acum + a[i]);
acum = -1;
}
}
}
acum = a[0];
if (a[0] >= 0) {
acum = -1;
ans2 += -1 - a[0];
}
for (int i = 1; i <= n - 1; ++i) {
if (i % 2 == 1) {
if (acum + a[i] > 0) {
acum += a[i];
} else {
ans2 += 1 - (acum + a[i]);
acum = 1;
}
} else {
if (acum + a[i] < 0) {
acum += a[i];
} else {
ans2 += 1 + (acum + a[i]);
acum = -1;
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(NULL);
ios::sync_with_stdio(0);
int n;
cin >> n;
int arr[100010], pos = -1;
long suma = 0, sumaAux = -1;
memset(arr, 0, sizeof arr);
for (int i = 0; i < n; i++) {
long aux;
cin >> aux;
arr[i] = aux;
if (suma < 0) {
suma += aux;
if (suma < 0) {
if (pos == -1) {
pos = i;
sumaAux = suma;
sumaAux -= aux;
}
}
} else if (suma > 0) {
suma += aux;
if (suma > 0) {
if (pos == -1) {
pos = i;
sumaAux = suma;
sumaAux -= aux;
}
}
}
if (suma == 0 && pos == -1 && i != 0) {
pos = i;
sumaAux = 0;
}
if (i == 0) {
suma += aux;
}
}
if (pos == -1) {
cout << 0 << '\n';
return 0;
}
long cont = 0;
for (int i = pos; i < n; i++) {
if (sumaAux < 0) {
long valAux = abs(sumaAux) + 1;
cont += valAux - arr[i];
sumaAux = 1;
} else if (sumaAux > 0) {
long valAux = -1 - sumaAux;
cont += abs(valAux - arr[i]);
sumaAux = -1;
}
}
cout << cont << '\n';
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mod = 1000000007;
const long long INF = 1000000000000000000;
const int MOD = 998244353;
long long A[200010];
int main() {
int N;
cin >> N;
for (int i = 0; i < N; i++) cin >> A[i];
long long ans = mod, cnt = 0;
int turn = 1;
long long num = 0;
for (int i = 0; i < N; i++) {
num += A[i];
if (num * turn <= 0) {
cnt += abs(num - turn);
num = turn;
}
turn *= -1;
}
ans = min(ans, cnt);
num = 0;
cnt = 0;
turn = -1;
for (int i = 0; i < N; i++) {
num += A[i];
if (num * turn <= 0) {
cnt += abs(num - turn);
num = turn;
}
turn *= -1;
}
cout << min(ans, cnt) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
i = 0
sum_before = 0
sum_after = 0
count = 0
while i < n:
sum_after = sum_before + a[i]
if sum_after * sum_before > 0 or sum_after == 0:
count += 1
if sum_after < 0:
a[i] += 1
elif sum_after > 0:
a[i] -= 1
elif sum_before < 0:
a[i] += 1
else:
a[i] -= 1
else:
i += 1
sum_before = sum_after
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1000000007;
const long long INF = -10000000000;
long long maxx(long long x, long long y, long long z) {
return max(max(x, y), z);
}
long long minn(long long x, long long y, long long z) {
return min(min(x, y), z);
}
long long gcd(long long x, long long y) {
if (x % y == 0)
return y;
else
return gcd(y, x % y);
}
long long lcm(long long x, long long y) { return x * (y / gcd(x, y)); }
int main() {
long long N;
cin >> N;
vector<long long> A(N);
for (long long i = 0; i < N; i++) cin >> A[i];
long long cnt = 0, ans;
long long sum = A[0];
for (long long i = 1; i <= N - 1; i++) {
if (abs(sum * 2 + A[i]) < abs(sum) + abs(sum + A[i]))
sum += A[i];
else {
if (sum < 0) {
cnt += abs((-1) * (sum - 1 + A[i]));
sum = 1;
} else {
cnt += abs((-1) * (sum + 1 + A[i]));
sum = -1;
}
}
}
ans = cnt;
cnt = 2 * abs(A[0]);
sum = (-1) * A[0];
for (long long i = 1; i <= N - 1; i++) {
if (abs(sum * 2 + A[i]) < abs(sum) + abs(sum + A[i]))
sum += A[i];
else {
if (sum < 0) {
cnt += abs((-1) * (sum - 1 + A[i]));
sum = 1;
} else {
cnt += abs((-1) * (sum + 1 + A[i]));
sum = -1;
}
}
}
cout << min(ans, cnt);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using itn = int;
using ld = long double;
template <class T>
using vec = vector<T>;
int main() {
int n;
cin >> n;
vec<int> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
int ans = 0;
vec<int> s(n, 0);
int ii = 0;
while (true) {
s[ii] = a[ii];
if (s[ii] != 0) break;
++ii;
}
for (int i = ((int)(ii + 1)); i < ((int)(n)); i++) {
s[i] = a[i] + s[i - 1];
if (s[i] * s[i - 1] > 0) {
if (s[i] < 0) {
ans += 1 - s[i];
s[i] = 1;
} else if (s[i] > 0) {
ans += s[i] + 1;
s[i] = -1;
}
} else if (s[i] == 0) {
if (s[i - 1] < 0) {
++ans;
s[i] = 1;
} else if (s[i - 1] > 0) {
++ans;
s[i] = -1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
import sys
input = sys.stdin.readline
N = int(input())
a = list(map(int, input().split()))
ans1, ans2 = 0, 0
f = a[0]
if f == 0:
f = 1
ans1 += 1
for i in range(1, N):
if f * (f + a[i]) < 0:
f += a[i]
continue
ans1 += abs(f + a[i]) + 1
if f > 0:
f = -1
else:
f = 1
f = -a[0]
if f == 0:
f = -1
ans2 += 1
for i in range(1, N):
if f * (f + a[i]) < 0:
f += a[i]
continue
ans2 += abs(f + a[i]) + 1
if f > 0:
f = -1
else:
f = 1
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
count0 = 0
memo = 0
for i in range(n):
if i % 2 == 0:
if a[i] <= 0:
count0 += 1 - a[i]
memo = 1 - a[i]
else:
if a[i] >= 0:
count0 += a[i] + 1
memo = -(a[i] + 1)
if i + 1 < n:
a[i+1] = a[i+1] + a[i] + memo
count1 = 0
memo = 0
for i in range(n):
if i % 2 == 0:
if a[i] >= 0:
count1 += a[i] + 1
memo = -(a[i] + 1)
else:
if a[i] <= 0:
count1 += 1 - a[i]
memo = 1 - a[i]
if i + 1 < n:
a[i+1] = a[i+1] + a[i] + memo
print(min(count0, count1)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define leading zero str.erase(0, min(str.find_first_not_of('0'), str.size()-1));
using namespace __gnu_pbds;
using namespace std;
typedef long long int ll;
typedef pair<int, int> pii;
typedef tree<ll, null_type, less<ll>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
string text="abcdefghijklmnopqrstuvwxyz";
const int maxn=1e6+7;
// .--------------.
// | Try First One|
// '--------------'
// | .--------------.
// | | |
// V V |
// .--------------. |
// | AC. |<---. |
// '--------------' | |
// (True)| |(False) | |
// .--------' | | |
// | V | |
// | .--------------. | |
// | | Try Again |----' |
// | '--------------' |
// | |
// | .--------------. |
// '->| Try Next One |-------'
// '--------------'
ll bin_pow(ll a,ll b,ll m)
{
ll res=1;
a%=m;
while(b>0)
{
if(b&1)
res=res*a%m;
b>>=1;
a=a*a%m;
}
return res;
}
bool miller_rabin(ll d,ll n)
{
ll a=2+rand()%(n-4);
ll x=bin_pow(a,d,n);
if(x==1 || x==n-1)
return true;
while(d!=n-1)
{
x=(x*x)%n;
d*=2;
if(x==1)
return false;
if(x==n-1)
return true;
}
return false;
}
bool prime(ll n,ll k)
{
if(n==1 || n==4)
return false;
if(n<=3)
return true;
ll d=n-1;
while(d%2==0)
d/=2;
for(int i=0; i<k; i++)
{
if(!miller_rabin(d,n))
return false;
}
return true;
}
int n;
string s;
ll ans = 0;
void solve(ll x,ll y){
if(x==n+1){
ans += y;
return;
}
ll cur = 0;
for(ll i=x;i<=n;i++){
cur = (10*cur) + (s[i]-'0');
solve(i+1,y+cur);
}
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
ll n;
cin>>n;
ll a[n+2];
for(int i=0;i<n;i++)cin>>a[i];
ll sum=0;
ll cnt=0;
ll ans=1<<18;
for(int i=0;i<n;i++){
sum+=a[i];
if(i%2==0){
if(sum<=0){
cnt+=abs(sum)+1;
sum=1;
}
}
else{
if(sum>=0){
cnt+=abs(sum)+1;
sum=-1;
}
}
}
ans=min(cnt,ans);
//cout<<ans<<endl;
sum=0;
cnt=0;
for(int i=0;i<n;i++){
sum+=a[i];
if(i%2==0){
if(sum>=0){
cnt+=abs(sum)+1;
sum=-1;
}
}
else{
if(sum<=0){
cnt+=abs(sum)+1;
sum=1;
}
}
}
cout<<min(ans,cnt)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int count1 = 0;
int count2 = 0;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = 0;
if (a[0] >= 0) {
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
while (sum >= 0) {
sum--;
count1++;
}
} else {
while (sum <= 0) {
sum++;
count1++;
}
}
}
} else {
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
while (sum >= 0) {
sum--;
count1++;
}
} else {
while (sum <= 0) {
sum++;
count1++;
}
}
}
}
if (a[0] >= 0) {
while (a[0] >= 0) {
a[0]--;
count2++;
}
} else {
while (a[0] <= 0) {
a[0]++;
count2++;
}
}
sum = a[0];
if (a[0] >= 0) {
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
while (sum >= 0) {
sum--;
count2++;
}
} else {
while (sum <= 0) {
sum++;
count2++;
}
}
}
} else {
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
while (sum >= 0) {
sum--;
count2++;
}
} else {
while (sum <= 0) {
sum++;
count2++;
}
}
}
}
cout << count1 << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long LINF = 1LL << 60;
const int INF = 1 << 30;
int main() {
long long n, l;
cin >> n;
vector<long long> a(n);
cin >> a[0];
for (long long i = 1; i < n; i++) {
cin >> l;
a[i] = a[i - 1] + l;
}
long long tmp = 0;
long long count = 0;
for (long long i = 0; i < n - 1; i++) {
if (i == 0 && a[i] != 1) {
count += abs(a[i] - 1);
tmp -= a[i] - 1;
}
if ((a[i] + tmp) * (a[i + 1] + tmp) >= 0) {
if ((a[i + 1] + tmp) <= 0) {
count += abs(a[i + 1] + tmp - 1);
tmp -= (a[i + 1] + tmp - 1);
} else {
count += abs(a[i] + tmp + 1);
tmp -= (a[i] + tmp + 1);
}
}
}
if (a[n - 1] + tmp == 0) {
count++;
}
long long ans = count;
count = 0;
long long tmp2 = 0;
for (long long i = 0; i < n - 1; i++) {
if (i == 0 && a[i] != -1) {
count += abs(a[i] + 1);
tmp2 -= a[i] + 1;
}
if ((a[i] + tmp2) * (a[i + 1] + tmp2) >= 0) {
if ((a[i + 1] + tmp2) <= 0) {
count += abs(a[i + 1] + tmp2 - 1);
tmp2 -= (a[i + 1] + tmp2 - 1);
} else {
count += abs(a[i] + tmp2 + 1);
tmp2 -= (a[i] + tmp2 + 1);
}
}
}
if (a[n - 1] + tmp2 == 0) {
count++;
}
cout << min(ans, count) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
temp=a[0]
for i in range(n - 1):
if temp > 0:
temp+=a[i+1]
if temp < 0:
pass
else:
ans += (temp + 1)
temp -= (temp+1)
else:
temp+=a[i+1]
if temp > 0:
pass
else:
ans += (temp + 1)
temp += (temp + 1)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long ans = 0;
for (int i = 1; i < n; i++) {
long long sum2 = sum + a[i];
if (sum > 0 && sum2 > 0) {
ans += sum2 + 1;
sum = -1;
} else if (sum < 0 && sum2 < 0) {
ans += -sum2 + 1;
sum = 1;
} else if (sum2 == 0) {
ans++;
if (sum < 0)
sum = 1;
else
sum = -1;
} else
sum = sum2;
}
sum = -1 * a[0] / abs(a[0]);
long long ans2 = a[0] + 1;
for (int i = 1; i < n; i++) {
long long sum2 = sum + a[i];
if (sum > 0 && sum2 > 0) {
ans2 += sum2 + 1;
sum = -1;
} else if (sum < 0 && sum2 < 0) {
ans2 += -sum2 + 1;
sum = 1;
} else if (sum2 == 0) {
ans2++;
if (sum < 0)
sum = 1;
else
sum = -1;
} else
sum = sum2;
}
cout << ans2;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
static const long long MOD_NUM = 1000000007;
template <class _T>
static void getint(_T& a) {
std::cin >> a;
}
template <class _T>
static void getint(_T& a, _T& b) {
std::cin >> a >> b;
}
template <class _T>
static void getint(_T& a, _T& b, _T& c) {
std::cin >> a >> b >> c;
}
template <class _T>
static _T tp_abs(_T a) {
if (a < (_T)0) {
a *= (_T)-1;
}
return a;
}
static void exec();
int main() {
exec();
fflush(stdout);
return 0;
}
static void exec() {
int N;
getint(N);
std::vector<long long> ai(N);
for (int i = 0; i < N; i++) {
getint(ai[i]);
}
long long ans[2] = {0};
for (int k = 0; k < 2; k++) {
long long sum = ai[0];
if (k == 0) {
if (sum <= 0) {
ans[k] += (tp_abs(sum) + 1);
sum = 1;
}
} else {
if (sum >= 0) {
ans[k] += (tp_abs(sum) + 1);
sum = -1;
}
}
for (int i = 1; i < N; i++) {
int bfrSign = (sum > 0) ? 1 : -1;
sum += ai[i];
if ((bfrSign > 0) && (sum >= 0)) {
ans[k] += (tp_abs(sum) + 1);
sum = -1;
} else if ((bfrSign < 0) && (sum <= 0)) {
ans[k] += (tp_abs(sum) + 1);
sum = 1;
}
}
}
printf("%lld\n", std::max(ans[0], ans[1]));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INFF = 0x3f3f3f3f3f3f3f3f;
long long a[1000010];
int n;
unsigned long long solve() {
unsigned long long sum = 0;
long long oo = 0, flag;
if (a[0] > 0)
flag = -1;
else if (a[0] < 0)
flag = 1;
for (int i = 0; i < n; i++) {
oo += a[i];
if (flag == 1) {
if (oo >= 0) {
sum += oo + 1;
oo = -1;
}
}
if (flag == -1) {
if (oo <= 0) {
sum += 0 - oo + 1;
oo = 1;
}
}
flag = -flag;
}
return sum;
}
int main() {
while (scanf("%d", &n) != EOF) {
unsigned long long sum = INFF;
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
if (a[0] == 0) {
a[0] = 1;
unsigned long long sum1 = solve();
a[0] = -1;
unsigned long long sum2 = solve();
sum = min(sum, min(sum1, sum2)) + 1;
} else {
a[0] = 1;
unsigned long long sum1 = solve() + abs(a[0] - 1);
a[0] = -1;
unsigned long long sum2 = solve() + abs(a[0] + 1);
sum = min(sum, min(sum1, sum2));
}
printf("%lld\n", sum);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n, ans = 0;
scanf("%d", &n);
int a[n], sum[n];
scanf("%d", &a[0]);
sum[0] = a[0];
for (int i = 1; i < n; i++) {
scanf("%d", &a[i]);
sum[i] = a[i] + sum[i - 1];
if (sum[i - 1] < 0) {
if (sum[i] == 0) {
sum[i]++;
ans++;
} else if (sum[i] < 0) {
ans += (abs(sum[i]) + 1);
sum[i] += (abs(sum[i]) + 1);
}
} else {
if (sum[i] == 0) {
sum[i]--;
ans++;
} else if (sum[i] > 0) {
ans += (abs(sum[i]) + 1);
sum[i] -= (abs(sum[i]) + 1);
}
}
}
printf("%d\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1e15;
signed main() {
long long N;
cin >> N;
long long pcost = 0;
long long mcost = 0;
vector<long long> vec(N);
for (long long i = (0); i < (N); ++i) cin >> vec[i];
vector<long long> S(N, 0);
vector<long long> Sc(N, 0);
S[0] = vec[0];
for (long long i = (0); i < (N - 1); ++i) S[i + 1] = S[i] + vec[i + 1];
Sc = S;
for (long long i = (0); i < (N); ++i) {
if (i % 2 == 0 && S[i] <= 0) {
long long d = 1 - S[i];
pcost += d;
for (long long j = i; j <= N - 1; j++) {
S[j] += d;
}
continue;
}
if (i % 2 == 1 && S[i] >= 0) {
long long d = S[i] + 1;
pcost += d;
for (long long j = i; j <= N - 1; j++) {
S[j] -= d;
}
continue;
}
if (i % 2 == 0 && Sc[i] >= 0) {
long long d = 1 + Sc[i];
mcost += d;
for (long long j = i; j <= N - 1; j++) {
Sc[j] -= d;
}
continue;
}
if (i % 2 == 1 && Sc[i] <= 0) {
long long d = 1 - Sc[i];
mcost += d;
for (long long j = i; j <= N - 1; j++) {
Sc[j] += d;
}
continue;
}
}
cout << min(mcost, pcost) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int ans;
int t;
cin >> t;
int sum = t;
for (int i = 0; i < n - 1; i++) {
cin >> t;
if (sum == 0) {
if (t > 0) {
ans++;
sum -= 1;
} else {
ans++;
sum += 1;
}
}
if (sum > 0) {
if (sum + t > 0) {
ans += (sum + t + 1);
t -= (sum + t + 1);
} else if (sum + t == 0) {
ans++;
t -= 1;
}
} else if (sum < 0) {
if (sum + t < 0) {
ans += abs(sum + t + 1);
t += abs(sum + t + 1);
} else if (sum + t == 0) {
ans++;
t += 1;
}
}
sum += t;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
struct aaa {
aaa() {
cin.tie(0);
ios::sync_with_stdio(0);
cout << fixed << setprecision(20);
};
} aaaaaaa;
int MOD = 1e9 + 7;
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int lcm(int a, int b) { return (a * b) / gcd(a, b); }
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
int N;
int main() {
cin >> N;
vector<int> a(N);
for (int i = 0; i < (N); ++i) cin >> a[i];
long ans = 0, sum = 0;
if (a[0] != 0)
sum = a[0];
else if (a[1] > 0)
sum = -1, ans++;
else
sum = 1, ans++;
for (int i = 1; i <= (N - 1); ++i) {
if ((sum + a[i]) * sum >= 0) {
int k = a[i];
if (sum > 0)
a[i] = -sum - 1;
else
a[i] = -sum + 1;
ans += abs(k - a[i]);
}
sum += a[i];
}
cout << ans << '\n';
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, const char* argv[]) {
int n;
cin >> n;
int a[100010];
for (int i = 0; i < n; ++i) cin >> a[i];
long long int res = 0;
bool plus = false;
long long int sum = a[0];
if (a[0] > 0)
plus = true;
else if (a[0] < 0)
plus = false;
int j = 1;
while (sum == 0) {
if (a[j] > 0) {
++res;
sum = (j % 2 == 0) ? 1 : -1;
plus = (j % 2 == 0) ? true : false;
} else if (a[j] < 0) {
++res;
sum = (j % 2 == 0) ? -1 : 1;
plus = (j % 2 == 0) ? false : true;
}
++j;
if (j == n) {
cout << 1 + 2 * (n - 1) << endl;
return 0;
}
}
for (int i = 0; i < n - 1; ++i) {
if (sum + a[i + 1] > 0) {
if (plus == true) {
res += sum + a[i + 1] + 1;
sum = -1;
plus = false;
} else {
sum += a[i + 1];
plus = true;
}
} else if (sum + a[i + 1] < 0) {
if (plus == false) {
res += -(sum + a[i + 1] - 1);
sum = 1;
plus = true;
} else {
sum += a[i + 1];
plus = false;
}
} else if (sum + a[i + 1] == 0) {
if (plus == true) {
++res;
sum = -1;
plus = false;
} else {
++res;
sum = 1;
plus = true;
}
}
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n;
cin >> n;
long long int cnt;
long long int x;
long long int ans = 0;
cin >> cnt;
if (cnt == 0) {
cnt++;
ans++;
}
for (int i = 1; i < n; i++) {
cin >> x;
if (cnt < 0) {
if (0 < cnt + x) {
cnt += x;
} else {
ans += 1 - (cnt + x);
cnt = 1;
}
} else if (0 < cnt) {
if (cnt + x < 0) {
cnt += x;
} else {
ans += (cnt + x) + 1;
cnt = -1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
void showvector(vector<T> v) {
for (T x : v) cout << x << " ";
cout << "\n";
}
template <typename T>
void showvector1(vector<T> v) {
long long int n = v.size();
for (long long int i = 1; i <= n - 1; i++) cout << v[i] << "\n";
}
template <typename T>
void showset(set<T> s) {
for (T x : s) cout << x << " ";
cout << "\n";
}
template <class T>
void showvectorpair(vector<T> v) {
for (auto it = v.begin(); it != v.end(); it++)
cout << it->first << " " << it->second << "\n";
cout << "\n";
}
template <typename T, typename P>
void showmap(map<T, P> m) {
for (auto it = m.begin(); it != m.end(); it++)
cout << it->first << " " << it->second << "\n";
cout << "\n";
}
template <typename T>
bool comp(T a, T b) {
return (a > b);
}
template <class T>
bool comppair(T a, T b) {
if (a.first == b.first) return (a.second > b.second);
return (a.first > b.first);
}
bool sameparity(long long int a, long long int b) { return (a % 2 == b % 2); }
bool difparity(long long int a, long long int b) { return !(a % 2 == b % 2); }
bool isprime(long long int x) {
if (x <= 1) return false;
for (long long int i = 2; i <= sqrt(x); i++) {
if (x % i == 0) return false;
}
return true;
}
bool iseven(long long int x) { return !(x % 2); }
bool isodd(long long int x) { return (x % 2); }
void vfun() {
long long int n, k;
cin >> n;
vector<long long int> v(n);
for (long long int i = 0; i < n; i++) cin >> v[i];
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long int test = 1;
while (test--) {
long long int n;
cin >> n;
vector<long long int> v(n);
for (long long int i = 0; i < n; i++) cin >> v[i];
long long int sum = v[0], psum = v[0], cnt = 0;
for (long long int i = 1; i <= n - 1; i++) {
sum += v[i];
if (psum > 0) {
if (sum >= 0) {
cnt += (sum + 1);
sum = -1;
}
} else {
if (sum <= 0) {
cnt += (abs(sum) + 1);
sum = 1;
}
}
psum = sum;
}
long long int dcnt = abs(v[0]) + 1;
if (v[0] > 0)
sum = psum = -1;
else if (v[0] < 0)
sum = psum = 1;
for (long long int i = 1; i <= n - 1; i++) {
sum += v[i];
if (psum > 0) {
if (sum >= 0) {
dcnt += (sum + 1);
sum = -1;
}
} else {
if (sum <= 0) {
dcnt += (abs(sum) + 1);
sum = 1;
}
}
psum = sum;
}
cout << min(dcnt, cnt) << "\n";
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long N;
cin >> N;
vector<long long> a(N), S(N + 7);
for (int i = 0; i < N; i++) {
cin >> a[i];
}
long long ans = 0;
S[0] = a[0];
if (S[0] == 0) {
for (int i = 0; i < N; i++) {
if (a[i] > 0) {
if (i % 2 == 0) {
S[0] = 1;
ans++;
break;
} else {
S[0] = -1;
ans++;
break;
}
} else if (a[i] < 0) {
if (i % 2 == 0) {
S[0] = -1;
ans++;
break;
} else {
S[0] = 1;
ans++;
break;
}
} else if (i == N - 1 && a[i] == 0) {
ans = (2 * N) - 1;
cout << ans << endl;
return 0;
}
}
}
for (int i = 1; i < N; i++) {
S[i] = S[i - 1] + a[i];
}
for (int i = 1; i < N; i++) {
if (S[i - 1] > 0 && S[i] >= 0) {
ans += abs(S[i]) + 1;
S[i] = -1;
if (i != N - 1) {
S[i + 1] = S[i] + a[i + 1];
}
} else if (S[i - 1] < 0 && S[i] <= 0) {
ans += abs(S[i]) + 1;
S[i] = 1;
if (i != N - 1) {
S[i + 1] = S[i] + a[i + 1];
}
}
if (i != N - 1) {
S[i + 1] = S[i] + a[i + 1];
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 999999999;
const int MOD = (int)1e9 + 7;
const int EPS = 1e-9;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n, a;
cin >> n;
vector<int> A;
for (int i = (0); i < (n); ++i) {
cin >> a;
A.push_back(a);
}
int mn = INF;
for (int i = (0); i < (2); ++i) {
int ans = 0;
int sum = A[0];
if (i == 1) {
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else {
ans += (-sum + 1);
sum = 1;
}
}
for (int i = (1); i < (n); ++i) {
a = A[i];
if (sum > 0) {
sum += a;
if (sum >= 0) {
ans += (sum + 1);
sum = -1;
}
} else {
sum += a;
if (sum <= 0) {
ans += (-sum + 1);
sum = 1;
}
}
}
mn = min(mn, ans);
}
cout << mn << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
l = len(a)
b = [int(-a[0]/ abs(a[0]))]
for i in range(1, l):
b.append(a[i])
ans = 0
summary = a[0]
if(summary == 0):
if(a[1] > 0):
summary = -1
ans+= 1
else:
summary = 1
ans+= 1
for i in range(1, l):
if(summary* (summary+ a[i])>= 0):
if(summary > 0):
ans+= a[i]+ summary+ 1
a[i] = -summary- 1
summary= -1
else:
ans+= -summary+ 1- a[i]
a[i] = -summary+ 1
summary= 1
else:
summary+= a[i]
Ans = 0
Summary = b[0]
if(Summary == 0):
if(b[1] > 0):
Summary = -1
Ans+= 1
else:
Summary = 1
Ans+= 1
for i in range(1, l):
if(Summary* (Summary+ b[i])>= 0):
if(Summary > 0):
Ans+= b[i]+ Summary+ 1
b[i] = -Summary- 1
Summary= -1
else:
Ans+= -Summary+ 1- b[i]
b[i] = -Summary+ 1
Summary= 1
else:
Summary+= b[i]
print(min(ans, Ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
int a[] = new int[N];
for(int i=0; i<N; i++){
a[i] = sc.nextInt();
}
sc.close();
int count = 0;
int sum = a[0];
if(sum==0){
if(a[1]>0){
sum=-1;
}else{
sum=1;
}
count++;
}
for(int i=1; i<N; i++){
int diff = checkSum(sum, sum+a[i]);
count += Math.abs(diff);
sum = sum+a[i]+diff;
}
System.out.println(count);
}
private static int checkSum(int a, int b){
if ( a>0 && b>=0){
return -(b+1);
}else if( a<0 && b<=0){
return -(b-1);
}else{
return 0;
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def resolve(L):
# L[0]!=0を起点とする
cnt = 0
s = L[0]
for i in range(1,len(L)):
a = L[i]
if(s>0 and s+a>=0):
L[i] = -s-1
cnt += (s+a+1)
s = -1
elif(s<0 and s+a<=0):
L[i] = -s+1
cnt += (-s-a+1)
s = 1
else:
s += a
return cnt
def ans(L):
a = L[0]
c0,c1=0,0
if (a>0):
c0 = resolve(L)
c1 = (a+1) + resolve([-1]+L[1:])
elif (a<0):
c0 = resolve(L)
c1 = (-a+1) + resolve([1]+L[1:])
else:
c0 = 1 + resolve([1]+L[1:])
c1 = 1 + resolve([-1]+L[1:])
return(min(c0,c1))
N = int(input())
L = [int(x) for x in input().split(' ')]
print(ans(L)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import java.util.*
fun main(args: Array<String>) {
val sc = Scanner(System.`in`)
val n = sc.nextInt()
val a = (0 until n).map { sc.next().toLong() }
println(problem059c(n, a))
}
fun problem059c(n: Int, a: List<Long>): Long {
val count1 = compute(n, a)
// val a = a.toMutableList()
// var a0 = a[0]
// var count = 0L
// if (a0 > 0) {
// val tmp = a0 + 1
// a[0] = a0 - tmp
// count += tmp
// } else {
// val tmp = a0 - 1
// a[0] = a0 - tmp
// count -= tmp
// }
// val count2 = compute(n, a) + count
return count1
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) {
try {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
StringTokenizer str = new StringTokenizer(br.readLine(), " ");
int sum = Integer.parseInt(str.nextToken());
int flg;
int count = 0;
if( sum > 0) flg = 1;
else flg = -1;
for(int i = 0; i < n-1; i++){
int tmp = 0;
sum += Integer.parseInt(str.nextToken());
//System.out.print(sum+" ");
if(flg == 1){ //次は負
//System.out.print(sum+" ");
if(sum >= 0){
//System.out.print(sum+" ");
tmp += (sum + 1);
sum = -1;
}
flg = -1;
}
else{ //次は正
if(sum <= 0){
//System.out.print(sum+" ");
tmp += 1+ (-sum);
sum = 1;
}
flg = 1;
}
//System.out.print(tmp+" ");
count += tmp;
}
System.out.println(count);
} catch (IOException e) {
System.out.println("error");
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import std.stdio, std.conv, std.algorithm, std.range, std.array, std.string, std.uni, std.bigint, std.math;
void main() {
auto n = readln.chomp.to!uint;
auto an = readln.split.to!(int[]);
min(func(an, 0), func(an, 1)).writeln;
}
uint func(int[] an, uint mod) {
auto sum = 0;
auto res = 0;
foreach(i,a; an) {
sum += a;
if (i % 2 == mod && sum <= 0) {
res += 1 - sum;
sum = 1;
}
if (i % 2 != mod && sum >= 0) {
res += 1 + sum;
sum = -1;
}
}
return res;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool dif(int a, int b) {
if (a < 0 && b > 0) return true;
if (a > 0 && b < 0) return true;
return false;
}
long long int odd(vector<int> v, vector<int> &w) {
long long int ans = 0;
if (v[0] <= 0)
while (++v[0] != 1)
;
int sum = v[0];
ans = abs(v[0] - w[0]);
for (int i = 1; i < v.size(); i++) {
if (dif(sum, sum + v[i])) {
sum += v[i];
} else {
if (sum > 0) {
while (sum + --v[i] >= 0)
;
} else if (sum < 0) {
while (sum + ++v[i] <= 0)
;
}
sum += v[i];
}
ans += abs(v[i] - w[i]);
}
return ans;
}
long long int even(vector<int> v, vector<int> &w) {
long long int ans = 0;
if (v[0] >= 0)
while (--v[0] != -1)
;
int sum = v[0];
ans = abs(v[0] - w[0]);
for (int i = 1; i < v.size(); i++) {
if (dif(sum, sum + v[i])) {
sum += v[i];
} else {
if (sum > 0) {
while (sum + --v[i] >= 0)
;
} else if (sum < 0) {
while (sum + ++v[i] <= 0)
;
}
sum += v[i];
}
ans += abs(v[i] - w[i]);
}
return ans;
}
int main() {
int n;
cin >> n;
vector<int> v(n), cpy;
for (int &i : v) cin >> i;
cpy = v;
long long int ans = min(odd(v, cpy), even(v, cpy));
cout << ans;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long Sum(vector<long long>& a, int index) {
long long s = 0;
for (int i = 0; i <= index; i++) {
s += a[i];
}
return s;
}
int main(int argc, char* argv[]) {
int n;
cin >> n;
vector<long long> a(n, 0);
vector<long long> s(n, 0);
int i;
for (i = 0; i < n; i++) {
cin >> a[i];
}
s[0] = Sum(a, 0);
long long aw = 0;
for (i = 1; i < n; i++) {
s[i] = Sum(a, i);
if (s[i - 1] > 0) {
if (s[i] < 0) {
continue;
} else {
aw += abs(s[i - 1] + a[i] + 1);
a[i] = -1 - s[i - 1];
s[i] = Sum(a, i);
}
} else {
if (s[i] > 0) {
continue;
} else {
aw += abs(s[i - 1] + a[i] - 1);
a[i] = 1 - s[i - 1];
s[i] = Sum(a, i);
}
}
}
cout << aw << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> vector;
long long temp;
for(int i=0; i<n; i++) {
cin >> temp;
vector.push_back(temp);
}
long long answer1=0;
long long answer2=0;
long long sum1=0;
long long sum2=0;
for(int i=0; i<n; i++) {
if(i == 0) {
if(vector[0] > 0)
sum1 = vector[0]; //初項
else {
sum1 = 1;
answer += abs(1-vector[0]);
}
}
else if(sum1 < 0) {
if(sum1 + vector[i] > 0){ //和の符号がデフォルトで異なるとき
// answer -> そのまま
sum1 += vector[i];
}
else {
answer1 += abs((-1)*sum1+1 - vector[i]); // vector[i] -> -sum1+1 までincrimentすると和は1
sum1 = 1;
}
}
else {
if(sum1 + vector[i] < 0) {
//answer->そのまま
sum1 += vector[i];
}
else {
answer1 += abs((-1)*sum1-1 - vector[i]); // vector[i] -> -sum1-1 までincrimentすると和は-1
sum1 = -1;
}
}
}
for(int i=0; i<n; i++) {
if(i==0) {
if(vector[0] > 0) {
sum2 = -1;
answer2 += abs(-1-vector[0]);
}
else {
sum2 = vector[0];
}
}
else if(sum2 < 0) {
if(sum2 + vector[i] > 0){ //和の符号がデフォルトで異なるとき
// answer-> そのまま
sum2 += vector[i];
}
else {
answer2 += abs((-1)*sum2+1 - vector[i]); // vector[i] -> -sum1+1 までincrimentすると和は1
sum2 = 1;
}
}
else {
if(sum2 + vector[i] < 0) {
//answer->そのまま
sum2 += vector[i];
}
else {
answer2 += abs((-1)*sum2-1 - vector[i]); // vector[i] -> -sum1-1 までincrimentすると和は-1
sum2 = -1;
}
}
}
cout << min(answer1,answer2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
using namespace std;
int main(){
int N;
cin >> N;
vector<long long int> A(N);
long long int s = 0LL
vector<long long int> V(N);
for(int i = 0; i < N; i++){
cin >> A[i];
s += A[i];
V[i] = s;
}
//先手が+のパターン(i % 2 == 0のとき 1)
long long int tmp1 = 0LL;
for(int i = 0; i < N-1; i++){
if(i % 2 == 0){
if(V[i] > 0) continue;
else{
tmp1 += 1LL - V[i];
V[i] = 1LL;
V[i + 1] = 1LL + A[i+1];
}
}else{
if(V[i] < 0) continue;
else{
tmp1 += -1LL - V[i];
V[i] = -1LL;
V[i + 1] = -1LL + A[i+1];
}
}
}
for(int i = 0; i < N-1; i++){
if(i % 2 == 1){
if(V[i] > 0) continue;
else{
tmp2 += 1LL - V[i];
V[i] = 1LL;
V[i + 1] = 1LL + A[i+1];
}
}else{
if(V[i] < 0) continue;
else{
tmp2 += -1LL - V[i];
V[i] = -1LL;
V[i + 1] = -1LL + A[i+1];
}
}
}
cout << min(tmp1, tmp2);
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
dummyn = int(input())
a = list(map(int, input().split()))
b_np = np.array([sum(a[:i+1]) for i in range(len(a))])
ans = 0
for i in range(len(b_np)-1):
if b_np[i] * b_np[i+1] >= 0 and b_np[i] <= 0 and b_np[i] <= b_np[i+1]:
ans += (1 - b_np[i+1])
b_np[i+1:] += (1 - b_np[i+1])
elif b_np[i] * b_np[i+1] >= 0 and b_np[i] < 0 and b_np[i] > b_np[i+1]:
ans += (1 - b_np[i])
b_np[i:] += (1 - b_np[i])
elif b_np[i] * b_np[i+1] >= 0 and b_np[i] >= 0 and b_np[i] >= b_np[i+1]:
ans += (b_np[i+1] + 1)
b_np[i+1:] -= (b_np[i+1] + 1)
elif b_np[i] * b_np[i+1] >= 0 and b_np[i] > 0 and b_np[i] < b_np[i+1]:
ans += (b_np[i] + 1)
b_np[i:] -= (b_np[i] + 1)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; ++i) cin >> a.at(i);
int cnt = 0, cnt2 = 0, sum = a.at(0);
if (a.at(0) >= 0)
for (int i = 1; i < n; i++) {
if (i % 2 == 1) {
while (a.at(i) >= 0 || sum + a.at(i) >= 0) {
cnt++;
a.at(i)--;
}
sum += a.at(i);
} else {
while (a.at(i) < 0 || sum + a.at(i) <= 0) {
cnt++;
a.at(i)++;
}
sum += a.at(i);
}
}
else {
for (int i = 1; i < n; i++) {
if (i % 2 == 1) {
while (a.at(i) < 0 || sum + a.at(i) <= 0) {
cnt++;
a.at(i)++;
}
sum += a.at(i);
} else {
while (a.at(i) >= 0 || sum + a.at(i) >= 0) {
cnt++;
a.at(i)--;
}
sum += a.at(i);
}
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long num_operate(long n, long sum, long* a) {
long j;
for (long i = 1; i < n; i++) {
if (sum * (sum + a[i]) < 0)
sum += a[i];
else {
j += abs(sum + a[i]) + 1;
if (sum < 0)
sum = 1;
else if (sum > 0)
sum = -1;
}
}
return j;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
long n;
cin >> n;
vector<long> a(n);
for (long i = 0; i < n; i++) cin >> a[i];
long sum = a[0];
if (sum == 0) {
long cnt1 = num_operate(n, 1, &a.front()) + 1;
long cnt2 = num_operate(n, -1, &a.front()) + 1;
cout << min(cnt1, cnt2) << endl;
} else {
long cnt = num_operate(n, sum, &a.front());
cout << cnt << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n = int(input())
a = [int(ai) for ai in input().split()]
def search(a, flip=False):
if flip:
count = 0
a_sum = a[0]
else:
count = abs(a[0]) + 1
a_sum = - a[0]
for ai in a[1:]:
next_sum = a_sum + ai
if next_sum * a_sum < 0:
continue
if a_sum < 0:
a_sum = 1
elif a_sum > 0:
a_sum = -1
else:
c = 0
count += abs(next_sum) + 1
a_sum = next_sum + c
return count
print(min(search(a, False), search(a, True))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#define T true
#define F false
using namespace std;
int main(void) {
int num, i = 1, a;
long long sum, ans = 0;
bool sig = T;
cin >> num >> sum;
if (sum < 0)
sig = F;
for (; i < num; i++) {
scanf_s("%d", &a);
if (sum == 0) {
if (a >= 0) {
sum--;
sig = F;
}
else
sum++;
ans++;
}
sum += a;
if (sig == T && sum >= 0) {
ans += sum + 1;
sum = -1;
}
else if (sig == F && sum <= 0) {
ans += (-1) * sum + 1;
sum = 1;
}
sig = !sig;
}
cout << ans << "\n";
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input=sys.stdin.readline
#input = open(sys.argv[1], "r").readline
def main():
N = int(input())
A = list(map(int, input().split()))
tmp = A.copy()
mi = -1
for j in range(2):
A = tmp.copy()
s = 0
n = 0
if j == 0: # 偶数番目までの和が正 ⇒ A[0] を負にする
if A[0] > 0:
n += abs(A[0] +1)
A[0] = -1
else: # 奇数番目までの和が正 ⇒ A[0] を正にする
if A[0] < 0:
n += abs(A[0] -1)
A[0] = 1
s = A[0]
# print(A)
for i in range(1,N):
if s * (s+A[i]) >= 0:
if s < 0:
n += abs(-s+1 -A[i])
A[i] = -s+1
else:
n += abs(-s-1 -A[i])
A[i] = -s-1
s += A[i]
if mi == -1:
mi = n
else:
mi = min(mi, n)
print(mi)
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
int answer = 0;
int sumi;
bool flag;
cin >> t;
vector<int> A(t);
cin >> A[0];
sumi = A[0];
if (sumi > 0) {
flag = true;
} else if (sumi < 0) {
flag = false;
} else {
answer += 1;
A[0] += 1;
sumi += 1;
flag = true;
}
for (int i = 1; i < t; i++) {
cin >> A[i];
sumi += A[i];
if (sumi == 0) {
answer += 1;
if (flag) {
sumi = -1;
} else {
sumi = 1;
}
} else if (sumi > 0 == flag) {
answer += abs(sumi) + 1;
if (sumi > 0) {
sumi = -1;
} else {
sumi = 1;
}
}
flag = !flag;
}
cout << answer << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
cin >> N;
int sum = 0;
int ans = 0;
for (int i = 0; i < N; ++i) {
int t;
cin >> t;
if (i == 0)
sum = t;
else {
if (sum < 0 && sum + t <= 0) {
ans += 1 - sum - t;
sum = 1;
} else if (sum > 0 && sum + t >= 0) {
ans += abs(-1 - sum - t);
sum = -1;
} else {
sum += t;
}
}
}
cout << ans << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
unsigned long long inf = (1LL << 62);
long long mod = 1000000007;
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
long long max(long long a, long long b) {
if (a < b) {
return b;
} else
return a;
}
long long min(long long a, long long b) {
if (a < b) return a;
return b;
}
pair<long long, long long> dx[4] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
vector<pair<long long, long long> > list;
void floyd(int N, long long** d) {
for (int k = 0; k < (int)(N + 1); k++) {
for (int i = 0; i < (int)(N + 1); i++) {
if (d[i + 1][k + 1] == inf) continue;
for (int j = 0; j < (int)(N + 1); j++) {
if (d[j + 1][k + 1] == inf) continue;
d[i + 1][j + 1] =
min(d[i + 1][j + 1], d[i + 1][k + 1] + d[j + 1][k + 1]);
}
}
}
}
unsigned long long modpow(unsigned long long a, unsigned long long b) {
long long retval = 0;
if (b == 0) {
return 1;
} else if (b % 2 == 0) {
retval = modpow(a, b / 2) % mod;
return (retval * retval) % mod;
} else {
return ((a % mod) * modpow(a, b - 1)) % mod;
}
}
long long pow(long long a, long long b) {
long long ret;
if (b == 0)
return 1;
else if (b % 2 == 0) {
ret = pow(a, b / 2);
return ret * ret;
} else if (b % 2 == 1) {
return a * pow(a, b - 1);
}
}
int bit(long long a, long long n) {
if (a & pow(2, n - 1) != 0) {
return 1;
} else {
return 0;
}
}
unsigned long long modkaijou(unsigned long long a) {
if (a == 1 || a == 0) {
return 1;
}
long long retval = 1;
for (unsigned long long i = a; i >= 1; i--) {
retval = (retval * (i % mod)) % mod;
}
return retval % mod;
}
unsigned long long modcomb(unsigned long long a, unsigned long long b) {
if (a == 0 || b == 0) return 1;
return (((modkaijou(a) * modpow(modkaijou(a - b), mod - 2)) % mod) *
modpow(modkaijou(b), mod - 2)) %
mod;
}
class DisjointSet {
public:
vector<int> p, rank, num;
DisjointSet() {}
DisjointSet(int size) {
rank.resize(size, 0);
p.resize(size, 0);
num.resize(size, 0);
for (int i = 0; i < (int)(size); i++) {
p[i] = i;
rank[i] = 0;
num[i] = 1;
}
}
bool same(int x, int y) { return findSet(x) == findSet(y); }
void unite(int x, int y) {
if (!same(x, y)) link(findSet(x), findSet(y));
}
void link(int x, int y) {
if (rank[x] > rank[y]) {
p[y] = x;
num[x] += num[y];
} else {
p[x] = y;
num[y] += num[x];
if (rank[x] == rank[y]) {
rank[y]++;
}
}
}
long long NumberOfElements(int x) { return num[findSet(x)]; }
int findSet(int x) {
if (x != p[x]) {
p[x] = findSet(p[x]);
num[x] = 1;
}
return p[x];
}
};
bool compare_b(pair<long long, long long> a, pair<long long, long long> b) {
if (a.first < b.first) {
return true;
} else if (a.first == b.first) {
return a.second < b.second;
} else {
return false;
}
}
int ketasuu(int a) {
int ret = 1;
int val = a;
while (val / 10 != 0) {
ret += 1;
val /= 10;
}
return ret;
}
typedef struct trio {
long long a, b, y;
} ti;
string to_binary(long long a) {
long long val = a;
string retval = "";
retval = to_string(val % 2);
while (val / 2 != 0) {
val /= 2;
retval = (to_string(val % 2)) + retval;
}
return retval;
}
int ctoi(char a) { return a - '0'; }
string S, T;
int a[100005];
int sum[100005];
int main() {
int N, M;
long long g = 0;
long long p1, p2;
cin >> N;
for (int i = 0; i < (int)(N); i++) {
cin >> a[i + 1];
sum[i + 1] = sum[i] + a[i + 1];
}
long long ans = 0;
long long offset = 0;
for (int i = 0; i < (int)(N); i++) {
if (sum[i + 1] + offset <= 0 && (i + 1) % 2 == 0) {
ans += (1 - sum[i + 1] - offset);
offset += (1 - sum[i + 1] - offset);
} else if (sum[i + 1] + offset >= 0 && (i + 1) % 2 == 1) {
ans += (sum[i + 1] + offset + 1);
offset += -(sum[i + 1] + offset + 1);
}
}
long long ans2 = ans;
offset = 0;
ans = 0;
for (int i = 0; i < (int)(N); i++) {
if (sum[i + 1] + offset <= 0 && (i + 1) % 2 == 1) {
ans += (1 - sum[i + 1] - offset);
offset += (1 - sum[i + 1] - offset);
} else if (sum[i + 1] + offset >= 0 && (i + 1) % 2 == 0) {
ans += (sum[i + 1] + offset + 1);
offset += -(sum[i + 1] + offset + 1);
}
}
cout << min(ans, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | module Main(main) where
import Control.Applicative
import Control.Monad
import Data.List
import Data.Array
import Data.Char
import qualified Data.Set as S
main = do
n <- (read::String -> Int) <$> getLine
arr <- map (read::String -> Int) . words <$> getLine
print $ calcCost arr
calcCost::[Int] -> Int
calcCost (x:xs)
| x /= 0 = snd $ foldl (\(s, c) v -> let next = calcNext s in if next * v > 0 && abs v > abs next then (s + v, c) else (s + next, c + abs (next - v))) (x, 0) xs
| otherwise = let plus = 1 + calcCost (1:xs)
minus = 1 + calcCost ((-1):xs)
in min plus minus
calcNext::Int -> Int
calcNext a = if a > 0 then -a - 1 else -a + 1
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int a[100000];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum1, sum2;
int cnt = 0;
sum1 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
if (sum1 == 0) {
if (a[i + 1] >= 0)
a[i]++;
else
a[i]--;
cnt++;
}
if (i < n - 1) {
sum2 = sum1 + a[i + 1];
if (sum1 * sum2 >= 0) {
int a_p = a[i + 1];
if (sum1 > 0)
a[i + 1] = -sum1 - 1;
else if (sum1 < 0)
a[i + 1] = -sum1 + 1;
cnt += abs(a[i + 1] - a_p);
}
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
long long a[n], s1[n], s2[n], m = 0, p = 0;
for (long long i = 0; i < n; i++) {
cin >> a[i];
if (i == 0)
s1[i] = a[i];
else
s1[i] = s1[i - 1] + a[i];
s2[i] = s1[i];
}
for (long long i = 0; i < n; i++) {
if (i % 2 == 0) {
if (s1[i] >= 0) {
long long k = s1[i] + 1;
for (long long j = i; j < n; j++) s1[j] -= k;
m += k;
}
} else {
if (s1[i] <= 0) {
long long k = 1 - s1[i];
for (long long j = i; j < n; j++) s1[j] += k;
m += k;
}
}
}
for (long long i = 0; i < n; i++) {
if (i % 2 == 1) {
if (s2[i] >= 0) {
long long k = s2[i] + 1;
for (long long j = i; j < n; j++) s2[j] -= k;
p += k;
}
} else {
if (s2[i] <= 0) {
long long k = 1 - s2[i];
for (long long j = i; j < n; j++) s2[j] += k;
p += k;
}
}
}
cout << min(m, p);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
ll N = 0;
cin >> N;
vector<ll> A(N, 0);
for (ll i = 0; i < N; i++) {
cin >> A.at(i);
}
ll ans = 0;
vector<ll> sum(N, 0);
sum.at(0) = A.at(0);
ll ansa = abs(A.at(0) + (abs(A.at(0)) / A.at(0)));
vector<ll> suma(N, 0);
suma.at(0) = -1 * (abs(A.at(0)) / A.at(0));
for (size_t i = 1; i < N; i++) {
sum.at(i) = sum.at(i - 1) + A.at(i);
if (sum.at(i) * sum.at(i - 1) < 0) {
continue;
} else {
ans += abs(sum.at(i) + (abs(A.at(i - 1)) / A.at(i - 1)));
sum.at(i) = -1 * (abs(A.at(i - 1)) / A.at(i - 1));
}
}
for (size_t i = 1; i < N; i++) {
suma.at(i) = suma.at(i - 1) + A.at(i);
if (suma.at(i) * suma.at(i - 1) < 0) {
continue;
} else {
ansa += abs(suma.at(i) + (abs(A.at(i - 1)) / A.at(i - 1)));
suma.at(i) = -1 * (abs(A.at(i - 1)) / A.at(i - 1));
}
}
cout << min(ans, ansa) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long solve(const vector<long long> data, int sign) {
int n = data.size();
vector<long long> a = data;
long long result = 0;
long long sum = 0;
for (int i = 0; i < n; i++) {
long long k = (sum + a[i]) * sign;
if (i % 2 == 0) {
if (k <= 0) {
result += 1 - k;
a[i] += (1 - k) * sign;
}
} else {
if (k >= 0) {
result += 1 + k;
a[i] += (1 + k) * sign;
}
}
sum += a[i];
}
return result;
}
int main(void) {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
cout << min(solve(a, 1), solve(a, -1)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long>(A);
for (int x = 0; x < (N); x++) {
long long aa;
cin >> aa;
(A).push_back(aa);
}
if (A.at(0) == 0) {
long long ans1 = 0, ans2 = 0;
vector<long long>(B);
for (int x = 0; x < (N); x++) {
B.at(x) = A.at(x);
}
A.at(0) = 1;
B.at(0) = -1;
for (int y = (1); y < (N); y++) {
A.at(y) += A.at(y - 1);
if (A.at(y) * A.at(y - 1) >= 0) {
ans1 += abs(A.at(y)) + 1;
if (A.at(y - 1) < 0) {
A.at(y) = 1;
} else {
A.at(y) = -1;
}
}
}
for (int y = (1); y < (N); y++) {
B.at(y) += B.at(y - 1);
if (B.at(y) * B.at(y - 1) >= 0) {
ans2 += abs(B.at(y)) + 1;
if (B.at(y - 1) < 0) {
B.at(y) = 1;
} else {
B.at(y) = -1;
}
}
}
cout << min(ans1, ans2) << endl;
} else {
long long ans = 0;
for (int y = (1); y < (N); y++) {
A.at(y) += A.at(y - 1);
if (A.at(y) * A.at(y - 1) >= 0) {
ans += abs(A.at(y)) + 1;
if (A.at(y - 1) < 0) {
A.at(y) = 1;
} else {
A.at(y) = -1;
}
}
}
cout << ans << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (long long(i) = 0; (i) < (long long)(n); ++(i)) cin >> a[i];
int ruiseki, cnt;
if (a[0] > 0) {
cnt = 0;
ruiseki = a[0];
} else {
cnt = (1 - a[0]);
ruiseki = 1;
}
for (long long(i) = 1; (i) < (long long)(n); ++(i)) {
if (i % 2 == 0) {
if (ruiseki + a[i] <= 0) {
cnt += (1 - (ruiseki + a[i]));
ruiseki = 1;
} else {
ruiseki += a[i];
}
} else {
if (ruiseki + a[i] >= 0) {
cnt += (1 + (ruiseki + a[i]));
ruiseki = -1;
} else {
ruiseki += a[i];
}
}
}
int cnt2;
if (a[0] < 0) {
cnt2 = 0;
ruiseki = a[0];
} else {
cnt2 = (1 + a[0]);
ruiseki = -1;
}
for (long long(i) = 1; (i) < (long long)(n); ++(i)) {
if (i % 2 == 1) {
if (ruiseki + a[i] <= 0) {
cnt2 += (1 - (ruiseki + a[i]));
ruiseki = 1;
} else {
ruiseki += a[i];
}
} else {
if (ruiseki + a[i] >= 0) {
cnt2 += (1 + (ruiseki + a[i]));
ruiseki = -1;
} else {
ruiseki += a[i];
}
}
}
cout << min(cnt, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> L(N);
for (int i = 0; i < N; i++) {
cin >> L.at(i);
}
long long v = 0, res = 0;
bool change_flag = true;
for (int i = 0; i < N; i++) {
if (i == 0) {
v = L.at(i);
} else {
if (v > 0 && v + L.at(i) >= 0) {
while (true) {
if (v + L.at(i) < 0) {
v += L.at(i);
break;
} else {
L.at(i)--;
res++;
}
}
} else if (v < 0 && v + L.at(i) <= 0) {
while (true) {
if (v + L.at(i) > 0) {
v += L.at(i);
break;
} else {
L.at(i)++;
res++;
}
}
} else {
v += L.at(i);
}
}
}
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int , input().split()))
res=[0]*n
res[0]=a[0]
ng=0
ps=0
for i in range(1,n):
res[i]=res[i-1]+a[i]
for i in range(n-1):
s=res[i]-ng+ps
if s*(res[i+1]+ps-ng)>=0:
if s>0:
ng+=abs(a[i+1]+s)+1
else:
ps+=abs(a[i+1]+s)+1
print(ps+ng) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct Fast {
Fast() {
cin.tie(0);
ios::sync_with_stdio(false);
}
} fast;
template <typename T>
inline size_t maxElement(T beginIt, T endIt) {
return max_element(beginIt, endIt);
}
template <typename T>
inline size_t minElement(T beginIt, T endIt) {
return min_element(beginIt, endIt);
}
template <typename T>
inline size_t maxIndex(T beginIt, T endIt) {
return distance(beginIt, *max_element(beginIt, endIt));
}
template <typename T>
inline size_t minIndex(T beginIt, T endIt) {
return distance(beginIt, *min_element(beginIt, endIt));
}
template <typename T>
inline int sum(T beginIt, T endIt) {
return accumulate(beginIt, endIt, 0);
}
template <typename T>
inline int mean(T beginIt, T endIt) {
return sum(beginIt, endIt) / distance(beginIt, endIt);
}
template <typename T>
inline void debug(T x) {
cerr << x << " "
<< "(L:" << 17 << ")" << endl;
}
signed main(void) {
int num = 0;
int N;
array<int, 10000> A;
string S;
cin >> N;
for (int i = 0; i < N; ++i) {
cin >> A[i];
}
int tmp = A[0];
for (int i = 1; i < N; ++i) {
if (tmp > 0) {
if (A[i] >= -tmp) {
num += abs(-tmp - 1 - A[i]);
A[i] = -tmp - 1;
}
} else {
if (A[i] <= -tmp) {
num += abs(-tmp + 1 - A[i]);
A[i] = -tmp + 1;
}
}
tmp += A[i];
}
cout << num << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
int s1 = 0, s2 = 0, ans[] = {0, 0};
int a, b;
for (int i = 0; i < N; ++i) {
cin >> a;
b = a;
if (i % 2) {
s1 += a;
s2 += a;
if (s1 >= 0) {
ans[1] += s1 + 1;
a -= s1 + 1;
s1 = -1;
}
if (!a) {
--a;
--s1;
++ans[1];
}
if (s2 <= 0) {
ans[0] -= s2 - 1;
b -= s2 - 1;
s2 = 1;
}
if (!b) {
++b;
++s2;
++ans[0];
}
} else {
s1 += a;
s2 += a;
if (s2 >= 0) {
ans[0] += s2 + 1;
a -= s2 + 1;
s2 = -1;
}
if (!a) {
++ans[0];
--a;
--s2;
}
if (s1 <= 0) {
ans[1] -= s1 - 1;
b -= s1 + 1;
s1 = 1;
}
if (!b) {
++ans[1];
++b;
++s1;
}
}
}
cout << min(ans[0], ans[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sign(long long n) { return ((n > 0) - (n < 0)); }
int main() {
int n;
scanf("%d", &n);
long long sum = 0;
long long ans = 0;
for (int i = 0; i < n; i++) {
int a;
scanf("%d", &a);
if (sum == 0) {
if (a == 0) {
a++;
ans++;
}
} else if (sum + a == 0) {
a - sign(sum);
ans++;
} else if (sign(sum + a) + sign(sum) != 0) {
while (sign(sum + a) + sign(sum) != 0) {
if (sign(sum) > 0) {
a--;
} else {
a++;
}
ans++;
}
}
sum += a;
cerr << 38 << " "
<< "a"
<< ": " << a << endl;
;
cerr << 39 << " "
<< "sum"
<< ": " << sum << endl;
}
printf("%llu\n", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = input()
a = [int(i) for i in input.solit()]
X = 0
ans = 0
for i in a:
X += i
if X > 0:
b = -1 - X
ans += b - a(i+1)
else X < 0:
b = 1 - X
ans += b - a(i+1)
return ans
print (ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long countpl = 0, countmi = 0;
long a[100100], b[100100], c[100100];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
b[0] = a[0];
c[0] = a[0];
for (int i = 1; i < n; i++) {
b[i] = b[i - 1] + a[i];
if (i % 2 == 0) {
if (b[i] < 1) {
countpl += 1 - b[i];
b[i] = 1;
}
} else {
if (b[i] > -1) {
countpl += b[i] - (-1);
b[i] = -1;
}
}
c[i] = c[i - 1] + a[i];
if (i % 2 == 0) {
if (c[i] > -1) {
countmi += c[i] - (-1);
c[i] = -1;
}
} else {
if (c[i] < 1) {
countmi += 1 - c[i];
c[i] = 1;
}
}
}
cout << min(countpl, countmi) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"math"
"os"
"strconv"
)
const pi = math.Pi
var mod int = pow(10, 9) + 7
var Umod uint64 = 1000000007
var ans_1, ans_2 int
func main() {
reader.Split(bufio.ScanWords)
n, _ := strconv.Atoi(read())
a := make([]int, n)
for i := 0; i < n; i++ {
a[i], _ = strconv.Atoi(read())
}
sum := make([]int, n)
sum[0], ans_1 = a[0], 0
for i := 1; i < n; i++ {
sum[i] += a[i] + sum[i-1]
if 0 < sum[i-1] && 0 <= sum[i] {
// NGパターン
ans_1 += sum[i] + 1
sum[i] = -1
} else if sum[i-1] < 0 && sum[i] <= 0 {
// NGパターン
ans_1 += 1 - sum[i]
sum[i] = 1
}
}
sum = make([]int, n)
if a[0] < 0 {
sum[0], ans_2 = 1, 1-a[0]
} else {
sum[0], ans_2 = -1, a[0]-1
}
for i := 1; i < n; i++ {
sum[i] += a[i] + sum[i-1]
if 0 < sum[i-1] && 0 <= sum[i] {
// NGパターン
ans_2 += sum[i] + 1
sum[i] = -1
} else if sum[i-1] < 0 && sum[i] <= 0 {
// NGパターン
ans_2 += 1 - sum[i]
sum[i] = 1
}
}
fmt.Println(min(ans_1, ans_2))
}
/* ---------------------------------------- */
var reader = bufio.NewScanner(os.Stdin)
func read() string {
reader.Scan()
return reader.Text()
}
func lcm(x, y int) int {
return (x / gcd(x, y)) * y
}
func gcd(x, y int) int {
if x%y == 0 {
return y
} else {
r := x % y
return gcd(y, r)
}
}
var fac [1000000]int
var finv [1000000]int
var inv [1000000]int
func combination_init() {
fac[0], fac[1] = 1, 1
finv[0], finv[1] = 1, 1
inv[1] = 1
// invは a^(-1) mod p
// pをaで割ることを考える
// p/a*(a) + p%a = p
// p/a*(a) + p%a = 0 (mod p)
// -p%a = p/a*(a) (mod p)
// -p%a *a^(-1)= p/a (mod p)
// a^(-1)= p/a * (-p%a)^(-1) (mod p)
// a^(-1) =
for i := 2; i < 1000000; i++ {
fac[i] = fac[i-1] * i % mod
inv[i] = mod - inv[mod%i]*(mod/i)%mod
finv[i] = finv[i-1] * inv[i] % mod
}
}
func combination(x, y int) int {
if x < y {
return 0
}
if fac[0] != 1 {
combination_init()
}
return fac[x] * (finv[y] * finv[x-y] % mod) % mod
//return fac[x] / (fac[y] * fac[x-y])
}
func permutation(x, y int) int {
if x < y {
return 0
}
if fac[0] != 1 {
combination_init()
}
return fac[x] * (finv[x-y] % mod) % mod
//return fac[x] / fac[x-y]
}
func max(x ...int) int {
var res int = x[0]
for i := 1; i < len(x); i++ {
res = int(math.Max(float64(x[i]), float64(res)))
}
return res
}
func min(x ...int) int {
var res int = x[0]
for i := 1; i < len(x); i++ {
res = int(math.Min(float64(x[i]), float64(res)))
}
return res
}
func pow(x, y int) int { return int(math.Pow(float64(x), float64(y))) }
func abs(x int) int { return int(math.Abs(float64(x))) }
func floor(x int) int { return int(math.Floor(float64(x))) }
func ceil(x int) int { return int(math.Ceil(float64(x))) }
type SortBy [][]int
func (a SortBy) Len() int { return len(a) }
func (a SortBy) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a SortBy) Less(i, j int) bool { return a[i][0] < a[j][0] }
type PriorityQueue []int
func (h PriorityQueue) Len() int { return len(h) }
func (h PriorityQueue) Less(i, j int) bool { return h[i] < h[j] }
func (h PriorityQueue) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *PriorityQueue) Push(x interface{}) { *h = append(*h, x.(int)) }
func (h *PriorityQueue) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"math"
"os"
"strconv"
)
const pi = math.Pi
var mod int = pow(10, 9) + 7
var Umod uint64 = 1000000007
var ans int64
func main() {
reader.Split(bufio.ScanWords)
n, _ := strconv.Atoi(read())
a := make([]int, n)
for i := 0; i < n; i++ {
a[i], _ = strconv.Atoi(read())
}
sum := make([]int64, n)
sum[0] = int64(a[0])
for i := 1; i < n; i++ {
sum[i] += int64(a[i]) + sum[i-1]
if (0 <= sum[i-1] && 0 <= sum[i]) || (sum[i-1] <= 0 && sum[i] <= 0) {
// NGパターン
if sum[i] < 0 {
ans += 1 - sum[i]
sum[i] = 1
} else {
ans += sum[i] + 1
if sum[i-1] < 0 {
sum[i] = 1
} else {
sum[i] = -1
}
}
}
}
fmt.Println(ans)
}
/* ---------------------------------------- */
var reader = bufio.NewScanner(os.Stdin)
func read() string {
reader.Scan()
return reader.Text()
}
func lcm(x, y int) int {
return (x / gcd(x, y)) * y
}
func gcd(x, y int) int {
if x%y == 0 {
return y
} else {
r := x % y
return gcd(y, r)
}
}
var fac [1000000]int
var finv [1000000]int
var inv [1000000]int
func combination_init() {
fac[0], fac[1] = 1, 1
finv[0], finv[1] = 1, 1
inv[1] = 1
// invは a^(-1) mod p
// pをaで割ることを考える
// p/a*(a) + p%a = p
// p/a*(a) + p%a = 0 (mod p)
// -p%a = p/a*(a) (mod p)
// -p%a *a^(-1)= p/a (mod p)
// a^(-1)= p/a * (-p%a)^(-1) (mod p)
// a^(-1) =
for i := 2; i < 1000000; i++ {
fac[i] = fac[i-1] * i % mod
inv[i] = mod - inv[mod%i]*(mod/i)%mod
finv[i] = finv[i-1] * inv[i] % mod
}
}
func combination(x, y int) int {
if x < y {
return 0
}
if fac[0] != 1 {
combination_init()
}
return fac[x] * (finv[y] * finv[x-y] % mod) % mod
//return fac[x] / (fac[y] * fac[x-y])
}
func permutation(x, y int) int {
if x < y {
return 0
}
if fac[0] != 1 {
combination_init()
}
return fac[x] * (finv[x-y] % mod) % mod
//return fac[x] / fac[x-y]
}
func max(x ...int) int {
var res int = x[0]
for i := 1; i < len(x); i++ {
res = int(math.Max(float64(x[i]), float64(res)))
}
return res
}
func min(x ...int) int {
var res int = x[0]
for i := 1; i < len(x); i++ {
res = int(math.Min(float64(x[i]), float64(res)))
}
return res
}
func pow(x, y int) int { return int(math.Pow(float64(x), float64(y))) }
func abs(x int) int { return int(math.Abs(float64(x))) }
func floor(x int) int { return int(math.Floor(float64(x))) }
func ceil(x int) int { return int(math.Ceil(float64(x))) }
type SortBy [][]int
func (a SortBy) Len() int { return len(a) }
func (a SortBy) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a SortBy) Less(i, j int) bool { return a[i][0] < a[j][0] }
type PriorityQueue []int
func (h PriorityQueue) Len() int { return len(h) }
func (h PriorityQueue) Less(i, j int) bool { return h[i] < h[j] }
func (h PriorityQueue) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *PriorityQueue) Push(x interface{}) { *h = append(*h, x.(int)) }
func (h *PriorityQueue) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double PI = 3.1415926535897932384626433832795;
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
bool isDiffer(long long a, long long b) {
if (b == 0) return false;
if (((a > 0) && (b < 0)) || ((a < 0) && (b > 0)))
return true;
else
return false;
}
int main() {
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> v;
for (int i = 0; i < n; i++) {
long long t;
cin >> t;
v.push_back(t);
}
long long os = v[0];
long long ans = 0;
for (int i = 1; i < n; i++) {
if (!isDiffer(os, v[i] + os)) {
long long ob = (os >= 0) ? -1 : 1;
ans += abs(ob - os - v[i]);
v[i] = ob - os;
}
os += v[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int dx[] = {1, 0, -1, 0};
int dy[] = {0, 1, 0, -1};
int n;
vector<long long> a(200000);
long long solve(vector<long long> a, bool flag) {
long long sum = a[0], ans;
if (flag)
ans = 0;
else {
ans = abs(a[0]) + 1;
if (a[0] < 0) {
sum = 1;
} else {
sum = -1;
}
}
for (int i = 1; i < n; i++) {
long long tmp = sum;
sum += a[i];
if (sum >= 0 && tmp > 0) {
ans += abs(sum) + 1;
sum = -1;
} else if (sum <= 0 && tmp < 0) {
ans += abs(sum) + 1;
sum = 1;
}
}
return ans;
}
int main() {
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
cout << min(solve(a, true), solve(a, false)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("-O3")
using namespace std;
void _main();
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
_main();
}
const int inf = INT_MAX / 2;
const long long infl = 1LL << 60;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
enum PosiNega { POSITIVE = 0, NEGATIVE = 1 };
int solve(int N, int *a, PosiNega odd_posinega) {
int ans = 0;
int sum = 0;
PosiNega posi_nega = odd_posinega;
for (int i = 0; i < N; i++) {
sum += a[i];
if (POSITIVE == posi_nega) {
if (0 >= sum) {
ans += abs(1 - sum);
sum = 1;
}
posi_nega = NEGATIVE;
} else {
if (0 <= sum) {
ans += abs(-1 - sum);
sum = -1;
}
posi_nega = POSITIVE;
}
}
return ans;
}
void _main() {
int N;
cin >> N;
int a[N];
for (int i = 0; i < N; i++) cin >> a[i];
int candidate1 = solve(N, a, POSITIVE);
int candidate2 = solve(N, a, NEGATIVE);
int ans = (candidate1 < candidate2) ? candidate1 : candidate2;
cout << ans << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
long long n;
cin >> n;
long long a[n + 1];
for (long long i = 0; i < (n); i++) cin >> a[i + 1];
a[0] = 0;
for (long long i = 0; i < (n); i++) {
a[i + 1] += a[i];
}
long long cnta = 0;
long long cntb = 0;
long long sum = 0;
for (long long i = 1; i < n + 1; i++) {
if (i % 2 == 0) {
if (0 <= (a[i] + sum)) {
cnta += (a[i] + sum + 1);
sum -= (a[i] + sum + 1);
}
} else {
if ((a[i] + sum) <= 0) {
cnta += (1 - (a[i] + sum));
sum += (1 - (a[i] - sum));
}
}
}
sum = 0;
for (long long i = 1; i < n + 1; i++) {
if (i % 2 == 1) {
if (0 <= (a[i] + sum)) {
cntb += (a[i] + sum + 1);
sum -= (a[i] + sum + 1);
}
} else {
if ((a[i] + sum) <= 0) {
cntb += (1 - (a[i] + sum));
sum += (1 - (a[i] - sum));
}
}
}
cout << min(cnta, cntb) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int,input().split()))
#print (a)
sum = 0
count = 0
p = 0
for i in range(n):
sum += a[i]
if i>0:
p = a[i]
if sum >=0:
if (sum - a[i]) > 0:
a[i] = -(sum-a[i])-1
count += np.abs(p-a[i])
sum = -1
if sum <= 0:
if (sum - a[i]) < 0:
a[i] = -(sum-a[i])+1
count += np.abs(p-a[i])
sum = 1
#print (sum)
print (count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
sum1 = sum2 = a[0]
cnt1 = cnt2 = 0
for i in range(1,n):
if sum1>0:
if sum1+a[i]>=0:
cnt1+=abs(sum1+a[i]+1)
sum1 = -1
else:
sum1 +=a[i]
else:
if sum1+a[i]<=0:
cnt1+=abs(sum1+a[i]-1)
sum1 = 1
else:
sum1+=a[i]
for i in range(1,n):
if sum2>0:
if sum2+a[i]>=0:
cnt2+=abs(sum2+a[i]-1)
sum2 = 1
else:
sum2 +=a[i]
else:
if sum2+a[i]<=0:
cnt2+=abs(sum2+a[i]+1)
sum2 = -1
else:
sum2+=a[i]
print(min(cnt1,cnt2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const long long INF = 1000000000000000000;
int main() {
int n;
cin >> n;
long long A[n];
long long sum[n];
long long ans = 0;
for (int i = 0; i < n; i++) {
cin >> A[i];
sum[i] = 0;
}
long long minans = INF;
long long temp = 0;
int p[2] = {1, -1};
if (A[0] == 0) {
for (int k = 0; k < 2; k++) {
ans = 0;
ans++;
A[0] = p[k];
sum[0] = A[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + A[i];
if (sum[i - 1] * sum[i] < 0) continue;
if (sum[i - 1] * sum[i] == 0) {
if (sum[i - 1] < 0) {
ans++;
sum[i] = 1;
continue;
} else if (sum[i - 1] > 0) {
sum[i] = -1;
ans++;
continue;
}
}
if (sum[i - 1] < 0) {
temp = sum[i];
sum[i] = 1;
ans = ans + 1 + (-temp);
continue;
} else if (sum[i - 1] > 0) {
temp = sum[i];
sum[i] = -1;
ans = ans + 1 + temp;
continue;
}
}
minans = min(minans, ans);
}
}
ans = 0;
sum[0] = A[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + A[i];
if (sum[i - 1] * sum[i] < 0) continue;
if (sum[i - 1] * sum[i] == 0) {
if (sum[i - 1] < 0) {
ans++;
sum[i] = 1;
continue;
} else if (sum[i - 1] > 0) {
sum[i] = -1;
ans++;
continue;
}
}
if (sum[i - 1] < 0) {
temp = sum[i];
sum[i] = 1;
ans = ans + 1 + (-temp);
continue;
} else if (sum[i - 1] > 0) {
temp = sum[i];
sum[i] = -1;
ans = ans + 1 + temp;
continue;
}
}
minans = min(minans, ans);
ans = 0;
if (A[0] > 0) {
temp = A[0];
A[0] = -1;
ans = temp + 1;
sum[0] = A[0];
} else {
temp = A[0];
A[0] = 1;
ans = -temp + 1;
sum[0] = A[0];
}
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + A[i];
if (sum[i - 1] * sum[i] < 0) continue;
if (sum[i - 1] * sum[i] == 0) {
if (sum[i - 1] < 0) {
ans++;
sum[i] = 1;
continue;
} else if (sum[i - 1] > 0) {
sum[i] = -1;
ans++;
continue;
}
}
if (sum[i - 1] < 0) {
temp = sum[i];
sum[i] = 1;
ans = ans + 1 + (-temp);
continue;
} else if (sum[i - 1] > 0) {
temp = sum[i];
sum[i] = -1;
ans = ans + 1 + temp;
continue;
}
}
minans = min(minans, ans);
cout << minans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int a[100010];
int main() {
int n, i, j, k;
long long s, x, y;
while (scanf("%d", &n) != EOF) {
for (i = 0; i < n; i++) scanf("%d", &a[i]);
s = 0;
x = a[0];
for (i = 1; i < n; i++) {
y = x;
x = x + a[i];
if (x < 0 && y > 0) continue;
if (y < 0 && x > 0) continue;
if (y < 0) {
s = s - x + 1;
x = 1;
} else if (y > 0) {
s = s + x + 1;
x = -1;
}
}
printf("%lld\n", s);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long int> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
vector<long long int> B(N);
B[0] = A[0];
for (int i = 1; i < N; i++) B[i] = B[i - 1] + A[i];
int ans = 0;
int base = 0;
for (int i = 1; i < N; i++) {
if ((B[i] + base) * (B[i - 1] + base) > 0) {
if (B[i] + base > 0) {
if (B[i] > B[i - 1]) {
ans += abs(B[i - 1] + base) + 1;
base -= abs(B[i - 1] + base) + 1;
} else {
ans += abs(B[i] + base) + 1;
base -= abs(B[i] + base) + 1;
}
continue;
} else if (B[i] + base < 0) {
if (B[i] < B[i - 1]) {
ans += abs(B[i - 1] + base) + 1;
base += abs(B[i - 1] + base) + 1;
} else {
ans += abs(B[i] + base) + 1;
base += abs(B[i] + base) + 1;
}
continue;
}
}
if (B[i - 1] + base == 0) {
if (B[i] + base > 0) {
ans += 1;
base -= 1;
continue;
} else if (B[i] + base < 0) {
ans += 1;
base += 1;
continue;
}
}
if (i == N - 1 && B[i] + base == 0) ans++;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(NULL);
ios::sync_with_stdio(0);
int n;
cin >> n;
int arr[100010];
for (int i = 0; i < n; i++) {
int aux;
cin >> aux;
arr[i] = aux;
}
int initA = arr[0];
int initB = 0;
int countA = 0;
int countB = 0;
if (initA > 0) {
initB = -1;
countB += initA + 1;
} else if (initA < 0) {
initB = 1;
countB += abs(initA) + 1;
}
if (arr[0] == 0) {
initA = 1;
initB = -1;
countA++;
countB++;
}
int sumaA = initA;
int sumaB = initB;
for (int i = 1; i < n; i++) {
if (sumaA > 0) {
sumaA += arr[i];
sumaB += arr[i];
if (sumaA >= 0) {
countA += sumaA + 1;
sumaA = -1;
}
if (sumaB <= 0) {
countB += abs(sumaB) + 1;
sumaB = 1;
}
} else {
sumaB += arr[i];
sumaA += arr[i];
if (sumaA <= 0) {
countA += abs(sumaA) + 1;
sumaA = 1;
}
if (sumaB >= 0) {
countB += sumaB + 1;
sumaB = -1;
}
}
}
cout << min(countA, countB) << '\n';
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int MOD = pow(10, 9) + 7;
using namespace std;
int in() {
int temp;
scanf("%d", &temp);
return temp;
}
long long lin() {
long long temp;
scanf("%lld", &temp);
return temp;
}
int solve(vector<int> csum, int N, int sig) {
int cumOper = 0;
int sign = sig;
int count = 0;
int signi;
for (auto i = 0; i < N; i++) {
if ((csum[i] + cumOper) == 0) {
count++;
cumOper -= sign;
}
signi = (csum[i] + cumOper) / abs(csum[i] + cumOper);
if (signi != sign) {
sign = signi;
continue;
}
if (sign == 1) {
count += (csum[i] + cumOper + 1);
cumOper += (-1) * (csum[i] + cumOper + 1);
} else {
count += (-(csum[i] + cumOper) + 1);
cumOper += (1) * (-(csum[i] + cumOper) + 1);
}
sign = -sign;
}
return count;
}
int main() {
int N = in();
vector<int> vec;
vector<int> csum;
vec.push_back(in());
csum.push_back(vec.back());
for (auto i = 1; i < N; i++) {
vec.push_back(in());
csum.push_back(csum.back() + vec.back());
}
int tempp;
int tempn;
tempp = solve(csum, N, 1);
tempn = solve(csum, N, -1);
cout << min(tempp, tempn) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
private static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
int n = sc.nextInt();
long[] a = new long[n];
for (int i = 0;i < n;i++) a[i] = sc.nextLong();
long ret = calc(a,true);
ret = Math.min(calc(a,false),ret);
System.out.println(ret);
}
private static long calc(long[] a, boolean b) {
long sum = a[0];
long ret = 0;
if (sum==0) {
sum = 1;
ret++;
}
if (b) {
ret = Math.abs(sum)+1;
if (sum<0) {
sum = 1;
} else {
sum = -1;
}
}
long tmp = 0;
for (int i = 1;i < a.length;i++) {
long num = a[i];
tmp = sum;
sum += num;
if ((tmp<0&&sum>=0)||(tmp>=0&&sum<0)) continue;
long l = Math.abs(sum)+1;
if (sum>=0) {
sum -= l;
} else {
sum += l;
}
ret += l;
}
if (sum==0) ret++;
return ret;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | N = gets.to_i
A = gets.split.map(&:to_i)
sum = A[0]
ans = 0
A[1..-1].each do |a|
nsum = sum + a
v = sum * nsum
if v >= 0
if sum > 0
nsum = -1
else
nsum = 1
end
ans += (a - (sum + 1)).abs
end
sum = nsum
end
puts ans
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
tmp = a[0]
ans = 0
for i in range(1, n):
if tmp * (tmp + a[i]) < 0:
tmp += a[i]
else:
ans += abs(tmp + a[i]) + 1
if tmp < 0:
tmp = 1
else:
tmp = - 1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
As = list(map(int, input().split()))
"""
i番目を+1すると、
i+k番目は+(k+1)される
回数を保持しておいて、後で足す?
"""
from itertools import accumulate
acc = list(accumulate(As))
# print(acc)
prev = acc[0]
ans = 0
cnt = 0 #累積カウント
for a in acc[1:]:
a += cnt
# print("cnt",cnt,"pre",prev,"a",a)
if prev > 0 and a >= 0:
cnt -= (a+1)
ans += a+1
prev = -1
elif prev < 0 and a <= 0:
cnt += abs(a-1)
ans += abs(a-1)
prev = 1
else:
prev = a
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const int INF = 0x3f3f3f3f;
static const long long INFL = 0x3f3f3f3f3f3f3f3fLL;
template <typename T, typename U>
inline void amin(T &x, U y) {
if (y < x) x = y;
}
template <typename T, typename U>
inline void amax(T &x, U y) {
if (x < y) x = y;
}
signed main() {
long long n;
cin >> n;
vector<long long> a(n);
for (long long(i) = 0; (i) < (long long)(n); (i)++) cin >> a[i];
long long sum = 0;
long long prev = 0;
sum += a[0];
long long ans = 0;
for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) {
prev = sum;
sum += a[i];
if (prev * sum < 0) {
continue;
} else {
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else if (sum < 0) {
ans += abs(sum) + 1;
sum = 1;
} else {
ans++;
sum = (prev < 0 ? 1 : -1);
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, ci, counter = 0;
bool isPositive;
cin >> n;
vector<int> a(n);
for (int(i) = (0); (i) <= (n - 1); ++(i)) cin >> a[i];
ci = a[0];
long long counter1, counter2;
counter1 = counter2 = 0;
isPositive = true;
for (int(i) = (1); (i) <= (n - 1); ++(i)) {
if (ci == 0) {
ci += 1;
++counter1;
}
ci += a[i];
if (isPositive && ci > 0) {
counter1 += abs(ci) + 1;
ci -= abs(ci) + 1;
} else if (!isPositive && ci < 0) {
counter1 += abs(ci) + 1;
ci += abs(ci) + 1;
} else if (ci == 0) {
if (isPositive) {
--ci;
++counter1;
} else {
++ci;
++counter1;
}
}
isPositive = !isPositive;
}
ci = a[0];
isPositive = false;
for (int(i) = (1); (i) <= (n - 1); ++(i)) {
if (ci == 0) {
ci -= 1;
++counter2;
}
ci += a[i];
if (isPositive && ci > 0) {
counter2 += abs(ci) + 1;
ci -= abs(ci) + 1;
} else if (!isPositive && ci < 0) {
counter2 += abs(ci) + 1;
ci += abs(ci) + 1;
} else if (ci == 0) {
if (isPositive) {
--ci;
++counter2;
} else {
++ci;
++counter2;
}
}
isPositive = !isPositive;
}
counter = min(counter1, counter2);
cout << counter << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
ans1 = 0
sum = A[0] if A[0] != 0 else 1
# A[0]=0 のときは1にする。下で-1にするパターンも試している。なお0は不可。
for a in A[1:]:
if (sum + a) * sum < 0:
sum += a
else:
nextsum = 1 if sum < 0 else -1
# fugo = sum // abs(sum) 割り算のときは0に気をつけろ!
a_should_be = nextsum - sum
dif = abs(a_should_be - a)
sum = nextsum
ans1 += dif
#A[0]を反転したほうがいいパターンの処理
ans2 = abs(A[0]) + 1
sum = 1 if A[0] < 0 else -1
#ある意味、ここでA[0]=0のときに-1をおいていることをやっている
for a in A[1:]:
if (sum + a) * sum < 0:
sum += a
else:
nextsum = 1 if sum < 0 else -1
a_should_be = nextsum - sum
dif = abs(a_should_be - a)
sum = nextsum
ans2 += dif
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
ans = 1e16
for s in (1, -1):
res, acc = 0, 0
for a in A:
acc += a
if acc * s <= 0:
res += abs(acc-s)
acc = s
s *= -1
print("%d " % acc, end="")
print()
ans = min(ans, res)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main (String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
sc.close();
// +-+-+...の場合
long sum1 = a[0];
long count1 = 0;
for (int i = 1; i < n; i++) {
sum1 += a[i];
if (i % 2 == 0) {
if (sum1 <= 0) {
count1 += (1 - sum1);
sum1 = 1;
}
} else {
if (0 <= sum1) {
count1 += (sum1 + 1);
sum1 = -1;
}
}
}
// -+-+_...の場合
long sum2 = a[0];
long count2 = 0;
for (int i = 1; i < n; i++) {
sum2 += a[i];
if (i % 2 == 0) {
if (0 <= sum2) {
count2 += (sum2 + 1);
sum2 = -1;
}
} else {
if (sum2 <= 0) {
count2 += (1 - sum2);
sum2 = 1;
}
}
}
System.out.println(Math.min(count1, count2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
a,memo1=A[0],0
if a<0:
memo1+=1-a
a=1
for i in range(2,n):
if a*(a+A[i])<=-1:a=a+A[i]
else:
memo1+=abs(a+A[i])+1
if a>=1:a=-1
else:a=-1
a,memo2=A[0],0
if a>0:
memo2+=a+1
a=-1
for i in range(2,n):
if a*(a+A[i])<=-1:a=a+A[i]
else:
memo2+=abs(a+A[i])+1
if a>=1:a=-1
else:a=-1
print(min(memo1,memo2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def resolve(L):
# L[0]!=0を起点とする
cnt = 0
s = L[0]
for i in range(1,len(L)):
a = L[i]
if(s>0 and s+a>=0):
L[i] = -s-1
cnt += (s+a+1)
s = -1
elif(s<0 and s+a<=0):
L[i] = -s+1
cnt += (-s-a+1)
s = 1
else:
s += a
return cnt
def ans(L):
a = L[0]
c0,c1=0,0
if (a>0):
c0 = resolve(L)
c1 = (a+1) + resolve([-1]+L[1:])
elif (a<0):
c0 = resolve(L)
c1 = (-a+1) + resolve([1]+L[1:])
else:
c0 = 1 + resolve([1]+L[1:])
c1 = 1 + resolve([-1]+L[1:])
return(min(c0,c1))
def main():
N = int(input())
List = [int(x) for x in input().split(' ')]
print(ans(List))
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
ans=0
a=list(map(int,input().split()))
sum=a[0]
for i in range(1,n):
if (sum+a[i])*sum<0:continue
else:
if sum+a[i]>=1:
ans+=abs(sum+a[i]+1)
a[i]-=sum+a[i]+1
sum=-1
elif sum+a[i]<=-1:
ans+=abs(sum+a[i]+1)
a[i]+=sum+a[i]
sum=1
else:
if sum<0:
ans+=1
a[i]+=1
sum=1
else:
ans+=1
a[i]-=1
sum=-1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 1000000;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (long long int i = 0; i < n; i++) cin >> a[i];
int ans_plus = 0;
vector<int> sum_plus(n);
if (a[0] > 0) {
sum_plus[0] = a[0];
} else {
ans_plus += 1 - a[0];
sum_plus[0] = 1;
}
for (int i = 0; i < n - 1; ++i) {
sum_plus[i + 1] = sum_plus[i] + a[i];
if (sum_plus[i + 1] * sum_plus[i] > 0) {
if (sum_plus[i] > 0) {
ans_plus += sum_plus[i] + 1;
sum_plus[i] = -1;
} else if (sum_plus[i] < 0) {
ans_plus += abs(sum_plus[i] - 1);
sum_plus[i] = 1;
}
} else if (sum_plus[i + 1] == 0) {
if (sum_plus[i] > 0) {
sum_plus[i + 1] = -1;
} else if (sum_plus[i] < 0) {
sum_plus[i + 1] = 1;
}
ans_plus++;
}
}
int ans_minus = 0;
vector<int> sum_minus(n);
if (a[0] < 0) {
sum_minus[0] = a[0];
} else {
ans_minus += 1 + a[0];
sum_minus[0] = -1;
}
for (int i = 0; i < n - 1; ++i) {
sum_minus[i + 1] = sum_minus[i] + a[i];
if (sum_minus[i + 1] * sum_minus[i] > 0) {
if (sum_minus[i] > 0) {
ans_minus += sum_minus[i] + 1;
sum_minus[i] = -1;
} else if (sum_minus[i] < 0) {
ans_minus += abs(sum_minus[i] - 1);
sum_minus[i] = 1;
} else if (sum_minus[i + 1] == 0) {
if (sum_minus[i] > 0) {
sum_minus[i + 1] = -1;
} else if (sum_minus[i] < 0) {
sum_minus[i + 1] = 1;
}
ans_minus++;
}
}
}
std::cout << min(ans_minus, ans_plus) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Linq;
namespace ABC059
{
class C
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
int[] a = Console.ReadLine().Split().Select(int.Parse).ToArray();
int sum = 0;
bool isCompleted = true;
// 入力段階で条件が成立しているか確認
for (int i = 0; i < n - 1; i++)
{
sum += a[i];
if (0 <= sum && 0 <= sum + a[i + 1]) isCompleted = false;
if (sum <= 0 && sum + a[i + 1] <= 0) isCompleted = false;
}
if (sum == 0) isCompleted = false;
if (isCompleted) { Console.WriteLine(0); return; }
// メイン処理
int count = 0;
sum = 0;
for (int i = 0; i < n - 1; i++)
{
sum += a[i];
if (0 <= sum && 0 <= sum + a[i + 1])
{
while (0 <= sum + a[i + 1])
{
a[i + 1] -= 1;
count++;
}
}
if (sum <= 0 && sum + a[i + 1] <= 0)
{
while (sum + a[i + 1] <= 0)
{
a[i + 1] += 1;
count++;
}
}
}
if (sum == 0) { count++; }
Console.WriteLine(count);
}
}
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.