Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//1回の操作で、a[i]のいずれかを+1or-1できる
//以下になる最小の操作回数を求める
//全てのiに対して第一項からi項までの和Siは0でない
//SiとSi+1の符号が異なる
//予めSiを全て計算し、Si>0,Si+1>=0なら-1-Si+1だけa[i+1]から引く
//a[0] = 0 のとき、a[0]>0,a[0]<0とした時の操作回数の小さい方が答え
//a[0] != 0のとき、Si <0,Si+1<=0ならSi+c = 1を満たすcとa[i]の差をカウント
int main(){
ll n;
cin >> n;
vector<ll> a(n);
for(int i= 0;i<n;i++{
cin >> a[i];
}
vector<ll> copy_a = a;
ll count = 0;
ll sum = 0;
if(a[0] != 0){
for(int i = 0;i<n-1;i++){
sum += a[i];//i項までの和
if(sum < 0 && sum + a[i+1] <=0){
ll na = 1 -sum;//sumに何を足せば1になるか これを新たなa[i+1]にする
count += abs(na - a[i+1]);
a[i+1] = na;
}
if(sum > 0 && sum + a[i+1] >=0){
ll na = -1 -sum;//sumに何を足せば-1になるか これを新たなa[i+1]にする
count += abs(na - a[i+1]);
a[i+1] = na;
}
}
}
else if(a[0] == 0){
a[0] = 1;
ll count1 = 1;
for(int i = 0;i<n-1;i++){
sum += a[i];//i項までの和
if(sum < 0 && sum + a[i+1] <=0){
ll na = 1 -sum;//sumに何を足せば1になるか これを新たなa[i+1]にする
count1 += abs(na - a[i+1]);
a[i+1] = na;
}
if(sum > 0 && sum + a[i+1] >=0){
ll na = -1 -sum;//sumに何を足せば-1になるか これを新たなa[i+1]にする
count1 += abs(na - a[i+1]);
a[i+1] = na;
}
}
copy_a[0] = -1;
ll count2 = 1;
ll sum2 = 0;
for(int i = 0;i<n-1;i++){
sum2 += copy_a[i];//i項までの和
if(sum2 < 0 && sum2 + copy_a[i+1] <=0){
ll na = 1 -sum2;//sumに何を足せば1になるか これを新たなa[i+1]にする
count2 += abs(na - copy_a[i+1]);
copy_a[i+1] = na;
}
if(sum2 > 0 && sum2 + copy_a[i+1] >=0){
ll na = -1 -sum2;//sumに何を足せば-1になるか これを新たなa[i+1]にする
count2 += abs(na - copy_a[i+1]);
copy_a[i+1] = na;
}
}
count = min(count1,count2);
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<n;i++)
#define FOR(i,start,end) for(int i=start;i<=end;i++)
const int INF = 1001001001;
typedef long long ll;
const ll MOD=1000000007;
using namespace std;
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
template<class T>auto MAX(const T& a) { return *max_element(a.begin(),a.end()); }
template<class T>auto MIN(const T& a) { return *min_element(a.begin(),a.end()); }
template<class T, class U>U SUM(const T& a, const U& v) { return accumulate(a.begin(),a.end(), v); }
template<class T, class U>U COUNT(const T& a, const U& v) { return count(a.begin(),a.end(), v); }
template<class T, class U>int LOWER(const T& a, const U& v) { return lower_bound(a.begin(),a.end(), v) - a.begin(); }
template<class T, class U>int UPPER(const T& a, const U& v) { return upper_bound(a.begin(),a.end(), v) - a.begin(); }
int GCD(int a, int b) { return b ? GCD(b, a%b) : a; }
int LCM(int a, int b) { int g = GCD(a, b); return a / g * b; }
//---------------------------------------------------------------------------------------------------
template<int MOD> struct ModInt {
static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
return ModInt(u); }
bool operator==(ModInt that) const { return x == that.x; }
bool operator!=(ModInt that) const { return x != that.x; }
ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
template<typename T, int FAC_MAX> struct Comb { vector<T> fac, ifac;
Comb(){fac.resize(FAC_MAX,1);ifac.resize(FAC_MAX,1);FOR(i,1,FAC_MAX-1)fac[i]=fac[i-1]*i;
ifac[FAC_MAX-1]=T(1)/fac[FAC_MAX-1];for(int i=FAC_MAX-2;i>=1;i--)ifac[i]=ifac[i+1]*T(i+1);}
T aPb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b]; }
T aCb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b] * ifac[b]; }
T nHk(int n, int k) { if (n == 0 && k == 0) return T(1); if (n <= 0 || k < 0) return 0;
return aCb(n + k - 1, k); } // nHk = (n+k-1)Ck : n is separator
T pairCombination(int n) {if(n%2==1)return T(0);return fac[n]*ifac[n/2]/(T(2)^(n/2));}
// combination of paris for n
};
typedef ModInt<1000000007> mint;
int main(void){
// Your code here!
int n; cin >> n;
vector<ll> a(n);
rep(i,n) cin >> a[i];
// +-+-....
ll sh = 0;
ll nw = 0;
rep(i,n) {
nw += a[i];
if(i%2 == 0) {
if(nw<= 0) {
sh += 1 - nw;
nw = 1;
}
}
if(i%2 != 0) {
if(nw>=0){
sh += nw + 1;
nw = -1;
}
}
}
// -+-+...
ll hs = 0;
nw = 0;
rep(i,n) {
if(i%2 == 0) if(nw>=0) hs += 1 + nw,nw = -1;
if(i%2 != 0) if(nw <= 0) += 1 - nw,nw = 1;
}
cout << min(hs,sh) << endl;
}
// 基本的にはlong long を使いましょう |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool DifSign(int a, int b) {
if (a == 0 || b == 0) return false;
return ((a > 0 && 0 > b) || (b > 0 && 0 > a));
}
int solver(vector<int> A, int dsum) {
int ans = 0;
for (int i = 1; i < A.size(); i++) {
if (!DifSign(dsum, dsum + A[i])) {
int addnum = abs(dsum + A[i]) + 1;
ans += addnum;
if (dsum + A[i] > 0)
A[i] -= addnum;
else if (dsum + A[i] < 0)
A[i] += addnum;
else {
if (dsum > 0)
A[i] -= addnum;
else
A[i] += addnum;
}
}
dsum += A[i];
}
return ans;
}
int main() {
int N;
int dsum = 0;
int ans1 = 0;
int ans2 = 0;
cin >> N;
vector<int> A(N);
vector<int> B(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
B[i] = A[i];
}
if (A[0] < 0) {
ans1 += abs(A[0]) + 1;
A[0] = 1;
}
dsum += A[0];
ans1 += solver(A, dsum);
dsum = 0;
if (B[0] > 0) {
ans2 += abs(B[0]) + 1;
B[0] = -1;
}
dsum += B[0];
ans2 += solver(B, dsum);
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
bool ch = false;
long long N, i;
long long ans = 0, count = 0;
cin >> N;
long long a[N];
cin >> a[0];
ans += a[0];
if (ans > 0)
ch = true;
else
ch = false;
for (i = 1; i < N; i++) {
cin >> a[i];
if (ch) {
if (ans >= -a[i]) {
count += ans + a[i] + 1;
ans = -1;
} else
ans += a[i];
ch = false;
} else {
if (ans <= -a[i]) {
count += -ans - a[i] + 1;
ans = 1;
} else
ans += a[i];
ch = true;
}
}
long long con = 0;
if (a[0] > 0) {
ans = -1;
ch = false;
} else {
ans = 1;
ch = true;
}
con = a[0] + 1;
for (i = 1; i < N; i++) {
if (ch) {
if (ans >= -a[i]) {
count += ans + a[i] + 1;
ans = -1;
} else
ans += a[i];
ch = false;
} else {
if (ans <= -a[i]) {
count += -ans - a[i] + 1;
ans = 1;
} else
ans += a[i];
ch = true;
}
}
cout << min(count, con) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
int64_t n;
cin >> n;
vector<int64_t> a(n);
for (int64_t i = 0; i < n; i++) cin >> a[i];
int64_t sum1 = 0, cost1 = 0;
for (int64_t i = 0; i < n; i++) {
sum1 += a[i];
if (i % 2 == 0 && sum1 < 0) sum1 += abs(sum1) + 1, cost1 += abs(sum1) + 1;
if (i % 2 == 1 && sum1 > 0) sum1 -= abs(sum1) - 1, cost1 += abs(sum1) + 1;
}
int64_t sum2 = 0, cost2 = 0;
for (int64_t i = 0; i < n; i++) {
sum2 += a[i];
if (i % 2 == 0 && sum1 > 0) sum2 -= abs(sum2) - 1, cost2 += abs(sum2) + 1;
if (i % 2 == 1 && sum1 < 0) sum2 += abs(sum2) + 1, cost1 += abs(sum2) + 1;
}
cout << min(cost1, cost2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n;
cin >> n;
long long int sum;
long long int ans1 = 0, ans2 = 0;
vector<long long int> a;
for (int i = 1; i <= n; i++) {
long long int tmp;
cin >> tmp;
a.push_back(tmp);
}
sum = 0;
for (int i = 1; i <= n; i++) {
sum += a[i - 1];
if (i % 2 == 0 && sum < 0) {
ans1 += abs(sum - 1);
sum = 1;
} else if (i % 2 == 1 && sum > 0) {
ans1 += abs(sum - (-1));
sum = -1;
}
}
sum = 0;
for (int i = 1; i <= n; i++) {
sum += a[i - 1];
if (i % 2 == 0 && sum > 0) {
ans2 += abs(sum - (-1));
sum = -1;
} else if (i % 2 == 1 && sum < 0) {
ans2 += abs(sum - 1);
sum = 1;
}
}
std::cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> A(N);
for (int i = 0; i < N; i++) {
cin >> A.at(i);
}
long long C1 = 0, C2 = 0;
long long sum = 0;
for (int i = 0; i < N; i++) {
sum += A.at(i);
if (i % 2 == 0 && sum <= 0) {
C1 += abs(sum) + 1;
sum = 1;
}
if (i % 2 == 1 && sum >= 0) {
C1 += abs(sum) + 1;
sum = -1;
}
}
for (int i = 0; i < N; i++) {
sum += A.at(i);
if (i % 2 == 1 && sum <= 0) {
C2 += abs(sum) + 1;
sum = 1;
}
if (i % 2 == 0 && sum >= 0) {
C2 += abs(sum) + 1;
sum = -1;
}
}
cout << min(C1, C2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int getS(int val) {
if (val < 0) return -1;
if (val > 0) return 1;
return 0;
}
int minNum(vector<int> &arr, int n, int sign) {
int acu = 0, sol = 0;
for (int i = 0; i < n; i++) {
acu += arr[i];
if (getS(acu) != sign) {
sol += abs(sign - acu);
acu = sign;
}
sign = sign * -1;
}
return sol;
}
int main() {
int n;
cin >> n;
vector<int> arr(n);
for (int i = 0; i < n; i++) cin >> arr[i];
int a1 = minNum(arr, n, -1);
int a2 = minNum(arr, n, 1);
cout << (a1 < a2 ? a1 : a2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<string>
#include<iomanip>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
#define int long long
#define endl "\n"
const long long INF = (long long)1e18;
const long long MOD = 1'000'000'007;
string yn(bool f){return f?"Yes":"No";}
string YN(bool f){return f?"YES":"NO";}
signed main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout<<fixed<<setprecision(10);
int n;
int sum = 0, sum2 = 0;
int ans = 0, ans2 = 0;
vector<int> a;
cin>>n;
a.assign(n, 0);
for(int i = 0; i < n; i++){
cin>>a[i];
if(i){
if(sum > 0){
sum += a[i];
if(sum >= 0){
// cout<<"Y"<<endl;
ans += sum+1;
sum = -1;
}
} else {
sum += a[i];
if(sum <= 0){
// cout<<"Z"<<endl;
ans += 1-sum;
sum = 1;
}
}
} else {
sum = a[i];
if(sum == 0){
sum = 1;
ans = 1;
}
}
// cout<<ans<<" "<<sum<<endl;
}
for(int i = 0; i < n; i++){
if(i){
if(sum2 > 0){
sum2 += a[i];
if(sum2 >= 0){
ans2 += sum2+1;
sum2 = -1;
}
} else {
sum2 += a[i];
if(sum2 <= 0){
ans2 += 1-sum2;
sum2 = 1;
}
}
} else {
sum2 = a[i];
if(sum2 == 0){
sum2 = -1;
ans2 = 1;
}
}
}
cout<<min(ans,ans2)<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long zero = 0;
int N;
cin >> N;
vector<int> sum(N, 0);
int now;
cin >> now;
sum[0] = now;
for (int i = 1; i < N; i++) {
cin >> now;
sum[i] = sum[i - 1] + now;
}
long change = 0;
long ansp = 0;
int i = 0;
while (i < N) {
ansp += max(1 - (sum[i] + change), zero);
change += max(1 - (sum[i] + change), zero);
i++;
if (i == N) {
break;
}
ansp += max((sum[i] + change) + 1, zero);
change -= max((sum[i] + change) + 1, zero);
i++;
}
change = 0;
long ansm = 0;
i = 0;
while (i < N) {
ansm += max((sum[i] + change) + 1, zero);
change -= max((sum[i] + change) + 1, zero);
i++;
if (i == N) {
break;
}
ansm += max(1 - (sum[i] + change), zero);
change += max(1 - (sum[i] + change), zero);
i++;
}
cout << min(ansp, ansm) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int Z = 0;
int Y = 0;
int positive(int X) {
if (X <= 0) {
while (X <= 0) {
Z++;
X++;
}
}
return X;
}
int negative(int X) {
if (X >= 0) {
while (X >= 0) {
Z++;
X--;
}
}
return X;
}
int main() {
int U;
int N;
cin >> N;
int A[100008];
for (int i = 0; i < N; i++) {
cin >> A[i];
}
for (int i = 0; i < N; i++) {
Y += A[i];
if (i % 2 == 0)
Y = positive(Y);
else
Y = negative(Y);
}
U = Z;
Y = 0;
Z = 0;
for (int i = 0; i < N; i++) {
Y += A[i];
if (i % 2 != 0)
Y = positive(Y);
else
Y = negative(Y);
}
if (Z < U) {
cout << Z << endl;
} else {
cout << U << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
arr1=list(map(int,input().split()))
arr2=arr1[:]
ans1=0
ans2=0
if arr1[0]<=0:
ans1+=abs(arr1[0])+1
arr1[0]=1
if arr2[0]>=0:
ans2+=arr2[0]+1
arr2[0]=-1
sum1=arr1[0]
for i in range(1,n):
tmp=sum1+arr1[i]
if i%2==1:
if tmp>=0:
ans1+=tmp+1
sum1=-1
else:
sum1=tmp
else:
if tmp<=0:
ans1+=abs(tmp)+1
sum1=1
else:
sum1=tmp
sum2=arr2[0]
for i in range(1,n):
tmp=sum2+arr2[i]
if i%2==0:
if tmp>=0:
ans2+=tmp+1
sum2=-1
else:
sum2=tmp
else:
if tmp<=0:
ans2+=abs(tmp)+1
sum2=1
else:
sum2=tmp
print(ans1,ans2) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static string InputPattern = "InputX";
static List<string> GetInputList()
{
var WillReturn = new List<string>();
if (InputPattern == "Input1") {
WillReturn.Add("4");
WillReturn.Add("1 -3 1 0");
//4
}
else if (InputPattern == "Input2") {
WillReturn.Add("5");
WillReturn.Add("3 -6 4 -5 7");
//0
}
else if (InputPattern == "Input3") {
WillReturn.Add("6");
WillReturn.Add("-1 4 3 2 -5 4");
//8
}
else {
string wkStr;
while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
}
return WillReturn;
}
static void Main()
{
List<string> InputList = GetInputList();
int[] AArr = InputList[1].Split(' ').Select(X => int.Parse(X)).ToArray();
if (AArr[0] == 0) {
AArr[0] = 1;
long Cost1 = Solve(AArr) + 1;
AArr[0] = -1;
long Cost2 = Solve(AArr) + 1;
Console.WriteLine(Math.Min(Cost1, Cost2));
}
else {
Console.WriteLine(Solve(AArr));
}
}
static long Solve(int[] pArr)
{
long Cost = 0;
long RunSum = pArr[0];
for (int I = 1; I <= pArr.GetUpperBound(0); I++) {
if (RunSum < 0) {
RunSum += pArr[I];
if (RunSum > 0) continue;
Cost += Math.Abs(RunSum) + 1;
RunSum = 1;
}
else if (RunSum > 0) {
RunSum += pArr[I];
if (RunSum < 0) continue;
Cost += Math.Abs(RunSum) + 1;
RunSum = -1;
}
}
return Cost;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
s0 = a[0]
count=0
i=0
while a[i]!=0:i++
if a[i]>0:
s0+=1
count+=1
else:
s0-=1
count+=1
for i in range(1,n):
s1 = s0+a[i]
if s0*s1>=0:
if s1>0:
a[i]-=(abs(s1)+1)
count+=(abs(s1)+1)
elif s1<0:
a[i]+=(abs(s1)+1)
count+=(abs(s1)+1)
elif s1==0:
if s0>0:
a[i]-=1
count+=1
elif s0<0:
a[i]+=1
count+=1
s0 += a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[100010];
int ans = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
if (i != 0) {
a[i] += a[i - 1];
if (a[i] == 0) {
if (a[i - 1] > 0) {
ans++;
a[i]--;
} else {
ans++;
a[i]++;
}
} else if (a[i - 1] > 0) {
if (a[i] > 0) {
ans += abs(-1 - a[i]);
a[i] = -1;
}
} else if (a[i - 1] < 0) {
if (a[i] < 0) {
ans += 1 - a[i];
a[i] = 1;
}
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #[allow(unused_imports)]
use proconio::input;
#[allow(unused_imports)]
use proconio::marker::Chars;
#[allow(unused_imports)]
use std::cmp::{max, min};
#[allow(unused)]
const ALPHA_SMALL: [char; 26] = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
't', 'u', 'v', 'w', 'x', 'y', 'z',
];
#[allow(unused)]
const ALPHA: [char; 26] = [
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
];
#[allow(unused)]
fn read<T: std::str::FromStr>() -> T {
let mut s = String::new();
std::io::stdin().read_line(&mut s).ok();
s.trim().parse().ok().unwrap()
}
#[allow(unused)]
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
read::<String>()
.split_whitespace()
.map(|e| e.parse().ok().unwrap())
.collect()
}
#[allow(unused)]
fn read_touple<T: std::str::FromStr + Copy>() -> (T, T) {
let v: Vec<T> = read_vec();
assert_eq!(v.len(), 2);
(v[0], v[1])
}
fn main() {
input!(N: usize);
input!(A: [i64; N]);
let mut ans: i64 = 1_000_000_000_000;
for i in 0..2 {
let mut st = SegmentTree::<i64>::new(&A);
// i % 2 == 0 ==> 偶数番目が正
// i % 2 == 1 ==> 偶数番目が負
let mut tot: i64 = 0;
for j in 0..N {
let mut diff = 0;
let now = st.get(0, j + 1);
if i % 2 == 0 {
if j % 2 == 0 && now <= 0 {
// 1にする
diff = 1 - now;
} else if j % 2 == 1 && now >= 0 {
// -1にする
diff = -1 - now;
}
} else {
if j % 2 == 0 && now >= 0 {
// -1にする
diff = -1 - now;
} else if j % 2 == 1 && now <= 0 {
// 1にする
diff = 1 - now;
}
}
//println!("j = {}, now = {}, diff = {}", j, now, diff);
tot += diff.abs();
st.update(j, A[j] + diff);
}
ans = min(ans, tot);
}
println!("{}", ans);
}
impl Monoid for i64 {
const E: i64 = 0;
fn calc(&self, rhs: &i64) -> Self {
self + rhs
}
}
#[allow(clippy::declare_interior_mutable_const)]
trait Monoid<Rhs = Self> {
const E: Rhs;
fn calc(&self, other: &Rhs) -> Self;
}
#[derive(Debug, PartialEq, Clone)]
struct SegmentTree<T: Clone + Monoid> {
n: usize, //元の配列に一番近い2の冪乗を格納する
tree: Vec<T>,
}
// 区間の最小の値を求めるセグメント木
impl<T: Clone + Monoid> SegmentTree<T> {
// 元の配列をセグメント木で表現
// 2^nが元の配列のサイズ以上になる最小のnをNとする
// O(N)
fn new(v: &[T]) -> SegmentTree<T> {
let mut n: usize = 1;
// セグメント木の葉の要素数
while n < v.len() {
n *= 2;
}
// セグメント木を表現するベクター
let mut tree = vec![T::E; 2 * n - 1]; // 区間における最小値を求めるセグメント木に注意
// 葉から順に値を格納していく
// まず最下段に値を格納する
for (i, e) in v.iter().enumerate() {
tree[i + n - 1] = e.clone();
}
// 最下段の次の下段から値を書くのしていく
for i in (0..(n - 1)).rev() {
tree[i] = T::calc(&tree[2 * i + 1], &tree[2 * i + 2]); // 区間における最小値を求めるセグメント木に注意
}
SegmentTree { n, tree }
}
// 元の配列のi番目の値が変更された時にセグメント木を更新
// O(logN) Nは元の配列の長さを超える最小の2の冪乗
fn update(&mut self, i: usize, val: T) {
// 最下段の葉を更新
let mut m = i + self.n - 1;
self.tree[m] = val;
while m > 0 {
m = (m - 1) / 2;
self.tree[m] = T::calc(&self.tree[2 * m + 1], &self.tree[2 * m + 2]);
// 区間における最小値を求めるセグメント木に注意
}
}
// 指定された区間の値を求める
// 区間は半開区間[i, j)での値を求める
// O(logN)
fn get(&self, i: usize, j: usize) -> T {
fn get_sub<U: Clone + Monoid>(
t: &SegmentTree<U>,
a: usize,
b: usize,
k: usize,
l: usize,
r: usize,
) -> U {
// 求めたい区間が今いるノードの対応する区間と交差していない
if r <= a || b <= l {
return U::E;
} // 区間における最小値を求めるセグメント木に注意
// 求めたい区間が今いるノードの対応する区間を被覆してる
if a <= l && r <= b {
return t.tree[k].clone();
}
// 求めたい区間と今いるノードと対応している区間が交差してるとき
// 子を探索する
// 左の子の値
let vl = get_sub(t, a, b, 2 * k + 1, l, (l + r) / 2);
// 右のこの値
let vr = get_sub(t, a, b, 2 * k + 2, (l + r) / 2, r);
U::calc(&vl, &vr)
}
get_sub(&self, i, j, 0, 0, self.n)
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sgn(int a, int b) {
if (a > 0 and b > 0)
return 1;
else if (a < 0 and b < 0)
return 1;
else
return 0;
}
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int sum_b = 0;
int sum_n = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
sum_n += a[i];
}
if (i != 0) {
sum_b = sum_n;
sum_n += a[i];
if (sgn(sum_b, sum_n)) {
if (sum_n > 0) {
ans += abs(1 + sum_n);
sum_n = -1;
} else if (sum_n < 0) {
ans += abs(sum_n - 1);
sum_n = 1;
} else {
if (sum_b < 0) {
cout << "stp5" << endl;
sum_n += 1;
ans += 1;
} else {
cout << "stp6" << endl;
sum_n += -1;
ans += 1;
}
}
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | # -*- coding:utf-8 -*-
def sign(x):
if (x > 0):
return 1
elif (x < 0):
return -1
else:
return 0
n = int(raw_input())
numlist = (raw_input()).split(' ')
sumlist = [int(numlist[0])]
count = 0
for i in range(1, n):
sumlist.append(sumlist[i-1] + int(numlist[i]))
while ((sign(sumlist[i-1]) == sign(sumlist[i])) or (sumlist[i] == 0)):
if (sumlist[i] > 0): #i-1,i番目までのsumがともに正
numlist[i] = int(numlist[i]) - 1
sumlist[i] -= 1
count += 1
elif (sumlist[i] < 0): #i-1,i番目までのsumがともに負
numlist[i] = int(numlist[i]) + 1
sumlist[i] += 1
count += 1
else:
if (sumlist[i-1] > 0):
numlist[i] = int(numlist[i]) - 1
sumlist[i] -= 1
if (sumlist[i-1] < 0):
numlist[i] = int(numlist[i]) + 1
sumlist[i] += 1
count += 1
print count
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int number[100001];
int N;
int sum[100001];
int main() {
int mul = 0;
long long int answer = 0;
int fugou = 0;
scanf("%d", &N);
for (int i = 0; i < N; i++) {
scanf("%d", &(number[i]));
mul += number[i];
sum[i] = mul;
if (i > 0) {
if (sum[i - 1] * mul >= 0) {
answer += (long long int)abs(mul) + 1;
}
}
}
printf("%d\n", answer);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
bool PN(T x) {
if (x <= 1) return false;
if (x == 2) return true;
for (int i = 2; i < sqrt(x) + 1; i++)
if (x % i == 0) return false;
return true;
}
const long long MOD = 1e9 + 7;
void solve() {
int n;
cin >> n;
int a[n];
long long sum = 0;
long long sum2 = 0;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long ans = 0;
long long ans2 = 0;
for (int i = 0; i < n; ++i) {
if (i == 0) {
sum += a[i];
continue;
}
if (sum > 0) {
sum += a[i];
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else if (sum < 0) {
continue;
} else {
ans++;
sum = -1;
}
} else if (sum < 0) {
sum += a[i];
if (sum > 0) {
continue;
} else if (sum < 0) {
ans += abs(sum) + 1;
sum = 1;
} else {
ans++;
sum = 1;
}
}
}
for (int i = 0; i < n; ++i) {
if (i == 0) {
if (a[i] != 0) {
sum2 = -(a[i]) / abs(a[i]);
}
ans2 += abs(a[i] + 1);
continue;
}
if (sum2 > 0) {
sum2 += a[i];
if (sum2 > 0) {
ans2 += sum2 + 1;
sum2 = -1;
} else if (sum2 < 0) {
continue;
} else {
ans2++;
sum2 = -1;
}
} else if (sum2 < 0) {
sum2 += a[i];
if (sum2 > 0) {
continue;
} else if (sum < 0) {
ans2 += abs(sum2) + 1;
sum2 = 1;
} else {
ans2++;
sum2 = 1;
}
}
}
cout << min(ans, ans2) << endl;
}
int main() {
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAX = 1e+5;
int n;
int a[MAX + 1];
int main() {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
bool flag;
int sum;
long long ans1 = 0;
sum = a[0];
flag = true;
for (int i = 1; i < n; i++) {
sum += a[i];
if (flag && sum <= 0) {
ans1 += -sum + 1;
sum = 1;
} else if (!flag && sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
flag = !flag;
}
long long ans2 = 0;
sum = a[0];
flag = false;
for (int i = 1; i < n; i++) {
sum += a[i];
if (flag && sum <= 0) {
ans2 += -sum + 1;
sum = 1;
} else if (!flag && sum >= 0) {
ans2 += sum + 1;
sum = -1;
}
flag = !flag;
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
private static long[] add(long[] a, long add) {
long[] res = new long[a.length];
for (int i = 0; i < a.length; i++) {
res[i] = a[i];
}
res[0] += add;
return res;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNextInt()) {
int n = sc.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
boolean isZero = (a[0] == 0);
long ans = Long.MAX_VALUE;
if ( isZero ) {
long[] ta = add(a, 1);
ans = Math.min(ans, solve(ta));
ta = add(a, -1);
ans = Math.min(ans, solve(ta));
} else {
ans = Math.min(ans, solve(a));
long[] ta = add(a, -a[0] + (a[0] < 0 ? 1 : -1));
ans = Math.min(ans, solve(ta));
}
System.out.println(ans);
}
}
private static long solve(long[] a) {
long res = 0;
long sum = a[0];
boolean isPositive = sum > 0;
for (int i = 1; i < a.length; i++) {
isPositive = !isPositive;
sum += a[i];
if ( isPositive && sum <= 0 ) {
res += Math.abs(sum) + 1;
sum = 1;
} else if ( !isPositive && sum >= 0 ) {
res += Math.abs(sum) + 1;
sum = -1;
}
}
return res;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | object Main {
def main(args: Array[String]): Unit = {
import scala.io.StdIn.readLine
val _ = readLine
val datA = readLine.split(" ").map(_.toLong).dropWhile(_ == 0)
def judgement(acc: (Long, Long), cur: (Long, Long)): (Long, Long) = {
val sum = acc._1
val count = acc._2
val a = cur._1
if (sum > 0) {
if (sum + a >= 0) (-1, count + math.abs(sum + a) + 1)
else (sum + a, count)
}
else if (sum < 0) {
if (sum + a <= 0) (1, count + math.abs(sum + a) + 1)
else (sum + a, count)
} else {
(a, count)
}
}
val posA = datA.map(a => (a, 0L)).foldLeft((0L, 0L)){ judgement(_, _) }
val negA = datA.tail.map(a => (a, 0L)).foldLeft(
if(datA.head > 0) -1L else 1L, math.abs(datA.head) + 1
){ judgement(_, _) }
val ans = math.min(posA._2, negA._2)
println(ans)
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long Num[1111111];
long long Sum[1111111];
long long Out;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld", &Num[i]);
if (Num[1] == 0) {
long long Out1 = 0;
long long Out2 = 0;
Num[1] = 1;
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 0) {
if (Sum[i] >= 0) {
Out1 += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out1 += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
Num[1] = -1;
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 1) {
if (Sum[i] >= 0) {
Out2 += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out2 += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
printf("%lld", min(Out1, Out2));
}
if (Num[1] > 0) {
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 0) {
if (Sum[i] >= 0) {
Out += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
} else {
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 1) {
if (Sum[i] >= 0) {
Out += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
}
printf("%lld\n", Out);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> v(n);
for (int i = 0; i < n; i++) {
cin >> v[i];
}
long long ans = 0;
long long ans_1 = 100000000;
long long sum = v[0];
long long sum_old;
if (sum == 0) {
ans = 0;
sum = 1;
ans += 1;
sum_old = 1;
for (int i = 1; i < n; i++) {
sum += v[i];
if (sum_old < 0) {
if (sum <= 0) {
ans += 1 - sum;
sum = 1;
}
}
if (sum_old > 0) {
if (sum >= 0) {
ans += 1 + sum;
sum = -1;
}
}
sum_old = sum;
}
ans_1 = min(ans_1, ans);
ans = 0;
sum = -1;
ans += 1;
sum_old = -1;
for (int i = 1; i < n; i++) {
sum += v[i];
if (sum_old < 0) {
if (sum <= 0) {
ans += 1 - sum;
sum = 1;
}
}
if (sum_old > 0) {
if (sum >= 0) {
ans += 1 + sum;
sum = -1;
}
}
sum_old = sum;
}
ans_1 = min(ans_1, ans);
}
ans = 0;
sum = v[0];
sum_old = sum;
for (int i = 1; i < n; i++) {
sum += v[i];
if (sum_old < 0) {
if (sum <= 0) {
ans += 1 - sum;
sum = 1;
}
}
if (sum_old > 0) {
if (sum >= 0) {
ans += 1 + sum;
sum = -1;
}
}
sum_old = sum;
}
ans_1 = min(ans_1, ans);
cout << ans_1 << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1000000001;
const double PI = 3.141592653589;
const long long LMAX = 1000000000000001;
long long gcd(long long a, long long b) {
if (a < b) swap(a, b);
while ((a % b) != 0) {
a = b;
b = a % b;
}
return b;
}
int dx[] = {-1, 0, 1, 0};
int dy[] = {0, 1, 0, -1};
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
vector<long long> dp(n, 0);
long long sum = a[0];
for (int i = 1; i < n; i++) {
if (sum > 0) {
if (sum + a[i] < 0) {
dp[i] = dp[i - 1];
sum += a[i];
} else {
dp[i] = dp[i - 1] + abs(sum + a[i]) + 1;
sum = -1;
}
} else {
if (sum + a[i] > 0) {
dp[i] = dp[i - 1];
sum += a[i];
} else {
dp[i] = dp[i - 1] + abs(sum + a[i]) + 1;
sum = 1;
}
}
}
cout << dp[n - 1] << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long minA = 0;
long sumA = 0;
for (int i = 0; i < n; i++) {
sumA += a[i];
if (i % 2 == 0) {
if (sumA <= 0) {
minA += abs(sumA) + 1;
sumA += abs(sumA) + 1;
}
} else {
if (sumA >= 0) {
minA += abs(sumA) + 1;
sumA -= abs(sumA) + 1;
}
}
}
long minB = 0;
long sumB = 0;
for (int i = 0; i < n; i++) {
sumB += a[i];
if ((i + 1) % 2 == 0) {
if (sumB <= 0) {
minB += abs(sumB) + 1;
sumB += abs(sumB) + 1;
}
} else {
if (sumB >= 0) {
minB += abs(sumB) + 1;
sumB -= abs(sumB) + 1;
}
}
}
cout << min(minA, minB) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
import numpy as np
na = np.array(a).cumsum()
cnt = 0
hoge = 0
if(na[0] > 0):
for i in range(n):
delta = abs(na[i]) + 1
if(i % 2 == 0 and na[i] <= 0):
cnt = cnt + delta
hoge += delta
na[i] += hoge
elif(i % 2 == 1 and na[i] >= 0):
cnt = cnt + delta
hoge -= delta
na[i] -= hoge
else:
na[i]
else:
for i in range(n):
delta = abs(na[i]) + 1
if(i % 2 == 1 and na[i] <= 0):
cnt = cnt + delta
hoge += delta
na[i] += hoge
elif(i % 2 == 0 and na[i] >= 0):
cnt = cnt + delta
hoge -= delta
na[i] -= hoge
else:
na[i]
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long mod = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<long long> accum(n + 1);
vector<long long> a(n);
accum[0] = 0;
for (int i = 0; i < (n); ++i) {
cin >> a[i];
accum[i + 1] = a[i] + accum[i];
}
long long now = (a[0] == 0) ? 1 : a[0];
long long tmp_ans1 = (a[0] == 0) ? abs(a[0]) + 1 : 0;
for (int i = 1; i < n; ++i) {
if (now >= 0 && now + a[i] >= 0) {
tmp_ans1 += now + a[i] + 1;
now = -1;
} else if (now < 0 && now + a[i] <= 0) {
tmp_ans1 += abs(now + a[i]) + 1;
now = 1;
} else {
now += a[i];
}
}
now = (a[0] < 0) ? 1 : -1;
long long tmp_ans2 = abs(a[0]) + 1;
for (int i = 1; i <= n; ++i) {
if (now >= 0 && now + a[i] >= 0) {
tmp_ans2 += now + a[i] + 1;
now = -1;
} else if (now < 0 && now + a[i] <= 0) {
tmp_ans2 += abs(now + a[i]) + 1;
now = 1;
} else {
now += a[i];
}
}
cout << min(tmp_ans1, tmp_ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const bool debug = false;
using namespace std;
const long long MOD = 1000000007;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> a(n);
for (int(i) = 0; (i) < (n); (i)++) {
cin >> a[i];
}
function<long long()> solve = [&]() {
long long sum = 0, cnt = 0;
for (int(i) = 0; (i) < (n); (i)++) {
if (i == 0) {
sum = a[0];
continue;
}
if (sum > 0 && sum + a[i] >= 0) {
cnt += sum + a[i] + 1;
sum = -1;
} else if (sum < 0 && sum + a[i] <= 0) {
cnt += -(sum + a[i]) + 1;
sum = 1;
} else {
sum += a[i];
}
}
return cnt;
};
long long res;
if (a[0] == 0) {
a[0] = 1;
res = solve();
a[0] = -1;
chmin(res, solve());
res++;
} else if (a[0] > 0) {
res = solve();
a[0] = -1;
res = chmin(res, solve() + a[0] + 1);
} else {
res = solve();
a[0] = 1;
res = chmin(res, solve() - a[0] + 1);
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, sum, b, c;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] <= 0) {
b = 1 - a[0];
sum = 1;
} else {
sum = a[0];
b = 0;
}
for (int i = 1; i < n; i++) {
if (i % 2) {
if (-sum - 1 < a[i]) {
b += abs(a[i] + sum + 1);
sum = -1;
} else {
sum += a[i];
}
} else {
if (1 - sum > a[i]) {
b += abs(a[i] + sum - 1);
sum = 1;
} else {
sum += a[i];
}
}
}
if (a[0] >= 0) {
c = 1 - a[0];
sum = -1;
} else {
sum = a[0];
c = 0;
}
for (int i = 1; i < n; i++) {
if (i % 2) {
if (1 - sum > a[i]) {
c += abs(a[i] + sum - 1);
sum = 1;
} else {
sum += a[i];
}
} else {
if (-sum - 1 < a[i]) {
c += abs(a[i] + sum + 1);
sum = -1;
} else {
sum += a[i];
}
}
}
cout << min(b, c);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
while a[0] == 0:
if a[1] > 0:
a[0] = -1
elif a[1] < 0:
a[0] = 1
else:
a.pop(0)
ans += 1
if a[0] < 0:
a = list(map(lambda x: x * (-1), a))
product = 0
for i in range(len(a)):
product += a[i]
if i % 2 == 0:
if product <= 0:
ans += abs(product) + 1
product = 1
elif i % 2 == 1:
if product >= 0:
ans += abs(product) + 1
product = -1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
while a[0] == 0:
if a[1] > 0:
a[0] = -1
elif a[1] < 0:
a[0] = 1
a.pop(0)
ans += 1
_a = list(map(lambda x: x * (-1), a))
def func(l: list):
_ans = 0
product = 0
for i in range(len(l)):
product += l[i]
if i % 2 == 0:
if product <= 0:
_ans += abs(product) + 1
product = 1
elif i % 2 == 1:
if product >= 0:
_ans += abs(product) + 1
product = -1
return _ans
ans += min(func(a), func(_a))
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define forx(i,a,b) for(int i=(a);i<(b);i++)
#define rep(j,n) for(int j=0;j<(n);j++)
typedef long long ll;
int main()
{
int n,ansa=0,ansb=0,suma=0;sumb=0;
cin>>n;
bool plus=true;
vector<int>a(n);
rep(i,n){
int a,b;
cin>>t[i];
a=b=t[i];
while(plus&&suma+a<=0){
a++;
ansa++;
}
while(!plus&&suma+a>=0){
a--;
ansa++;
}
while(plus&&sumb+b>=0){
b++;
ansb++;
}
while(!plus&&sumb+b<=0){
b--;
ansb++;
}
suma+=a;
sumb+=b;
plus=!plus;
}
cout<<min(ansa,ansb)<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> S(N + 1);
for (int i = 1; i <= N; ++i) {
cin >> S[i];
S[i] += S[i - 1];
}
int ians = (1 << 30);
for (int j = -1; j <= 1; j += 2) {
vector<int> S_(S);
int ans = 0;
int add = 0;
int sign = j;
for (int i = 1; i <= N; ++i) {
S_[i] += add;
int sign_i = ((S_[i] >> 31) << 1) + 1;
if (S_[i] == 0) {
ans += 1;
add += -sign;
S_[i] += -sign;
} else if (sign_i == sign) {
ans += abs(-sign_i - S_[i]);
add += -sign_i - S_[i];
S_[i] = -sign_i;
}
sign = -sign;
}
ians = min(ans, ians);
}
cout << ians << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
def sol(S):
ret = 0
for a in A[1:]:
b = a
if S * (S + b) > 0:
b = (abs(S) + 1) * (1 if S < 0 else -1)
if S + b == 0:
b = b - 1 if b < 0 else b + 1
ret += abs(b - a)
S += b
return ret
print(sol(A[0]))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
import copy
N=int(input())
l=list(map(int, input().split())) #リスト入力
cp = copy.copy(l)
#even_c=0
#odd_c=0
if l[0]!=0:
#l[0]=-1
#even_c=even_c+1
for k in range(1,N):
#print(sum(l[:k]),sum(l[:k+1]))
if sum(l[:k])*sum(l[:k+1])>0:
#print(k)
l[k]=-np.sign(sum(l[:k]))-sum(l[:k])
#print(l)
if sum(l)==0:
print(1+sum([abs(l[n]-cp[n]) for n in range(N)]))
else:
print(sum([abs(l[n]-cp[n]) for n in range(N)]))
else:
#1
sei_l=copy.copy(l)
sei_l[0]=1
for k in range(1,N):
#print(sum(l[:k]),sum(l[:k+1]))
if sum(sei_l[:k])*sum(sei_l[:k+1])>0:
#print(k)
sei_l[k]=-np.sign(sum(sei_l[:k]))-sum(sei_l[:k])
#print(l)
if sum(sei_l)==0:
c1=1+sum([abs(sei_l[n]-cp[n]) for n in range(N)])
else:
c1=sum([abs(sei_l[n]-cp[n]) for n in range(N)])
#-1
fu_l=copy.copy(l)
sei_l[0]=-1
for k in range(1,N):
#print(sum(l[:k]),sum(l[:k+1]))
if sum(fu_l[:k])*sum(fu_l[:k+1])>0:
#print(k)
fu_l[k]=-np.sign(sum(fu_l[:k]))-sum(fu_l[:k])
#print(l)
if sum(fu_l)==0:
c2=1+sum([abs(fu_l[n]-cp[n]) for n in range(N)])
else:
c2=sum([abs(fu_l[n]-cp[n]) for n in range(N)])
print(max(c1,c2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
def read_input():
n = int(input())
alist = list(map(int, input().split()))
return n, alist
def get_sign(x):
if x > 0:
return 1
elif x < 0:
return -1
return 0
def submit():
n, alist = read_input()
# pattern 1
s = alist[0]
sign = get_sign(s)
edit = 0
for a in alist[1:]:
temp = s + a
temp_sign = get_sign(temp)
if sign == temp_sign:
edit += temp_sign * temp
temp -= temp
if temp == 0:
edit += 1
temp -= sign
s = temp
sign = get_sign(s)
edit1 = edit
# pattern 2
s = alist[0]
sign = get_sign(s)
edit = 0
edit += sign * s
s -= s
edit += 1
s -= sign
sign = get_sign(s)
for a in alist[1:]:
temp = s + a
temp_sign = get_sign(temp)
if sign == temp_sign:
edit += temp_sign * temp
temp -= temp
if temp == 0:
edit += 1
temp -= sign
s = temp
sign = get_sign(s)
edit2 = edit
print(min(edit1, edit2))
if __name__ == '__main__':
submit() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
numbers = list(map(int, input().split()))
counter = 0
sum_i_n = 0
sum_i_n_1 = numbers[0]
for i in range(len(numbers) - 1):
sum_i_n += numbers[i]
sum_i_n_1 += numbers[i + 1]
if sum_i_n == 0:
numbers[i] += 1
sum_i_n += 1
sum_i_n_1 += 1
counter += 1
if sum_i_n * sum_i_n_1 > 0:
sub_n = abs(sum_i_n)
sub_n1 = abs(sum_i_n_1)
if abs(sum_i_n) - abs(sum_i_n_1) > 0:
if sum_i_n_1 > 0:
numbers[i + 1] -= (sub_n1 + 1)
sum_i_n_1 -= (sub_n1 + 1)
counter += (sub_n1 + 1)
else:
numbers[i + 1] += (sub_n1 + 1)
sum_i_n_1 += (sub_n1 + 1)
counter += (sub_n1 + 1)
else:
if sum_i_n > 0:
numbers[i] -= (sub_n + 1)
sum_i_n -= (sub_n + 1)
sum_i_n_1 -= (sub_n + 1)
counter += (sub_n + 1)
else:
numbers[i] += (sub_n + 1)
sum_i_n += (sub_n + 1)
sum_i_n_1 += (sub_n + 1)
counter += (sub_n + 1)
# sub = abs(sum_i_n_1) + 1
# counter += sub
# if sum_i_n_1 > 0:
# numbers[i + 1] -= sub
# sum_i_n_1 -= sub
# else:
# numbers[i + 1] += sub
# sum_i_n_1 += sub
if sum_i_n_1 == 0:
counter += 1
print(counter) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAX = 1e5 + 111;
int n;
int a[MAX];
long long calc(int id, long long sum) {
long long ans = 0;
for (int i = id; i < n; ++i) {
long long cur = sum + a[i];
if (sum < 0 && cur > 0) {
sum = cur;
continue;
}
if (sum > 0 && cur < 0) {
sum = cur;
continue;
}
if (cur == 0) {
if (sum < 0)
cur = 1;
else
cur = -1;
sum = cur;
ans++;
continue;
}
if (sum < 0) {
ans += 1 - cur;
cur = 1;
} else {
ans += cur + 1;
cur = -1;
}
sum = cur;
}
return ans;
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cin >> n;
int id = -1;
for (int i = 0; i < n; ++i) {
cin >> a[i];
if (a[i] != 0 && id == -1) id = i;
}
if (id == -1) {
cout << 1 + (n - 1) * 2;
return 0;
}
if (id != 0) {
long long ans1 = calc(id, -1);
long long ans2 = calc(id, 1);
cout << min(ans1, ans2) + 1 + 2 * id;
} else {
long long ans1 = calc(1, a[0]);
cout << ans1;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
b = [int(x) for x in input().split()]
a = list()
temp = 0
count1 = 0
count2 = 0
a = b.copy()
if a[0] == 0:
a[0] = 1
count1 = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
if sum > 0:
temp = -1 * abs(sum) - 1
count1 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count1 += abs(temp - a[i])
a[i] = temp
sum += a[i]
a = b.copy()
count2 = abs(a[0]) + 1
if a[0] == 0:
a[0] = 1
count2 = 1
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
count2 += abs(sum - a[i]) + 1
if sum > 0:
temp = -1 * abs(sum) - 1
count2 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count2 += abs(temp - a[i])
a[i] = temp
sum += a[i]
print(min(count1, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main() {
int n;
int a, sum[1000000000], cnt[2] = {}, b;
scanf("%d", &n);
scanf("%d", &a);
sum[0] = a;
for (int i = 1; i < n; i++) {
scanf("%d", &a);
sum[i] = sum[i - 1] + a;
}
b = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && sum[i] + b >= 0) {
cnt[0] += sum[i] + b + 1;
b -= sum[i] + b + 1;
} else if (i % 2 == 1 && sum[i] + b <= 0) {
cnt[0] -= sum[i] + b;
cnt[0]++;
b += 1 - (sum[i] + b);
}
}
b = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && sum[i] + b <= 0) {
cnt[1] -= sum[i] + b;
cnt[1]++;
b += 1 - (sum[i] + b);
} else if (i % 2 == 1 && sum[i] + b >= 0) {
cnt[1] += sum[i] + b + 1;
b -= sum[i] + b + 1;
}
}
if (cnt[0] < cnt[1])
printf("%d\n", cnt[0]);
else
printf("%d\n", cnt[1]);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
seq = [int(x) for x in input().split()]
a_sum = seq[0]
op = 0
for a in seq[1:]:
tmp = a_sum + a
if tmp * a_sum < 0:
a_sum = tmp
elif a_sum < 0:
print(a_sum, a)
diff = 1 - a_sum - a
a_sum = 1
op += abs(diff)
elif a_sum > 0:
diff = -1 - a_sum - a
a_sum = -1
op += abs(diff)
print(op) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> vector;
long long temp;
for (int i = 0; i < n; i++) {
cin >> temp;
vector.push_back(temp);
}
long long answer = 0;
long long sum = 0;
for (int i = 0; i < n; i++) {
if (sum == 0)
sum += vector[0];
else if (sum < 0) {
if (sum + vector[i] > 0) {
sum += vector[i];
} else {
answer += abs((-1) * sum + 1 - vector[i]);
sum = 1;
}
} else {
if (sum + vector[i] < 0) {
sum += vector[i];
} else {
answer += abs((-1) * sum - 1 - vector[i]);
sum = -1;
}
}
}
cout << answer << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int( input())
A = list( map( int, input().split()))
ans = 10**15
for i in [1, -1]:
ansi, sums = 0, 0
for a in A:
sums += a
if sums*i <= 0:
ansi += abs(sums-s)
sums = s
s *= -1
ans = min( ans, ansi)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n + 1, 0);
for (int i = 1; i <= n; i++) {
cin >> a[i];
a[i] += a[i - 1];
}
long long ans = 1LL << 50;
for (int k = -1; k <= 1; k += 2) {
int sign = k;
int plus = 0, minus = 0;
for (int i = 1; i <= n; i++) {
if (a[i] + plus - minus > 0) {
if (sign == -1) minus += a[i] + plus - minus + 1;
} else if (a[i] + plus - minus < 0) {
if (sign == 1) plus += -(a[i] + plus - minus) + 1;
} else {
if (sign == -1)
minus += 1;
else if (sign == 1)
plus += 1;
}
sign *= -1;
}
if (ans > plus + minus) ans = plus + minus;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n, a;
long long sum = 0, ans = 0;
int s;
cin >> n;
cin >> sum;
if (sum > 0)
s = 1;
else
s = -1;
for (int i = 1; i < n; i++) {
cin >> a;
sum += a;
if (sum * s > 0) {
ans += abs(sum) + 1;
sum = -s;
}
if (sum == 0) {
sum += -s;
ans++;
}
if (sum > 0)
s = 1;
else
s = -1;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | gets
xs = gets.split(' ').map(&:to_i)
def flip_sign(v)
v > 0 ? -1 : 1
end
def sign(v)
v > 0 ? 1 : -1
end
a = xs[1..-1].inject([xs.first,0]){|r,v|
sum = r.first
count = r.last
s = sign(sum)
sum += v
fs = sign(sum)
if s == fs
count += sum.abs + 1
sum = flip_sign(s)
end
[sum, count]
}.last
b = xs[1..-1].inject([flip_sign(xs.first),xs.first.abs + 1]){|r,v|
sum = r.first
count = r.last
s = sign(sum)
sum += v
fs = sign(sum)
if s == fs
count += sum.abs + 1
sum = flip_sign(s)
end
[sum, count]
}.last
puts [a,b].min
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
b = [int(x) for x in input().split()]
a = list()
temp = 0
count1 = 0
count2 = 0
a = b
if a[0] == 0:
a[0] = 1
count1 = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
if sum > 0:
temp = -1 * abs(sum) - 1
count1 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count1 += abs(temp - a[i])
a[i] = temp
sum += a[i]
count2 = abs(a[0]) + 1
a = b
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
count2 += abs(sum - a[i]) + 1
if sum > 0:
temp = -1 * abs(sum) - 1
count2 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count2 += abs(temp - a[i])
a[i] = temp
sum += a[i]
print(min(count1, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr auto INF = 100000000000;
constexpr auto mod = 1000000007;
struct edge {
int to, cost;
};
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, long long m) {
long long b = m, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
long long int c(long long int a, long long int b, long long int m) {
long long int ans = 1;
for (long long int i = 0; i < b; i++) {
ans *= a - i;
ans %= m;
}
for (long long int i = 1; i <= b; i++) {
ans *= modinv(i, m);
ans %= m;
}
return ans;
}
void dijkdtra(int s, int v, vector<int>& d, vector<vector<edge>>& G) {
priority_queue<pair<int, int>, vector<pair<int, int>>,
greater<pair<int, int>>>
que;
d[s] = 0;
que.push(pair<int, int>(0, s));
while (!que.empty()) {
pair<int, int> p = que.top();
que.pop();
int V = p.second;
if (d[V] < p.first) continue;
for (int i = 0; i < G[V].size(); i++) {
edge e = G[V][i];
if (d[e.to] > d[V] + e.cost) {
d[e.to] = d[V] + e.cost;
que.push(pair<int, int>(d[e.to], e.to));
}
}
}
}
long long int binary_search(vector<int>& s, long long int a) {
long long int l = -1;
long long int r = (int)s.size();
while (r - l > 1) {
long long int mid = l + (r - l) / 2;
if (s[mid] >= a)
r = mid;
else
l = mid;
}
return r;
}
int k(long long n) {
int x = 0;
while (n) {
x += n % 10;
n /= 10;
}
return x;
}
long long max(long long x, long long y) {
if (x < y) return y;
return x;
}
int main() {
long long int n, ans = INF;
cin >> n;
vector<long long int> a(n), t(n), s(n);
for (int i = (0); i < (n); i++) {
cin >> a[i];
t[i] = a[i];
s[i] = a[i];
}
long long int w = a[0];
if (w <= 0) {
w = 1;
}
for (int i = (1); i < (n); i++) {
if (i % 2 == 0) {
if (abs(w) >= a[i]) {
a[i] = abs(w) + 1;
}
w += a[i];
} else {
if (w >= abs(a[i])) {
a[i] = -1 * (w + 1);
}
w += a[i];
}
}
w = t[0];
if (w >= 0) {
w = -1;
}
for (int i = (1); i < (n); i++) {
if (i % 2 == 1) {
if (abs(w) >= t[i]) {
t[i] = abs(w) + 1;
}
w += t[i];
} else {
if (w >= abs(t[i])) {
t[i] = -1 * (w + 1);
}
w += t[i];
}
}
long long int cost1 = 0, cost2 = 0;
for (int i = (0); i < (n); i++) {
cost1 += abs(s[i] - a[i]);
cost2 += abs(s[i] - t[i]);
}
ans = min(cost1, cost2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, t = 0, sum = 0, count = 0;
cin >> n;
int a[n];
cin >> a[0];
if (a[0] > 0) {
t = 1;
} else if (a[0] < 0) {
t = -1;
}
sum += a[0];
for (int i = 1; i < n; i++) {
cin >> a[i];
sum += a[i];
if (t == -1) {
while (sum <= 0) {
sum++;
count++;
}
t = 1;
} else if (t == 1) {
while (sum >= 0) {
sum--;
count++;
}
t = -1;
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(_) for _ in input().split()]
even_p = 0
even_n = 0
odd_p = 0
odd_n = 0
for i in range(n):
if i % 2 == 0:
if a[i] > 0:
odd_p += 1
elif a[i] < 0:
odd_n += 1
else:
if a[i] > 0:
even_p += 1
elif a[i] < 0:
even_n += 1
cnt = 0
if odd_p > even_p:
if a[0] > 0:
sum_i = a[0]
else:
cnt += abs(a[0]-1)
sum_i = 1
else:
if a[0] < 0:
sum_i = a[0]
else:
cnt += abs(a[0] + 1)
sum_i = -1
for i in range(1, n):
if sum_i > 0:
if sum_i + a[i] < 0:
sum_i += a[i]
else:
cnt += abs(a[i]+sum_i+1)
sum_i = -1
elif sum_i < 0:
if sum_i + a[i] > 0:
sum_i += a[i]
else:
cnt += abs(a[i]+sum_i-1)
sum_i = 1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100004], temp[100004];
long long solve() {
long long ans = 0;
for (int i = (2); i <= (int)(n); ++i) {
if (a[i - 1] > 0) {
if (a[i] + a[i - 1] < 0) {
a[i] += a[i - 1];
continue;
}
ans += abs(a[i] + 1 + a[i - 1]);
a[i] = -1;
} else {
if (a[i] + a[i - 1] > 0) {
a[i] += a[i - 1];
continue;
}
ans += abs(a[i] - 1 + a[i - 1]);
a[i] = 1;
}
}
return ans;
}
int main() {
scanf("%d", &n);
for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]);
long long ans = 0;
if (!a[1]) {
a[1] = 1;
memcpy(temp, a, sizeof(temp));
ans = solve() + 1;
memcpy(a, temp, sizeof(a));
a[1] = -1;
ans = min(ans, solve() + 1);
} else
ans = solve();
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
freopen("testcase", "r", stdin);
int N, temp;
vector<int> a;
scanf("%d", &N);
int start = 0;
bool v = false;
for (int i = 0; i < N; i++) {
scanf("%d", &temp);
if (temp == 0) {
if (!v) {
start += 1;
}
} else if (!v)
v = true;
a.push_back(temp);
}
long long sum = 0, cnt = 0;
if (start != 0) {
cnt = 2 * (start - 1) + 1;
if (a[start] > 0) {
if (a[start] > 1) {
sum = a[start] - 1;
} else {
sum = 1;
cnt += 1;
}
} else {
if (a[start] < -1) {
sum = a[start] + 1;
} else {
sum = -1;
cnt += 1;
}
}
} else {
sum = a[start];
}
start++;
for (size_t i = start; i != a.size(); i++) {
if (sum + a[i] >= 0 && sum > 0) {
cnt += sum + a[i] + 1;
sum = -1;
} else if (sum + a[i] <= 0 && sum < 0) {
cnt += 1 - sum - a[i];
sum = 1;
} else {
sum += a[i];
}
}
if (sum == 0) cnt += 1;
printf("%ll\n", cnt);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
long long prevArraySum = a[0];
long long currentArraySum = a[0];
long long res = 0;
if (a[0] == 0) {
res = 1;
prevArraySum = -1;
currentArraySum = -1;
for (int i = (1); i < (n); ++i) {
if (prevArraySum > 0) {
currentArraySum = prevArraySum + a[i];
if (currentArraySum >= 0) {
res += abs(-1 - currentArraySum);
prevArraySum = -1;
} else {
prevArraySum = currentArraySum;
}
} else {
currentArraySum = prevArraySum + a[i];
if (currentArraySum <= 0) {
res += abs(1 - currentArraySum);
prevArraySum = 1;
} else {
prevArraySum = currentArraySum;
}
}
}
long long res1 = res;
res = 1;
prevArraySum = 1;
currentArraySum = 1;
for (int i = (1); i < (n); ++i) {
if (prevArraySum > 0) {
currentArraySum = prevArraySum + a[i];
if (currentArraySum >= 0) {
res += abs(-1 - currentArraySum);
prevArraySum = -1;
}
} else {
currentArraySum = prevArraySum + a[i];
if (currentArraySum <= 0) {
res += abs(1 - currentArraySum);
prevArraySum = 1;
} else {
prevArraySum = currentArraySum;
}
}
}
res = min(res, res1);
} else {
for (int i = (1); i < (n); ++i) {
if (prevArraySum > 0) {
currentArraySum = prevArraySum + a[i];
if (currentArraySum >= 0) {
res += abs(-1 - currentArraySum);
prevArraySum = -1;
} else {
prevArraySum = currentArraySum;
}
} else {
currentArraySum = prevArraySum + a[i];
if (currentArraySum <= 0) {
res += abs(1 - currentArraySum);
prevArraySum = 1;
} else {
prevArraySum = currentArraySum;
}
}
}
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void Main() {
long long N;
cin >> N;
vector<long long> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
long long res = (1 << 30);
int sum, tmp;
sum = tmp = 0;
for (int i = 0; i < N; i++) {
sum += A[i];
if (i % 2) {
if (sum >= 0) {
tmp += abs(sum) + 1;
sum = -1;
}
} else {
if (sum <= 0) {
tmp += abs(sum) + 1;
sum = 1;
}
}
}
if (tmp < res) res = tmp;
sum = tmp = 0;
for (int i = 0; i < N; i++) {
sum += A[i];
if (i % 2) {
if (sum <= 0) {
tmp += abs(sum) + 1;
sum = 1;
}
} else {
if (sum >= 0) {
tmp += abs(sum) + 1;
sum = -1;
}
}
}
if (tmp < res) res = tmp;
cout << res << endl;
}
int main() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
Main();
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans=10**10
now=cnt=0
for i in range(len(a)):
now+=a[i]
if i%2==0:
if now>=0:
cnt+=now+1
now=-1
else:
if now<=0:
cnt+=1-now
now=1
ans=min(ans,cnt)
now=cnt=0
for i in range(len(a)):
now+=a[i]
if i%2==1:
if now>=0:
cnt+=(now+1)
now=-1
else:
if now<=0:
cnt+=1-now
now=1
ans=min(ans,cnt)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
long long int n;
long long int count(long long int a0) {
long long int a, i, S[2], C[2] = {};
S[0] = a0;
S[1] = a0;
for (i = 1; i < n; i++) {
scanf("%lld", &a);
S[0] += a;
S[1] += a;
if (i % 2 == 1) {
if (S[0] <= 0) {
C[0] += -1 * S[0] + 1;
S[0] = 1;
}
if (S[1] >= 0) {
C[1] += S[1] + 1;
S[1] = -1;
}
} else {
if (S[0] >= 0) {
C[0] += S[0] + 1;
S[0] = -1;
}
if (S[1] <= 0) {
C[1] += -1 * S[1] + 1;
S[1] = 1;
}
}
}
return C[0] < C[1] ? C[0] : C[1];
}
int main() {
long long int a, ans;
scanf("%lld %lld", &n, &a);
if (a == 0) {
ans = count(1) < count(-1) ? count(1) + 1 : count(-1) + 1;
} else {
ans = count(a);
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int a[100000];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum1, sum2;
int cnt = 0;
sum1 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
if (sum1 == 0) {
if (a[i + 1] >= 0)
a[i]++;
else
a[i]--;
cnt++;
}
if (i < n - 1) {
sum2 = sum1 + a[i + 1];
if (sum1 * sum2 > 0) {
int a_p = a[i + 1];
if (sum2 > 0)
a[i + 1] = -sum1 - 1;
else if (sum2 < 0)
a[i + 1] = -sum1 + 1;
cnt += abs(a[i + 1] - a_p);
}
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const long long maxLL = (long long)1 << 62;
long long a[100001] = {};
long long s[100001] = {};
int main() {
long long n;
cin >> n;
long long cnt = 0;
for (long long i = 1; i <= n; i++) {
cin >> a[i];
s[i] = s[i - 1] + a[i];
if (i > 1) {
if (s[i] == 0) {
s[i] = s[i - 1] * -1;
cnt++;
} else if (i > 1 && s[i - 1] * s[i] > 0) {
cnt += abs(s[i]) + 1;
if (s[i] > 0)
s[i] -= cnt;
else if (s[i] < 0)
s[i] += cnt;
}
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
num_list = list(map(int, input().split()))
count = 0
sum_ = num_list[0]
if sum_ > 0:
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 0:
if sum_ <= 0:
count += abs(sum_) + 1
sum_ = 1
else:
if sum_ >= 0:
count += abs(sum_) + 1
sum_ = -1
print(count)
elif sum_ < 0:
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 1:
if sum_ <= 0:
count += abs(sum_) + 1
sum_ = 1
else:
if sum_ >= 0:
count += abs(sum_) + 1
sum_ = -1
print(count)
else:
sum_ = 1
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 0:
if sum_ <= 0:
count += abs(sum_) + 1
sum_ = 1
else:
if sum_ >= 0:
count += abs(sum_) + 1
sum_ = -1
count1 = count
sum_ = -1
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 1:
if sum_ <= 0:
count += abs(sum_) + 1
sum_ = 1
else:
if sum_ >= 0:
count += abs(sum_) + 1
sum_ = -1
count2 = count
print(min(count1+1, count2+1)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
S = 0
C = 0
S = a[0]
if S > 0:
pm = 1
else:
pm = 0
for i in range(1, n):
S += a[i]
if pm == 1 and S >= 0:
C += S + 1
S -= S + 1
elif pm == 0 and S <= 0:
C += -S + 1
S += -S + 1
pm = 1 - pm
print(C) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
list_a = list(map(int,input().split()))
i = 0
k = 0
count = 0
ans = list_a[0]
if list_a[0] > 0:
for i in range(0,n):
ans += list_a[i]
if ans / ((-1) ** i) <= 0:
count += abs(ans - (-1) ** i)
ans = (-1) ** i
else:
for i in range(0,n):
ans += list_a[i]
if ans / ((-1) ** (i+1)) <= 0:
count += abs(ans - (-1) ** (i+1))
ans = (-1) ** (i+1)
count1 = count
count = 0
if list_a[0] <= 0:
for i in range(0,n):
ans += list_a[i]
if ans / ((-1) ** i) <= 0:
count += abs(ans - (-1) ** i)
ans = (-1) ** i
else:
for i in range(0,n):
ans += list_a[i]
if ans / ((-1) ** (i+1)) <= 0:
count += abs(ans - (-1) ** (i+1))
ans = (-1) ** (i+1)
count2 = count
print(min(count1, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!usr/bin/env python3
from collections import defaultdict
from collections import deque
from heapq import heappush, heappop
import sys
import math
import bisect
import random
import itertools
sys.setrecursionlimit(10**5)
stdin = sys.stdin
bisect_left = bisect.bisect_left
bisect_right = bisect.bisect_right
def LI(): return list(map(int, stdin.readline().split()))
def LF(): return list(map(float, stdin.readline().split()))
def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split()))
def II(): return int(stdin.readline())
def IF(): return float(stdin.readline())
def LS(): return list(map(list, stdin.readline().split()))
def S(): return list(stdin.readline().rstrip())
def IR(n): return [II() for _ in range(n)]
def LIR(n): return [LI() for _ in range(n)]
def FR(n): return [IF() for _ in range(n)]
def LFR(n): return [LI() for _ in range(n)]
def LIR_(n): return [LI_() for _ in range(n)]
def SR(n): return [S() for _ in range(n)]
def LSR(n): return [LS() for _ in range(n)]
mod = 1000000007
inf = float('INF')
#A
def A():
a = input().split()
a = list(map(lambda x: x.capitalize(), a))
a,b,c = a
print(a[0]+b[0]+c[0])
return
#B
def B():
a = II()
b = II()
if a > b:
print("GREATER")
if a < b:
print("LESS")
if a == b:
print("EQUAL")
return
#C
def C():
II()
a = LI()
def f(suma, b):
for i in a[1:]:
if suma * (suma + i) < 0:
suma += i
continue
b += abs(suma + i) + 1
suma = -1 * (suma >= 0) or 1
return b
if a[0] == 0:
ans = min(f(1, 1), f(-1, 1))
else:
ans = min(f(a[0], 0), f(-a[0], 2 * abs(a[0])))
print(ans)
return
#D
def D():
s = S()
for i in range(len(s) - 1):
if s[i] == s[i+1]:
print(i + 1, i + 2)
return
for i in range(len(s) - 2):
if s[i] == s[i + 2]:
print(i + 1, i + 3)
return
print(-1, -1)
return
#Solve
if __name__ == '__main__':
C()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using unsi = unsigned;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using pii = pair<int, int>;
using db = double;
using plex = complex<double>;
using vs = vector<string>;
template <class T>
inline bool amax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool amin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
struct aaa {
aaa() {
cin.tie(0);
ios::sync_with_stdio(0);
cout << fixed << setprecision(20);
};
} aaaaaaa;
const int INF = 1001001001;
const ll LINF = 1001001001001001001ll;
const int MOD = 1e9 + 7;
const db EPS = 1e-9;
const int dx[] = {1, 1, 0, -1, -1, -1, 0, 1},
dy[] = {0, 1, 1, 1, 0, -1, -1, -1};
signed main() {
int n;
cin >> n;
int odd{};
int ans{};
int even{};
vector<int> a(n);
for (auto i = 0; i != n; ++i) {
cin >> a.at(i);
}
if (a[0] < 0) {
for (auto i = 0; odd < n; ++i) {
odd = 2 * i + 1;
while (a[odd] <= 0) {
++a[odd];
++ans;
}
}
for (auto i = 1; even < n; ++i) {
even = 2 * i;
while (a[even] >= 0) {
--a[even];
++ans;
}
}
} else if (a[0] >= 0) {
if (a[0] = 0) ++a[0];
for (auto i = 0; odd < n; ++i) {
odd = 2 * i + 1;
while (a[odd] >= 0) {
--a[odd];
++ans;
}
}
for (auto i = 1; even < n; ++i) {
even = 2 * i;
while (a[even] <= 0) {
++a[even];
++ans;
}
}
}
cout << ans;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
ans = 0
sum = A[0]
if sum == 0:
ans = 1
for i in range(1, len(A)):
a = A[i]
if a != 0:
if i % 2 == 0:
if a > 0:
sum = 1
else:
sum = -1
else:
if a > 0:
sum = -1
else:
sum = 1
break
for i in range(1, len(A)):
a = A[i]
prev_sum = sum
sum += a
if sum * prev_sum >= 0:
ans += abs(prev_sum+a)+1
if prev_sum > 0:
sum = -1
else:
sum = 1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) {
try {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] inputString = br.readLine().split(" ");
int[] input = new int[n];
for(int i = 0 ; i < n ; i++) {
input[i] = Integer.parseInt(inputString[i]);
}
int result = -1, keyValue = result;
while(keyValue == -1){
keyValue = result;
result = 0;
int count = 0;
for(int i = 0 ; i < n ; i++){
if(i % 2 == 0 && (count + input[i]) * Math.signum(keyValue) >= 0){
result += Math.abs(count + input[i]) + 1;
count = (int)Math.signum(keyValue) * -1;
}else if(i % 2 != 0 && (count + input[i]) * Math.signum(keyValue) <= 0){
result += Math.abs(count + input[i]) + 1;
count = (int)Math.signum(keyValue);
}else{
count += input[i];
}
}
result = (keyValue != -1)? Math.min(result, keyValue): result;
}
System.out.println(result);
} catch (Exception e) {
e.printStackTrace();
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const long long LINF = 1e18;
const double EPS = 1e-9;
const double PI = M_PI;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
long long lcm(long long a, long long b) { return a / gcd(a, b) * b; }
void yes() { cout << "Yes" << endl; }
void no() { cout << "No" << endl; }
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<long long> a(n);
for (long long(i) = 0; (i) < (long long)(n); i++) {
cin >> a[i];
}
vector<long long> sum(n);
sum[0] = a[0];
long long ans = 0;
if (sum[0] == 0) {
ans++;
}
for (long long(i) = 1; (i) < (long long)n; i++) {
if (sum[i - 1] == 0 && a[i] == 0) {
ans++;
}
sum[i] = sum[i - 1] + a[i];
if (sum[i] * sum[i - 1] < 0) {
continue;
} else if (sum[i] * sum[i - 1] > 0) {
if (sum[i] > 0 && sum[i - 1] > 0) {
ans += sum[i] + 1;
sum[i] = -1;
} else {
ans += -sum[i] + 1;
sum[i] = 1;
}
} else {
ans++;
if (sum[i - 1] > 0) {
sum[i] = -1;
} else {
sum[i] = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using LL = long long int;
using LD = long double;
using pii = pair<int, int>;
using pll = pair<LL, LL>;
using pdd = pair<double, double>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<LL>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vd = vector<double>;
using vvd = vector<vd>;
using vs = vector<string>;
using vb = vector<bool>;
using vvb = vector<vb>;
const int INF = (1 << 30) - 1;
const LL INF64 = ((LL)1 << 62) - 1;
const double PI = 3.1415926535897932384626433832795;
const int dy[] = {0, 1, 0, -1};
const int dx[] = {1, 0, -1, 0};
int gcd(int x, int y) { return y ? gcd(y, x % y) : x; }
LL gcd(LL x, LL y) { return y ? gcd(y, x % y) : x; }
int n;
vi a;
LL solve(int num) {
int res = 0, sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum * num <= 0) {
res += abs(sum - num);
sum = num;
}
num *= -1;
}
return res;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
a.resize(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
cout << min(solve(1), solve(-1)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 999999999;
const int MOD = (int)1e9 + 7;
const int EPS = 1e-9;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n, a, ans = 0;
cin >> n;
cin >> a;
int sum = a;
for (int i = (0); i < (n - 1); ++i) {
cin >> a;
if (sum > 0) {
sum += a;
if (sum >= 0) {
ans += (sum + 1);
sum = -1;
}
} else {
sum += a;
if (sum <= 0) {
ans += (-sum + 1);
sum = 1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <stdio.h>
#include <iostream>
#include <vector>
using namespace std;
int main() {
int N;
cin >> N;
std::vector<int> odd, even;
for (int i = 0; i < N; i++) {
int temp;
cin >> temp;
odd.push_back(temp);
}
even = odd;
int oddNum = 0, evenNum = 0;
while(odd[0] <= 0) odd[0]++, oddNum++;
while(even[0] >= 0) even[0]--, evenNum++;
int sum = odd[0];
int sum2 = even[0];
for(int i = 1; i < N; i += 2) {
while(sum + odd[i] >= 0) odd[i]--, oddNum++;
while(sum + even[i] <= 0) even[i]++, evenNum++;
sum += odd[i];
sum2 += even[i];
if(i != N - 1) {
while(sum + odd[i + 1] <= 0) odd[i + 1]++, oddNum++;
while(sum + even[i + 1] >= 0) even[i + 1]--, evenNum++;
sum += odd[i + 1];
sum += even[i + 1];
}
}
printf("%d\n", oddNum < evenNum ? oddNum : evenNum);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
# Here your code
N = int(input())
a = [int(i) for i in input().split()]
result_1 = 0
before_sum =a[0]
if a[0] == 0:
before_sum = 1
result_1 += 1
after_sum =before_sum
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_1 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_1 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_1 += abs(before_sum) + 1
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
if a[0] < 0:
before_sum = 1
elif a[0] >= 0:
before_sum = -1
after_sum =before_sum
result_2 = 1 + abs(before_sum)
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_2 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_2 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_2 += abs(before_sum) + 1
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
print(min(result_1,result_2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = input()
a = [int(i) for i in input.split()]
X = 0
ans = 0
for i in a:
X += i
if X > 0:
b = -1 - X
ans += b - a(i+1)
else X < 0:
b = 1 - X
ans += b - a(i+1)
return ans
print (ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, sum;
vector<int> a(100000);
int ans1 = 0, ans2 = 0;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] < 1) {
ans1 += abs(1 - a[0]);
sum = 1;
} else
sum = a[0];
for (int i = 1; i < n; i++) {
if (i % 2 != 0 && sum + a[i] >= 0) {
ans1 += abs(sum * (-1) - 1 - a[i]);
sum = -1;
} else if (i % 2 == 0 && sum + a[i] <= 0) {
ans1 += abs(sum * (-1) + 1 - a[i]);
sum = 1;
} else
sum += a[i];
}
if (a[0] > -1) {
ans2 += abs(-1 - a[0]);
sum = -1;
} else
sum = a[0];
for (int i = 1; i < n; i++) {
if (i % 2 == 0 && sum + a[i] >= 0) {
ans2 += abs(sum * (-1) - 1 - a[i]);
sum = -1;
} else if (i % 2 != 0 && sum + a[i] <= 0) {
ans2 += abs(sum * (-1) + 1 - a[i]);
sum = 1;
} else
sum += a[i];
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
A = [n for n in a]
cnt1 = 0
cnt2 = 0
S = 0
if a[0] > 0:
for i in range(n-1):
S += a[i]
if a[i] > 0:
while S + a[i+1] >= 0:
a[i+1] -= 1
cnt1 += 1
elif a[i] < 0:
while S + a[i+1] <= 0:
a[i+1] += 1
cnt1 += 1
A[0] = -1
cnt2 = a[0] + 1
for i in range(n-1):
S += A[i]
if A[i] > 0:
while S + A[i+1] >= 0:
A[i+1] -= 1
cnt2 += 1
elif A[i] < 0:
while S + A[i+1] <= 0:
A[i+1] += 1
cnt2 += 1
elif a[0] < 0:
for i in range(n-1):
S += a[i]
if a[i] > 0:
while S + a[i+1] >= 0:
a[i+1] -= 1
cnt1 += 1
elif a[i] < 0:
while S + a[i+1] <= 0:
a[i+1] += 1
cnt1 += 1
A[0] = 1
cnt2 = -a[0] + 1
for i in range(n-1):
S += A[i]
if A[i] > 0:
while S + A[i+1] >= 0:
A[i+1] -= 1
cnt2 += 1
elif A[i] < 0:
while S + A[i+1] <= 0:
A[i+1] += 1
cnt2 += 1
else:
a[0] = 1
cnt1 = 1
for i in range(n-1):
S += a[i]
if a[i] > 0:
while S + a[i+1] >= 0:
a[i+1] -= 1
cnt1 += 1
elif a[i] < 0:
while S + a[i+1] <= 0:
a[i+1] += 1
cnt1 += 1
A[0] = -1
cnt2 = 1
for i in range(n-1):
S += A[i]
if A[i] > 0:
while S + A[i+1] >= 0:
A[i+1] -= 1
cnt2 += 1
elif A[i] < 0:
while S + A[i+1] <= 0:
A[i+1] += 1
cnt2 += 1
cnt = cnt2 if cnt1 >= cnt2 else cnt1
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
def sol(S):
ret = 0
for a in A[1:]:
b = a
if S * (S + b) > 0:
b = (abs(S) + 1) * (1 if S < 0 else -1)
if S + b == 0:
b = b - 1 if S >= 0 else b + 1
ret += abs(b - a)
S += b
return ret
if A[0] == 0:
ans = min(sol(1), sol(-1)) + 1
else:
ans = min(sol(A[0]), sol(-A[0] // A[0]) + abs(A[0]) + 1)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = input()
num_list = list(map(int,input().split()))
count = 0
numsum = 0
for i in range(len(num_list)):
if i == 0:
numsum += num_list[0]
else:
numsum_pre = numsum
numsum += num_list[i]
# print(numsum)
if numsum == 0:
count += 1
if numsum_pre < 0:
numsum += 1
else:
numsum-= 1
if numsum_pre*numsum > 0:
if numsum_pre < 0:
count += abs(numsum) +1
numsum += abs(numsum) +1
# print('count{}'.format(abs(numsum-numsum_pre) +1))
else:
# print(numsum)
# print('count{}'.format(abs(numsum-numsum_pre) +1))
count += abs(numsum) +1
numsum-= (abs(numsum) +1)
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | l = int(input())
n = [int(i) for i in input().split()]
count = 0
nsum = n[0]
for i in range(1, l):
tmp = 0
tmp_1 = n[i-1]
while(True):
if (tmp_1 * tmp >= 0) or (nsum * (nsum + tmp) >= 0):
if tmp_1 < 0:
count += 1
tmp += 1
else:
count += 1
tmp -= 1
else:
n[i] = tmp
nsum += tmp
break
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n;
cin >> n;
long long int a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long int count = 0;
if (a[0] == 0) {
for (int i = 0; i < n; ++i) {
if (a[i] > 0) {
a[0] = -1;
++count;
break;
} else if (a[i] < 0) {
a[0] = 1;
++count;
break;
}
}
}
long long int cal = a[0];
if (a[0] == 0) {
cout << n * (n + 1) / 2;
} else {
for (int i = 1; i < n; ++i) {
if (cal + a[i] == 0) {
if (cal < 0) {
++count;
++a[i];
cal = 1;
} else {
++count;
--a[i];
cal = -1;
}
} else if (cal < 0 && cal + a[i] < 0) {
count += -(cal + a[i] - 1);
a[i] += -(cal + a[i] - 1);
} else if (cal > 0 && cal + a[i] > 0) {
count += (cal + a[i] + 1);
a[i] -= (cal + a[i] + 1);
}
cal += a[i];
}
}
cout << count << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long a[100005], dp[100005];
cin >> n;
long long sum = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
dp[i] = sum;
}
long long diff = 0, ans = 0;
if (dp[0] == 0) {
if (dp[1] < 0)
diff--, ans++;
else
diff++, ans++;
}
for (int i = 1; i < n; i++) {
if (dp[i] + diff == 0) {
if (dp[i - 1] + diff < 0) diff++, ans++;
if (dp[i - 1] + diff > 0) diff--, ans++;
continue;
}
if ((dp[i - 1] + diff) / llabs(dp[i - 1] + diff) ==
(dp[i] + diff) / llabs(dp[i] + diff)) {
if (dp[i] + diff >= 0) {
ans += llabs(dp[i] + diff) + 1;
diff -= llabs(dp[i] + diff) + 1;
} else {
ans += llabs(dp[i] + diff) + 1;
diff += llabs(dp[i] + diff) + 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
s = a[0]
count = 0
total_delta = 0
delta = 0
if a[0] == 0:
i = 0
while i < len(a):
if a[i] != 0:
break
i += 1
if i == len(a):
delta = 1
total_delta += delta
count += 1
else:
delta = -1 * (a[i] // abs(a[i])) * ((1, -1)[(i + 1) % 2])
total_delta += delta
count += 1
for i in range(1, n):
print('loop : ', i )
print(s)
sign = (s + total_delta) // abs(s + total_delta)
if (s + a[i] + total_delta) * sign > 0 :
delta = (sign * -1) - (s + a[i] + total_delta)
total_delta += delta
count += abs(delta)
elif (s + a[i] + total_delta) == 0:
total_delta += sign * -1
count += 1
s += a[i]
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int ans = 0, ans2 = 0, sum = a[0];
for (int i = 0; i < n; i++) {
while (sum <= 0 && i % 2 == 0) {
sum++;
a[i]++;
ans++;
if (sum == 1) break;
}
while (sum >= 0 && i % 2 == 1) {
sum--;
a[i]--;
ans++;
if (sum == -1) break;
}
if (i == n) break;
sum += a[i + 1];
}
for (int i = 0; i < n; i++) {
while (sum <= 0 && i % 2 == 1) {
sum++;
a[i]++;
ans2++;
if (sum == 1) break;
}
while (sum >= 0 && i % 2 == 0) {
sum--;
a[i]--;
ans2++;
if (sum == -1) break;
}
if (i == n) break;
sum += a[i + 1];
}
cout << min(ans, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import itertools
def sign(num):
if num < 0:
return -1
elif num > 0:
return 1
else:
return 0
N = input()
a_i = list(map(int, input().split()))
a_sum = [a_i[0]]
for i, a in enumerate(a_i[1:]):
i += 1
a_sum.append(a_sum[-1]+a)
signs = [0, 0]
changes = 0
for i, sum_i in enumerate(a_sum):
if sum_i != 0:
signs[i%2] = sign(sum_i)
signs[i%2+1] = -sign(sum_i)
break
if signs == [0, 0]:
signs = [1, -1]
for i, sum_i in enumerate(a_sum):
if i == 0:
signs = [sign(sum_i), -sign(sum_i)]
elif sign(sum_i) != signs[i%2]:
a_sum[i:] = [num + (abs(sum_i) + 1) * signs[i%2] for num in a_sum[i:]]
changes += abs(sum_i) + 1
# print(a_sum)
print(changes)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ansa = 0, ansb = 0, suma = 0, sumb = 0;
cin >> n;
bool plus = true;
for (int i = 0; i < (n); i++) {
int a, b;
cin >> b;
a = b;
while (plus && suma + a <= 0) {
a++;
ansa++;
}
while (!plus && suma + a >= 0) {
a--;
ansa++;
}
while (plus && sumb + b >= 0) {
b++;
ansb++;
}
while (!plus && sumb + b <= 0) {
b--;
ansb++;
}
suma += a;
sumb += b;
plus = !plus;
}
cout << min(ansa, ansb) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String args[]){
Scanner scanner = new Scanner(System.in);
int count = 0;
int l[] = new int[scanner.nextInt()];
for (int i = 0;i < l.length;++i){
l[i] = scanner.nextInt();
}
for (int i = 0;i < l.length;++i){
int p = 0;
int q = 0;
for (int j = 0;j <= i;++j){
if(j != i) {
p += l[j];
}
q += l[j];
}
// System.out.println(q + ":" + p);
if(q == 0||(q < 0&&p < 0)||(q > 0&&p > 0)){
int c = 1 + ((p > 0) ? 1 : -1) * q;
count += c;
l[i] += ((p > 0) ? -1 : 1) * c;
// System.out.println("adf" + i + ":" + c);
}
}
System.out.println(count);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const long long MOD = 1e9 + 7;
const int INF = 1e9 + 7;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<ll> a(n);
for (int i = 0; i < n; ++i) cin >> a[i];
ll cnt = 0;
ll sub_sum = a[0];
if (sub_sum == 0) sub_sum = -1;
for (int i = 1; i < n; ++i) {
ll sum = sub_sum + a[i];
ll sgn = sub_sum / abs(sub_sum) * sum;
if (sgn >= 0) {
ll b = -1 * sub_sum / abs(sub_sum);
sum = b;
cnt += abs(b - sub_sum - a[i]);
}
sub_sum = sum;
}
ll ans = cnt;
cnt = abs(a[0]) + 1;
sub_sum = (a[0] > 0 ? -1 : 1);
for (int i = 1; i < n; ++i) {
ll sum = sub_sum + a[i];
ll sgn = sub_sum / abs(sub_sum) * sum;
if (sgn >= 0) {
ll b = -1 * sub_sum / abs(sub_sum);
sum = b;
cnt += abs(b - sub_sum - a[i]);
}
sub_sum = sum;
}
ans = min(ans, cnt);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
W=[]
wa=0
for i in range(n):
wa=A[i]+wa
W.append(wa)
counter=0
for i in range(n):
if i==n-1:
break
elif W[i]<0 and W[i+1]<0:
counter=abs(W[i])-abs(A[i+1])+1+counter
elif W[i]>0 and W[i+1]>0:
counter=abs(W[i])+1+counter-abs(A[i+1])
if A[n-1]==0:
counter=counter+abs(A[n-2])
print(counter) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = [i for i in map(int,input().split())]
ruiseki = [0] * N
ans = 2 ** 30 + 1
for j in range(2):
cnt= 0
ruiseki[0] = A[0]
if j == 0:
if A[0] <= 0:
ruiseki[0] = 1
cnt += 1 - A[0]
else:
if A[0] >= 0:
ruiseki[0] = -1
cnt += 1 + A[0]
for i in range(1,N):
ruiseki[i] = ruiseki[i-1]+A[i]
totalp = 0
if ruiseki[i] * ruiseki[i-1] >0:
totalp= (int(ruiseki[i])>0)*(-1)*(1 + ruiseki[i]) + (int(ruiseki[i])<0) * (1 - ruiseki[i])
elif ruiseki[i] == 0:
if ruiseki[i-1] > 0:
totalp = -1
else:
totalp = 1
ruiseki[i] += totalp
cnt += abs(totalp)
ans = min(ans,cnt)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n;
long int a[100000] = {0}, fugo, dif, ans = 0, min = 10000000;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%ld", &a[i]);
}
for (fugo = 0; fugo <= 1; fugo++) {
ans = 0;
int b[100001] = {0};
for (int i = 0; i < n; i++) {
dif = 0;
b[i + 1] = b[i] + a[i];
if ((i + 1) % 2 == fugo) {
if (b[i + 1] <= 0) {
dif += -1 - b[i];
b[i] += dif;
dif += 1 - b[i + 1] - dif;
b[i + 1] += dif;
ans += dif;
}
} else {
if (b[i + 1] >= 0) {
dif += b[i] - 1;
b[i] -= dif;
dif += b[i + 1] + 1 - dif;
b[i + 1] -= dif;
ans += dif;
}
}
}
if (min > ans) min = ans;
}
printf("%d\n", min);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input = sys.stdin.readline
def main():
n = int(input())
a_list = list(map(int, input().split()))
a_sum = a_list[0]
if a_list[0] > 0:
sign = "plus"
else:
sign = "minus"
ans1 = 0
for i in range(1, n):
if sign == "plus":
sign = "minus"
if a_sum + a_list[i] == 0:
ans1 += 1
a_sum = -1
elif a_sum + a_list[i] > 0:
ans1 += a_sum + 1 + a_list[i]
a_sum = -1
else:
a_sum += a_list[i]
elif sign == "minus":
sign = "plus"
if a_sum + a_list[i] == 0:
ans1 += 1
a_sum = 1
elif a_sum + a_list[i] < 0:
ans1 += -1 * a_sum + 1 + -1 * a_list[i]
a_sum = 1
else:
a_sum += a_list[i]
a_sum = 0
if a_list[0] > 0:
sign = "plus"
else:
sign = "minus"
ans2 = 0
for i in range(0, n):
if sign == "plus":
sign = "minus"
if a_sum + a_list[i] == 0:
ans2 += 1
a_sum = -1
elif a_sum + a_list[i] > 0:
ans2 += a_sum + 1 + a_list[i]
a_sum = -1
else:
a_sum += a_list[i]
elif sign == "minus":
sign = "plus"
if a_sum + a_list[i] == 0:
ans2 += 1
a_sum = 1
elif a_sum + a_list[i] < 0:
ans2 += -1 * a_sum + 1 + -1 * a_list[i]
a_sum = 1
else:
a_sum += a_list[i]
print(min(ans1, ans2))
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
a_1 = a
ans = 0
ans_2 = 0
o = 0
for i in range(n):
if i == 0:
if a[i] == 0:
f = "+"
a[i] = 1
elif a[0] > 0:
f = "+"
elif a[0] < 0:
f = "-"
else:
o += a[i-1]
if f == "+":
if a[i] + o > 0:
c = -1 - o
ans += abs(c - a[i])
a[i] = c
f = "-"
else:
if a[i] + o == 0:
a[i] -= 1
ans += 1
f = "-"
elif f == "-":
if a[i] + o < 0:
c = 1 - o
ans += abs(c - a[i])
a[i] = c
f = "+"
else:
if a[i] + o == 0:
a[i] += 1
ans += 1
f = "+"
o = 0
a = a_1
for i in range(n):
if i == 0:
if a[i] == 0:
f = "+"
a[i] = 1
elif a[0] > 0:
f = "-"
ans_2 += abs(-1 - a[0])
a[i] = -1
elif a[0] < 0:
ans_2 += abs(1 - a[0])
a[i] = 1
f = "+"
else:
o += a[i-1]
if f == "+":
if a[i] + o > 0:
c = -1 - o
ans_2 += abs(c - a[i])
a[i] = c
f = "-"
else:
if a[i] + o == 0:
a[i] -= 1
ans_2 += 1
f = "-"
elif f == "-":
if a[i] + o < 0:
c = 1 - o
ans_2 += abs(c - a[i])
a[i] = c
f = "+"
else:
if a[i] + o == 0:
a[i] += 1
ans_2 += 1
f = "+"
#print(a)
print(min(ans,ans_2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long sum_ = a[0];
long long count = 0;
if (a[0] > 0) {
for (int i = 1; i < n; ++i) {
if (i % 2 == 1) {
if (sum_ + a[i] >= 0) {
long long r = -(sum_ + a[i]) - 1;
count += abs(r);
a[i] += r;
}
} else {
if (sum_ + a[i] <= 0) {
long long r = -(sum_ + a[i]) + 1;
count += abs(r);
a[i] += r;
}
}
sum_ += a[i];
}
} else {
for (int i = 1; i < n; ++i) {
if (i % 2 == 1) {
if (sum_ + a[i] <= 0) {
long long r = -(sum_ + a[i]) + 1;
count += abs(r);
a[i] += r;
}
} else {
if (sum_ + a[i] >= 0) {
long long r = -(sum_ + a[i]) - 1;
count += abs(r);
a[i] += r;
}
}
sum_ += a[i];
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def op(pos, n, a):
if pos:
S = 1 if a[0] == 0 else a[0]
else:
S = -1 if a[0] == 0 else a[0]
count = 1 if S == 0 else 0
for i in a[1:]:
if S * (S + i) > 0:
count += abs(S + i) + 1
S = -1 if S > 0 else 1
elif S + i == 0:
count += 1
S = -1 if S > 0 else 1
else:
S += i
return count
def main():
n = int(input())
a = list(map(int, input().split()))
c1 = op(True, n, a)
c2 = op(False, n, a)
print(min(c1, c2))
if __name__ == "__main__":
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
import numpy as np
ans = 0
sum0 = a[0]
sum1 = a[0]
for i in range(1, n):
sum1 += a[i]
if np.sign(sum0) != np.sign(sum1) and sum1 != 0: #合計の符号が逆となっており、0でない
sum0 = sum1
pass
elif sum1 == 0: #合計が0になった場合は、符号が逆になるよう1か-1を足す
sum1 -= 1 * np.sign(sum0)
ans += 1
sum0 = sum1
elif np.sign(sum0) == np.sign(sum1): #符号が同じ場合は、+1か-1になるまで足す
if np.sign(sum1) == 1: #sum0もsum1もプラスの場合
ans = ans + sum0 + a[i] + 1
sum1 = -1
else: #sum0もsum1もマイナスの場合
ans = ans + abs(sum0 + a[i]) + 1
sum1 = 1
sum0 = sum1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Math.*;
import static java.lang.System.*;
public class Main {
public static void main(String[] args) {
int i,j;
Scanner sc = new Scanner(in);
int n = parseInt(sc.next());
long[] a = new long[n];
for(i=0;i<n;i++) {
a[i] = parseLong(sc.next());
}
sc.close();
long cnt=0;
int sign0 = signum(a[0]);
long sum = a[0];
for (i = 1; i < a.length; i++) {
sum += a[i];
int sign1 = signum(sum);
if(sign1 == 0 ||sign0 == sign1) {
long dif = (long)(-sign0) - sum;
sum += dif;
cnt += abs(dif);
sign1 = -sign1;
}
sign0 = sign1;
}
if(sum==0)cnt++;
out.println(cnt);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cnt=0
for i in range(1,n):
# 条件満たすまでループ
for _ in range(3):
#print(a)
now_tmp = sum(a[:i])
next_tmp = sum(a[:i+1])
#print(i, now_tmp, next_tmp)
# 符号が逆転していればOK かつ 現在までの総和が0でない
# 異なる符号を掛けるとマイナスになる
if now_tmp * next_tmp <0 and now_tmp !=0:
break
else:
# 現在の合計がマイナスの場合
if now_tmp < 0:
a[i] += -next_tmp+1
cnt +=abs(next_tmp+1)
# 現在の合計がプラスの場合
elif now_tmp > 0 :
a[i] += -next_tmp-1
cnt +=abs(next_tmp+1)
# 現在の合計が0の場合
elif now_tmp == 0 :
# 1個前がプラスの場合、
if sum(a[:i-1]) > 0:
a[i] += -next_tmp+1
cnt +=abs(next_tmp+1)
# 1個前がマイナスの場合
else:
a[i] += -next_tmp+1
cnt +=abs(next_tmp+1)
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = [int(i) for i in input().split()]
def f(A, op, acc = 0, cnt = 0):
for i in range(n):
acc += A[i]
if i % 2 == 0:
if op * acc <= 0:
cnt += - op * acc + 1
acc = 1
if i % 2 == 1:
if op * acc >= 0:
cnt += op * acc + 1
acc = -1
if acc == 0:
cnt += 1
return cnt
print(min(f(A, 1), f(A, -1))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
b = [int(x) for x in input().split()]
a = list()
temp = 0
count1 = 0
count2 = 0
a = b.copy()
if a[0] == 0:
a[0] = 1
count1 = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
count1 += abs(temp - a[i])
if sum > 0:
temp = -1 * abs(sum) - 1
else:
temp = abs(sum) + 1
a[i] = temp
sum += a[i]
a = b.copy()
count2 = abs(a[0]) + 1
if a[0] >= 0:
a[0] = -1
else:
a[0] = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
count2 += abs(temp - a[i])
if sum > 0:
temp = -1 * abs(sum) - 1
else:
temp = abs(sum) + 1
a[i] = temp
sum += a[i]
print(min(count1, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long a[100001];
long long sumo[100001];
long long sume[100001];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i + 1];
}
int anso = 0;
int anse = 0;
sumo[0] = 0;
sume[0] = 0;
for (int i = 1; i <= n; i++) {
if (i % 2 == 0) {
if (sume[i - 1] + a[i] > 0) sume[i] = sume[i - 1] + a[i];
if (sume[i - 1] + a[i] <= 0) {
sume[i] = 1;
anse += (1 - (sume[i - 1] + a[i]));
}
if (sumo[i - 1] + a[i] < 0) sumo[i] = sumo[i - 1] + a[i];
if (sumo[i - 1] + a[i] >= 0) {
sumo[i] = -1;
anso += sumo[i - 1] + a[i] + 1;
}
} else if (i % 2 == 1) {
if (sumo[i - 1] + a[i] > 0) sumo[i] = sumo[i - 1] + a[i];
if (sumo[i - 1] + a[i] <= 0) {
sumo[i] = 1;
anso += (1 - (sumo[i - 1] + a[i]));
}
if (sume[i - 1] + a[i] < 0) sume[i] = sume[i - 1] + a[i];
if (sume[i - 1] + a[i] >= 0) {
sume[i] = -1;
anse += (sume[i - 1] + a[i] + 1);
}
}
}
int ans;
ans = min(anso, anse);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int body(std::vector<int>& a) {
int ans = 0;
std::vector<int> s(a.size());
s.at(0) = a.at(0);
for (unsigned int i = 1; i < a.size(); i++) {
s.at(i) = s.at(i - 1) + a.at(i);
}
for (unsigned int i = 1; i < s.size(); i++) {
if (s.at(i - 1) > 0 && s.at(i) >= 0) {
int n = s.at(i) + 1;
ans += n;
for (unsigned int j = i; j < s.size(); j++) {
s.at(j) -= n;
}
} else if (s.at(i - 1) < 0 && s.at(i) <= 0) {
int n = -1 * s.at(i) + 1;
ans += n;
for (unsigned int j = i; j < s.size(); j++) {
s.at(j) += n;
}
}
}
return ans;
}
int main(int argc, char** argv) {
int n;
std::cin >> n;
std::vector<int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a.at(i);
}
int ans;
if (a.at(0) != 0) {
ans = body(a);
} else {
a.at(0) = -1;
int ans_a = body(a);
a.at(0) = 1;
int ans_b = body(a);
ans = std::min(ans_a, ans_b);
}
std::cout << ans << std::endl;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.