Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int d[n];
for (int i = 0; i < n; i++) cin >> d[i];
int sume;
int counte;
for (int i = 0; i < n; i++) {
sume += d[i];
if (i % 2 == 0) {
if (sume <= 0) counte += 1 - sume;
sume = 1;
} else {
if (sume >= 0) counte += sume + 1;
sume = -1;
}
}
int sumo;
int counto;
for (int i = 0; i < n; i++) {
sumo += d[i];
if (i % 2 == 1) {
if (sumo <= 0) counto += 1 - sumo;
sumo = 1;
} else {
if (sumo >= 0) counto += sumo + 1;
sumo = -1;
}
}
cout << min(counte, counto) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
freopen("testcase", "r", stdin);
int N, temp;
vector<int> a;
scanf("%d", &N);
int start = 0;
bool v = false;
for (int i = 0; i < N; i++) {
scanf("%d", &temp);
if (temp == 0) {
if (!v) {
start += 1;
}
} else if (!v)
v = true;
a.push_back(temp);
}
long long int sum = 0, cnt = 0;
if (start != 0) {
cnt = 2 * (start - 1) + 1;
if (a[start] > 0) {
if (a[start] > 1) {
sum = a[start] - 1;
} else {
sum = 1;
cnt += 1;
}
} else {
if (a[start] < -1) {
sum = a[start] + 1;
} else {
sum = -1;
cnt += 1;
}
}
} else {
sum = a[start];
}
start++;
for (size_t i = start; i != a.size(); i++) {
if (sum + a[i] >= 0 && sum > 0) {
cnt += sum + a[i] + 1;
sum = -1;
} else if (sum + a[i] <= 0 && sum < 0) {
cnt += 1 - sum - a[i];
sum = 1;
} else {
sum += a[i];
}
}
if (sum == 0) cnt += 1;
printf("%lld\n", cnt);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | n = input()
a = map(int, raw_input().split())
sum = a[0]
c = 0
if sum == 0:
if a[1] > 0:
sum = - 1
c +=1
if a[1] < 0:
sum = 1
c += 1
if a[1] == 0:
sum = 1
c += 1
for i in range(1,n):
temp = sum + a[i]
if temp*sum > 0:
if sum > 0:
c += abs(-1-sum-a[i])
sum = -1
continue
if sum < 0:
c += abs(1-sum-a[i])
sum = 1
continue
if temp == 0:
c += 1
if sum > 0:
sum = -1
continue
if sum < 0:
sum = 1
continue
if temp*sum < 0:
sum = temp
continue
print c |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (auto& x : a) {
cin >> x;
}
bool start;
for (int i = 0; i < n; i++) {
if (a[i] > 0) {
start = (i % 2 == 0);
break;
} else if (a[i] < 0) {
start = (i % 2 == 1);
break;
}
if (i == n - 1) {
cout << n << endl;
return 0;
}
}
long long sum = 0;
long long ans = 0;
bool plus = start;
for (int i = 0; i < n; i++) {
sum += a[i];
if (plus && sum <= 0) {
ans += 1 - sum;
sum = 1;
} else if (!plus && sum >= 0) {
ans += sum + 1;
sum = -1;
}
plus = !plus;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
R = [0] * n
R[0] = A[0]
for i in range(1, n):
R[i] = R[i-1] + A[i]
# search
def solve(r, inc=0):
ans = 0
is_plus = (r[0] > 0)
for i in range(1, n):
if (is_plus and r[i]+inc < 0) or (not is_plus and r[i]+inc > 0):
pass
else:
ans += abs(r[i]+inc) + 1
if is_plus:
inc -= abs(r[i]+inc) + 1
else:
inc += abs(r[i]+inc) + 1
is_plus = (r[i]+inc > 0)
return ans
# normal
ret = solve(R, 0)
# modify
is_plus = (R[0] > 0)
ans0 = abs(R[0]) + 1
if is_plus:
for i in range(n):
R[i] -= abs(R[0]) + 1
else:
for i in range(n):
R[i] += abs(R[0]) + 1
print(min(ret, ans0 + solve(R, 0))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
sum = a[0]
if sum > 0:
flag = 1
else:
flag = -1
ans = 0
for i in range(1, n):
if flag == 1 and sum + a[i] >= 0:
#print("OK1")
ans += abs(sum) + a[i]+ 1
sum = -1
elif flag == -1 and sum + a[i] <= 0:
#print("OK2")
ans += abs(sum) - a[i] + 1
sum = 1
else:
#print("OK3")
sum += a[i]
flag = -flag
#print(ans, sum, flag)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int64_t> a(n + 10, 0);
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
int pn = 0;
int mn = 0;
const int64_t first = a[1];
{
int num = 0;
int64_t total = 0;
if (first <= 0) {
num = 1 - first;
total = 1;
} else {
total = first;
}
for (int i = 2; i <= n; ++i) {
int64_t ai = a[i];
if (i % 2 == 0) {
if (ai >= 0) {
num += -(-1 - ai);
ai = -1;
}
if (total + ai >= 0) {
const int64_t back = ai;
ai = -1 - total;
num += abs(ai - back);
}
total += ai;
} else {
if (ai <= 0) {
num += 1 - ai;
ai = 1;
}
if (total + ai <= 0) {
const int64_t back = ai;
ai = 1 - total;
num += abs(ai - back);
}
total += ai;
}
}
pn = num;
}
{
int num = 0;
int64_t total = 0;
if (first >= 0) {
num = -(-1 - first);
total = -1;
} else {
total = first;
}
for (int i = 2; i <= n; ++i) {
int64_t ai = a[i];
if (i % 2 == 0) {
if (ai <= 0) {
num += 1 - ai;
ai = 1;
}
while (total + ai <= 0) {
++ai;
++num;
}
total += ai;
} else {
if (ai >= 0) {
num += -(-1 - ai);
ai = -1;
}
while (total + ai >= 0) {
--ai;
++num;
}
total += ai;
}
}
mn = num;
}
cout << min(pn, mn) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, i;
long long sum, ans;
long long int a[100005];
int main() {
cin >> n;
for (i = 1; i <= n; i++) {
cin >> a[i];
}
ans = 0;
sum = 0;
for (i = 1; i <= n; i++) {
if (a[i] == 0) {
sum++;
} else
break;
}
if (sum % 2 == 0 && sum != 0) {
if (a[sum + 1] > 0) {
a[1] = 1;
ans += 1;
} else {
a[1] = -1;
ans += 1;
}
} else if (sum % 2 != 0) {
if (a[sum + 1] > 0) {
a[1] = -1;
ans += 1;
} else {
a[1] = 1;
ans += 1;
}
}
sum = 0;
for (i = 1; i <= n; i++) {
sum += a[i];
if (sum == 0) {
if (a[i] > 0) {
a[i]++;
ans++;
sum = 1;
} else {
a[i]--;
ans++;
sum - 1;
}
}
}
sum = a[1];
for (i = 2; i <= n; i++) {
if (sum > 0) {
if (a[i] + sum >= 0) {
ans += a[i] + sum + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum <= 0) {
ans += abs(a[i] + sum) + 1;
sum = 1;
} else {
sum += a[i];
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a= (list(map(int,input().split())))
sm1=sm2=0
cnt1=cnt2=0
for i ,num in enumerate(a):
sm1+=num
if sm1<=0 and i%2==0:
cnt1+=1-sm1
sm1=1
elif sm1>=0 and i%2!=0:
cnt1+=1+sm1
sm1=-1
sm2+=num
if sm2<=0 and i%2!=0:
cnt2+=1-sm2
sm2=1
elif sm2>=0 and i%2==0:
cnt2+=1+sm2
sm2=-1
print(min(cnt1,cnt2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
class Main{
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] sum = new int[n];
int[] arr = new int[n];
int ans = 0;
for(int i = 0; i < n; i++){
arr[i] = sc.nextInt();
}
sum[0] = arr[0];
for(int i = 1; i < n; i++){
sum[i] = sum[i-1] + arr[i];
if(sum[i-1] < 0 && sum[i] <= 0){
ans += -sum[i] + 1;
sum[i] += -sum[i] + 1;
}else if(sum[i-1] > 0 && sum[i] >= 0){
ans += sum[i] + 1;
sum[i] -= sum[i] + 1;
}
// System.out.println(sum[i]);
}
System.out.println(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input = sys.stdin.readline
n = int(input())
a = [int(x) for x in input().split()]
# スタート+
if a[0] <= 0:
A1 = 1
ans1 += abs(a[0]) + 1
else:
A1 = a[0]
ans1 = 0
for i in range(1, n):
nextA = A1 + a[i]
if (A1 > 0 and nextA < 0) or (A1 < 0 and nextA > 0):
A1 = nextA
elif nextA == 0 and A1 > 0:
ans1 += 1
A1 = -1
elif nextA == 0 and A1 < 0:
ans1 += 1
A1 = 1
elif A1 > 0:
ans1 += abs(nextA) + 1
A1 = -1
else:
ans1 += abs(nextA) + 1
A1 = 1
# スタート-
if a[0] >= 0:
ans2 = abs(a[0]) + 1
A2 = -1
else:
A2 = a[0]
ans2 = 0
for i in range(1, n):
nextA = A2 + a[i]
if (A2 > 0 and nextA < 0) or (A2 < 0 and nextA > 0):
A2 = nextA
elif nextA == 0 and A2 > 0:
ans2 += 1
A2 = -1
elif nextA == 0 and A2 < 0:
ans2 += 1
A2 = 1
elif A2 > 0:
ans2 += abs(nextA) + 1
A2 = -1
else:
ans2 += abs(nextA) + 1
A2 = 1
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def solve():
n = int(input())
total,*A = map(int, input().split())
count = 0
for a in A:
if total < 0:
if a >= 0:
if total + a <= 0:
count += -(total + a) + 1
total = 1
else:
total += a
pass
else:
count += -(total + a) + 1
total = 1
else:
if a <= 0:
if total + a >= 0:
count += total + a + 1
total = -1
else:
total += a
pass
else:
count += total + a + 1
total = -1
return count
if __name__ == '__main__':
print(solve()) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[110000], sumpl[110000] = {};
int summi[110000] = {};
int mi = 0, pl = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
if (i == 0) {
sumpl[0] = a[i];
summi[0] = a[i];
} else {
sumpl[i] = sumpl[i - 1] + a[i];
summi[i] = summi[i - 1] + a[i];
}
if (i % 2 == 0) {
if (sumpl[i] <= 0) {
pl += abs(sumpl[i]) + 1;
sumpl[i] = 1;
}
if (summi[i] >= 0) {
mi += abs(summi[i]) + 1;
summi[i] = -1;
}
} else {
if (sumpl[i] >= 0) {
pl += abs(sumpl[i]) + 1;
sumpl[i] = -1;
}
if (summi[i] <= 0) {
mi += abs(summi[i]) + 1;
summi[i] = 1;
}
}
}
cout << (pl < mi ? pl : mi) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, char *argv[]) {
cin.tie(0);
ios::sync_with_stdio(false);
int n, a[100001];
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long int res_even = 0, sum_a = 0;
for (int i = 0; i < n; ++i) {
sum_a += a[i];
if (i % 2 == 0 && sum_a <= 0) {
res_even += abs(sum_a) + 1;
sum_a = 1;
}
if (i % 2 == 1 && sum_a >= 0) {
res_even += sum_a + 1;
sum_a = -1;
}
}
long long int res_odd = 0;
sum_a = 0;
for (int i = 0; i < n; ++i) {
sum_a += a[i];
if (i % 2 == 0 && sum_a >= 0) {
res_odd += sum_a + 1;
sum_a = -1;
}
if (i % 2 == 1 && sum_a <= 0) {
res_odd += abs(sum_a) + 1;
sum_a += 1;
}
}
cout << min(res_even, res_odd) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
long long n, a, cnt = 0, sum;
cin >> n >> sum;
if (sum == 0) {
long long cnt1 = 1, cnt2 = 1;
sum = 1;
for (long long i = 1; i < n; ++i) {
cin >> a;
if (sum > 0) {
sum += a;
if (sum >= 0) {
cnt1 += sum + 1;
sum = -1;
}
} else {
sum += a;
if (sum <= 0) {
cnt1 += 1 - sum;
sum = 1;
}
}
}
sum = -1;
for (long long i = 1; i < n; ++i) {
cin >> a;
if (sum > 0) {
sum += a;
if (sum >= 0) {
cnt2 += sum + 1;
sum = -1;
}
} else {
sum += a;
if (sum <= 0) {
cnt2 += 1 - sum;
sum = 1;
}
}
}
cout << min(cnt1, cnt2) << endl;
} else {
for (long long i = 1; i < n; ++i) {
cin >> a;
if (sum > 0) {
sum += a;
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
} else {
sum += a;
if (sum <= 0) {
cnt += 1 - sum;
sum = 1;
}
}
}
cout << cnt << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
long long n, i, j, sw, sw2, count = 0, add = 0;
cin >> n;
vector<long long> a(n);
for (i = 0; i < n; i++) cin >> a[i];
if (a[0] > 0)
sw = 1;
else
sw = -1;
add += a[0];
for (i = 1; i < n; i++) {
add += a[i];
if (sw == 1) {
if (add < 0) {
} else {
if (a[i] >= 0) {
while (add != -1) {
a[i]--;
add--;
count++;
}
} else {
while (add != -1) {
a[i]++;
add++;
count++;
}
}
}
} else {
if (add > 0) {
} else {
if (a[i] <= 0) {
while (add != 1) {
a[i]--;
add--;
count++;
}
} else {
while (add != 1) {
a[i]++;
add++;
count++;
}
}
}
}
if (a[i] > 0)
sw = 1;
else
sw = -1;
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
#具体的な操作を考える必要はなくて,ただ部分和をひたすら考えていけばいい
answer1 = 0
answer2 = 0
sum1 = a[0]
sum2 = a[0]
# pmpm...
for i in range(n):
sum1 += a[i]
if i % 2 == 1:
if sum1 >= 0:
answer1 += sum1 - (-1)
sum1 = -1
if i % 2 == 0:
if sum1 <= 0:
answer1 += 1 - sum1
sum1 = 1
# mpmp...
for i in range(n):
sum2 += a[i]
if i % 2 == 0:
if sum2 >= 0:
answer2 += sum2 - (-1)
sum2 = -1
if i % 2 == 1:
if sum2 <= 0:
answer2 += 1 - sum2
sum2 = 1
print(min(answer1, answer2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const int INF = 0x3f3f3f3f;
static const long long INFL = 0x3f3f3f3f3f3f3f3fLL;
template <typename T, typename U>
inline void amin(T &x, U y) {
if (y < x) x = y;
}
template <typename T, typename U>
inline void amax(T &x, U y) {
if (x < y) x = y;
}
signed main() {
long long n;
cin >> n;
vector<long long> a(n);
for (long long(i) = 0; (i) < (long long)(n); (i)++) cin >> a[i];
long long sum = 0;
long long prev = 0;
sum += a[0];
long long ans = 0;
for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) {
prev = sum;
sum += a[i];
if (prev * sum < 0) {
continue;
} else {
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else if (sum < 0) {
ans += abs(sum) + 1;
sum = 1;
} else {
ans++;
sum = (prev < 0 ? 1 : -1);
}
}
}
sum = 0;
prev = 0;
long long ans2 = 0;
sum += a[0];
if (sum > 0) {
ans2 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans2 += abs(sum) + 1;
sum = 1;
} else {
ans2++;
sum = 1;
}
for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) {
prev = sum;
sum += a[i];
if (prev * sum < 0) {
continue;
} else {
if (sum > 0) {
ans2 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans2 += abs(sum) + 1;
sum = 1;
} else {
ans2++;
sum = (prev < 0 ? 1 : -1);
}
}
}
cout << min(ans, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
currentSum = 0
count1 = 0
count2 = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count1 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count1 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count1 += 1
currentSum = -1
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count2 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count2 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count2 += 1
currentSum = -1
print(min(count1, count2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
counter = 0 ####操作回数
A.reverse()
S = 0
a = A.pop()
if a==0:
counter += 1
while A:
b = A.pop()
if b == 0:
counter += 2
elif b>0:
A.append(b)
S = -1
break
elif b<0:
A.append(b)
S = 1
break
else:
S += a
while A:
c = A.pop()
if c>=0 and S>0:
counter += abs(c+S)+1
S = -1
elif c<=0 and S<0:
counter += abs(c+S)+1
S = 1
elif S<0 and S+c<=0:
counter += abs(S+c)+1
S = 1
elif S>0 and S+c>=0:
counter += abs(S+c)+1
S = -1
else:
S += c
print(counter)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long INF = (1LL << 62);
long long N;
vector<long long> A, W;
long long S[100002] = {INF * (-1)};
long long dp[100002] = {0};
void calcDP(int n) {
if (n == 1) {
if (W[1] > 0) {
if ((W[2] > 0) && (abs(W[1]) < abs(W[2]))) {
dp[1] = abs(-1 - W[1]);
W[1] = -1;
} else {
dp[1] = 0;
}
} else if (W[1] < 0) {
if ((W[2] < 0) && (abs(W[1]) < abs(W[2]))) {
dp[1] = abs(1 - W[1]);
W[1] = 1;
} else {
dp[1] = 0;
}
} else {
dp[1] = 1;
if (W[2] <= 0) {
W[1] = 1;
} else {
W[1] = -1;
}
}
S[1] = W[1];
return;
} else {
S[n] = S[n - 1] + W[n];
if ((S[n - 1] < 0 && S[n] > 0) || (S[n - 1] > 0 && S[n] < 0)) {
dp[n] = dp[n - 1];
} else {
if (S[n - 1] > 0) {
dp[n] = dp[n - 1] + abs(-1 - S[n - 1] - W[n]);
W[n] = -1 - S[n - 1];
} else {
dp[n] = dp[n - 1] + abs(1 - S[n - 1] - W[n]);
W[n] = 1 - S[n - 1];
}
S[n] = S[n - 1] + W[n];
}
return;
}
}
int main(int argc, char* argv[]) {
cin.tie(0);
ios::sync_with_stdio(false);
cin >> N;
W.push_back(0);
S[0] = 0;
for (int i = 1; i <= N; i++) {
long long a;
cin >> a;
A.push_back(a);
W.push_back(a);
if (i == 1) {
S[1] = a;
} else {
S[i] = S[i - 1] + a;
}
}
for (int i = 1; i <= N; i++) {
calcDP(i);
}
printf("%lld\n", dp[N]);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using static System.Math;
using static AtCoderTemplate.MyExtensions;
using static AtCoderTemplate.MyInputOutputs;
using static AtCoderTemplate.MyNumericFunctions;
using static AtCoderTemplate.MyAlgorithm;
namespace AtCoderTemplate {
public class Program {
public static void Main (string[] args) {
var n = ReadInt ();
var a = ReadLongs ();
// evenが+
var evenCount = 0L; {
var sum0 = a[0] > 0 ? a[0] : 1;
var count = a[0] > 0 ? 0 : Abs (a[0]);
foreach (var i in Enumerable.Range (1, n - 1)) {
var sum1 = sum0 + a[i];
if (IsEven (i)) {
if (sum1 < 0) {
count += Abs (sum1) + 1;
sum0 = 1;
} else if (sum1 == 0) {
count += 1;
sum0 = 1;
} else {
sum0 = sum1;
}
} else {
if (sum1 > 0) {
count += Abs (sum1) + 1;
sum0 = -1;
} else if (sum1 == 0) {
count += 1;
sum0 = -1;
} else {
sum0 = sum1;
}
}
}
evenCount = count;
}
var oddCount = 0L; {
var sum0 = a[0] < 0 ? a[0] : -1;
var count = a[0] < 0 ? 0 : Abs (a[0]);
foreach (var i in Enumerable.Range (1, n - 1)) {
var sum1 = sum0 + a[i];
if (IsOdd (i)) {
if (sum1 < 0) {
count += Abs (sum1) + 1;
sum0 = 1;
} else if (sum1 == 0) {
count += 1;
sum0 = 1;
} else {
sum0 = sum1;
}
} else {
if (sum1 > 0) {
count += Abs (sum1) + 1;
sum0 = -1;
} else if (sum1 == 0) {
count += 1;
sum0 = -1;
} else {
sum0 = sum1;
}
}
}
oddCount = count;
}
Print (Min (evenCount, oddCount));
}
}
public static class MyInputOutputs {
/* Input & Output*/
public static int ReadInt () {
return int.Parse (Console.ReadLine ());
}
public static long ReadLong () {
return long.Parse (Console.ReadLine ());
}
public static List<int> ReadInts () {
return Console.ReadLine ().Split (' ').Select (c => int.Parse (c)).ToList ();
}
public static List<long> ReadLongs () {
return Console.ReadLine ().Split (' ').Select (c => long.Parse (c)).ToList ();
}
public static List<List<int>> ReadIntColumns (int n) {
/*
入力例
A1 B1
A2 B2
...
An Bn
出力例
[[A1,A2,...,An], [B1,B2,...,Bn]]
*/
var rows = Enumerable.Range (0, n).Select (i => ReadInts ()).ToList ();
var m = rows.FirstOrDefault ()?.Count () ?? 0;
return Enumerable.Range (0, m).Select (i => rows.Select (items => items[i]).ToList ()).ToList ();
}
public static List<List<long>> ReadLongColumns (int n) {
/*
入力例
A1 B1
A2 B2
...
An Bn
出力例
[[A1,A2,...,An], [B1,B2,...,Bn]]
*/
var rows = Enumerable.Range (0, n).Select (i => ReadLongs ()).ToList ();
var m = rows.FirstOrDefault ()?.Count () ?? 0;
return Enumerable.Range (0, m).Select (i => rows.Select (items => items[i]).ToList ()).ToList ();
}
public static void Print<T> (T item) {
Console.WriteLine (item);
}
public static void PrintIf<T1, T2> (bool condition, T1 trueResult, T2 falseResult) {
if (condition) {
Console.WriteLine (trueResult);
} else {
Console.WriteLine (falseResult);
}
}
public static void PrintRow<T> (IEnumerable<T> list) {
/* 横ベクトルで表示
A B C D ...
*/
if (!list.IsEmpty ()) {
Console.Write (list.First ());
foreach (var item in list.Skip (1)) {
Console.Write ($" {item}");
}
}
Console.Write ("\n");
}
public static void PrintColomn<T> (IEnumerable<T> list) {
/* 縦ベクトルで表示
A
B
C
D
...
*/
foreach (var item in list) {
Console.WriteLine (item);
}
}
public static void Print2DArray<T> (IEnumerable<IEnumerable<T>> sources) {
foreach (var row in sources) {
PrintRow (row);
}
}
}
public static class MyNumericFunctions {
public static bool IsEven (int a) {
return a % 2 == 0;
}
public static bool IsEven (long a) {
return a % 2 == 0;
}
public static bool IsOdd (int a) {
return !IsEven (a);
}
public static bool IsOdd (long a) {
return !IsEven (a);
}
/// <summary>
/// 順列の総数を得る
/// O(N-K)
/// </summary>
/// <param name="n">全体の数</param>
/// <param name="k">並べる数</param>
/// <param name="divisor">返り値がlongを超えないようにdivisorで割った余りを得る</param>
/// <returns>nPk (をdivisorで割った余り)</returns>
public static long nPk (int n, int k, long divisor) {
if (k > n) {
return 0L;
} else {
return Enumerable.Range (n - k + 1, k).Aggregate (1L, ((i, m) => (i * m) % divisor));
}
}
public static long nPk (int n, int k) {
if (k > n) {
return 0L;
} else {
return Enumerable.Range (n - k + 1, k).Aggregate (1L, ((i, m) => (i * m)));
}
}
/// <summary>
/// 階乗を得る
/// O(N)
/// </summary>
/// <param name="n"></param>
/// <param name="divisor">返り値がlongを超えないようにdivisorで割った余りを得る</param>
/// <returns>n! (をdivisorで割った余り)</returns>
public static long Fact (int n, long divisor) {
return nPk (n, n, divisor);
}
public static long Fact (int n) {
return nPk (n, n);
}
/// <summary>
/// 組み合わせの総数を得る
/// </summary>
/// <param name="n"></param>
/// <param name="k"></param>
/// <returns>nCk</returns>
public static long nCk (int n, int k) {
if (k > n) {
return 0L;
} else {
return nPk (n, k) / Fact (k);
}
}
/// <summary>
/// 最大公約数を得る
/// O(log N)
/// </summary>
/// <param name="m">自然数</param>
/// <param name="n">自然数</param>
/// <returns></returns>
public static long GCD (long m, long n) {
// GCD(m,n) = GCD(n, m%n)を利用
// m%n = 0のとき、mはnで割り切れるので、nが最大公約数
if (m <= 0L || n <= 0L) throw new ArgumentOutOfRangeException ();
if (m < n) return GCD (n, m);
while (m % n != 0L) {
var n2 = m % n;
m = n;
n = n2;
}
return n;
}
/// <summary>
/// 最小公倍数を得る
/// O(log N)
/// </summary>
/// <param name="m"></param>
/// <param name="n"></param>
/// <returns></returns>
public static long LCM (long m, long n) {
var ans = checked ((long) (BigInteger.Multiply (m, n) / GCD (m, n)));
return ans;
}
/// <summary>
/// 約数列挙(非順序)
/// O(√N)
/// </summary>
/// <param name="m">m > 0</param>
/// <returns></returns>
public static IEnumerable<long> Divisor (long m) {
if (m == 0) throw new ArgumentOutOfRangeException ();
var front = Enumerable.Range (1, (int) Sqrt (m))
.Select (i => (long) i)
.Where (d => m % d == 0);
return front.Concat (front.Where (x => x * x != m).Select (x => m / x));
}
/// <summary>
/// 公約数列挙(非順序)
/// O(√N)
/// </summary>
/// <param name="m">m > 0</param>
/// <param name="n">n > 0</param>
/// <returns></returns>
public static IEnumerable<long> CommonDivisor (long m, long n) {
if (m < n) return CommonDivisor (n, m);
return Divisor (m).Where (md => n % md == 0);
}
}
public static class MyAlgorithm {
/// <summary>
/// 二分探索法
/// O(log N)
/// </summary>
/// <param name="list">探索するリスト</param>
/// <param name="predicate">条件の述語関数</param>
/// <param name="ng">条件を満たさない既知のindex</param>
/// <param name="ok">条件を満たす既知のindex</param>
/// <typeparam name="T">順序関係を持つ型(IComparableを実装する)</typeparam>
/// <returns>条件を満たすindexの内、境界に最も近いものを返す</returns>
public static int BinarySearch<T> (IList<T> list, Func<T, bool> predicate, int ng, int ok)
where T : IComparable<T> {
while (Abs (ok - ng) > 1) {
int mid = (ok + ng) / 2;
if (predicate (list[mid])) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
/// <summary>
/// 辺の集まりを操作するオブジェクト
/// </summary>
public class Edge {
long[, ] edge;
public int NodeNum { get; }
public Edge (int nodeNum, long overDistance) {
var edge = new long[nodeNum, nodeNum];
foreach (var i in Enumerable.Range (0, nodeNum)) {
foreach (var j in Enumerable.Range (0, nodeNum)) {
if (i != j) {
edge[i, j] = overDistance;
} else {
edge[i, j] = 0;
}
}
}
this.edge = edge;
this.NodeNum = nodeNum;
}
public Edge (Edge edge) {
this.edge = new long[edge.NodeNum, edge.NodeNum];
foreach (var i in Enumerable.Range (0, edge.NodeNum)) {
foreach (var j in Enumerable.Range (0, edge.NodeNum)) {
this.edge[i, j] = edge.GetLength (i, j);
}
}
this.NodeNum = edge.NodeNum;
}
public List<List<long>> ToList () {
return Enumerable.Range (0, NodeNum).Select (i =>
Enumerable.Range (0, NodeNum).Select (j =>
edge[i, j]
).ToList ()
).ToList ();
}
public void Add (int node1, int node2, long distance) {
edge[node1, node2] = distance;
}
public long GetLength (int node1, int node2) {
return edge[node1, node2];
}
}
/// <summary>
/// ワーシャルフロイド法
/// O(N^3)
/// </summary>
/// <param name="edge">Edgeオブジェクト</param>
/// <param name="nodeNum">ノードの数</param>
/// <returns>各ノード間の最短距離を辺として持つEdgeオブジェクト</returns>
public static Edge WarshallFloyd (Edge edge) {
var res = new Edge (edge);
foreach (var b in Enumerable.Range (0, edge.NodeNum)) {
foreach (var a in Enumerable.Range (0, edge.NodeNum)) {
foreach (var c in Enumerable.Range (0, edge.NodeNum)) {
res.Add (a, c, Min (res.GetLength (a, c), res.GetLength (a, b) + res.GetLength (b, c)));
}
}
}
return res;
}
}
public static class MyExtensions {
// AppendとPrependが、.NET Standard 1.6からの追加で、Mono 4.6.2 はそれに対応して仕様はあるが、実装がない
public static IEnumerable<T> Append<T> (this IEnumerable<T> source, T element) {
return source.Concat (Enumerable.Repeat (element, 1));
}
public static IEnumerable<T> Prepend<T> (this IEnumerable<T> source, T element) {
return Enumerable.Repeat (element, 1).Concat (source);
}
// TakeLastとSkipLastが、.Net Standard 2.1からの追加で、Mono 4.6.2 はそれに対応していない
public static IEnumerable<T> TakeLast<T> (this IEnumerable<T> source, int count) {
return source.Skip (source.Count () - count);
}
public static IEnumerable<T> SkipLast<T> (this IEnumerable<T> source, int count) {
return source.Take (source.Count () - count);
}
public static bool IsEmpty<T> (this IEnumerable<T> source) {
return !source.Any ();
}
/// <summary>
/// インデックスiの位置の要素からk個取り除く
/// O(N)
/// </summary>
public static IEnumerable<T> TakeAwayRange<T> (this IEnumerable<T> source, int i, int count) {
return source.Take (i).Concat (source.Skip (i + count));
}
/// <summary>
/// インデックスiの位置の要素を取り除く
/// O(N)
/// </summary>
public static IEnumerable<T> TakeAwayAt<T> (this IEnumerable<T> source, int i) {
return source.TakeAwayRange (i, 1);
}
/// <summary>
/// インデックスiの位置にシーケンスを挿入する
/// O(N + K)
/// </summary>
public static IEnumerable<T> InsertEnumAt<T> (this IEnumerable<T> source, int i, IEnumerable<T> inserted) {
return source.Take (i).Concat (inserted).Concat (source.Skip (i));
}
/// <summary>
/// 順列を得る
/// O(N!)
/// </summary>
public static IEnumerable<IEnumerable<T>> Perm<T> (this IEnumerable<T> source, int n) {
if (n == 0 || source.IsEmpty () || source.Count () < n) {
return Enumerable.Empty<IEnumerable<T>> ();
} else if (n == 1) {
return source.Select (i => new List<T> { i });
} else {
var nexts = source.Select ((x, i) =>
new { next = source.Take (i).Concat (source.Skip (i + 1)), selected = source.Take (i + 1).Last () });
return nexts.SelectMany (next => Perm (next.next, n - 1).Select (item => item.Prepend (next.selected)));
}
}
/// <summary>
/// シーケンスの隣り合う要素を2引数の関数に適用したシーケンスを得る
/// </summary>
/// <para>O(N)</para>
/// <param name="source">元のシーケンス</param>
/// <param name="func">2引数関数</param>
/// <example>[1,2,3,4].MapAdjacent(f) => [f(1,2), f(2,3), f(3,4)]</example>
public static IEnumerable<TR> MapAdjacent<T1, TR> (this IEnumerable<T1> source, Func<T1, T1, TR> func) {
var list = source.ToList ();
return Enumerable.Range (1, list.Count - 1)
.Select (i => func (list[i - 1], list[i]));
}
/// <summary>
/// 累積項を要素にもつシーケンスを得る(初項は、first)
/// <para>O(N)</para>
/// </summary>
/// <param name="source">元のシーケンス</param>
/// <param name="func">2引数関数f</param>
/// <param name="first">func(first, source[0])のための初項</param>
/// <example> [1,2,3].Scanl1(f,0) => [0, f(0,1), f(f(0,1),2), f(f(f(0,1),2),3)]</example>
public static IEnumerable<TR> Scanl<T, TR> (this IEnumerable<T> source, TR first, Func<TR, T, TR> func) {
var list = source.ToList ();
var result = new List<TR> { first };
foreach (var i in Enumerable.Range (0, source.Count ())) {
result.Add (func (result[i], list[i]));
}
return result;
}
/// <summary>
/// 累積項を要素にもつシーケンスを得る(初項は、source.First())
/// <para>O(N)</para>
/// </summary>
/// <param name="source">元のシーケンス</param>
/// <param name="func">2引数関数f</param>
/// <example> [1,2,3].Scanl1(f) => [1, f(1,2), f(f(1,2),3)]</example>
public static IEnumerable<T> Scanl1<T> (this IEnumerable<T> source, Func<T, T, T> func) {
var list = source.ToList ();
var result = new List<T> { list[0] };
foreach (var i in Enumerable.Range (1, source.Count () - 1)) {
result.Add (func (result[i - 1], list[i]));
}
return result;
}
/// <summary>
/// 昇順にソートしたインデックスを得る
/// </summary>
/// <para>O(N * log N)</para>
public static IEnumerable<int> SortIndex<T> (this IEnumerable<T> source) {
return source
.Select ((item, i) => new { Item = item, Index = i })
.OrderBy (x => x.Item)
.Select (x => x.Index);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int dx[] = {1, 0, -1, 0};
int dy[] = {0, 1, 0, -1};
int n;
vector<long long> a(200000);
long long solve(vector<long long> a) {
long long ans = 0, sum = a[0];
for (int i = 1; i < n; i++) {
long long tmp = sum;
sum += a[i];
if (sum > 0 && tmp > 0) {
ans += abs(sum) + 1;
sum = -1;
} else if (sum < 0 && tmp < 0) {
ans += abs(sum) + 1;
sum = 1;
}
}
return ans;
}
int main() {
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long ans1 = solve(a);
a[0] = (-1) * a[0];
long long ans2 = solve(a);
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> L(N);
for (int i = 0; i < N; i++) {
cin >> L.at(i);
}
long long v = 0, res = 0, le = 0;
bool change_flag = true;
for (int i = 0; i < N; i++) {
if (i == 0) {
v = L.at(i);
} else {
if (v > 0 && v + L.at(i) > 0) {
le = -1 - v - L.at(i);
L.at(i) += le;
v += L.at(i);
res += -le;
le = 0;
} else if (v > 0 && v + L.at(i) == 0) {
le = -1;
L.at(i) += le;
v += L.at(i);
res += -le;
le = 0;
} else if (v < 0 && v + L.at(i) <= 0) {
le = 1 - v - L.at(i);
L.at(i) += le;
v += L.at(i);
res += le;
le = 0;
} else if (v < 0 && v + L.at(i) == 0) {
le = 1;
L.at(i) += le;
v += L.at(i);
res += le;
le = 0;
} else {
v += L.at(i);
}
}
}
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
now_a = a[0]
count = 0
'''
True = positive
False = negative
'''
# sign = True
# if now_a < 0:
# sign = False
#
# for i in range(1, n):
# next_a = now_a + a[i]
# if sign:
# if next_a >= 0:
# count += next_a + 1
# now_a = -1
# else:
# now_a = next_a
# sign = False
# else:
# if next_a <= 0:
# count += abs(next_a) + 1
# now_a = 1
# else:
# now_a = next_a
# sign = True
# print(count)
sa = a[0]
sign = True
if sa < 0:
sign = False
for i in range(1, n):
na = sum(a[:i+1])
if sign and na >= 0:
a[i] = -1 * (na + 1)
count += na + 1
elif not sign and na <= 0:
a[i] = 1 - na
count += 1 - na
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
namespace ABC059C
{
class Program
{
// -1 4 3 2 -5 4
// -1 4 -4 2 -5 5 -> 8
static long sequentialize(int[] a, bool firstPlus)
{
var n = a.Length;
var changeCount = 0L;
if (firstPlus && a[0] <= 0)
{
changeCount += 1 - a[0];
a[0] = 1;
}
else if (!firstPlus && a[0] >= 0)
{
changeCount += -1 - a[0];
a[0] = -1;
}
var sum = a[0];
int v = a[0] > 0 ? 1 : -1;
for (int i = 1; i < n; i++)
{
var temp = sum + a[i];
if (sum > 0 && temp > 0)
{
// tempを-1にしたい
var prev = a[i];
a[i] = -sum - 1;
changeCount += Math.Abs(prev - a[i]);
}
else if (sum < 0 && temp < 0)
{
// tempを+1にしたい
var prev = a[i];
a[i] = -sum + 1;
changeCount += Math.Abs(prev - a[i]);
}
else if (temp == 0)
{
changeCount += 1;
a[i] = v;
}
sum += a[i];
v = -v;
}
return changeCount;
}
static void Solve()
{
var n = Input.NextInt();
var a = Input.NextInt(n).ToArray();
var b = new int[n];
a.CopyTo(b, 0);
var changeCount1 = sequentialize(a, true);
// 先頭の符号反転
var changeCount2 = sequentialize(b, false);
Console.WriteLine(Math.Min(changeCount1, changeCount2));
}
#region Competitive Template
public static void Main(string[] args)
{
var needsFlushOutput = true;
if (needsFlushOutput)
{
// 細かく出力しないようにする
var sw = new System.IO.StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
Console.SetOut(sw);
}
// 仮想的に標準入力をセットする
// NextLine系を使っていると使えない
//Input.SetText("");
Solve();
Console.Out.Flush();
}
static class Input
{
static char[] separator = { ' ' };
public static bool IsEof { get; set; }
static Queue<string> q { get; set; }
static Input()
{
IsEof = false;
q = new Queue<string>();
}
/// <summary>
/// 入力予約
/// </summary>
/// <param name="items"></param>
public static void SetText(IEnumerable<string> items)
{
foreach (var item in items)
{
SetText(item);
}
}
/// <summary>
/// 入力予約
/// </summary>
/// <param name="s"></param>
/// <returns></returns>
public static bool SetText(string s)
{
if (s == null) return false;
foreach (var elem in s.Trim().Split(separator, StringSplitOptions.RemoveEmptyEntries))
{
q.Enqueue(elem);
}
return true;
}
/// <summary>
/// 内部queueに入力からの値をsplitして格納する
/// </summary>
/// <returns></returns>
static bool read()
{
var s = Console.ReadLine();
if (s == null) return false;
foreach (var elem in s.Trim().Split(separator, StringSplitOptions.RemoveEmptyEntries))
{
q.Enqueue(elem);
}
if (!q.Any()) return read();
return true;
}
/// <summary>
/// 次のstringを一つ読み込む
/// </summary>
/// <returns></returns>
public static string Next()
{
if (!q.Any())
{
if (!read())
{
IsEof = true;
return "";
}
}
return q.Dequeue();
}
public static int NextInt() => int.Parse(Next());
public static long NextLong() => long.Parse(Next());
public static double NextDouble() => double.Parse(Next());
public static List<string> Next(int n) => Enumerable.Range(0, n).Select(_ => Next()).ToList();
public static List<int> NextInt(int n) => Next(n).Select(x => int.Parse(x)).ToList();
public static List<long> NextLong(int n) => Next(n).Select(x => long.Parse(x)).ToList();
public static List<double> NextDouble(int n) => Next(n).Select(x => double.Parse(x)).ToList();
public static List<string> NextLine() => Console.ReadLine().Trim().Split(separator, StringSplitOptions.RemoveEmptyEntries).ToList();
public static List<int> NextIntLine() => NextLine().Select(x => int.Parse(x)).ToList();
public static List<long> NextLongLine() => NextLine().Select(x => long.Parse(x)).ToList();
public static List<double> NextDoubleLine() => NextLine().Select(x => double.Parse(x)).ToList();
}
#endregion
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args)throws Exception {
Scanner stdIn=new Scanner(System.in);
int N=stdIn.nextInt();
int a[]=new int[N];
int pla=0,key=0,cun=0;
int z=0;
while(z<N) {
a[z]=stdIn.nextInt();
key+=a[z];
if(a[0]<0)
pla=1;
if(pla==0) {
if(z%2==0) {
if(key<0) {
cun+=key*-1+1;
key=1;
}
if(key==0) {
cun+=1;
key+=1;
}
}
else {
if(key>0) {
cun+=key+1;
key=-1;
}
if(key==0) {
cun+=1;
key-=1;
}
}
}
else {
if(z%2==1) {
if(key<0) {
cun+=key*-1+1;
key+=1;
}
if(key==0) {
cun+=1;
key+=1;
}
}
else {
if(key>0) {
cun+=key+1;
key=-1;
}
if(key==0) {
cun+=1;
key-=1;
}
}
}
z++;
}
System.out.println(cun);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
total=0
for i in range(1,n):
count = 0
if sum(a[:i]) < 0:
if a[i] > abs(sum(a[:i])):
pass
else:
count += (abs(sum(a[:i])) - a[i] + 1)
a[i] += count
total += count
if sum(a[:i]) > 0:
if a[i] < (-1)*abs(sum(a[:i])):
pass
else:
count += (abs(-1*(abs(sum(a[:i]))) - a[i] ) + 1)
a[i] -= count
total += count
print(total)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | def f(a)
g = lambda{|car, cdr, total=0|
sum = car
r = [car]
cdr.each{|curr|
case sum <=> 0
when 1;
r << new_curr = [curr, -sum-1].min
sum += new_curr
total += curr - new_curr
when -1;
r << new_curr = [curr, -sum+1].max
sum += new_curr
total += new_curr - curr
end
}
p r
total += 1 if sum == 0
total
}
x = g.(a[0], a[1..-1])
y = g.(a[0] > 0 ? -1 : 1, a[1..-1], a[0].abs+1)
[x, y].min
end
N = gets.to_i
A = gets.split.take(N).map(&:to_i)
p f(A)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
__attribute__((constructor)) void initial() {
cin.tie(0);
ios::sync_with_stdio(false);
}
int main() {
int N;
cin >> N;
vector<int> a;
for (int i = 0; i < (N); i++) {
int ai;
cin >> ai;
a.push_back(ai);
}
int changeCount = 0;
int sum = 0;
bool nextSumPositive = a[0] > 0;
for (int i = 0; i < (N); i++) {
sum += a[i];
if (nextSumPositive) {
if (sum <= 0) {
int change = -sum + 1;
changeCount += abs(change);
sum += change;
}
} else {
if (sum >= 0) {
int change = -sum - 1;
changeCount += abs(change);
sum += change;
}
}
nextSumPositive = !nextSumPositive;
}
cout << changeCount << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
res = 0
if a[0]==0:
res += 1
if a[1]>=0:
a[0] = -1
else:
a[0] = 1
total = a[0]
hugou = total > 0
for i in a[1:]:
total += i
if hugou == (total>0):
res += abs(total)+1
if hugou:
total = -1
else:
total = 1
hugou = total>0
print(res) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
cin >> n;
vector<long> a(n + 1);
for (long i = 1; i <= n; i++) cin >> a.at(i);
long ans = 0;
for (long i = 1; i <= n - 1; i++) {
if (abs(a.at(i + 1)) > abs(a.at(i)) && a.at(i + 1) * a.at(i) < 0) {
a.at(i + 1) += a.at(i);
} else {
ans += abs(a.at(i + 1) -
((abs(a.at(i)) + 1) * (-1) * a.at(i) / abs(a.at(i))));
a.at(i + 1) = (-1) * a.at(i) / abs(a.at(i));
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int calc(int a0, vector<int>& a) {
int sum = a0;
int count = 0;
for (int i = (1); i < (a.size()); ++i) {
if (sum < 0) {
sum += a[i];
if (sum <= 0) {
count += 1 - sum;
sum = 1;
}
continue;
}
sum += a[i];
if (sum >= 0) {
count += sum + 1;
sum = -1;
}
}
return count;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int N;
cin >> N;
vector<int> a(N);
for (auto& ai : a) cin >> ai;
int count = 0;
if (a[0] == 0) {
auto count1 = calc(1, a) + 1;
auto count2 = calc(-1, a) + 1;
count = min(count1, count2);
} else {
auto count1 = calc(a[0], a);
auto count2 = calc(1, a) + abs(1 - a[0]);
auto count3 = calc(-1, a) + abs(-1 - a[0]);
count = min(count1, min(count2, count3));
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
n=int(input())
a=list(map(int,input().split(' ')))
sumcum = a[0]
ans = 0
if a[0] == 0:
a[0] = a[1]/abs(a[1])
ans += 1
sumcum += a[0]
tmp = a[0]
for i in a[1:]:
if sumcum*(sumcum+i) <0:
sumcum += i
continue
else:
ans += abs(sumcum+i)+1
sumcum = -1*sumcum/abs(sumcum)
print(int(ans))
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
long long l1[n + 1];
long long x = 0, s = 0;
for (int i = 1; i <= n; i++) {
cin >> l1[i];
x += l1[i];
if (i == 0 && l1[i] == 0) x++, s++;
if (i >= 2) {
if (x - l1[i] < 0 && x <= 0) {
s += abs((-x + l1[i] + 1) - l1[i]);
l1[i] = l1[i] - x + 1;
x = 1;
} else if (x - l1[i] > 0 && x >= 0) {
s += abs(-(x - l1[i] + 1) - l1[i]);
l1[i] = -(x - l1[i] + 1);
x = -1;
}
}
}
cout << s << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
long long n;
vector<long long> a;
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
long long n;
cin >> n;
vector<long long> a(n);
for (long long i = (0); i < (n); i++) cin >> a[i];
vector<long long> b(n);
b[0] = a[0];
for (long long i = (1); i < (n); i++) b[i] = b[i - 1] + a[i];
long long res1 = 0, tmp = 0;
for (long long i = (0); i < (n); i++) {
long long c = b[i] + tmp;
if (i % 2 == 0) {
if (c > 0) continue;
res1 += 1 - c;
tmp += 1 - c;
} else {
if (c < 0) continue;
res1 += c + 1;
tmp -= c + 1;
}
}
long long res2 = 0;
tmp = 0;
for (long long i = (0); i < (n); i++) {
long long c = b[i] + tmp;
if (i % 2 == 0) {
if (c < 0) continue;
res2 += c + 1;
tmp -= c + 1;
} else {
if (c > 0) continue;
res2 += 1 - c;
tmp += 1 - c;
}
}
cout << res1 << " " << res2 << endl;
cout << min(res1, res2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #k = int(input())
#s = input()
#a, b = map(int, input().split())
#s, t = map(str, input().split())
#l = list(map(int, input().split()))
#l = [list(map(int,input().split())) for i in range(n)]
#a = [input() for _ in range(n)]
import copy
n = int(input())
a = list(map(int, input().split()))
b = copy.copy(a)
lastSum = a[0]
nowSum = a[0]
for i in range(1, n):
nowSum += a[i]
#print(nowSum)
if lastSum > 0:
if nowSum >=0:
a[i] = a[i] - (nowSum+1)
nowSum += a[i] - b[i]
else: #lastSum < 0
if nowSum <= 0:
a[i] = a[i] - (nowSum-1)
nowSum += a[i] - b[i]
lastSum += a[i]
#print(a)
ans = 0
for i in range(n):
ans += abs(a[i]-b[i])
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AtCoder
{
class Program
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
int[] a = new int[n];
string[] lines = Console.ReadLine().Split(' ');
for (int i = 0; i < n; i++)
{
a[i] = int.Parse(lines[i]);
}
int ans = 0;
int diff = 0;
int sign = (a[0] > 0 ? 1 : -1);
int sum = a[0];
for (int i = 1; i < n; i++)
{
sum += a[i];
if ((sign == 1) && (sum > 0))
{
diff = +(sum + 1);
ans += diff;
sum -= diff;
}
else if ((sign == -1) && (sum < 0))
{
diff = -(sum - 1);
ans += diff;
sum += diff;
}
else if (sum == 0)
{
if (sign == 1)
{
sum--;
ans++;
}
else
{
sum++;
ans++;
}
}
sign = -sign;
}
Console.WriteLine(ans);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int sign, n, a, cnt = 0, acm = 0, ans = 0;
cin >> n;
int A[n];
for (int i = 0; i < n; i++) cin >> A[i];
sign = 1;
for (int i = 0; i < n; i++) {
if ((acm + A[i]) * sign < 0)
acm += A[i];
else {
cnt += abs(acm + A[i]) + 1;
acm = -1 * sign;
}
sign *= -1;
}
ans = cnt;
sign = -1;
acm = 0;
cnt = 0;
for (int i = 0; i < n; i++) {
if ((acm + A[i]) * sign < 0)
acm += A[i];
else {
cnt += abs(acm + A[i]) + 1;
acm = -1 * sign;
}
sign *= -1;
}
ans = min(ans, cnt);
cout << ans << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | program ec12;
var
a,s:array[0..100000] of longint;
n,m,i,j,ans:longint;
begin
readln(n);
ans:=0;
s[0]:=0;
for i:=1 to n do
read(a[i]);
for i:=1 to n do
begin
s[i]:=s[i-1]+a[i];
if i>1 then
begin
if s[i-1]<0 then
begin
if s[i]<=0 then
begin
if s[i]=0 then
begin
inc(ans);
s[i]:=1;
end
else
inc(ans,(-s[i])+1);
end;
end
else
begin
if s[i]>=0 then
begin
if s[i]=0 then
begin
inc(ans);
s[i]:=-1;
end
else
begin
inc(ans,s[i]+1);
s[i]:=-1;
end;
end;
end;
end
else
inc(ans,abs(a[2]-a[1])+1);
end;
writeln(ans);
end. |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
static std::uint64_t solve(const std::vector<int>& va, int initSum,
std::uint64_t initCnt = 0) {
int sum = initSum;
std::uint64_t cnt = initCnt;
for (std::remove_reference<decltype(va)>::type::size_type i = 1;
i < va.size(); i++) {
auto nextSum = sum + va[i];
if (nextSum >= 0 && sum > 0) {
cnt += nextSum + 1;
sum = -1;
} else if (nextSum <= 0 && sum < 0) {
cnt += -nextSum + 1;
sum = 1;
} else {
sum = nextSum;
}
}
return cnt;
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
int n;
std::cin >> n;
std::vector<int> va(n);
for (auto&& e : va) {
std::cin >> e;
}
std::cout << std::min(solve(va, va[0]),
solve(va, va[0] > 0 ? -1 : 1, std::abs(va[0]) + 1))
<< std::endl;
return EXIT_SUCCESS;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
long long prevArraySum, currentArraySum;
long long res, res1 = 1e15;
for (int first = 0; first < (int)(2); first++) {
if (first % 2 && a[0] == 0) {
res = 1;
prevArraySum = -1;
currentArraySum = -1;
} else if (first % 2 == 0 && a[0] == 0) {
res = 1;
prevArraySum = 1;
currentArraySum = 1;
} else if (first % 2) {
res = 0;
prevArraySum = a[0];
currentArraySum = a[0];
} else if (a[0] > 0) {
res = a[0] + 1;
prevArraySum = -1;
currentArraySum = -1;
} else {
res = -a[0] + 1;
prevArraySum = -1;
currentArraySum = -1;
}
for (int i = (1); i < (n); ++i) {
if (prevArraySum > 0) {
currentArraySum = prevArraySum + a[i];
if (currentArraySum >= 0) {
res += abs(-1 - currentArraySum);
prevArraySum = -1;
} else {
prevArraySum = currentArraySum;
}
} else {
currentArraySum = prevArraySum + a[i];
if (currentArraySum <= 0) {
res += abs(1 - currentArraySum);
prevArraySum = 1;
} else {
prevArraySum = currentArraySum;
}
}
}
res1 = min(res, res1);
}
cout << res1 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long s1, a1 = 0, s2, a2 = 0;
if (a[0] > 0) {
s1 = a[0];
s2 = -1;
a2 = a[0] + 1;
} else if (a[0] < 0) {
s1 = 1;
s2 = a[0];
a1 = 1 - a[0];
} else {
s1 = 1;
s2 = -1;
a1 = 1;
a2 = 1;
}
for (int i = 1; i < n; ++i) {
if (s1 > 0) {
if (s1 + a[i] >= 0) {
a1 += s1 + a[i] + 1;
s1 = -1;
} else
s1 += a[i];
} else {
if (s1 + a[i] <= 0) {
a1 = 1 - s1 - a[i];
s1 = 1;
} else
s1 += a[i];
}
}
for (int i = 1; i < n; ++i) {
if (s2 > 0) {
if (s2 + a[i] >= 0) {
a2 += s2 + a[i] + 1;
s2 = -1;
} else
s2 += a[i];
} else {
if (s2 + a[i] <= 0) {
a2 = 1 - s2 - a[i];
s2 = 1;
} else
s2 += a[i];
}
}
cout << min(a1, a2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
cur = a[0]
if a[0] > 0:
for i in range(1, n):
cun = a[i]
# iが偶数のときプラス
if i % 2 == 0:
# プラスじゃないとき
if a[i] + cur <= 0:
ans += -(a[i] + cur) + 1
cun = -cur + 1
# iが奇数のときマイナス
else:
# マイナスじゃないとき
if a[i] + cur >= 0:
ans += a[i] + cur + 1
cun = -cur - 1
cur += cun
else:
for i in range(1, n):
cun = a[i]
# iが偶数のときマイナス
if i % 2 == 0:
# マイナスじゃないとき
if a[i] + cur >= 0:
ans += a[i] + cur + 1
cun = -cur - 1
# iが奇数のときプラス
else:
# プラスじゃないとき
if a[i] + cur <= 0:
ans += -(a[i] + cur) + 1
cun = -cur + 1
cur += cun
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> S(N + 1);
for (int i = 1; i <= N; ++i) {
cin >> S[i];
S[i] += S[i - 1];
}
int ians = (1 << 30);
for (int j = -1; j <= 1; j += 2) {
int ans = 0;
int add = 0;
int sign = j;
for (int i = 1; i <= N; ++i) {
S[i] += add;
int sign_i = ((S[i] >> 31) << 1) + 1;
if (sign_i == sign) {
ans += abs(-sign_i - S[i]);
add += -sign_i - S[i];
S[i] = -sign_i;
sign_i = -sign_i;
} else if (S[i] == 0) {
ans += 1;
add += -sign;
S[i] += -sign;
sign_i = -sign;
}
sign = sign_i;
}
ians = min(ans, ians);
}
cout << ians << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int now = 0;
int ans1 = 0;
for (int i = 0; i < n; i++) {
now += a[i];
if (i % 2 == 0) {
if (now < 0) {
ans1 += 1 - now;
now = 1;
}
}
if (i % 2 == 1) {
if (now > 0) {
ans1 += now + 1;
now = -1;
}
}
}
now = 0;
int ans2 = 0;
for (int i = 0; i < n; i++) {
now += a[i];
if (i % 2 == 1) {
if (now <= 0) {
ans2 += 1 - now;
now = 1;
}
}
if (i % 2 == 0) {
if (now >= 0) {
ans2 += now + 1;
now = -1;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
void solve() {}
int main() {
int n;
vector<int> a, a2;
cin >> n;
int x;
for (int i = 0; i < n; i++) {
cin >> x;
a.push_back(x);
}
bool pl = false;
bool mi = false;
bool zero = false;
if (a[0] > 0) {
pl = true;
} else if (a[0] < 0) {
mi = true;
} else {
zero = true;
}
int sum = a[0];
int sum2 = a[0];
int ans = 0;
int ans2 = 0;
if (zero) {
copy((a).begin(), (a).end(), back_inserter(a2));
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
if (sum >= 0) {
int tmp = a[i];
a[i] -= sum + 1;
ans += sum + 1;
sum -= tmp;
sum += a[i];
}
} else {
if (sum <= 0) {
int tmp = a[i];
a[i] += (-1) * sum + 1;
ans += (-1) * sum + 1;
sum -= tmp;
sum += a[i];
}
}
}
for (int i = 1; i < n; i++) {
sum2 += a2[i];
if (i % 2 == 1) {
if (sum <= 0) {
int tmp = a2[i];
a2[i] += (-1) * sum + 1;
ans2 += (-1) * sum + 1;
sum -= tmp;
sum += a2[i];
}
} else {
if (sum >= 0) {
int tmp = a2[i];
a2[i] -= sum + 1;
ans2 += sum + 1;
sum -= tmp;
sum += a2[i];
}
}
}
if (ans2 < ans) ans = ans2;
}
for (int i = 1; i < n; i++) {
sum += a[i];
if (pl) {
if (i % 2 == 1) {
if (sum >= 0) {
int tmp = a[i];
a[i] -= sum + 1;
ans += sum + 1;
sum -= tmp;
sum += a[i];
}
} else {
if (sum <= 0) {
int tmp = a[i];
a[i] += (-1) * sum + 1;
ans += (-1) * sum + 1;
sum -= tmp;
sum += a[i];
}
}
} else if (mi) {
if (i % 2 == 1) {
if (sum <= 0) {
int tmp = a[i];
a[i] += (-1) * sum + 1;
ans += (-1) * sum + 1;
sum -= tmp;
sum += a[i];
}
} else {
if (sum >= 0) {
int tmp = a[i];
a[i] -= sum + 1;
ans += sum + 1;
sum -= tmp;
sum += a[i];
}
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
b=[]
for i in range(n):
b.append(a[i])
ct1=0
if a[0]<=0:
a[0]=1
ct1+=1-a[0]
x=a[0]
for i in range(1,n):
y=x+a[i]
if i%2==1:
if y>=0:
ct1+=y+1
a[i]=-x-1
else:
if y<=0:
ct1+=1-y
a[i]=-x+1
x+=a[i]
ct2=0
if b[0]>=0:
b[0]=-1
ct2+=b[0]-1
x=b[0]
for i in range(1,n):
y=x+b[i]
if i%2==0:
if y>=0:
ct2+=y+1
b[i]=-x-1
else:
if y<=0:
ct2+=1-y
b[i]=-x+1
x+=b[i]
print(min(ct1,ct2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
template <class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
}
template <class T>
inline T sqr(T x) {
return x * x;
}
const double EPS = 1e-10;
const double PI = acos(-1.0);
const long long INF = 1000000007;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
int main(void) {
int N;
cin >> N;
vector<long long> a(N);
for (int i = (0); i < (N); ++i) cin >> a[i];
vector<long long> s(N);
s[0] = a[0];
long long ans = 0;
for (int i = (0); i < (N - 1); ++i) {
if ((s[i] + a[i + 1]) * s[i] >= 0) {
ans += abs(s[i] + a[i + 1]) + 1;
a[i + 1] += -(s[i] + a[i + 1]);
if (s[i] > 0)
a[i + 1]--;
else
a[i + 1]++;
}
s[i + 1] = s[i] + a[i + 1];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int a[100001];
int n;
cin >> n;
for (int i = 0; i < (int)n; i++) {
cin >> a[i];
}
int c1 = 0, c2 = 0;
int sum = 0;
int c = 1;
for (int i = 0; i < (int)n; i++) {
sum += a[i];
if (sum * c <= 0) {
c1 += (abs(sum) + 1);
sum = c;
}
c *= (-1);
}
c = -1;
sum = 0;
for (int i = 0; i < (int)n; i++) {
sum += a[i];
if (sum * c <= 0) {
c2 += abs(sum) + 1;
sum = c;
}
c *= (-1);
}
cout << min(c1, c2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <cstdlib>
#include <utility>
#include <cstdio>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <cmath>
#include <set>
#include <map>
using ll = long long;
using itn = int;
using namespace std;
int GCD(int a, int b){
return b ? GCD(b, a%b) : a;
}
int main() {
int n;
cin >> n;
int a[n];
for(int i=0; i<n; i++){
cin >> a[i];
}
int asum[n+1]={};
for(int i=0; i<n; i++){
asum[i+1] = asum[i]+a[i];
}
int cnt=0;
int accSum=0;
for(int i=0; i<n+1; i++){
cout << i << " " <<asum[i] << endl;
}
for(int i=1; i<n; i++){
asum[i+1]+=accSum;
if(asum[i+1]*asum[i]>0){
int s=abs(asum[i+1])+1;
cnt+=s;
asum[i+1]<0 ? accSum+=s : accSum+=-1*s;
asum[i+1]<0 ? asum[i+1]=1 : asum[i+1]=-1;
}else if(asum[i+1]*asum[i]==0){
cnt+=1;
asum[i]<0 ? asum[i+1]=1,accSum+=1 : asum[i+1]=-1,accSum=-1;
}
}
cout << cnt << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fst first
#define snd second
#define all(cont) cont.begin(), cont.end()
#define foreach(it, l) for (auto it = l.begin(); it != l.end(); it++)
#define fore(i,a,b) for(int i=a,almo5t=b;i<almo5t;++i)
#define SZ(x) ((int)x.size())
#define EPS 1e-9
#define PI 3.1415926535897932384626433832795
#define MOD 1000000007
#define FIN std::ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL)
const int N = 0;
typedef long long int ll;
using namespace std;
int opinions[15][15];
int main(){
int n;cin>>n;
ll values[n] = {0};
ll sums[n+1] = {0};
sums[n+1] = 0;
bool flag = true;
int start = n-1;
fore(i,0,n){
ll val;cin>>val;
values[i] = val;
sums[i+1] = val + sums[i];
if(val != 0 && flag){
start = i;flag = false;
}
}
ll ans = 0;
if(start != 0){
if(sums[start+1]>0){
sums[start] = -1;
}else if(sums[start+1]<0){
sums[start] = 1;
}
ans = 1 + 2*(start-1);
}
/*
fore(i,0,n){
cout<<sums[i+1]<<" ";
}
cout<<"\n";*/
fore(i,start,n){
sums[i+1] = sums[i]+values[i];
//cout<<sums[i+1]<<"\n";
if(sums[i+1]<0){
if(sums[i]<0){
ans += abs(values[i]+sums[i])+1;
values[i] = 1;
sums[i+1] = 1;
}
}else if(sums[i+1] > 0){
if(sums[i]>0){
ans += abs(values[i]+sums[i])+1;
values[i] = -1;
sums[i+1] = -1;
}
}else{
if(sums[i]<0){
sums[i+1] = 1;
}else{
sums[i+1] = -1;
}
ans += 1;
}
//cout<<ans<<" "<<values[i]<<" "<<sums[i+1]<<" \n";
}
cout<<ans;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = [int(_) for _ in input().split()]
dp = A[0]
count = 0
is_positive = dp > 0
for i in range(1, N):
dp += A[i]
if not (dp > 0) ^ is_positive:
count += abs(dp)+1
dp ^= 1
is_positive = dp > 0
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.util.Scanner;
public class Main {
public static double sequence(int a[], double start) {
double count = 0.0, presum = -1.0 * start, sum = 0.0;
for(int i : a) {
sum += (double)i;
if(i == 0)sum += start;
if(sum * presum > 0) {
double min = Math.abs(sum) + 1;
if(presum > 0)sum -= min;
else sum += min;
count += min;
}
if(sum == 0) {
if(presum > 0)sum--;
else sum++;
++count;
}
presum = sum;
}
return count;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n, a[];
double count = 0;
n = sc.nextInt();
a = new int[n];
for(int i = 0; i < n; ++i) a[i] = sc.nextInt();
sc.close();
count = Math.min(sequence(a, (double)a[0]),sequence(a, -1.0 * a[0]));
System.out.printf("%.0f\n", count);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
long long s = a[0];
long long ans1 = 0, ans2 = 0;
if (s <= 0) ans1 += -s + 1;
for (int i = (1); i < (int)(n); i++) {
if (i % 2 && s + a[i] >= 0) {
ans1 += s + a[i] + 1;
s = -1;
} else if (i % 2 == 0 && s + a[i] <= 0) {
ans1 += -(s + a[i]) + 1;
s = 1;
} else
s += a[i];
}
s = a[0];
if (s >= 0) ans2 += s + 1;
for (int i = (1); i < (int)(n); i++) {
if (i % 2 == 0 && s + a[i] >= 0) {
ans2 += s + a[i] + 1;
s = -1;
} else if (i % 2 && s + a[i] <= 0) {
ans2 += -(s + a[i]) + 1;
s = 1;
} else
s += a[i];
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
bool ch = false;
long long N, i;
long long ans = 0, a, count = 0;
cin >> N;
cin >> a;
ans += a;
if (ans > 0)
ch = true;
else
ch = false;
for (i = 1; i < N; i++) {
cin >> a;
if (ch) {
if (ans >= -a) {
count += ans + a + 1;
ans = -1;
} else
ans += a;
ch = false;
} else {
if (ans <= -a) {
count += -ans - a + 1;
ans = 1;
} else
ans += a;
ch = true;
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
if a[0] > 0:
op = "+"
elif a[0] < 0:
op = "-"
elif a[0] == 0:
ans += 1
if a[1] > 0:
a[0] = -1
else:
a[0] = 1
total = a[0]
for i in range(1, n):
if (total+a[i]) >= 0 and op == "+":
ans += abs((-1 - total) - a[i])
total = -1
op = "-"
elif (total+a[i]) < 0 and op == "-":
ans += abs((1 - total) - a[i])
total = 1
op = "+"
elif total+a[i] == 0:
ans += 1
if a[1] > 0:
a[0] = -1
else:
a[0] = 1
else:
total += a[i]
if op == "+":
op = "-"
else:
op = "+"
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int solve(vector<int> vec) {
long long int n = vec.size();
int sum = vec[0];
int ans = 0;
for (long long int i = 1; i < n; i++) {
if (sum > 0) {
if (sum + vec[i] > 0) {
ans += (sum + vec[i] + 1);
sum = -1;
} else if (sum + vec[i] == 0) {
ans++;
sum = -1;
} else {
sum += vec[i];
}
} else if (sum < 0) {
if (sum + vec[i] < 0) {
ans += (abs(sum + vec[i]) + 1);
sum = 1;
} else if (sum + vec[i] == 0) {
ans++;
sum = 1;
} else {
sum += vec[i];
}
}
}
return ans;
}
int main() {
int n, Ans;
cin >> n;
vector<int> as;
for (int i = 0; i < n; i++) {
int t;
cin >> t;
as.push_back(t);
}
vector<int> as1 = as;
as1[0] = 1;
vector<int> as2 = as;
as2[0] = -1;
Ans = min(solve(as),
min(solve(as1) + abs(1 - as[0]), solve(as2) + abs(1 - as[0])));
cout << Ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<cstdlib>
using namespace std;
int main(void){
int n,a;
unsigned long long sum= 0,ans=0;
int s;
cin>>n;
cin>>sum;
if(sum>0)
s = 1;
else
s = -1;
for(int i=1;i<n;i++){
cin>>a;
sum+=a;
if(sum*s>0){
ans+=abs(sum)+1;
sum = -s;
}
if(sum>0)
s = 1;
else
s = -1;
}
if(sum==0) ans++;
cout<<ans<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
long long int sum_0 = 0;
long long int sum_1 = 0;
long long int count_0 = 0;
long long int count_1 = 0;
long long int a;
cin >> a;
if (a > 0) {
sum_0 = a;
} else {
sum_0 = 1;
}
if (a < 0) {
sum_1 = a;
} else {
sum_1 = -1;
}
for (int i = 1; i < N; i++) {
cin >> a;
if (sum_0 * (sum_0 + a) >= 0) {
if (sum_0 > 0) {
count_0 += abs(sum_0 + a - (-1));
sum_0 = -1;
} else {
count_0 += abs(sum_0 + a - 1);
sum_0 = 1;
}
} else {
sum_0 += a;
}
if (sum_1 * (sum_1 + a) >= 0) {
if (sum_1 > 0) {
count_1 += abs(sum_1 + a - (-1));
sum_1 = -1;
} else {
count_1 += abs(sum_1 + a - 1);
sum_1 = 1;
}
} else {
sum_1 += a;
}
}
cout << min(count_0, count_1) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"os"
"strconv"
)
func out(x ...interface{}) {
// fmt.Println(x...)
}
var sc = bufio.NewScanner(os.Stdin)
func getInt() int {
sc.Scan()
i, e := strconv.Atoi(sc.Text())
if e != nil {
panic(e)
}
return i
}
func getString() string {
sc.Scan()
return sc.Text()
}
func f(a int) int {
if a > 0 {
return 1
} else if a < 0 {
return -1
}
return 0
}
func min(a, b int) int {
if a > b {
return b
}
return a
}
func main() {
sc.Split(bufio.ScanWords)
n := getInt()
a := make([]int, n)
for i := 0; i < n; i++ {
a[i] = getInt()
}
sum := 0
sign := -1
ans := [2]int{0, 0}
for k := 0; k < 2; k++ {
if k == 0 {
sign = -1
} else {
sign = 1
}
for i := 0; i < n; i++ {
sum += a[i]
s := f(sum)
out(sum, ":", s, sign)
if s == 0 {
out("zero")
if sign == 1 {
ans[k]++
sum--
} else {
ans[k]++
sum++
}
} else if s == sign {
out("eq", "sum", sum, a)
if sign == 1 {
x := 1 + sum
sum -= x
ans[k] += x
out("x+", x, sum, ans)
} else {
x := 1 - sum
sum += x
ans[k] += x
out("x-", x, sum, ans)
}
}
sign = -sign
}
}
fmt.Println(min(ans[0], ans[1]))
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr int MOD = 1000000007;
using long long = long long;
template <class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
void print(const std::vector<int> &v) {
std::for_each(v.begin(), v.end(), [](int x) { std::cout << x << " "; });
std::cout << std::endl;
}
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (long long i = 0; i < (long long)n; i++) {
cin >> a[i];
}
long long res = (1ll << 60);
long long ans = 0LL;
long long s = 0;
for (int i = 0; i < n; i++) {
s += a[i];
if (i % 2 == 1) {
if (s >= 0) {
ans += s + 1;
s = -1;
}
} else {
if (s <= 0) {
ans += -s + 1;
s = 1;
}
}
}
res = min(res, ans);
ans = 0;
for (int i = 0; i < n; i++) {
s += a[i];
if (i % 2 == 0) {
if (s >= 0) {
ans += s + 1;
s = -1;
}
} else {
if (s <= 0) {
ans += -s + 1;
s = 1;
}
}
}
res = min(res, ans);
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int A[n];
for (int i = 0; i < n; i++) {
cin >> A[i];
}
int countA = 0;
int countB = 0;
int part = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && A[i] + part <= 0) {
countA += 1 - (A[i] + part);
part = 1;
} else if (i % 2 == 1 && A[i] + part >= 0) {
countA += A[i] + part + 1;
part = -1;
} else
part += A[i];
}
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && A[i] + part >= 0) {
countB += A[i] + part + 1;
part = -1;
} else if (i % 2 == 1 && A[i] + part <= 0) {
countB += 1 - (A[i] + part);
part = 1;
} else
part += A[i];
}
cout << min(countA, countB) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i=0; i<N; i++) {
cin >> a.at(i);
}
int ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0;
for (int i=0; i<N; i++) {
sum += a.at(i);
if (i%2 == 0 && sum <= 0) {
ans1 += 1-sum; //sumは負
sum1 = 1;
}
else if (i%2 != 0 && sum >= 0) {
ans1 += sum+1;
sum1 = -1;
}
}
for (int i=0; i<N; i++) {
sum += a.at(i);
if (i%2 == 0 && sum >= 0) {
ans2 += sum+1;
sum2 = -1;
}
else if (i%2 != 0 && sum <= 0) {
ans2 += 1-sum;
sum2 = 1;
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
static int ANS;
static int N;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
N = Integer.parseInt(sc.nextLine());
long[] a = new long[N];
long[] sum = new long[N];
long tsum = 0L;
for (int i = 0; i < N; i++) {
long elm = Long.parseLong(sc.next());
a[i] = elm;
tsum += elm;
sum[i] = tsum;
}
solve(sum, a);
System.out.println(ANS);
}
private static void solve(long[] sum, long[] a) {
for (int i = 0; i < N - 1; i++) {
long one = sum[i];
long two = sum[i + 1];
if (two == 0) {
if (one >= 0) {
ANS++;
a[i + 1]--;
sumStream(sum, a);
solve(sum, a);
} else {
ANS++;
a[i + 1]++;
sumStream(sum, a);
solve(sum, a);
}
}
if (one >= 0 && two >= 0) {
ANS += Math.abs(two) + 1;
a[i + 1] -= Math.abs(two) + 1;
sumStream(sum, a);
solve(sum, a);
}
if (one < 0 && two < 0) {
ANS += Math.abs(two) + 1;
a[i + 1] += Math.abs(two) + 1;
sumStream(sum, a);
solve(sum, a);
}
}
}
private static void sumStream(long[] sum, long[] a) {
long limit = a.length;
long tsum = 0L;
for (int i = 0; i < limit; i++) {
tsum += a[i];
sum[i] = tsum;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> v(n), pref(n, 0);
for (int i = 0; i < n; i++) {
cin >> v[i];
pref[i] = pref[i - (i > 0)] + v[i];
}
int x;
int ans = 0;
for (int i = 1; i < n; i++) {
if (pref[i] > 0 && pref[i - 1] > 0) {
x = abs(pref[i]) + 1;
ans += x;
for (int j = i; j < n; j++) {
pref[j] -= x;
}
} else if (pref[i] < 0 && pref[i - 1] < 0) {
x = abs(pref[i]) + 1;
ans += x;
for (int j = i; j < n; j++) {
pref[j] += x;
}
} else if (pref[i] == 0) {
if (pref[i - 1] > 0) {
ans++;
pref[i]--;
} else {
ans++;
pref[i]++;
}
}
}
cout << ans;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
long long n;
cin >> n;
long long a[n];
for (long long i = 0; i < n; i++) {
cin >> a[i];
}
long long ans, sum;
ans = sum = 0;
for (long long i = 0; i < n; i++) {
sum += a[i];
if (i < (n - 1) && sum * (sum + a[i + 1]) > 0) {
if (sum > 0) {
while (sum >= 0) {
ans++;
sum--;
}
} else {
while (sum < 0) {
ans++;
sum++;
}
}
} else if (sum == 0) {
if (i < (n - 1) && (sum + a[i + 1]) > 0)
sum--;
else
sum++;
ans++;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct __ {
__() {
ios_base::Init i;
ios_base::sync_with_stdio(0);
cin.tie(0);
}
} __;
int main() {
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; ++i) {
cin >> v[i];
}
vector<int> a = v;
long long cnt = 0;
if (v[0] <= 0) {
v[0] = 1;
cnt += 1 + abs(v[0]);
}
long long ans = v[0];
for (int i = 1; i < n; ++i) {
ans += v[i];
if (i % 2 == 0 && ans <= 0) {
int x = min(1 + abs(ans), abs(ans - v[i]) - 1);
cnt += 1 + abs(ans);
v[i] = v[i] + (1 + abs(ans) - x);
v[i - 1] = v[i - 1] - x;
ans = 1;
}
if (i % 2 == 1 && ans >= 0) {
int x = min(1 + ans, ans - v[i] - 1);
v[i] = v[i] - (1 + ans - x);
v[i - 1] = v[i - 1] - x;
cnt += 1 + ans;
ans = -1;
}
}
v = a;
long long res = cnt;
cnt = 0;
if (v[0] >= 0) {
v[0] = -1;
cnt += 1 + v[0];
}
ans = v[0];
for (int i = 1; i < n; ++i) {
ans += v[i];
if (i % 2 == 1 && ans <= 0) {
int x = min(1 + abs(ans), abs(ans - v[i]) - 1);
cnt += 1 + abs(ans);
v[i] = v[i] + (1 + abs(ans) - x);
v[i - 1] = v[i - 1] - x;
ans = 1;
}
if (i % 2 == 0 && ans >= 0) {
int x = min(1 + ans, ans - v[i] - 1);
v[i] = v[i] - (1 + ans - x);
v[i - 1] = v[i - 1] - x;
cnt += 1 + ans;
ans = -1;
}
}
cout << min(res, cnt);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | fn read<T: std::str::FromStr>() -> T {
let mut s = String::new();
std::io::stdin().read_line(&mut s).ok();
s.trim().parse().ok().unwrap()
}
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
read::<String>()
.split_whitespace()
.map(|e| e.parse().ok().unwrap())
.collect()
}
fn read_vec2<T: std::str::FromStr>(n: u32) -> Vec<Vec<T>> {
(0..n).map(|_| read_vec()).collect()
}
fn main(){
let n : u64 = read();
let an = read_vec::<i64>();
let ans = std::cmp::min(solve(true, &an),solve(false, &an));
println!("{}",ans );
}
fn solve(mut symbol: bool, v:&Vec<i64>) -> i64{
let mut sum = 0;
let mut ans = 0;
for a in v{
sum += a;
if !symbol && sum >= 0 {
let next = sum - -1;
ans += next;
sum -= next;
} else if symbol && sum <= 0{
let next = 1 -sum;
sum += next;
ans += next;
}
symbol = !symbol;
}
ans
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MaxN = 1e5 + 5;
int box[MaxN];
int n;
long long solve1() {
long long sum = box[1];
long long res = 0;
if (sum <= 0) {
sum = 1;
res = abs(sum) + 1;
}
for (int i = 2; i <= n; i++) {
long long temp = box[i] + sum;
if (temp * sum >= 0) {
res += abs(temp) + 1;
if (sum > 0)
sum = -1;
else
sum = 1;
} else
sum = temp;
}
return res;
}
long long solve2() {
long long sum = box[1];
long long res = 0;
if (sum >= 0) {
sum = -1;
res = abs(sum) + 1;
}
for (int i = 2; i <= n; i++) {
long long temp = box[i] + sum;
if (temp * sum >= 0) {
res += abs(temp) + 1;
if (sum > 0)
sum = -1;
else
sum = 1;
} else
sum = temp;
}
return res;
}
int main() {
while (~scanf("%d", &n)) {
for (int i = 1; i <= n; i++) scanf("%d", &box[i]);
long long ans = 1LL << 60;
ans = min(ans, solve1());
ans = min(ans, solve2());
printf("%lld\n", ans);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long f(int s, vector<long long> v) {
long long ans = 0LL, x, t = 0LL, y;
if (v[0] == 0LL) {
x = s * (1LL) - t;
y = abs(x - v[0]);
v[0] = x;
ans += y;
}
t = t + v[0];
for (int i = 1; i < n; i++) {
s *= (-1LL);
if ((s == (-1LL) && (t + v[i]) >= 0LL) ||
(s == (1LL) && (t + v[i]) <= 0LL)) {
x = s * (1LL) - t;
y = abs(x - v[i]);
v[i] = x;
ans += y;
}
t = t + v[i];
}
return ans;
}
int main() {
while (scanf("%d", &n) == 1) {
vector<long long> arr(100010);
long long a;
for (int i = 0; i < n; i++) {
scanf("%lld", &arr[i]);
}
long long x = f(-1, arr);
long long y = f(1, arr);
long long ans = min(x, y);
printf("%lld\n", ans);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n, a[100010];
cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
long long int sum = a[0], cnt = 0;
for (int i = 1; i < n; ++i) {
if (sum < 0) {
if (sum + a[i] > 0) {
sum += a[i];
} else {
cnt += abs(sum + a[i]) + 1;
sum = 1;
}
} else {
if (sum + a[i] < 0) {
sum += a[i];
} else {
cnt += abs(sum + a[i]) + 1;
sum = -1;
}
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int sum = 0;
int ans1 = 0;
int ans2 = 0;
int i, j;
int t = 1;
int main() {
cin >> n;
int a[100010];
for (i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
if (sum * t <= 0) {
ans1 += abs(sum - t);
sum = t;
}
t *= -1;
}
t = -1;
sum = 0;
for (i = 0; i < n; i++) {
sum += a[i];
if (sum * t <= 0) {
ans2 += abs(sum - t);
sum = t;
}
t *= -1;
}
printf("%d\n", min(ans1, ans2));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INFF = 0x3f3f3f3f3f3f3f3f;
long long a[1000010];
int n;
unsigned long long solve() {
unsigned long long sum = 0;
long long oo = 0, flag;
if (a[0] > 0)
flag = -1;
else if (a[0] < 0)
flag = 1;
for (int i = 0; i < n; i++) {
oo += a[i];
if (flag == 1) {
if (oo >= 0) {
sum += oo + 1;
oo = -1;
}
}
if (flag == -1) {
if (oo <= 0) {
sum += 0 - oo + 1;
oo = 1;
}
}
flag = -flag;
}
return sum;
}
int main() {
while (scanf("%d", &n) != EOF) {
unsigned long long sum = INFF;
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
if (a[0] == 0) {
a[0] = 1;
unsigned long long sum1 = solve();
a[0] = -1;
unsigned long long sum2 = solve();
sum = min(sum1, sum2) + 1;
} else {
unsigned long long sum0 = solve();
a[0] = 1;
unsigned long long sum1 = solve() + abs(a[0] - 1);
a[0] = -1;
unsigned long long sum2 = solve() + abs(a[0] + 1);
sum = min(sum0, min(sum1, sum2));
}
printf("%lld\n", sum);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int dx[] = {1, 0, -1, 0};
int dy[] = {0, 1, 0, -1};
int n;
vector<long long> a(200000);
long long solve(vector<long long> a) {
long long ans = 0, sum = a[0];
for (int i = 1; i < n; i++) {
long long tmp = sum;
sum += a[i];
if (sum >= 0 && tmp > 0) {
ans += abs(sum) + 1;
sum = -1;
} else if (sum <= 0 && tmp < 0) {
ans += abs(sum) + 1;
sum = 1;
}
}
return ans;
}
int main() {
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long ans1 = solve(a);
a[0] = (-1) * a[0];
long long ans2 = solve(a);
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr auto INF = 100000000000;
constexpr auto mod = 1000000007;
struct edge {
int to, cost;
};
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, long long m) {
long long b = m, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
long long int c(long long int a, long long int b, long long int m) {
long long int ans = 1;
for (long long int i = 0; i < b; i++) {
ans *= a - i;
ans %= m;
}
for (long long int i = 1; i <= b; i++) {
ans *= modinv(i, m);
ans %= m;
}
return ans;
}
void dijkdtra(int s, int v, vector<int>& d, vector<vector<edge>>& G) {
priority_queue<pair<int, int>, vector<pair<int, int>>,
greater<pair<int, int>>>
que;
d[s] = 0;
que.push(pair<int, int>(0, s));
while (!que.empty()) {
pair<int, int> p = que.top();
que.pop();
int V = p.second;
if (d[V] < p.first) continue;
for (int i = 0; i < G[V].size(); i++) {
edge e = G[V][i];
if (d[e.to] > d[V] + e.cost) {
d[e.to] = d[V] + e.cost;
que.push(pair<int, int>(d[e.to], e.to));
}
}
}
}
long long int binary_search(vector<int>& s, long long int a) {
long long int l = -1;
long long int r = (int)s.size();
while (r - l > 1) {
long long int mid = l + (r - l) / 2;
if (s[mid] >= a)
r = mid;
else
l = mid;
}
return r;
}
int k(long long n) {
int x = 0;
while (n) {
x += n % 10;
n /= 10;
}
return x;
}
long long max(long long x, long long y) {
if (x < y) return y;
return x;
}
int main() {
long long n, ans;
cin >> n;
vector<long long> a(n), t(n), s(n);
for (int i = (0); i < (n); i++) {
cin >> a[i];
t[i] = a[i];
s[i] = a[i];
}
long long int w = a[0];
if (w <= 0) {
w = 1;
}
for (int i = (1); i < (n); i++) {
if (i % 2 == 0) {
if (abs(w) >= a[i]) {
a[i] = abs(w) + 1;
}
w += a[i];
} else {
if (w >= abs(a[i])) {
a[i] = -1 * (w + 1);
}
w += a[i];
}
}
w = t[0];
if (w >= 0) {
w = -1;
}
for (int i = (1); i < (n); i++) {
if (i % 2 == 1) {
if (abs(w) >= t[i]) {
t[i] = abs(w) + 1;
}
w += t[i];
} else {
if (w >= abs(t[i])) {
t[i] = -1 * (w + 1);
}
w += t[i];
}
}
long long cost1 = 0, cost2 = 0;
for (int i = (0); i < (n); i++) {
cost1 += abs(s[i] - a[i]);
cost2 += abs(s[i] - t[i]);
}
ans = min(cost1, cost2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int MGN = 8;
const int ARY_SZ_MAX = 10000000;
using namespace std;
using ll = long long;
using ull = unsigned long long;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vvvb = vector<vvb>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vd = vector<double>;
using vs = vector<string>;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using psi = pair<string, int>;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
cin >> N;
vl A(N + 1, 0);
for (int i = int(0); i < int(N); ++i) cin >> A[i];
vl s(N + 1, 0);
ll ans = (INT_MAX / 2);
ll cnt = 0;
s[0] = A[0];
for (int i = int(0); i < int(N); ++i) {
if (i % 2 == 0 && s[i] <= 0) {
cnt += abs(s[i]) + 1;
s[i] = 1;
} else if (i % 2 == 1 && s[i] >= 0) {
cnt += abs(s[i]) + 1;
s[i] = -1;
}
s[i + 1] = s[i] + A[i + 1];
}
ans = min(ans, cnt);
cnt = 0;
s[0] = A[0];
for (int i = int(0); i < int(N); ++i) {
if (i % 2 == 0 && s[i] >= 0) {
cnt += abs(s[i]) + 1;
s[i] = -1;
} else if (i % 2 == 1 && s[i] <= 0) {
cnt += abs(s[i]) + 1;
s[i] = 1;
}
s[i + 1] = s[i] + A[i + 1];
}
ans = min(ans, cnt);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] != 0) {
long long ans = 0;
for (int i = 1; i < n; i++) {
a[i] += a[i - 1];
if (a[i] < 0 && a[i - 1] < 0) {
ans += 1 - a[i];
a[i] = 1;
}
if (a[i] > 0 && a[i - 1] > 0) {
ans += a[i] - (-1);
a[i] = -1;
}
if (a[i] == 0) {
ans++;
if (a[i - 1] < 0)
a[i] = 1;
else
a[i] = -1;
}
}
cout << ans << endl;
return 0;
}
long long ans[2] = {1, 1};
for (int j = 0; j < 2; j++) {
a[0] = ((j == 0) ? 1 : -1);
for (int i = 1; i < n; i++) {
a[i] += a[i - 1];
if (a[i] < 0 && a[i - 1] < 0) {
ans[j] += 1 - a[i];
a[i] = 1;
}
if (a[i] > 0 && a[i - 1] > 0) {
ans[j] += a[i] - (-1);
a[i] = -1;
}
if (a[i] == 0) {
ans[j]++;
if (a[i - 1] < 0)
a[i] = 1;
else
a[i] = -1;
}
}
}
cout << min(ans[0], ans[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long f(int a[], int N, bool positive) {
long cnt = 0;
long sum = a[0];
for (int i = 1; i < N; i++) {
int next = a[i];
int nextSum = sum + next;
if (positive) {
if (i % 2 == 0) {
if (nextSum <= 0) {
int des = abs(nextSum) + 1;
next += des;
cnt += des;
}
} else {
if (0 <= nextSum) {
int des = abs(nextSum) + 1;
next -= des;
cnt += des;
}
}
} else {
if (i % 2 == 0) {
if (0 <= nextSum) {
int des = abs(nextSum) + 1;
next -= des;
cnt += des;
}
} else {
if (nextSum <= 0) {
int des = abs(nextSum) + 1;
next += des;
cnt += des;
}
}
}
sum += next;
}
return cnt;
}
int main() {
int N;
cin >> N;
int a[N];
for (int i = 0; i < N; i++) cin >> a[i];
long cnt = min(f(a, N, 1), f(a, N, 0));
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] nums = new int[n];
for(int i = 0; i < n; i++){
nums[i] = sc.nextInt();
}
int[] sums = new int[n];
int tempSum = 0;
for(int i = 0; i < n; i++){
tempSum = nums[i] + tempSum;
sums[i] = tempSum;
}
int result = 0;
for(int i = 1; i < n; i++){
boolean flag = check(sums) == false;
if(flag){
if(sums[i] * sums[i - 1] >= 0){
if(sums[i - 1] > 0){
result += Math.abs(-1 - sums[i]);
int temp = (-1 - sums[i]);
for(int j = i; j < n; j++){
sums[j] += temp;
}
temp = 0;
}
else if(sums[i - 1] < 0){
result += Math.abs(1 - sums[i]);
int temp = (1 - sums[i]);
for(int j = i; j < n; j++){
sums[j] += temp;
}
temp = 0;
}
}
}
else{
break;
}
}
System.out.println(result);
sc.close();
}
public static boolean check(int[] sums){
for(int i = 0; i < sums.length; i++){
if(sums[i] == 0)
return false;
else if(i >= 1 && sums[i] * sums[i - 1] >= 0)
return false;
}
return true;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long a[123456];
int n;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
long long flag;
if (a[0] > 0)
flag = 1;
else if (a[0] < 0)
flag = -1;
else {
int j;
for (j = 0; j < n; j++)
if (a[j] != 0) break;
if (a[j] > 0) {
if (j % 2)
flag = -1;
else
flag = 1;
} else {
if (j % 2)
flag = 1;
else
flag = -1;
}
}
long long cnt = 0;
long long ans = 0;
cnt = a[0];
if (cnt == 0) {
if (flag == 1) {
cnt = 1;
ans++;
} else {
cnt = -1;
ans++;
}
}
for (int i = 1; i < n; i++) {
cnt += a[i];
if (cnt * flag >= 0) {
ans += abs(cnt) + 1;
if (flag == -1) {
cnt = 1;
} else {
cnt = -1;
}
}
if (flag == -1) {
flag = 1;
} else {
flag = -1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using String = std::string;
using llong = long long;
using boolean = bool;
using Pii = std::pair<int, int>;
using Vi = std::vector<int>;
using Vii = std::vector<Pii>;
constexpr int dx[] = {1, 0, -1, 0, 1, 1, -1, -1};
constexpr int dy[] = {0, 1, 0, -1, 1, -1, 1, -1};
constexpr int INF = 0x3f3f3f3f;
constexpr llong LINF = 0x3f3f3f3f3f3f3f3fLL;
namespace {
template <class A, class B>
A power(llong x, llong n, llong mod) {
llong ans = 1;
while (n > 0) {
if (n & 1) ans = (ans * x) % mod;
x = (x * x) % mod;
n >>= 1;
}
return ans;
}
template <class A, class B>
A power(A x, B n) {
return power(x, n, 1000000007);
}
template <class A>
A gcd(A x, A y) {
return x % y ? gcd(y, x % y) : y;
}
template <class A, class B>
A lcm(A x, B y) {
return (x / gcd(x, y) * y);
}
template <class A>
inline A abs(A n) {
return (n < 0) ? -n : n;
}
template <class A, class B>
inline bool chmax(A &a, const B &b) {
return b > a ? a = b, true : false;
}
template <class A, class B>
inline bool chmin(A &a, const B &b) {
return b < a ? a = b, true : false;
}
inline boolean isMovable(int x, int y, int w, int h) {
return (x >= 0 && y >= 0 && x < w && y < h);
}
} // namespace
namespace Rlyeh {
int a[100100], left;
int cnt, tmp;
signed call_of_Cthulhu(signed datum) {
int n;
std::cin >> n;
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}
left += a[0];
for (int i = 1; i < n; i++) {
boolean isNegative = left < 0;
left += a[i];
if (isNegative && left <= 0) {
cnt += 1 - left;
left = 1;
} else if (!isNegative && 0 <= left) {
cnt += 1 + left;
left = -1;
}
}
std::cout << cnt << '\n';
return 0;
}
} // namespace Rlyeh
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(false);
int main_result = Rlyeh::call_of_Cthulhu(114514);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cnt = 0
s = a[0]
for i in range(1, n):
if a[0] > 0:
while s + a[i] >= 0:
a[i] -= 1
cnt += 1
if a[0] < 0:
while s + a[i] <= 0:
a[i] += 1
cnt += 1
s += a[i]
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[100000];
int n;
void solve() {
long long sum0;
long long sum1;
long long ans1 = 0;
long long ans2 = 0;
long long ans3 = 0;
if (a[0] == 0) {
ans1++;
sum0 = 1;
} else {
sum0 = a[0];
}
for (int i = 1; i < n; i++) {
sum1 = sum0 + a[i];
if (sum1 * sum0 < 0) {
} else if (sum1 * sum0 > 0) {
ans1 += abs(sum1) + 1;
sum1 = -1 * sum0 / abs(sum0);
} else {
ans1++;
sum1 = -1 * sum0 / abs(sum0);
}
sum0 = sum1;
}
if (a[0] == 0) {
ans3++;
sum0 = -1;
} else {
sum0 = -1 * a[0] / abs(a[0]);
}
for (int i = 1; i < n; i++) {
sum1 = sum0 + a[i];
if (sum1 * sum0 < 0) {
} else if (sum1 * sum0 > 0) {
ans3 += abs(sum1) + 1;
sum1 = -1 * sum0 / abs(sum0);
} else {
ans3++;
sum1 = -1 * sum0 / abs(sum0);
}
sum0 = sum1;
}
cout << min(ans1, ans3) << endl;
return;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, j, count, sum, x, bsum, s, count2;
vector<int> a, b;
cin >> n;
a.resize(n);
b.resize(n);
cin >> a[0];
for (i = 1; i < n; i++) {
cin >> a[i];
}
b = a;
count = 0;
count2 = 0;
if (a[0] <= 0) {
count = abs(a[0]) + 1;
a[0] = 1;
}
sum = 0;
for (int i = 0; i < n - 1; i++) {
sum += a[i];
if (sum + a[i + 1] == 0) {
count++;
if (sum > 0) {
a[i + 1]--;
} else {
a[i + 1]++;
}
}
if (sum * (sum + a[i + 1]) > 0) {
if (sum > 0) {
x = sum + 1;
s = x + a[i + 1];
a[i + 1] = -x;
count += abs(s);
} else {
x = sum - 1;
s = x + a[i + 1];
a[i + 1] = -x;
count += abs(s);
}
}
}
if (b[0] >= 0) {
count2 = abs(b[0]) + 1;
b[0] = -1;
}
sum = 0;
for (int i = 0; i < n - 1; i++) {
sum += b[i];
if (sum + b[i + 1] == 0) {
count2++;
if (sum > 0) {
b[i + 1]--;
} else {
b[i + 1]++;
}
}
if (sum * (sum + b[i + 1]) > 0) {
if (sum > 0) {
x = sum + 1;
s = x + b[i + 1];
b[i + 1] = -x;
count2 += abs(s);
} else {
x = sum - 1;
s = x + b[i + 1];
b[i + 1] = -x;
count2 += abs(s);
}
}
}
cout << min(count, count2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
#include <algorithm>
#include <math.h>
#include <numeric>
#include <set>
#include <string>
#include <map>
#include <stack>
#include <queue>
#include <time.h>
using namespace std;
typedef long long ll;
#define pl pair<ll,ll>
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define rep(i,n) for(int i=0;i<(n);++i)
#define foreach(itr,c) for(__typeof(c.begin()) itr=c.begin(); itr!=c.end(); itr++)
#define dbg(x) cout << #x"="<< (x) << endl
#define mp(a,b) make_pair((a),(b))
#define pb(a) push_back(a)
#define in(x) cin >> x;
#define all(x) (x).begin(), (x).end()
#define INF 2147483600
#define fi first
#define se second
int main()
{
ll n;cin>>n;
vector<ll> a(n);
rep(i,n)cin>>a[i];
ll total=a[0];
ll total2=a[0];
ll ans=0;
FOR(i,1,n){
total+=a[i];
// dbg(total);
if(total*total2>=0){
ans+=(abs(total)+1);
if(total2>0){
total=-1;
}else{
total=1;
}
}
// dbg(total);
total2=total;
}
cout<<ans<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using static System.Console;
using static System.Convert;
class Program
{
static void Main(string[] args)
{
var length = ToInt32(ReadLine());
var result = 0;
var nums = Array.ConvertAll(ReadLine().Split(' '), int.Parse);
var sum = nums[0];
if (sum == 0) { sum++; result++; }
var lastSum = sum;
for(var i = 1; i < length; i++)
{
sum += nums[i];
while (!IsDifferentSign(lastSum, sum)||sum==0)
{
if (!IsDifferentSign(lastSum, sum))
{ result += Math.Abs(sum) + 1; sum = lastSum > 0 ? -1 : 1;}
if (sum == 0) { sum = lastSum > 0 ? --sum : ++sum; result++; }
}
lastSum = sum;
}
WriteLine(result);
}
private static bool IsDifferentSign(int lastSum,int sum)
{
return (lastSum > 0 && sum < 0) || (lastSum < 0 && sum > 0);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = list(map(int, input().split()))
def calc_tmp_ans(tmp_ans, cum_sum):
for i in range(1, N):
#print(i, tmp_ans)
prev_cum_sum = cum_sum
cum_sum += a[i]
if cum_sum * prev_cum_sum >= 0:
tmp_ans += abs(cum_sum) + 1
if prev_cum_sum > 0:
cum_sum = -1
else:
cum_sum = 1
return tmp_ans
ans = 1000000000000000
if a[0] == 0:
ans = min(ans, calc_tmp_ans(1, 1))
ans = min(ans, calc_tmp_ans(-1, 1))
else:
tmp_ans = 0
cum_sum = a[0]
ans = min(ans, calc_tmp_ans(tmp_ans, cum_sum))
if a[0] > 0:
ans = min(ans, calc_tmp_ans(a[0] + 1, -1))
else:
ans = min(ans, calc_tmp_ans(abs(a[0]) + 1, 1))
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
long[] a_ = new long[n];
for(int i = 0; i < n; i++){
a_[i] = scan.nextLong();
}
long[] sum_ = new long[n];
sum_[0] = a_[0];
long count1 = 0;
long count2 = 0;
//sum_[0] >= 1
if(sum_[0] < 1){
count1 = 1-sum_[0];
}else{
}
for(int i = 1; i < n; i++){
sum_[i] = sum_[i-1]+a_[i];
if(i % 2 != 0){
if(sum_[i] <= -1){
//OK
}else{
count1 += (sum_[i]+1);
sum_[i] = -1;
}
}else{
if(sum_[i] >= 1){
//OK
}else{
count1 += (1-sum_[i]);
sum_[i] = 1;
}
}
}
//sum_[0] <= -1
if(sum_[0] > -1){
count2 = sum_[0]+1;
}else{
}
for(int i = 1; i < n; i++){
sum_[i] = sum_[i-1]+a_[i];
if(i % 2 != 0){
if(sum_[i] >= 1){
//OK
}else{
count2 += (1-sum_[i]);
sum_[i] = 1;
}
}else{
if(sum_[i] <= -1){
//OK
}else{
count2 += (sum_[i]+1);
sum_[i] = -1;
}
}
}
System.out.println(Math.min(count1, count2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
ll sum = 0;
cin >> sum;
ll ans = 0;
for (int i = 0; i < n - 1; ++i) {
int a;
cin >> a;
sum += a;
if (((sum - a > 0) and (sum > 0)) or ((sum - a < 0) and (sum < 0))) {
ll need = max(abs(sum - 1), abs(sum + 1));
sum += (sum > 0 ? -need : need);
ans += need;
} else if (sum == 0) {
sum += (sum - a > 0 ? -1 : 1);
ans += 1;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | program ec12;
var
a,s:array[0..100000] of longint;
n,m,i,j,ans,sum1,sum2,ans1:longint;
begin
readln(n);
ans:=0;
ans1:=0;
s[0]:=0;
for i:=1 to n do
read(a[i]);
if a[1]>0 then
begin
sum1:=a[1];
ans:=0;
ans1:=a[1]+1;
sum2:=-1;
end
else
begin
if a[1]=0 then
begin
sum1:=1;
sum2:=-1;
ans:=1;
ans1:=1;
end
else
begin
ans:=abs(a[1])+1;
sum1:=1;
sum2:=a[1];
ans1:=0;
end;
end;
for i:=2 to n do
begin
if sum1>0 then
begin
if sum1+a[i]>=0 then
begin
inc(ans,sum1+a[i]+1);
sum1:=-1;
end
else
sum1:=sum1+a[i];
end
else
begin
if sum1+a[i]<=0 then
begin
inc(ans,abs(sum1+a[i])+1);
sum1:=1;
end
else
sum1:=sum1+a[i];
end;
if sum2>0 then
begin
if sum2+a[i]>=0 then
begin
inc(ans1,sum2+a[i]+1);
sum2:=-1;
end
else
sum2:=sum2+a[i];
end
else
begin
if sum2+a[i]<=0 then
begin
inc(ans1,abs(sum2+a[i])+1);
sum2:=1;
end
else
sum2:=sum2+a[i];
end;
end;
if sum1=0 then
inc(ans);
if sum2=0 then
inc(ans1);
if ans<ans1 then
writeln(ans)
else
writeln(ans1);
end. |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
suma = A[0]
count = 0
for i in range(1,N):
if suma*(suma+A[i]) < 0:
suma += A[i]
continue
else:
if A[i] == 0:
if suma > 0:
count += suma+1
suma = -1
else:
count += -suma+1
suma = 1
elif suma > 0:
count += (suma+1)+A[i]
suma = -1
elif suma < 0:
count += (-suma+1)-A[i]
suma = 1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1001001001;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (n); i++) cin >> a[i];
int ans = INF;
int sum = 0;
int count = 0;
for (int i = 0; i < (n); i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum <= 0) {
count += (1 - sum);
sum = 1;
}
} else {
if (sum >= 0) {
count += (sum - (-1));
sum = -1;
}
}
}
ans = min(ans, count);
sum = 0;
count = 0;
for (int i = 0; i < (n); i++) {
sum += a[i];
if (i % 2 != 0) {
if (sum <= 0) {
count += (1 - sum);
sum = 1;
}
} else {
if (sum >= 0) {
count += (sum - (-1));
sum = -1;
}
}
}
ans = min(ans, count);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int a, b = 0, c = 0;
int n;
cin >> n >> a;
b += a;
for (int i = 1; i < n; i++) {
cin >> a;
if ((a + b >= 0) == (b > 0)) {
if (b > 0) {
c += a + b + 1;
a = -b - 1;
} else if (b < 0) {
c -= a + b - 1;
a = -b + 1;
}
}
b += a;
}
cout << c << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
scanf("%d", &n);
vector<int> a(n, 0);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
bool target_sign = false;
if (a.at(0) > 0) {
target_sign = true;
} else {
target_sign = false;
}
int ans = 0;
int sum = a.at(0);
for (int i = 1; i < n; i++) {
sum += a.at(i);
if (target_sign) {
if (sum >= 0) {
while (sum >= 0) {
sum--;
ans++;
}
}
target_sign = false;
} else {
if (sum <= 0) {
while (sum <= 0) {
sum++;
ans++;
}
}
target_sign = true;
}
}
printf("%d", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
using keyVal = pair<string, T>;
template <typename T>
bool val_greater(const keyVal<T>& left, const keyVal<T>& right) {
return left.second > right.second;
}
void init_global() {}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
cin >> N;
vector<int> a(N);
for (int i = int(0); i != int(N); i++) cin >> a[i];
vector<int> s(N, 0);
int cnt = 0;
if (a[0] == 0) {
a[0]++;
cnt++;
}
s[0] = a[0];
bool posit = (s[0] > 0) ? true : false;
for (int i = int(1); i != int(N); i++) {
posit = !posit;
int ts = s[i - 1] + a[i];
if (!posit && ts >= 0) {
int c = abs(ts) + 1;
a[i] -= c;
cnt += c;
} else if (posit && ts <= 0) {
int c = abs(ts) + 1;
a[i] += c;
cnt += c;
}
s[i] = s[i - 1] + a[i];
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double PI = 3.1415926535897932384626433832795;
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
bool isDiffer(long long a, long long b) {
if (b == 0) return false;
if (((a > 0) && (b < 0)) || ((a < 0) && (b > 0)))
return true;
else
return false;
}
int main() {
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> v;
vector<long long> vv;
for (int i = 0; i < n; i++) {
long long t;
cin >> t;
v.push_back(t);
vv.push_back(t);
}
long long ans[2] = {0};
for (int j = 0; j < 2; j++) {
long long ob = (j == 0) ? -1 : 1;
if (isDiffer(ob, v[0])) {
ans[j] += llabs(ob - v[0]);
v[0] = ob;
}
long long os = v[0];
for (int i = 1; i < n; i++) {
if (!isDiffer(os, v[i] + os)) {
long long ob = (os >= 0) ? -1 : 1;
ans[j] += llabs(ob - os - v[i]);
v[i] = ob - os;
}
os += v[i];
}
v = vv;
}
cout << min(ans[0], ans[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int abs(int num) { return (num > 0) ? num : -num; }
int main() {
int n;
scanf("%d", &n);
int A[n];
int i;
int sum = 0;
int ans = 0;
for (i = 0; i < n; i++) {
scanf("%d", &A[i]);
}
for (i = 0; i < n - 1; i++) {
sum += A[i];
if (sum > 0) {
if (sum >= -A[i + 1]) {
ans += abs(sum + A[i + 1] + 1);
A[i + 1] -= abs(sum + A[i + 1] + 1);
printf("%d %d\n", i, ans);
}
} else {
if (sum <= -A[i + 1]) {
ans += abs(sum + A[i + 1] - 1);
A[i + 1] += abs(sum + A[i + 1] + 1);
printf("%d %d\n", i, ans);
}
}
}
printf("%d\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const int INF = 2000000000;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
long long ans = 0;
long long wa;
if (a[0] != 0) {
wa = a[0];
for (int i = 1; i < n; i++) {
if (wa > 0) {
wa += a[i];
if (wa < 0)
continue;
else {
ans += wa + 1;
wa = -1;
}
} else {
wa += a[i];
if (wa > 0)
continue;
else {
ans += 1 - wa;
wa = 1;
}
}
}
cout << ans << endl;
} else {
long long ans1 = 1, ans2 = 1;
wa = 1;
for (int i = 1; i < n; i++) {
if (wa > 0) {
wa += a[i];
if (wa < 0)
continue;
else {
ans1 += wa + 1;
wa = -1;
}
} else {
wa += a[i];
if (wa > 0)
continue;
else {
ans1 += 1 - wa;
wa = 1;
}
}
}
wa = -1;
for (int i = 1; i < n; i++) {
if (wa > 0) {
wa += a[i];
if (wa < 0)
continue;
else {
ans2 += wa + 1;
wa = -1;
}
} else {
wa += a[i];
if (wa > 0)
continue;
else {
ans2 += 1 - wa;
wa = 1;
}
}
}
if (ans1 < ans2)
cout << ans1 << endl;
else
cout << ans2 << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N, a[100000];
cin >> N;
for (int i = 0; i < N; ++i) cin >> a[i];
int counter = 0;
int b[100000];
if (a[0] == 0) {
++a[0];
++counter;
b[0] = a[0];
for (int i = 1; i < N; ++i) {
b[i] += b[i - 1] + a[i];
while (b[i - 1] * b[i] >= 0) {
if (i % 2 == 0) {
++b[i];
} else {
--b[i];
}
++counter;
}
}
} else if (a[0] > 0) {
b[0] = a[0];
for (int i = 1; i < N; ++i) {
b[i] = b[i - 1] + a[i];
while (b[i - 1] * b[i] >= 0) {
if (i % 2 == 0) {
++b[i];
} else {
--b[i];
}
++counter;
}
}
} else {
b[0] = a[0];
for (int i = 1; i < N; ++i) {
b[i] = b[i - 1] + a[i];
while (b[i - 1] * b[i] >= 0) {
if (i % 2 == 0) {
--b[i];
} else {
++b[i];
}
++counter;
}
}
}
cout << counter << endl;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.