Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; std::vector<int> a; int N; int solve() { int Num = 0, Sum = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (Sum + a[i] <= 0) { Num += 1 - (Sum + a[i]); Sum = 1; } else Sum += a[i]; } else { if (Sum + a[i] >= 0) { Num += 1 + Sum + a[i]; Sum = -1; } else Sum += a[i]; } } return Num; } int main() { cin >> N; for (int i = 0; i < N; i++) { int temp; cin >> temp; a.push_back(temp); } int ans1, ans2; ans1 = solve(); for (int i = 0; i < N; i++) a[i] *= -1; ans2 = solve(); printf("%d\n", ans1 < ans2 ? ans1 : ans2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, ans = 0; cin >> N; int sum = 0; for (int i = 0; i < N; i++) { int a; cin >> a; int nowsum = a + sum; if (i == 0) sum += a; else { if ((nowsum < 0) != (sum < 0)) { if (nowsum == 0) { if (sum < 0) nowsum++; else nowsum--; ans++; } } else { if (nowsum < 0) { for (;;) { if (nowsum > 0) break; nowsum++; ans++; } } else { for (;;) { if (nowsum < 0) break; nowsum--; ans++; } } } sum = nowsum; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) # 数列の長さ a = [int(x) for x in input().split()] # 数列の各項 cnt = 0 # 操作回数 while True: sum = a[0] # 1列目までの和 # 1~N列目までの和を求める # print (sum, end = ' ') for i in range(1, len(a)): pre = sum sum += a[i] # print (sum, end = ' ') # 条件を満たしてない場合は和を求めるのを中断する if (pre > 0 and sum > 0) or (pre < 0 and sum < 0) or (sum == 0): break # print('') # print('i = ' + str(i)) # print('pre = ' + str(pre) + ', sum = ', str(sum)) if (pre > 0 and sum < 0) or (pre < 0 and sum > 0): # 条件を満たした場合の処理 print(str(cnt)) break else: # 操作が必要な場合の処理 cnt = cnt + 1 # 操作回数の更新 if pre < 0: j = 1 elif pre > 0: j = -1 if pre < -1 or pre > 1: a[i - 1] += j else: a[i] += j # print (a)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long cal(int b0, int n, long long* a, long long ans) { long long b[n]; b[0] = b0; for (int i = 1; i < n; i++) { b[i] = b[i - 1] + a[i]; if (b[i] == 0) { ans++; b[i] = -1 * b[i - 1] / b[i - 1]; } if (a[i] * b[i - 1] > 0 || (abs(a[i]) - abs(b[i - 1])) < 0) { ans += abs(a[i] + b[i - 1]) + 1; b[i] = -1 * b[i - 1] / b[i - 1]; } } return ans; } int main() { int n; cin >> n; long long a[n], ans = 0; for (int i = 0; i < n; i++) cin >> a[i]; if (a[0] != 0) { cout << cal(a[0], n, a, ans) << endl; } else { ans++; cout << (cal(1, n, a, ans) < cal(-1, n, a, ans) ? cal(1, n, a, ans) : cal(-1, n, a, ans)) << endl; return 0; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = 1 << 29; int main() { int n; cin >> n; vector<ll> a(n), b(n); for (int i = 0; i < int(n); i++) { ll aa; cin >> aa; a[i] = aa; b[i] = aa; } ll countmin = INF; ll count = 0LL; ll temp; if (a[0] <= 0LL) { temp = abs(a[0]) + 1LL; a[0] += temp; count += temp; } for (int i = (1); i < (n); i++) { a[i] += a[i - 1]; if (i % 2 == 1) { if (a[i] >= 0LL) { temp = abs(a[i]) + 1LL; a[i] -= temp; count += temp; } } if (i % 2 == 0) { if (a[i] <= 0LL) { temp = abs(a[i]) + 1LL; a[i] += temp; count += temp; } } } countmin = min(countmin, count); count = 0LL; if (b[0] >= 0) { temp = abs(b[0]) + 1LL; b[0] -= temp; count += temp; } for (int i = (1); i < (n); i++) { b[i] += b[i - 1]; if (i % 2 == 1) { if (b[i] <= 0LL) { temp = abs(b[i]) + 1LL; b[i] += temp; count += temp; } } if (i % 2 == 0) { if (b[i] >= 0LL) { temp = abs(b[i]) + 1LL; b[i] -= temp; count += temp; } } } countmin = min(countmin, count); cout << countmin << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) prog = list(map(int,input().split())) def seq(N,prog): result = [0]*N result[0] = prog[0] for i in range(N-1): result[i+1] = result[i] + prog[i+1] if result[0] == 0: if sum(result[0]+result[1]) >= 0: result[0] -= 1 x = [-1]*(N-1) result[1:] = [a+b for (a,b) in zip(x,result[1:])] else: result[0] += 1 x = [1]*(N-1) result[1:] = [a+b for (a,b) in zip(x,result[1:])] answer = 0 for i in range(N-1): y=0 if result[i] >= 0: if result[i+1] >0: y = (-1)*(result[i+1]+1) result[i+1] = -1 answer += abs(y) else: if result[i+1] <= 0: y = abs(result[i+1])+1 result[i+1] = 1 answer += abs(y) z = [y]*(N-i-1) result[(i+1):] = [a+b for (a,b) in zip(z,result[(i+1):])] print(answer) seq(N,prog)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const long long INF = mod * mod; const long double eps = 1e-8; const long double pi = acos(-1.0); void solve() { int n; cin >> n; long long a, sum, ans = 0; cin >> a; sum = a; for (int i = 0; i < n - 1; i++) { cin >> a; if (sum > 0) { if (sum + a < 0) sum += a; else { ans += sum + a - (-1); sum = -1; } } else { if (sum + a > 0) sum += a; else { ans += 1 - (sum + a); sum = 1; } } } cout << ans << endl; } signed main() { ios::sync_with_stdio(false); cin.tie(0); solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = [int(i) for i in input().split()] ans = 0 cnt = 0 if A[0] < 0: for i in range(n): if i % 2 == 0: if cnt + A[i] < 0: cnt += A[i] else: ans += abs(cnt + A[i] - (-1)) cnt = -1 else: if cnt + A[i] > 0: cnt += A[i] else: ans += abs(cnt + A[i] - 1) cnt = 1 else: for i in range(n): if i % 2 == 1: if cnt + A[i] < 0: cnt += A[i] else: ans += abs(cnt + A[i] - (-1)) cnt = -1 else: if cnt + A[i] > 0: cnt += A[i] else: ans += abs(cnt + A[i] - 1) cnt = 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int MOD = pow(10, 9) + 7; using namespace std; int in() { int temp; scanf("%d", &temp); return temp; } long long lin() { long long temp; scanf("%lld", &temp); return temp; } int solve(vector<int> csum, int N) { int cumOper = 0; int sign = csum[0] / abs(csum[0]); int count = 0; int signi; for (auto i = 1; i < N; i++) { if ((csum[i] + cumOper) == 0) { count++; cumOper -= sign; } signi = (csum[i] + cumOper) / abs(csum[i] + cumOper); if (signi != sign) { sign = signi; continue; } if (sign == 1) { count += (csum[i] + cumOper + 1); cumOper += (-1) * (csum[i] + cumOper + 1); } else { count += (-(csum[i] + cumOper) + 1); cumOper += (1) * (-(csum[i] + cumOper) + 1); } sign = -sign; } return count; } int main() { int N = in(); vector<int> vec; vector<int> csum; vec.push_back(in()); csum.push_back(vec.back()); for (auto i = 1; i < N; i++) { vec.push_back(in()); csum.push_back(csum.back() + vec.back()); } if (csum[0] != 0) { cout << solve(csum, N) << endl; return 0; } int tempp; int tempn; csum[0] = 1; tempp = solve(csum, N) + 1; csum[0] = -1; tempn = solve(csum, N) + 1; cout << min(tempp, tempn) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vs = vector<string>; const int INF = 1001001001; const int MOD = 1000000007; const long long INFL = (1LL << 60); const double EPS = 1e-9; bool meet(vi a) { bool ret = true; bool pos = (a[0] > 0); int sum = a[0]; for (int i = (1); i < (int)(a.size()); i++) { sum += a[i]; if ((pos && i % 2 && sum >= 0) || (pos && !(i % 2) && sum <= 0) || (!pos && i % 2 && sum <= 0) || (!pos && !(i % 2) && sum >= 0)) { ret = false; break; } } return ret; } int main() { int N; cin >> N; vi a(N); for (int i = 0; i < (int)(N); i++) cin >> a[i]; bool flg = meet(a); int res = 0; int sum = a[0]; bool pos = (a[0] > 0); for (int i = (1); i < (int)(N); i++) { if ((pos && i % 2 && sum + a[i] >= 0) || (!pos && !(i % 2) && sum + a[i] >= 0)) { while (true) { a[i]--; res++; if (sum + a[i] == -1) break; } } else if ((pos && !(i % 2) && sum + a[i] <= 0) || (!pos && i % 2 && sum + a[i] <= 0)) { while (true) { a[i]++; res++; if (sum + a[i] == 1) break; } } sum += a[i]; } if (flg) res = 0; cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long MOD = 1000000007; const int MAX_N = 100000005; int n; int a[MAX_N]; int check(long long sum, long long ans) { for (int i = 1; i < n; i++) { long long t = sum + a[i]; if ((sum >= 0 && t < 0) || (sum < 0 && t >= 0)) { sum = t; if (sum == 0) { sum = 1; ans++; } continue; } long long at; if (sum >= 0) at = -1 - sum; else at = 1 - sum; ans = ans + abs(a[i] - at); a[i] = at; sum = sum + a[i]; } return ans; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } long long another; if (a[0] >= 0) another = -1; else another = 1; long long a1 = check(a[0], 0); long long a2 = check(another, abs(a[0] - another)); cout << min(a1, a2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { vector<int> v; int res = 0; int sign = 0; int n, t; int sum = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> t; v.push_back(t); } if (v[0] > 0) { sign = 0; } else { sign = 1; } sum += v[0]; for (int i = 1; i < v.size(); i++) { sum += v[i]; if (sign == 0) { if (sum > 0) { res += (sum + 1); sum -= (sum + 1); } else if (sum == 0) { res += 1; sum -= 1; } } else { if (sum < 0) { res += ((-1 * sum) + 1); sum += ((-1 * sum) + 1); } else if (sum == 0) { res += 1; sum += 1; } } sign = 1 - sign; } if (v[0] > 0) { sign = 1; } else { sign = 0; } t = 0; for (int i = 0; i < v.size(); i++) { sum += v[i]; if (sign == 0) { if (sum > 0) { t += (sum + 1); sum -= (sum + 1); } else if (sum == 0) { t += 1; sum -= 1; } } else { if (sum < 0) { t += ((-1 * sum) + 1); sum += ((-1 * sum) + 1); } else if (sum == 0) { t += 1; sum += 1; } } sign = 1 - sign; } res = min(res, t); cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n, cnt = 0; cin >> n; bool flag; ll a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } if (a[0] >= 0) { flag = true; } else { flag = false; } int sum = a[0]; for (int i = 1; i < n; i++) { bool flag2; int tmp = sum; sum += a[i]; if (sum == 0) { if (flag) { sum -= 1; flag = false; cnt++; } else { sum += 1; flag = true; cnt++; } } else { if (sum > 0) { flag2 = true; } else { flag2 = false; } if (flag == flag2) { if (flag2) { while (sum >= 0) { sum--; cnt++; } flag2 = false; } else { while (sum <= 0) { sum++; cnt++; } flag2 = true; } } flag = flag2; } } if (sum == 0) cnt++; cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); bool fla = false; int t = 0, res1 = 0, res2 = 0; for (int i = 0; i < N; i++) { int b = a.at(i); if (fla) { if (t + b <= 0) { b = t * -1 + 1; res1 += b - a.at(i); } } else { if (t + b >= 0) { b = t * -1 - 1; res1 += abs(b - a.at(i)); } } t += b; fla = !fla; } t = 0; for (int i = 0; i < N; i++) { int b = a.at(i); if (!fla) { if (t + b <= 0) { b = t * -1 + 1; res2 += b - a.at(i); } } else { if (t + b >= 0) { b = t * -1 - 1; res2 += abs(b - a.at(i)); } } t += b; fla = !fla; } int res = min(res1, res2); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) { try{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int N = Integer.parseInt(br.readLine()); String[] inputString = br.readLine().split(" "); int[] input = new int[N]; for(int i = 0 ; i < N ; i++){ input[i] = Integer.parseInt(inputString[i]); } int result = 0; int base = input[0]; if(base == 0){ base = (input[1] > 0)? -1 : 1; result += 1; } for(int i = 1 ; i < N ; i++){ int temp = base; base += input[i]; if(temp*base >= 0){ result += Math.sqrt(base*base)+1; base = (temp > 0)? -1 : 1; } } System.out.println(result); }catch(Exception e){ e.printStackTrace(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) ans=0 if a[0]>0: f=False else: f=True for i in range(1,n): a[i]+=a[i-1] if not f: if a[i]>=0: ans+=a[i]+1 a[i]=-1 else: if a[i]<=0: ans+=a[i]*-1+1 a[i]=1 # print(a,ans,f) f^=True print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long A[100001] = {0}; long long N = 0, B = 0; long long ans = 0; scanf("%lld", &N); for (long long i = 0; i < N; i++) scanf("%lld", &A[i]); if (A[0] != 0) { B = A[0]; } else if (A[1] > 0) { B = -1; ans++; } else { B = 1; ans++; } for (long long i = 1; i < N; i++) { if (B > 0) { if (B + A[i] < 0) { B += A[i]; } else { ans += (B + A[i]) + 1; B = -1; } } else { if (B + A[i] > 0) { B += A[i]; } else { ans += 1 - (B + A[i]); B = 1; } } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; long long int a[n], ans = 0; for (long long int i = 0; i < n; i++) cin >> a[i]; long long int sum = a[0]; for (long long int i = 0; i < n - 1; i++) { long long int k = sum + a[i + 1]; if (k != 0) { if ((k > 0 && sum < 0) || (k < 0 && sum > 0)) { sum = k; } else { ans += (abs(k) + 1); if (k < 0) sum = 1; else sum = -1; } } else { ans++; if (sum < 0) sum = 1; else sum = -1; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a.at(i); ll ans = 0, sum = 0; for (int i = 0; i < (int)(n); i++) { int now = a.at(i); if (i == 0) { if (now == 0) { if (a.at(1) > 0) sum--; else sum++; ans++; } else { sum += now; } continue; } if ((sum < 0 && sum + now > 0) || (sum > 0 && sum + now < 0)) { sum += now; } else { int add = abs(sum + now) + 1; if (sum < 0) sum = 1; else sum = -1; ans += add; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum[n]; sum[0] = a[0]; long long ans = 0; if (sum[0] == 0) { ans = 1; sum[0] = 1; } for (int i = 1; i <= (int)(n - 1); i++) { long long t = sum[i - 1] + a[i]; if (t == 0) { ans += 1; sum[i] = -abs(sum[i - 1]) / sum[i - 1]; } else if (abs(t) / t != abs(sum[i - 1]) / sum[i - 1]) { sum[i] = t; } else { ans += abs(t) + 1; sum[i] = -abs(t) / t; } } long long ans2 = 0; if (a[0] == 0) { ans2 = 1; sum[0] = -1; } else { sum[0] = -abs(a[0]) / a[0]; ans2 = abs(a[0]) + 1; } for (int i = 1; i <= (int)(n - 1); i++) { long long t = sum[i - 1] + a[i]; if (t == 0) { ans2 += 1; sum[i] = -abs(sum[i - 1]) / sum[i - 1]; } else if (abs(t) / t != abs(sum[i - 1]) / sum[i - 1]) { sum[i] = t; } else { ans2 += abs(t) + 1; sum[i] = -abs(t) / t; } } assert(ans2 >= ans); cout << min(ans, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, c = 0; cin >> n; int sum[n]; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; sum[0] = a[0]; int e = a[0] / abs(a[0]); for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (sum[i - 1] * sum[i] >= 0) { c += abs(sum[i] - pow(-1, i) * e); sum[i] = pow(-1, i) * e; } } cout << c << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int c1 = 0, s1 = 0, c2 = 0, s2 = 0; for (int i = 0; i < n; i++) { s1 += a[i]; s2 += a[i]; if (i % 2 == 0) { if (s1 <= 0) { c1 += 1 - s1; s1 = 1; } if (s2 >= 0) { c2 += s2 + 1; s2 = -1; } } else { if (s2 <= 0) { c2 += 1 - s2; s2 = 1; } if (s1 >= 0) { c1 += s1 + 1; s1 = -1; } } } cout << min(c1, c2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void initvv(vector<vector<T> > &v, int a, int b, const T &t = T()) { v.assign(a, vector<T>(b, t)); } template <class F, class T> void convert(const F &f, T &t) { stringstream ss; ss << f; ss >> t; } int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < int(n); ++i) { cin >> a[i]; } long long sum = 0; long long ans = 0; for (int i = 0; i < int(n); ++i) { long long nextSum = sum + a[i]; if (nextSum == 0) { if (i + 1 < n) { a[i] += (a[i + 1] > 0) ? -1 : 1; } else { ++a[i]; } nextSum = sum + a[i]; ++ans; } if ((i > 0) && (sum * nextSum > 0)) { a[i] += (nextSum > 0 ? -1 : 1) * (abs(nextSum) + 1); ans += abs(nextSum) + 1; } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) { cin >> a[i]; } long long s = a[0]; long long ss = a[0]; long long ans = 0; for (int i = 1; i < n; i++) { s = ss; ss = s + a[i]; if (ss * s < 0) continue; if (ss == 0) { ans += 1; ss = -s / abs(s); } else { ans += abs(ss - (-ss / abs(ss))); ss = -ss / abs(ss); } } int tmp = -a[0] / abs(a[0]); long long ans2 = abs(a[0] - tmp); a[0] = tmp; s = a[0]; ss = a[0]; for (int i = 1; i < n; i++) { s = ss; ss = s + a[i]; if (ss * s < 0) continue; if (ss == 0) { ans2 += 1; ss = -s / abs(s); } else { ans2 += abs(ss - (-ss / abs(ss))); ss = -ss / abs(ss); } } cout << min(ans, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { long long n; cin >> n; long long a[n + 1]; a[0] = 0; long long cnta = 0; long long cntb = 0; long long sum = 0; for (long long i = 0; i < n; i++) { cin >> a[i + 1]; a[i + 1] += a[i]; } for (long long i = 1; i < n + 1; i++) { if (i % 2 == 0) { if (0 <= a[i] + sum) { cnta += a[i] + sum + 1; sum -= a[i] + sum + 1; } } else { if (a[i] + sum <= 0) { cnta += (1 - (a[i] + sum)); sum += (1 - (a[i] - sum)); } } } sum = 0; for (long long i = 1; i < n + 1; i++) { if (i % 2 == 0) { if (a[i] + sum <= 0) { cntb += (1 - (a[i] + sum)); sum += (1 - (a[i] - sum)); } } else { if (0 <= a[i] + sum) { cntb += a[i] + sum + 1; sum -= a[i] + sum + 1; } } } cout << min(cnta, cntb) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <stdio.h> #include<math.h> int main(void) { // your code goes here long int a[100000]; int n,count= 0; scanf("%d",&n); int i; for(i = 0;i<n;i++) { scanf("%ld",&a[i]); }; int new = a[0]+a[1]; int pos; if(new <0) pos= 0; else pos = 1; for(i = 2;i<n;i++) { new = a[i]+new; // printf("%d",new); pos = !pos; if(new>0&& pos==0) {count+=abs(new)+1; new= -1;} else if(new<0 && pos ) {count+=abs(new)+1; new = 1; } else if(new ==0) { count++; if(pos==0) new = -1; else new = 1; } } printf("%d",count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int A[n]; for (int i = 0; i < n; i++) cin >> A[i]; int cnt = 0, acm = 0, ans = 0; for (int i = 0; i < n; i++) { if (i % 2) { if (acm + A[i] > 0) acm += A[i]; else { cnt += abs(acm + A[i]) + 1; acm = 1; } } else { if (acm + A[i] < 0) acm += A[i]; else { cnt += abs(acm + A[i]) + 1; acm = -1; } } } ans = cnt; cnt = 0; acm = 0; for (int i = 0; i < n; i++) { if ((i + 1) % 2) { if (acm + A[i] > 0) acm += A[i]; else { cnt += abs(acm + A[i]) + 1; acm = 1; } } else { if (acm + A[i] < 0) acm += A[i]; else { cnt += abs(acm + A[i]) + 1; acm = -1; } } } ans = min(ans, cnt); cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { bool ch = false; long long N, i; long long ans = 0, count = 0; cin >> N; long long a[N]; cin >> a[0]; ans += a[0]; if (ans > 0) ch = true; else ch = false; if (ans == 0) { count += 1; ans = -1; } for (i = 1; i < N; i++) { cin >> a[i]; if (ch) { if (ans >= -1 * a[i]) { count += ans + a[i] + 1; ans = -1; } else ans += a[i]; ch = false; } else { if (-1 * ans >= a[i]) { count += -1 * ans - a[i] + 1; ans = 1; } else ans += a[i]; ch = true; } } long long con = 0; if (a[0] > 0) { ans = -1; ch = false; } else { ans = 1; ch = true; } con = a[0] + 1; for (i = 1; i < N; i++) { if (ch) { if (ans >= -1 * a[i]) { con += ans + a[i] + 1; ans = -1; } else ans += a[i]; ch = false; } else { if (-1 * ans >= a[i]) { con += -1 * ans - a[i] + 1; ans = 1; } else ans += a[i]; ch = true; } } cout << min(count, con) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n, i, j, sum = 0, count, cost1 = 0, cost2 = 0; cin >> n; vector<int> a(n); for (i = 0; i < n; i++) { cin >> a[i]; } if (a[0] < 0) { cost1 += abs(a[0]) + 1; sum = 1; } else { sum += a[0]; } for (i = 1; i < n; i++) { sum += a[i]; if (sum <= 0 && i % 2 == 0) { cost1 += abs(sum) + 1; sum = 1; } if (sum >= 0 && i % 2 == 1) { cost1 += abs(sum) + 1; sum = -1; } } sum = 0; if (a[0] >= 0) { cost2 += abs(a[0]) + 1; a[0] = -1; sum = -1; } else sum += a[0]; for (i = 1; i < n; i++) { sum += a[i]; if (sum >= 0 && i % 2 == 0) { cost2 += abs(sum) + 1; sum = -1; } if (sum <= 0 && i % 2 == 1) { cost2 += abs(sum) + 1; sum = 1; } } cout << min(cost1, cost2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 1e9; const long long linf = 1LL << 50; const double eps = 1e-10; const int mod = 1e9 + 7; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, -1, 0, 1}; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long n; cin >> n; vector<long long> a(n); cin >> a[0]; long long sum = a[0]; long long ans = 0; for (int i = 1; i < ((int)n); i++) { cin >> a[i]; long long now = sum + a[i]; if ((sum > 0 && now < 0) || (sum < 0 && now > 0)) sum = now; else if (sum > 0) { ans += abs(now + 1); sum = -1; } else { ans += 1 + abs(now); sum = 1; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) rui = [0] * n rui[0] = a[0] cnt = 0 for i in range(1, n): tmp = rui[i - 1] + a[i] if tmp == 0: if rui[i - 1] > 0: rui[i] = tmp - 1 cnt += 1 else: rui[i] = tmp + 1 cnt += 1 else: if rui[i - 1] > 0 and tmp > 0: rui[i] = -1 cnt += abs(tmp) + 1 elif rui[i - 1] < 0 and tmp < 0: rui[i] = 1 cnt += abs(tmp) + 1 else: rui[i] = tmp print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n; cin >> n; vector<ll> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } ll ans = 0; bool is_positive = (a.at(0) > 0); ll sum = a.at(0); for (int i = 1; i < n; i++) { sum = sum + a.at(i); if (i % 2 == 1) { if (is_positive) { if (sum < 0) { continue; } else { ll target = sum - (-1); ans += target; a.at(i) -= target; sum -= target; } } else { if (sum > 0) { continue; } else { ll target = (1) - sum; ans += target; a.at(i) += target; sum += target; } } } else { if (is_positive) { if (sum > 0) { continue; } else { ll target = (1) - sum; ans += target; a.at(i) += target; sum += target; } } else { if (sum < 0) { continue; } else { ll target = sum - (-1); ans += target; a.at(i) -= target; sum -= target; } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace AtCoder { class Code3 { static void Main(string[] args) { string s1 = Console.ReadLine(); string s2 = Console.ReadLine(); Console.WriteLine(funcMain(s1,s2)); } static private string funcMain(string arg1, string arg2) { long ret = 0; long ret1 = 0; long ret2 = 0; long sum = 0; short sign = 0; for (int i = 0; i <= 1; i++) // 0はそのまま、1は逆符号 { sum = ret = 0; foreach (string buf in arg2.Split()) { if (sum == 0) { sum = long.Parse(buf); if (sum >= 0) sign = 1; else sign = -1; if (i == 1) { ret += Math.Abs(sum) + 1; sum = sign * -1; sign *= -1; } } else { sum += long.Parse(buf); if ((sum * sign) >= 0) { ret += Math.Abs(sum) + 1; sum = sign * -1; } sign *= -1; } } if (i == 0) ret1 = ret; else ret2 = ret; } ret = Math.Min(ret1, ret2); return ret.ToString(); } static private void test() { string arg1, arg2; arg1 = "4"; arg2 = "1 -3 1 0"; Console.WriteLine("4" == funcMain(arg1, arg2)); arg1 = "5"; arg2 = "3 -6 4 -5 7"; Console.WriteLine("0" == funcMain(arg1, arg2)); arg1 = "6"; arg2 = "-1 4 3 2 -5 4"; Console.WriteLine("8" == funcMain(arg1, arg2)); arg1 = "6"; arg2 = "-1 -2 -3 -4 -5 -6"; Console.WriteLine("16" == funcMain(arg1, arg2)); arg1 = "3"; arg2 = "1 10 -100"; Console.WriteLine("2" == funcMain(arg1, arg2)); Console.ReadKey(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sign(long long n) { return ((n > 0) - (n < 0)); } int main() { int n; scanf("%d", &n); long long sum = 0; long long ans = 0; for (int i = 0; i < n; i++) { int a; scanf("%d", &a); if (sum == 0) { if (a == 0) { a++; ans++; } } else if (sum + a == 0) { a - sign(sum); ans++; } else if (sign(sum + a) + sign(sum) != 0) { while (sign(sum + a) + sign(sum) != 0) { a -= sign(sum); ans++; } } sum += a; cerr << 34 << " " << "a" << ": " << a << endl; ; cerr << 35 << " " << "sum" << ": " << sum << endl; } printf("%llu\n", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, -1, 0, 0}; int dy[4] = {0, 0, 1, -1}; int main() { std::ios::sync_with_stdio(false); std::cin.tie(0); int n; cin >> n; long long int b[100001]; for (int i = 0; i < (n); i++) { long long int l; cin >> l; b[i] = l; } for (int i = 0; i < (n); i++) b[i + 1] += b[i]; long long int sm = 0; long long int dif = 0; for (int i = 1; i < n; i++) { if (b[i - 1] * (b[i] + dif) < 0) continue; int target = (b[i - 1] > 0) ? -1 : 1; sm += abs(b[i] + dif - target); dif += -b[i] - dif + target; } cout << (sm) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count = 0 sum_i = a[0] if a[0] != 0: for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: count += sum_i + 1 sum_i = -1 else: sum_i = 1 pos_count = 1 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: pos_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: pos_count += sum_i + 1 sum_i = -1 sum_i = -1 neg_count = 1 for i in range(1, n): if sum_i < 0: sum_i += a[i] if sum_i <= 0: neg_count += 1 - sum_i sum_i = 1 elif sum_i > 0: sum_i += a[i] if sum_i >= 0: neg_count += sum_i + 1 sum_i = -1 if neg_count < pos_count: count = neg_count else: count = pos_count print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def resolve(List): # L[0]!=0を起点とする L = List cnt = 0 s = L[0] for i in range(1,len(L)): a = L[i] if(s>0 and s+a>=0): L[i] = -s-1 cnt += (s+a+1) s = -1 elif(s<0 and s+a<=0): L[i] = -s+1 cnt += (-s-a+1) s = 1 else: s += a return cnt def ans(List): L = List a = L[0] c0,c1=0,0 if (a>0): c0 = resolve(L) c1 = (a+1) + resolve([-1]+L[1:]) elif (a<0): c0 = resolve(L) c1 = (-a+1) + resolve([1]+L[1:]) else: c0 = 1 + resolve([1]+L[1:]) c1 = 1 + resolve([-1]+L[1:]) return(min(c0,c1)) def main(): N = int(input()) L = [int(x) for x in input().split(' ')] print(ans(L)) main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000]; int main() { int n; long long sum = 0; long long ans = 0; bool flag = true; bool nextflag = true; bool zeroflag = false; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } if (a[0] < 0) { flag = false; } sum += a[0]; for (int i = 1; i < n; i++) { sum += a[i]; if (sum < 0) { nextflag = false; } else if (sum > 0) { nextflag = true; } else { zeroflag = true; } if (flag == nextflag) { if (nextflag == true) { if (sum >= 0) { ans += (sum + 1); sum = -1; } flag = false; } else { if (sum <= 0) { ans += (sum * -1 + 1); sum = 1; } flag = true; } } else if (zeroflag == true) { cerr << "0!" << endl; if (flag == true) { sum = -1; ans++; flag = false; } else { sum = 1; ans++; flag = true; } } else { flag = nextflag; } zeroflag = false; cerr << ans << endl; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
n = input() a = map(int, raw_input().split()) sum = a[0] c = 0 for i in range(1,n): temp = sum + a[i] if temp*sum > 0: if sum > 0: c += abs(-1-sum-a[i]) sum = -1 continue if sum < 0: c += abs(1-sum-a[i]) sum = 1 continue if temp == 0: c += 1 if sum > 0: sum = -1 continue if sum < 0: sum = 1 continue if temp*sum < 0: sum = temp continue print c
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); vector<long long> sum(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long ans = 0; if (a.at(0) == 0) { if (a.at(1) >= 0) a.at(0)--; else a.at(0)++; ans++; } sum.at(0) = a.at(0); for (int i = 1; i < n; i++) { sum.at(i) = sum.at(i - 1) + a.at(i); if (sum.at(i) * sum.at(i - 1) >= 0 && sum.at(i - 1) >= 0) { a.at(i) -= sum.at(i) + 1; ans += abs(sum.at(i)) + 1; sum.at(i) = -1; } else if (sum.at(i) * sum.at(i - 1) >= 0 && sum.at(i - 1) < 0) { a.at(i) += sum.at(i) + 1; ans += abs(sum.at(i)) + 1; sum.at(i) = 1; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long int check(int sum, long int ans, vector<int> T, int N, bool pre_pm) { for (int i = 1; i < N; i++) { if (pre_pm) { sum += T.at(i); while (0 <= sum) { sum--; ans++; } pre_pm = false; } else { sum += T.at(i); while (sum <= 0) { sum++; ans++; } pre_pm = true; } } return ans; } int main() { int N; vector<int> T; cin >> N; for (int i = 0; i < N; i++) { int tmp; cin >> tmp; T.push_back(tmp); } long int ans = 0; int sum = 0; bool pre_pm; sum = T.at(0); if (0 <= sum) { pre_pm = true; long int tmp1 = check(sum, ans, T, N, pre_pm); pre_pm = false; long int tmp2 = check(-1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } else { pre_pm = false; long int tmp1 = check(sum, ans, T, N, pre_pm); pre_pm = true; long int tmp2 = check(1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = [int(ai) for ai in input().split()] def search(a, flip=False): if not flip: count = 0 else: count = abs(a[0]) + 1 a[0] = 1 if a[0] < 0 else -1 a_sum = 0 for i, ai in enumerate(a): if i == 0: a_sum += ai else: tmp_sum = a_sum tmp_sum += ai if tmp_sum < 0 and a_sum < 0: c = abs(tmp_sum) + 1 elif tmp_sum > 0 and a_sum > 0: c = -abs(tmp_sum) - 1 elif tmp_sum == 0 and a_sum < 0: c = 1 elif tmp_sum == 0 and a_sum > 0: c = -1 else: c = 0 count += abs(c) a_sum = tmp_sum + c return count print(min(search(a, False), search(a, True)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000]; int main() { int n; long long sum = 0; long long ans = 0; bool flag = true; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } if (a[0] < 0) { flag = false; } sum += a[0]; for (int i = 1; i < n; i++) { sum += a[i]; if (flag == true) { if (sum >= 0) { ans += (sum + 1); sum = -1; } flag = false; } else { if (sum <= 0) { ans += (sum * -1 + 1); sum = 1; } flag = true; } cerr << ans << endl; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] sum = a[0] cnt = 0 for i in range(1,n): if sum>0: if sum+a[i]>=0: cnt+=abs(a[i]+1+sum) sum = -1 else: sum +=a[i] else: if sum+a[i]<=0: cnt+=abs(a[i]-1+sum) sum = 1 else: sum+=a[i] print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] nums = new long[n]; for(int i = 0; i < n; i++) { nums[i] = sc.nextLong(); } long[] prefixSum = new long[n]; int minCost = 0; if(nums[0] == 0) { nums[0] = 1; minCost = 1 + count(nums); nums[0] = -1; minCost = Math.min(minCost, 1 + count(nums)); } else { minCost = count(nums); } System.out.println(minCost); } private static int count(long[] nums) { int cnt = 0; long prev = nums[0]; long cur = 0; for(int i = 1; i < nums.length; i++) { cur = nums[i] + prev; if(cur * prev < 0) { prev = cur; continue; } if(prev > 0) { cnt += cur + 1; prev = -1; } else { cnt += 1 - cur; prev = 1; } } return cnt; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); long[] A = new long[N]; for (int i = 0; i < N; i++) { A[i] = sc.nextInt(); } System.out.println( solve(N, A) ); } private static int solve(int N, long[] A) { long a0 = A[0]; if( a0 > 0 ) { int p = solve1(N, A, a0, 0); int m = solve1(N, A, -1, (int)a0 + 1); return Math.min(p, m); } else if( a0 < 0 ) { int p = solve1(N, A, 1, (int)a0 + 1); int m = solve1(N, A, a0, 0); return Math.min(p, m); } else { int p = solve1(N, A, 1, 1); int m = solve1(N, A, -1, 1); return Math.min(p, m); } } private static int solve1(int N, long[] A, long sum, int ans) { for (int i = 1; i < N; i++) { long a = A[i]; if( sum > 0 ) { // 次はminusになるのを期待 if( a + sum >= 0 ) { // sumが-1になるような値にまで変更する // a + sum が 5 の場合、6 だけ操作すると -1 にできる long diff = a + sum + 1; ans += diff; sum = -1; } else { sum += a; } } else { if( a + sum <= 0 ) { long diff = (a + sum) * -1 + 1; ans += diff; sum = 1; } else { sum += a; } } } return ans; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, char const *argv[]) { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int sum[n]; for (int i = 0; i < n; i++) sum[i] = 0; for (int i = 0; i < n; i++) { if (i == 0) sum[i] = a[i]; else sum[i] += sum[i - 1] + a[i]; } int cost_minus = 0; int tmp[n]; for (int j = 0; j < n; j++) tmp[j] = sum[j]; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (tmp[i] >= 0) { cost_minus += abs(tmp[i]) + 1; for (int k = 0; k < n; k++) if (k >= i) tmp[k] -= cost_minus; } } else { if (tmp[i] <= 0) { cost_minus += abs(tmp[i]) + 1; for (int k = 0; k < n; k++) if (k >= i) tmp[k] += cost_minus; } } } int cost_plus = 0; for (int j = 0; j < n; j++) tmp[j] = sum[j]; for (int i = 0; i < n; i++) { if (i % 2 != 0) { if (tmp[i] >= 0) { cost_plus += abs(tmp[i]) + 1; for (int k = 0; k < n; k++) if (k >= i) tmp[k] -= cost_plus; } } else { if (tmp[i] <= 0) { cost_plus += abs(tmp[i]) + 1; for (int k = 0; k < n; k++) if (k >= i) tmp[k] += cost_plus; } } } cout << min(cost_minus, cost_plus) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Abc059c { static public void main(String argv[]) { Scanner sc = new Scanner(System.in); int num; num = sc.nextInt(); int a[] = new int[num]; for (int i = 0; i < num; i++) { a[i] = sc.nextInt(); } int nowPN = 0; int curPN = 0; nowPN = sign(a[0]); int sum = a[0]; int op = 0; int totalop = 0; for (int i = 1; i < num; i++) { sum = sum + a[i]; nowPN = -nowPN; curPN = sign(sum); // System.out.println("nowPN: " + nowPN + " / curPN: " + curPN); // System.out.println("a[" + i + "]= " + a[i] + " / sum = " + sum); if (curPN != nowPN) { if (nowPN == 1) { // ++++ op = 1 - sum; sum = sum + op; } if (nowPN == -1) { // ---- op = sum + 1; sum = sum - op; } totalop += op; // System.out.println(" op: " + op + " / newsum: " + sum); } } System.out.println(totalop); } static public int sign(int a) { if (a == 0) { return 0; } else if (a > 0) { return 1; } else if (a < 0) { return -1; } return 0; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# coding: utf-8 # Your code here! n = int(input()) a = list(map(int,input().split())) def operate(ls,x): sm = 0 ans = 0 ans += abs(ls[0]-x) k = x for i in range(1,len(ls)): sm += k if sm > 0: if abs(ls[i]) <= sm or sm < ls[i]: ans += abs(ls[i]+sm+1) k = -sm-1 else: k = ls[i] if sm < 0: if abs(ls[i]) <= abs(sm) or sm > ls[i]: ans += abs(-sm+1-ls[i]) k = -sm+1 else: k = ls[i] return ans anstot = [] if a[0] > 0: inv = -1 if a[0] < 0: inv = 1 if a[0] != 0: anstot.append(operate(a,a[0])) anstot.append(operate(a,inv)) if a[0] == 0: for i in range(n): if a[i] == 0: a[i] = -1**(i%2) elif a[i] != 0: r = i break anstot.append(r+operate(a,a[0])) for i in range(r): a[i] = -1**((1+i)%2) anstot.append(r+operate(a,a[0])) print(min(anstot))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; int a[100000]; int i; int temp = 0; int ans[2]; ans[0] = 0; ans[1] = 0; cin >> N; for (i = 0; i < N; i++) { cin >> a[i]; } for (i = 0; i < N; i++) { temp = temp + a[i]; if (i % 2 == 1 && temp >= 0) { ans[0] = ans[0] + temp + 1; a[i] = a[i] - ans[0]; temp = temp - ans[0]; } if (i % 2 == 0 && temp <= 0) { ans[0] = ans[0] + 1 - temp; a[i] = a[i] + ans[0]; temp = temp + ans[0]; } } temp = 0; for (i = 0; i < N; i++) { temp = temp + a[i]; if (i % 2 == 0 && temp >= 0) { ans[1] = ans[1] + temp + 1; a[i] = a[i] - ans[1]; temp = temp - ans[1]; } if (i % 2 == 1 && temp <= 0) { ans[1] = ans[1] + 1 - temp; a[i] = a[i] + ans[1]; temp = temp + ans[1]; } } if (ans[0] >= ans[1]) cout << ans[1] << endl; if (ans[0] < ans[1]) cout << ans[0] << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> data(N); for (int i = 0; i < N; i++) { cin >> data[i]; } int64_t count_odd, count_even; count_odd = 0; count_even = 0; int64_t sum_odd = 0; int64_t sum_even = 0; for (int i = 0; i < N; i++) { sum_even += data[i]; if (i % 2 == 0) { if (sum_even >= 0) { count_even += (sum_even + 1); sum_even = -1; } } else { if (sum_even <= 0) { count_even -= (sum_even - 1); sum_even = 1; } } } for (int i = 0; i < N; i++) { sum_odd += data[i]; if (i % 2 == 0) { if (sum_odd <= 0) { count_odd -= (sum_odd - 1); sum_odd = 1; } } else { if (sum_odd >= 0) { count_odd += (sum_odd + 1); sum_odd = 1; } } } cout << min(count_even, count_odd) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {-1, 0, 1, 0}; int dy[] = {0, -1, 0, 1}; int inf = 1e9 + 1000; long long infi = 1e18 + 100; long long n; long long a[100005]; int main() { cin >> n; for (int i = 0; i <= (int)(n - 1); i++) cin >> a[i]; a[n] = 0; long long sum = 0; long long ans = 0; for (int i = 0; i <= (int)(n - 1); i++) { long long p = sum; sum += a[i]; if (p < 0 && sum <= 0) { ans += (1 - sum); sum = 1; } else if (p > 0 && sum >= 0) { ans += (sum + 1); sum = -1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a(int arr[], int n) { int sum = arr[0]; int c = 0; for (int i = 1; i < n; i++) { if (sum > 0) { if (sum + arr[i] < 0) sum = sum + arr[i]; else { c += (sum + arr[i]) + 1; sum = -1; } } else { if (sum + arr[i] > 0) sum = sum + arr[i]; else { c += abs(sum + arr[i]) + 1; sum = 1; } } } return c; } int main() { ios_base ::sync_with_stdio(false); cin.tie(NULL); ; int n; cin >> n; int arr[n]; for (int i = 0; i < n; i++) cin >> arr[i]; int ans1 = a(arr, n); int ans2 = 2 * abs(arr[0]); arr[0] = -arr[0]; ans2 += a(arr, n); cout << min(ans1, ans2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n, a; int i, check = 0; long long int count = 0, sum = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &a); sum += a; if (check == 1 && sum >= 0) { count += (1 + sum); sum = -1; } else if (check == -1 && sum <= 0) { count += (1 - sum); sum = 1; } if (sum > 0) { check = 1; } else { check = -1; } } printf("%lld", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<int, int>; int main() { int n; cin >> n; ll ary[n], cnt = 0; for (int i = 0; i < (n); i++) cin >> ary[i]; ll sum = ary[0]; for (int i = 0; i < (n - 1); i++) { if (sum * (sum + ary[i + 1]) >= 0) { cnt += abs(-(sum + (sum > 0 ? 1 : -1)) - ary[i + 1]); ary[i + 1] = -(sum + (sum > 0 ? 1 : -1)); } sum += ary[i + 1]; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
'use strict' let input = require("fs").readFileSync("/dev/stdin", "utf8"); let Nums = input.split('\n'); let amount = Nums[0]*1; let arr = Nums[1].split(" ").map(x => x*1); let sum = 0; let ans = 0; // 一番最初の正負判定フラグ let isInitPlus = arr[0] > 0 ? true : false; for(let i = 0; i < amount; i++){ // 和 sum += arr[i]; if((sum > 0) != isInitPlus){ ans += Math.abs(sum) + 1; sum = isInitPlus == true? 1 : -1; } isInitPlus =!isInitPlus; } if(sum == 0){ ans += 1; } console.log(ans);
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.util.Scanner; public class Main { public static void main(String[] args) throws IOException{ Sequence solver = new Sequence(); solver.readInput(); solver.solve(); solver.writeOutput(); } static class Sequence { private int n; private int a[]; private int output; private Scanner scanner; public Sequence() { this.scanner = new Scanner(System.in); } public void readInput() { n = Integer.parseInt(scanner.next()); a = new int[n]; for(int i=0; i<n; i++) { a[i] = Integer.parseInt(scanner.next()); } } private int count(boolean sign) { int count=0; int sum=0; for(int i=0; i<n; i++) { sum += a[i]; if((i%2==0) == sign) { // a[i]までの合計を正にするとき if(sum<=0) { count += Math.abs(sum)+1; sum = 1; } } else { // a[i]までの合計を負にするとき if(0<=sum) { count += Math.abs(sum)+1; sum = -1; } } } return count; } public void solve() { output = Math.min(this.count(true), this.count(false)); } public void writeOutput() { System.out.println(output); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) N=list(map(int,input().split())) emptylists=[] number=0 for i in range(n): number+=N[i] emptylists.append(number) emptylists.append(1) ans1=0 i=0 use=0 while i<n: #偶数番が正、奇数番が負の時 if i%2==0: #奇数番め # if emptylists[i]+use<0: if emptylists[i]+use>=0: ans1+=emptylists[i]+use+1 use=-1-emptylists[i] if i%2!=0: #偶数番め # if emptylists[i]+use>0: if emptylists[i]+use<=0: ans1+=1-emptylists[i]-use use=1-emptylists[i] i+=1 ans2=0 j=0 uses=0 while j<n: #偶数番が正、奇数番が負の時 if j%2==0: #奇数番め # if emptylists[i]+uses<0: if emptylists[j]+uses>=0: ans2+=emptylists[j]+uses+1 uses=-1-emptylists[j] if j%2!=0: #偶数番め # if emptylists[j]+uses>0: if emptylists[j]+uses<=0: ans2+=1-emptylists[j]-uses uses=1-emptylists[j] j+=1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<int> num; long long sequence(int s1, int c1, int s2, int c2) { for (int i = 1; i < num.size(); i++) { if (s1 > 0) { if (s1 + num[i] >= 0) { c1 += 1 + num[i] + s1; s1 = -1; } else { s1 += num[i]; } } else { if (s1 + num[i] <= 0) { c1 += 1 - num[i] - s1; s1 = 1; } else { s1 += num[i]; } } if (s2 > 0) { if (s2 + num[i] >= 0) { c2 += 1 + num[i] + s2; s2 = -1; } else { s2 += num[i]; } } else { if (s2 + num[i] <= 0) { c2 += 1 - num[i] - s2; s2 = 1; } else { s2 += num[i]; } } } return min(c1, c2); } int main() { int n; scanf("%d", &n); num.resize(n); for (int i = 0; i < n; i++) scanf("%d", &num[i]); long long ans; if (num[0] == 0) { ans = sequence(1, 1, -1, 1); } else if (num[0] > 0) { ans = sequence(num[0], 0, -1, num[0] + 1); } else { ans = sequence(1, abs(num[0]) + 1, num[0], 0); } printf("%lld", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=[int(i) for i in input().split()] sm=l[0] req=0 if sm==0: sm+=1 req+=1 pr=1 elif sm<0: pr=0 else: pr=1 for i in range(1,n): if pr==1: n1=sm+l[i] if n1<0: sm+=l[i] pass else: sm+=l[i] req+=sm+1 sm=-1 else: n1=sm+l[i] if n1>0: sm+=l[i] pass else: sm+=l[i] req+=(-sm+1) sm=1 pr=1-pr print(req)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const long long LLINF = 1LL << 60; int main(void) { ios::sync_with_stdio(false); cin.tie(0); long long int i, n; long long int sum = 0, ans = 0, minans; cin >> n; vector<int> v(n, 0), w(n, 0); for (i = 0; i < n; i++) { cin >> v[i]; } sum = v[0]; w[0] = v[0]; for (i = 1; i < n; i++) { if ((sum < 0 && sum + v[i] > 0) || (sum > 0 && sum + v[i] < 0)) { w[i] = v[i]; sum += w[i]; continue; } if (sum < 0) { ans += abs(-1 * sum + 1 - v[i]); w[i] = -1 * sum + 1; sum += w[i]; if (sum == 0) { w[i]++; sum++; } } else { ans += abs(-1 * sum - 1 - v[i]); w[i] = -1 * sum - 1; sum += w[i]; if (sum == 0) { w[i]--; sum--; } } } minans = ans; ans = 0; w.clear(); sum = -1 * v[0]; w[0] = -1 * v[0]; for (i = 1; i < n; i++) { if (sum < 0) { ans += abs(-1 * sum + 1 - v[i]); w[i] = -1 * sum + 1; sum += w[i]; if (sum == 0) { w[i]++; sum++; } } else { ans += abs(-1 * sum - 1 - v[i]); w[i] = -1 * sum - 1; sum += w[i]; if (sum == 0) { w[i]--; sum--; } } } minans = min(ans, minans); cout << minans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; long long int i; vector<long long int> v(n); vector<long long int> prefix(n); for (i = 0; i < n; i++) cin >> v[i]; prefix[0] = v[0]; long long int ans = 0; for (i = 1; i < n; i++) { prefix[i] = prefix[i - 1] + v[i]; long long int check = prefix[i - 1] * prefix[i]; if (check >= 0) { ans = ans + abs(prefix[i]) + 1; if (prefix[i - 1] < 0) prefix[i] = 1; else prefix[i] = -1; } } cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int calc(vector<int>& t, bool topPlus) { int parityA, parityB; if (topPlus) { parityA = 0; parityB = 1; } else { parityA = 1; parityB = 0; } int sum = 0; int cnt = 0; for (int i = 0; i < t.size(); ++i) { sum += t.at(i); if (i % 2 == parityA && sum <= 0) { cnt += (1 - sum); sum = 1; } else if (i % 2 == parityB && sum >= 0) { cnt += (1 + sum); sum = -1; } } return cnt; } int main() { int N; cin >> N; vector<int> t(N); for (int i = 0; i < N; ++i) { cin >> t.at(i); } int cnt1 = calc(t, true); int cnt2 = calc(t, false); int cnt = min(cnt1, cnt2); cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<int> vi = vector<int>(n, 0); for (int i = 0; i < n; ++i) { cin >> vi[i]; } int target; if (vi[0] > 0) target = 1; else target = -1; int sum = 0; int cnt = 0; for (int i = 0; i < n; ++i) { sum += vi[i]; if (sum * target <= 0) { cnt += (target > 0) ? target - sum : sum - target; sum = target; } target = -target; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
let id x = x let n = Scanf.scanf "%d\n" id let l = Array.init n (fun _ -> Scanf.scanf "%d " id) |> Array.to_list let c = ref 0 let () = let _ = List.fold_left (fun sum el -> if sum < 0 then let new_sum = sum + el in if new_sum > 0 then new_sum else let () = c := !c + abs new_sum + 1 in 1 else let new_sum = sum + el in if new_sum < 0 then new_sum else let () = c := !c + new_sum + 1 in -1) (List.hd l) (List.tl l) in Printf.printf "%d\n" !c
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static double sequence(int a[], double start) { double count = 0.0, presum = -1.0 * start, sum = 0.0; for(int i : a) { sum += (double)i; if(i == 0)sum += start; if(sum * presum > 0) { double min = Math.abs(sum) + 1; if(presum > 0)sum -= min; else sum += min; count += min; } if(sum == 0) { if(presum > 0)sum--; else sum++; ++count; } presum = sum; } return count; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n, a[]; double count = 0; n = sc.nextInt(); a = new int[n]; for(int i = 0; i < n; ++i) a[i] = sc.nextInt(); sc.close(); if(a[0] == 0)a[0]++; int tmp = Math.abs(a[0]) + 1; if(a[0] > 0)tmp = a[0] - tmp; else tmp = a[0] + tmp; count = Math.min(sequence(a, (double)a[0]),sequence(a, (double)tmp)); System.out.printf("%.0f\n", count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; long long a[100000]; bool flag = true; long long sum = 0; long long ans = 0; cin >> n; for (int i = 0; i < (int)(n); i++) { cin >> a[i]; } if (a[0] > 0) { flag = true; } else if (a[0] < 0) { flag = false; } else { if (a[1] >= 0) { a[0] = -1; flag = false; ans = 1; } else { a[0] = 1; flag = true; ans = 1; } } sum = a[0]; for (int i = (int)(1); i < (int)(n); i++) { sum += a[i]; if (flag == true) { if (sum >= 0) { ans += sum + 1; sum = -1; } } if (flag == false) { if (sum <= 0) { ans += -sum + 1; sum = 1; } } if (sum > 0) { flag = true; } else { flag = false; } } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> auto calc(std::vector<int64_t>& vec, int64_t sum) -> uint64_t { uint64_t result = 0; assert(sum != 0); bool is_sum_negative = sum < 0; for (int i = 1; i < vec.size(); ++i) { int tmp_sum = sum + vec[i]; auto tmp = std::abs(sum) + 1; if (is_sum_negative) { if (tmp_sum <= 0) { sum += tmp; result += std::abs(tmp - vec[i]); } else { sum = tmp_sum; } } else { if (tmp_sum >= 0) { sum -= tmp; result += std::abs(-tmp - vec[i]); } else { sum = tmp_sum; } } is_sum_negative = !is_sum_negative; } return result; } int main(int argc, char const* argv[]) { uint64_t n; std::cin >> n; auto vec = std::vector<int64_t>(n); for (auto& v : vec) { std::cin >> v; } int64_t sum = vec[0]; auto result_0 = std::numeric_limits<uint64_t>::max(); auto result_1 = result_0; if (sum == 0) { sum = -1; result_0 = 1; result_0 += calc(vec, sum); sum = 1; result_1 = 1; result_1 += calc(vec, sum); } else { result_0 = calc(vec, sum); } auto result = std::min(result_0, result_1); std::cout << result << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long N; cin >> N; long A[N]; for (long i = 0; i < N; i++) cin >> A[i]; long numSign = 1, sum = 0, actNum = 0; for (long i = 0; i < N; i++) { if (A[i] > 0) break; else if (A[i] < 0) { numSign *= -1; break; } else numSign *= -1; } for (long i = 0; i < N; i++) { sum += A[i]; if (numSign == 1) { if (sum <= 0) { actNum += 1 - sum; sum = 1; } } else { if (sum >= 0) { actNum += sum - -1; sum = -1; } } numSign *= -1; } cout << actNum << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) now_a = a[0] count = 0 ''' True = positive False = negative ''' sign = True if now_a < 0: sign = False for i in range(1, n): next_a = now_a + a[i] if sign: if next_a >= 0: count += next_a + 1 now_a = -1 else: now_a = next_a sign = False else: if next_a <= 0: count += abs(next_a) + 1 now_a = 1 else: now_a = next_a sign = True print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[100100]; for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 0, sum = a[0]; if (sum == 0) { sum++; ans++; } int sign = (sum > 0 ? 1 : -1); for (int i = 1; i < n; i++) { sum += a[i]; if (sum == 0) { sum += -1 * sign; ans++; } else if (sign > 0 && sum > 0) { long long x = sum + 1; sum -= x; ans += x; } else if (sign < 0 && sum < 0) { long long y = abs(sum) + 1; sum += y; ans += y; } sign *= -1; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int64_t sumi = 0, val1 = 0; int ne = 0; if (a.at(0) == 0) { while (a.at(ne) == 0) { if (ne == 0) val1++; else val1 += 2; ne++; if (ne == n) break; } } int64_t val2 = val1; for (int i = ne; i < n; i++) { if (a.at(0) == 0) { if (ne % 2 == 0) sumi = -1; else sumi = 1; } if (i == 0) { sumi = a.at(i); continue; } if (i % 2 == 1) { if (sumi + a.at(i) < 0) sumi += a.at(i); else { val1 += (sumi + a.at(i) + 1); sumi = -1; } } else { if (sumi + a.at(i) > 0) sumi += a.at(i); else { val1 += (abs(sumi + a.at(i)) + 1); sumi = 1; } } } for (int i = ne; i < n; i++) { if (a.at(0) == 0) { if (ne % 2 == 0) sumi = 1; else sumi = -1; } if (i == 0) { sumi = a.at(i); continue; } if (i % 2 == 1) { if (sumi + a.at(i) > 0) sumi += a.at(i); else { val2 += (abs(sumi + a.at(i)) + 1); sumi = 1; } } else { if (sumi + a.at(i) < 0) sumi += a.at(i); else { val2 += (sumi + a.at(i) + 1); sumi = -1; } } } cout << min(val1, val2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <typename T> using V = vector<T>; template <typename T, typename U> using P = pair<T, U>; int n; V<ll> a; int solve(bool first_plus) { bool will_plus = first_plus; int manip_count = 0; ll sum = 0; for (int i = 0; i < (n); ++i) { int not_enough = 0; if (will_plus) { if (!(sum + a[i] > 0)) { not_enough = 1 - (sum + a[i]); manip_count += not_enough; } } else { if (!(sum + a[i] < 0)) { not_enough = -1 - (sum + a[i]); manip_count += abs(not_enough); } } sum += a[i] + not_enough; will_plus = !will_plus; } return manip_count; } int main() { cin >> n; a.resize(n); for (int i = 0; i < (n); ++i) { cin >> a[i]; } int first_plus = solve(true); int first_minus = solve(false); cout << min(first_plus, first_minus) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int flag[100005], k[100005]; long long a[100005], sum[100005], ans, b[100005], tot[100005], ant; int main() { int m = 0; scanf("%d", &n); scanf("%lld", &a[1]); b[1] = a[1]; sum[1] = a[1]; tot[1] = sum[1]; if (sum[1] > 0) flag[1] = 1; if (sum[1] < 0) flag[1] = 0; if (sum[1] == 0) m = 1; if (m == 0) { for (int i = 2; i <= n; i++) { scanf("%lld", &a[i]); sum[i] = a[i] + sum[i - 1]; if (sum[i] > 0) flag[i] = 1; if (sum[i] < 0) flag[i] = 0; if (flag[i - 1] == 1) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; flag[i] = 0; } } else { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; flag[i] = 1; } } } printf("%lld\n", ans); } else { for (int i = 2; i <= n; i++) { scanf("%lld", &a[i]); flag[1] = 0; ans = 1; b[i] = a[i]; sum[i] = a[i] + sum[i - 1]; if (sum[i] > 0) flag[i] = 1; if (sum[i] < 0) flag[i] = 0; if (flag[i - 1] == 1) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; flag[i] = 0; } } else { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; flag[i] = 1; } } } k[1] = 1; ant = 1; for (int i = 2; i <= n; i++) { tot[i] = b[i] + tot[i - 1]; if (tot[i] > 0) k[i] = 1; if (tot[i] < 0) k[i] = 0; if (k[i - 1] == 1) { if (tot[i] >= 0) { ant += tot[i] + 1; tot[i] = -1; k[i] = 0; } } else { if (tot[i] <= 0) { ant += 1 - tot[i]; tot[i] = 1; k[i] = 1; } } } printf("%lld\n", min(ant, ans)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int j = 0; j < n; j++) { cin >> a[j]; } int ans = 0; int sum = a[0]; for (int i = 1; i < n; i++) { int sum_old = sum; sum = sum + a[i]; if (sum * sum_old < 0) { } else { ans = ans + abs(sum) + 1; sum = (sum_old / abs(sum_old)) * -1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; ll llbs(ll x) { if (x < 0) return -x; return x; } int main() { int N; cin >> N; vector<ll> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); ll sumO = a.at(0), sumE = a.at(0), countO = 0, countE = 0; for (int i = 1; i < N; i++) { ll O = a.at(i), E = a.at(i); if (i % 2 == 0) { if (sumE + E <= 0) { countE += llbs(1 - (sumE + E)); E = 1 - sumE; } if (sumO + O >= 0) { countO += llbs(-1 - (sumO + O)); O = -1 - sumO; } } else { if (sumO + O <= 0) { countO += llbs(1 - (sumO + O)); O = 1 - sumO; } if (sumE + E >= 0) { countE += llbs(-1 - (sumE + E)); E = -1 - sumE; } } sumE += E; sumO += O; } cout << min(countE, countO) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = a[0], kaisu = 0; if (sum == 0) { kaisu++; sum++; } for (int i = 1; i < n; i++) { long long presum = sum; sum += a[i]; if (presum > 0) { if (sum >= 0) { kaisu += sum + 1; a[i] = a[i] - sum - 1; sum = -1; } } if (presum < 0) { if (sum <= 0) { sum = 1; kaisu += 1 - sum; } } } cout << kaisu << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sign(x): return (x > 0) - (x < 0) def main(): n = int(input()) a = [int(an) for an in input().split()] total = a[0] sign_total = sign(a[0]) ans = 0 for i in range(1, n): total += a[i] sign_tmp = sign(total) if total == 0 or sign_total == sign_tmp: val = 0 if sign_total > 0: val = total + 1 ans += val else: val = total - 1 ans -= val total -= val sign_total *= -1 print(ans) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; template <class T> using V = vector<T>; long long GCD(long long a, long long b) { return b ? GCD(b, a % b) : a; } long long LCM(long long a, long long b) { return a / GCD(a, b) * b; } int dx[4] = {-1, 0, 1, 0}; int dy[4] = {0, -1, 0, 1}; int ddx[8] = {-1, 0, 1, 0, 1, 1, -1, -1}; int ddy[8] = {0, -1, 0, 1, 1, -1, 1, -1}; long long int cmp(pair<long long int, long long int> a, pair<long long int, long long int> b) { if (a.second != b.second) return a.second < b.second; else return a.first < b.first; } int main() { cin.tie(0); ios::sync_with_stdio(false); long long int n; cin >> n; V<long long int> a(n); for (long long int i = 0; i < n; i++) cin >> a[i]; bool abc = 0; long long int ans1 = 0, ans2 = 0; bool yn = 0; if (a[0] > 0) { yn = 1; } else if (a[0] < 0) yn = 0; else if (a[0] == 0) { abc = 1; yn = 1; ans1++; ans2++; a[0] = 1; } long long int sum = a[0]; for (long long int i = 1; i < n; i++) { if (yn == 1) { if (sum + a[i] < 0) { sum += a[i]; } else { ans1 += sum + a[i] + 1; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { ans1 += 1 - (sum + a[i]); sum = 1; } } yn = 1 - yn; } if (abc == 1) { yn = 0; a[0] = -1; long long int sum = a[0]; for (long long int i = 1; i < n; i++) { if (yn == 1) { if (sum + a[i] < 0) { sum += a[i]; } else { ans2 += sum + a[i] + 1; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { ans2 += 1 - (sum + a[i]); sum = 1; } } yn = 1 - yn; } } if (abc == 0) cout << ans1 << endl; else cout << (ans1 < ans2 ? ans1 : ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; __int64 dp[100005][2],s[100005][2]; int a[100005]; int main() { //freopen("1.txt","w",stdout); int n; scanf("%d",&n); for(int i=0;i<n;++i) scanf("%d",&a[i]); if(a[0]<0) { dp[0][0]=0; s[0][0]=a[0]; dp[0][1]=1-a[0]; s[0][1]=1; } else if(a[0]>0) { dp[0][1]=0; s[0][1]=a[0]; dp[0][0]=1+a[0]; s[0][0]=-1; } else { dp[0][0]=1; s[0][0]=-1; dp[0][1]=1; s[0][1]=1; } for(int i=1;i<n;++i) { __int64 x=s[i-1][1]; x+=a[i]; if(x<0) { dp[i][0]=0; s[i][0]=x; } else if(x>0) { dp[i][0]=1+x; s[i][0]=-1; } else { dp[i][0]=1; s[i][0]=-1; } dp[i][0]+=dp[i-1][1]; x=s[i-1][0]; x+=a[i]; if(x<0) { dp[i][1]=1-x; s[i][1]=1; } else if(x>0) { dp[i][1]=0; s[i][1]=x; } else { dp[i][1]=1; s[i][1]=1; } dp[i][1]+=dp[i-1][0]; } printf("%I64d\n",min(dp[n-1][0],dp[n-1][1])); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 300000000; const long long MOD = 1000000007; long long gcd(long long a, long long b) { if (b == 0) return a; return gcd(b, a % b); } int main() { int n; cin >> n; long long a[100100]; for (int i = 0; i < n; ++i) { cin >> a[i]; } long long ans = INF; for (int i = 0; i < 2; ++i) { long long count = 0; int su = 0; for (int j = 0; j < n; ++j) { su += a[j]; if (i == 0) { if (j % 2 == 0 && su <= 0) { count += -su + 1; su = 1; } else if (j % 2 == 1 && su >= 0) { count += su + 1; su = -1; } } if (i == 1) { if (j % 2 == 0 && su >= 0) { count += su + 1; su = -1; } else if (j % 2 == 1 && su <= 0) { count += -su + 1; su = 1; } } } ans = min(ans, count); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans = 0 for i in range(n): if i == 0: if a[i] == 0: f = 1 a[i] = 1 elif a[0] > 0: f = 1 elif a[0] < 0: f = 0 else: o = sum(a[:i]) if f == 1: if a[i] + o > 0: c = -1 - o ans += abs(c - a[i]) a[i] = c f = 0 else: if a[i] + o == 0: a[i] -= 1 ans += 1 f = 0 elif f == 0: if a[i] + o < 0: c = 1 - o ans += abs(c - a[i]) a[i] = c f = 1 else: if a[i] + o == 0: a[i] += 1 ans += 1 f = 1 #print(a) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T &a, const T &b) { if (a > b) { a = b; return 1; } return 0; } int main() { ios::sync_with_stdio(false); cin.tie(0); long long N; cin >> N; vector<long long> A(N, 0); for (long long i = 0; i < (long long)(N); i++) { cin >> A[i]; } long long ansP = 0, ansM = 0; long long sumP = 0, sumM = 0; for (long long i = 0; i < (long long)(N); i++) { if (sumP <= 0) { if (A[i] >= 0) { sumP += A[i]; if (sumP <= 0) { ansP += 1 - sumP; sumP = 1; } } else { ansP += 1 - A[i]; sumP += 1; if (sumP <= 0) { ansP += 1 - sumP; sumP = 1; } } } else { if (A[i] <= 0) { sumP += A[i]; if (sumP >= 0) { ansP += 1 + sumP; sumP = -1; } } else { ansP += 1 + A[i]; sumP += -1; if (sumP >= 0) { ansP += 1 + sumP; sumP = 1; } } } if (sumM < 0) { if (A[i] >= 0) { sumM += A[i]; if (sumM <= 0) { ansM += 1 - sumM; sumM = 1; } } else { ansM += 1 - A[i]; sumM += 1; if (sumM <= 0) { ansM += 1 - sumM; sumM = 1; } } } else { if (A[i] <= 0) { sumM += A[i]; if (sumM >= 0) { ansM += 1 + sumM; sumM = -1; } } else { ansM += 1 + A[i]; sumM += -1; if (sumM >= 0) { ansM += 1 + sumM; sumM = -1; } } } } long long ans = min(ansP, ansM); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sign(x): if x<0: return -1 elif x>0: return 1 else: retrun 0 n = int(input()) a = list(map(int,input().split())) cumulative_sum = a[0] flag = sign(cumulative_sum) ans = 0 for i in range(1,n): cumulative_sum += a[i] if sign(cumulative_sum) == flag or sign(cumulative_sum) == 0: ans += abs(-flag - cumulative_sum) flag = sign(cumulative_sum) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = scan.nextLong(); } long sum1 = 0; long sum2 = 0; long ans1 = 0; long ans2 = 0; for (int i = 0; i < n; i++) {//偶数添字が正 sum1 += a[i]; if (i%2 == 0) { if (sum1 > 0) continue; else { ans1 += (1 + Math.abs(sum1)); sum1 = 1; } } else if (i%2 == 1) { if (sum1 < 0) continue; else { ans1 += (sum1 + 1); sum1 = -1; } } } for (int i = 0; i < n; i++) {//奇数添字が正 sum2 += a[i]; if (i%2 == 1) { if (sum2 > 0) continue; else { ans2 += (1 + Math.abs(sum2)); sum2 = 1; } } else if (i%2 == 0) { if (sum2 < 0) continue; else { ans2 += (sum2 + 1); sum2 = -1; } } } if (ans1 == 0) { ans1++; } if (ans2 == 0) { ans2++; } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def f(a) prev = a[0] total = 0 g = lambda{|car, cdr| total = 0 sum = car cdr.each{|curr| case sum <=> 0 when 1; new_curr = [curr, -sum-1].min sum += new_curr total += curr - new_curr when -1; new_curr = [curr, -sum+1].max sum += new_curr total += new_curr - curr end } total += 1 if sum == 0 total } x = g.(a[0], a[1..-1]) y = g.(a[0] > 0 ? -1 : 1, a[1..-1]) [x, y].min end N = gets.to_i A = gets.split.take(N).map(&:to_i) p f(A)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int i = 0; long long sum, count = 0; if (a[0] == 0) { while (a[i] == 0) { i++; } if (i == 1) { sum = (a[i] > 0) ? -1 : 1; count = 1; } else if (i > 1) { sum = (a[i] > 0) ? -1 : 1; count = 1 + 2 * (i - 1); } } else { sum = a[0]; i = 1; } while (i < n) { if (sum > 0) { if (sum + a[i] >= 0) { count += abs(a[i] - (-1 - sum)); a[i] = -1 - sum; } } else { if (sum + a[i] <= 0) { count += abs(a[i] - (1 - sum)); a[i] = 1 - sum; } } sum += a[i]; i++; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>; using vb = vector<bool>; using vvb = vector<vb>; using mii = map<int, int>; using pqls = priority_queue<long long>; using pqlg = priority_queue<long long, vector<long long>, greater<long long>>; using mll = map<long long, long long>; using pll = pair<long long, long long>; using sll = set<long long>; long long divup(long long a, long long b); long long kaijou(long long i); long long P(long long n, long long k); long long C(long long n, long long k); long long GCD(long long a, long long b); long long LCM(long long a, long long b); bool prime(long long N); double distance(vector<long long> p, vector<long long> q, long long n); void press(vector<long long> &v); void ranking(vector<long long> &v); void erase(vector<long long> &v, long long i); void unique(vector<long long> &v); void printv(vector<long long> v); vector<ll> keta(ll x); long long modpow(long long a, long long n, long long mod); long long modinv(long long a, long long mod); vector<long long> inputv(long long n); vector<long long> yakusuu(int n); map<long long, long long> soinsuu(long long n); vector<vector<long long>> maze(long long i, long long j, vector<string> &s); vector<long long> eratos(long long n); set<long long> eraset(long long n); long long divup(long long a, long long b) { long long x = abs(a); long long y = abs(b); long long z = (x + y - 1) / y; if ((a < 0 && b > 0) || (a > 0 && b < 0)) return -z; else if (a == 0) return 0; else return z; } long long kaijou(long long i) { if (i == 0) return 1; long long j = 1; for (long long k = 1; k <= i; k++) { j *= k; } return j; } long long P(long long n, long long k) { if (n < k) return 0; long long y = 1; for (long long i = 0; i < k; i++) { y *= (n - i); } return y; } long long C(long long n, long long k) { if (n < k) return 0; return P(n, k) / kaijou(k); } long long GCD(long long a, long long b) { if (a < b) swap(a, b); long long d = a % b; if (d == 0) { return b; } return GCD(b, d); } long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; } bool prime(long long N) { if (N == 1) { return false; } if (N < 0) return false; long long p = sqrt(N); for (long long i = 2; i <= p; i++) { if (N % i == 0) { return false; } } return true; } double distance(vector<long long> p, vector<long long> q, long long n) { double x = 0; for (long long i = 0; i < n; i++) { x += pow((p.at(i) - q.at(i)), 2); } return sqrt(x); } void press(vector<long long> &v) { long long n = v.size(); vector<long long> w(n); map<long long, long long> m; for (auto &p : v) { m[p] = 0; } long long i = 0; for (auto &p : m) { p.second = i; i++; } for (long long i = 0; i < n; i++) { w.at(i) = m[v.at(i)]; } v = w; return; } void ranking(vector<long long> &v) { long long n = v.size(); map<long long, long long> m; long long i; for (i = 0; i < n; i++) { m[v.at(i)] = i; } vector<long long> w(n); i = 0; for (auto &p : m) { v.at(i) = p.second; i++; } return; } void erase(vector<long long> &v, long long i) { long long n = v.size(); if (i > n - 1) return; for (long long j = i; j < n - 1; j++) { v.at(j) = v.at(j + 1); } v.pop_back(); return; } void unique(vector<long long> &v) { long long n = v.size(); set<long long> s; long long i = 0; while (i < n) { if (s.count(v.at(i))) { erase(v, i); n--; } else { s.insert(v.at(i)); i++; } } return; } void printv(vector<long long> v) { cout << "{ "; for (auto &p : v) { cout << p << ","; } cout << "}" << endl; } vector<ll> keta(ll x) { if (x == 0) return {0}; ll n = log10(x) + 1; vll w(n, 0); for (ll i = 0; i < n; i++) { ll p; p = x % 10; x = x / 10; w[n - 1 - i] = p; } return w; } long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); } vector<long long> inputv(long long n) { vector<long long> v(n); for (long long i = 0; i < n; i++) { cin >> v[i]; } return v; } vector<long long> yakusuu(long long n) { vector<long long> ret; for (long long i = 1; i <= sqrt(n); ++i) { if (n % i == 0) { ret.push_back(i); if (i * i != n) { ret.push_back(n / i); } } } sort(ret.begin(), ret.end()); return ret; } map<long long, long long> soinsuu(long long n) { map<long long, long long> m; long long p = sqrt(n); while (n % 2 == 0) { n /= 2; if (m.count(2)) { m[2]++; } else { m[2] = 1; } } for (long long i = 3; i * i <= n; i += 2) { while (n % i == 0) { n /= i; if (m.count(i)) { m[i]++; } else { m[i] = 1; } } } if (n != 1) m[n] = 1; return m; } vector<vector<long long>> maze(ll i, ll j, vector<string> &s) { ll h = s.size(); ll w = s[0].size(); queue<vector<long long>> q; vector<vector<long long>> dis(h, vll(w, -1)); q.push({i, j}); dis[i][j] = 0; while (!q.empty()) { auto v = q.front(); q.pop(); if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) { dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] - 1, v[1]}); } if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) { dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] - 1}); } if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) { dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] + 1, v[1]}); } if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) { dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] + 1}); } } return dis; } long long modC(long long n, long long k, long long mod) { if (n < k) return 0; long long p = 1, q = 1; for (long long i = 0; i < k; i++) { p = p * (n - i) % mod; q = q * (i + 1) % mod; } return p * modinv(q, mod) % mod; } long long POW(long long a, long long n) { long long res = 1; while (n > 0) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } vector<long long> eratos(long long n) { if (n < 2) return {}; vll v(n - 1); for (long long i = 0; i < n - 1; i++) { v[i] = i + 2; } ll i = 0; while (i < n - 1) { ll p = v[i]; for (ll j = i + 1; j < n - 1; j++) { if (v[j] % p == 0) { v.erase(v.begin() + j); n--; } } i++; } v.resize(n - 1); return v; } set<long long> eraset(long long n) { set<long long> s; vll v = eratos(n); for (auto &t : v) { s.insert(t); } return s; } vll line(ll x1, ll y1, ll x2, ll y2) { vector<ll> v(3); v[0] = y1 - y2; v[1] = x2 - x1; v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2); return v; } double dis(vll v, ll x, ll y) { double s = sqrt(v[0] * v[0] + v[1] * v[1]); return (double)abs(v[0] * x + v[1] * y + v[2]) / s; } ll const mod = 1e9 + 7; int main() { ll n; cin >> n; auto a = inputv(n); ll l = 0; ll res = 0; for (long long i = 0; i < n; i++) { if (l == 0 && a[0] == 0) { for (long long j = 0; j < n - 1; j++) { if (a[j + 1] != 0) { a[0] = a[j + 1] / abs(a[j + 1]); if ((j + 1) & 1) a[0] *= (-1); break; } } if (!a[0]) a[0] = 1; res++; } else if (l < 0) { if (a[i] < -l + 1) { res += -l + 1 - a[i]; a[i] = -l + 1; l = 1; } else { l += a[i]; } } else if (l > 0) { if (a[i] > -l - 1) { res += abs(a[i] - (-l - 1)); a[i] = -l - 1; l = -1; } else { l += a[i]; } } else if (l == 0) { l = a[i]; } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N, A[100000]; int main() { cin >> N; for (int i = 0; i < N; i++) { cin >> A[i]; } long long sum = A[0], cnt = 0; if (sum < 0) { cnt += 1 - sum; sum = 1; } for (int i = 1; i < N; i++) { sum += A[i]; if (i % 2 == 1) { if (sum >= 0) { cnt += sum + 1; sum = -1; } } else { if (sum <= 0) { cnt += 1 - sum; sum = 1; } } } long long sum2 = A[0], cnt2 = 0; if (sum2 > 0) { cnt2 += sum2 + 1; sum2 = -1; } for (int i = 1; i < N; i++) { sum2 += A[i]; if (i % 2 == 1) { if (sum2 <= 0) { cnt2 += 1 - sum2; sum2 = 1; } } else { if (sum2 >= 0) { cnt2 += sum2 + 1; sum2 = -1; } } } cout << min(cnt, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.io.InputStream; import java.util.*; import java.util.function.IntFunction; import java.util.function.Supplier; import java.util.stream.IntStream; import java.util.stream.Stream; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(); int n=scanner.nextInt(); long[] a=new long[n+1]; for(int i=1;i<=n;i++){ a[i]=scanner.nextInt(); } Arrays.parallelPrefix(a,(c,b)->c+b); //put(Arrays.toString(a)); long ans=0; long ruiseki=0; for(int i=1;i<=n;i++){ //put(format("i=%d",i)); //put(format("ruiseki=%d",ruiseki)); long val=a[i]+ruiseki; long val_=a[i-1]+ruiseki; //put(format("val=%d",val)); //put(format("val_=%d",val_)); if(val==0){ long bit=a[i-1]/Math.abs(a[i-1]); ruiseki+=bit*1; ans+=Math.abs(bit); }else if(val>0&&val_>0){ ruiseki-=(val+1); ans+=Math.abs(val+1); }else if(val<0&&val_<0){ ruiseki+=Math.abs(val)+1; ans+=Math.abs(val)+1; } //put(ans); //put(); } put(ans); } public static void print(Object object){ System.out.print(object); } public static void put(Object object) { System.out.println(object); } public static void put(){ System.out.println(); } public static String format(String string, Object... args) { return String.format(string, args); } } final class Scanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next()); } } final class Pair { final public int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int hashCode() { return x+y; } @Override public boolean equals(Object obj) { boolean result=super.equals(obj); if(obj.getClass()!=this.getClass()){ return false; } Pair pair=(Pair)obj; if(this.x==pair.x&&this.y==pair.y) return true; return false; } @Override public String toString() { return String.format("(%d,%d)", x, y); } } final class Tuple<T,V>{ //immutabl1でないことに注意(T,Vがmutableの場合変更可能) final public T t; final public V v; Tuple(T t,V v){ this.t=t; this.v=v; } @Override public int hashCode() { return (t.hashCode()+v.hashCode()); } @Override public boolean equals(Object obj) { if(obj.getClass()!=this.getClass()){ return false; } Tuple<T,V> tuple=(Tuple)obj; return tuple.t.equals(this.t)&&tuple.v.equals(this.v); } @Override public String toString() { return String.format("<Tuple>=<%s,%s>",t,v); } } final class LowerBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) >= 0) ? 1 : -1; } } final class UpperBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) > 0) ? 1 : -1; } } final class Util { static long gcd(long a,long b){ if(a%b==0)return b; return gcd(b,a%b); } static long lcm(long a,long b){ long gcd=gcd(a,b); long result=b/gcd; return a*result; } static int kaijoMod(int n,int mod){ if(n<1) return -1; long result=1; for(int i=n;i>1;i--){ result*=i; result%=mod; } return (int)result; } static <T extends Comparable> Map<T,Integer> count(List<T> list){ //副作用 Collections.sort(list); Map<T,Integer> result=new HashMap<>(); int l=0,r=0; while(l<list.size()){ while(r<list.size()-1&&list.get(r).equals(r+1)){ r++; } result.put(list.get(r),r-l+1); r++; l=r; } return result; } static Map<Integer,Integer> count(int[] array){ //副作用 Arrays.sort(array); Map<Integer,Integer> result=new HashMap<>(); int l=0,r=0; while(l<array.length){ while(r<array.length-1&&array[r]==array[r+1]){ r++; } result.put(array[l],r-l+1); r++; l=r; } return result; } static String toStringBWS(Iterable iterable){ Iterator ite=iterable.iterator(); return toStringBWS(ite); } static String toStringBWS(Iterator ite){ StringBuilder sb=new StringBuilder(); sb.append(ite.next()); while(ite.hasNext()){ sb.append(" "); sb.append(ite.next()); } return sb.toString(); } static String toStringBWS(int[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } static String toStringBWS(long[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = int64_t; int dx[] = {1, 0, -1, 0}; int dy[] = {0, 1, 0, -1}; int DX[] = {1, 1, 0, -1, -1, -1, 0, 1}; int DY[] = {0, -1, -1, -1, 0, 1, 1, 1}; int n; ll hoge(ll a[]) { ll ans = 0; ll temp = 0; for (int(i) = 0; (i) < (n); (i)++) { if (temp > 0 && temp + a[i] > 0) { ans += abs(-1 - temp - a[i]); temp = -1; } else if (temp < 0 && temp + a[i] < 0) { ans += abs(1 - temp - a[i]); temp = 1; } else if (temp + a[i] == 0) { if (temp > 0) { temp = -1; } else { temp = 1; } ans += 1; } else { temp += a[i]; } cout << temp << ", "; } cout << endl; return ans; } void solve() { cin >> n; ll a[n]; for (int(i) = 0; (i) < (n); (i)++) cin >> a[i]; ll ans1 = hoge(a); ll temp = 0; if (a[0] > 0) { temp += (a[0] * (-1) - 1); a[0] = -1; } else if (a[0] < 0) { temp = (a[0] * (-1) + 1); a[0] = 1; } else { temp = 1; a[0] = -1; } ll ans2 = hoge(a) + temp; cout << min(ans1, ans2) << endl; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using static Input; public class Prog { private const int INF = 1000000007; public static void Main() { int n = NextInt(); int[] a = LineInt(); //凸凹の2パターンっぽい int costA = 0; int costB = 0; int now = 0; for (int i = 0; i < a.Length; i++) { if (i % 2 == 0) { if (now + a[i] > 0) { //ok now += a[i]; } else { //ng costA += Math.Abs(now + a[i]) + 1; now = 1; } } else { if (now + a[i] < 0) { //ok now += a[i]; } else { //ng costA += Math.Abs(now + a[i]) + 1; now = -1; } } } now = 0; for (int i = 0; i < a.Length; i++) { if (i % 2 == 1) { if (now + a[i] > 0) { //ok now += a[i]; } else { //ng costB += Math.Abs(now + a[i]) + 1; now = 1; } } else { if (now + a[i] < 0) { //ok now += a[i]; } else { //ng costB += Math.Abs(now + a[i]) + 1; now = -1; } } } Console.WriteLine(Math.Min(costA, costB)); } } public class Input { private static Queue<string> q = new Queue<string>(); private static void Confirm() { if (q.Count == 0) foreach (var s in Console.ReadLine().Split(' ')) q.Enqueue(s); } public static int NextInt() { Confirm(); return int.Parse(q.Dequeue()); } public static long NextLong() { Confirm(); return long.Parse(q.Dequeue()); } public static string NextString() { Confirm(); return q.Dequeue(); } public static double NextDouble() { Confirm(); return double.Parse(q.Dequeue()); } public static int[] LineInt() { return Console.ReadLine().Split(' ').Select(int.Parse).ToArray(); } public static long[] LineLong() { return Console.ReadLine().Split(' ').Select(long.Parse).ToArray(); } public static string[] LineString() { return Console.ReadLine().Split(' ').ToArray(); } public static double[] LineDouble() { return Console.ReadLine().Split(' ').Select(double.Parse).ToArray(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; int b[n]; int a[n]; for (int i = 1; i <= n; i++) { cin >> a[i]; b[i] = a[i]; } long long int sum = 0; int count = 0, count1 = 0; int prev; for (int i = 1; i <= n; i++) { if (i != 1) { if (i % 2 == 0) { if (sum + a[i] <= 0) { count += abs(sum + a[i]) + 1; a[i] = 1; sum = 1; } else { sum += a[i]; } } else { if (sum + a[i] >= 0) { count += abs(sum + a[i]) + 1; a[i] = -1; sum = -1; } else { sum += a[i]; } } } else { if (a[i] >= 0) { sum += -1; count += a[i] + 1; a[i] = -1; } else if (a[i] < 0) { sum += a[i]; } } } for (int i = 0; i < n; i++) a[i] = b[i]; sum = 0; for (int i = 1; i <= n; i++) { if (i != 1) { if (i % 2 != 0) { if (sum + a[i] <= 0) { count1 += abs(sum + a[i]) + 1; a[i] = 1; sum = 1; } else { sum += a[i]; } } else { if (sum + a[i] >= 0) { count1 += abs(sum + a[i]) + 1; a[i] = -1; sum = -1; } else { sum += a[i]; } } } else { if (a[i] <= 0) { sum += -1; count1 += a[i] + 1; a[i] = -1; } else if (a[i] > 0) { sum += a[i]; } } } cout << min(count, count1) << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; class Program { static void Main(string[] args) { new Calc().Solve(); } public class Calc { public Calc() { } public void Solve() { int n = Utils.ReadLine<int>(); var a = Utils.ReadLine<int>(' '); int sum = 0; int x = 0, y = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum < 0) continue; x += Math.Abs(sum) + 1; sum = -1; } else { if (sum > 0) continue; x += Math.Abs(sum) + 1; sum = 1; } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { if (sum < 0) continue; y += Math.Abs(sum) + 1; sum = -1; } else { if (sum > 0) continue; y += Math.Abs(sum) + 1; sum = 1; } } Math.Min(x, y).WriteLine(); return; } } } public static class Utils { public static T ReadLine<T>() { return (T)Convert.ChangeType(Console.ReadLine(), typeof(T)); } public static T[] ReadLine<T>(params char[] separators) { return Console.ReadLine() .Split(separators) .Where(_ => _.Length > 0) .Select(_ => (T)Convert.ChangeType(_, typeof(T))) .ToArray(); } public static List<T> ReadLines<T>(int readCount) { List<T> rt = new List<T>(); for (int i = 0; i < readCount; i++) { rt.Add(ReadLine<T>()); } return rt; } public static string Docking<T>(this IEnumerable<T> s, int sequenceRange, Func<T, string> filter = null) { string str = ""; int c = 0; foreach (var item in s) { str += filter == null ? item.ToString() : filter(item); c++; if (c == sequenceRange) break; } return str; } public static string Docking<T>(this IEnumerable<T> s, Func<T, string> filter = null) { return s.Docking(s.Count(), filter); } public static string RangeDocking<T>(this IEnumerable<T> s, int start, int end, Func<T, string> filter = null) { string str = ""; end = end < s.Count() ? end : s.Count(); var items = s.ToArray(); for (int i = start; i < end; i++) { str += filter == null ? items[i].ToString() : filter(items[i]); } return str; } public static int IntParse(this string n) { return int.Parse(n); } public static void WriteLine(this object obj) { Console.WriteLine(obj); } public static void AddTo<T>(this T obj,List<T> list) { list.Add(obj); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n, ai; vector<long long> a; bool lp, cp; long long calc(vector<long long> &a, bool even) { long long c = 0, sum = 0; bool lp = even, cp; for (int(i) = 0; (i) < (n); (i)++) { sum += a[i]; cp = 0 < sum; if (lp == cp) { c += abs(sum) + 1; sum = lp ? -1 : 1; } lp = !lp; } return c; } int main() { cin >> n; for (int(i) = 0; (i) < (n); (i)++) { cin >> ai; a.push_back(ai); } cout << min(calc(a, true), calc(a, false)) << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "errors" "fmt" "math" "os" "strconv" "strings" ) var sc = bufio.NewScanner(os.Stdin) // NextLine reads a line text from stdin, and then returns its string. func NextLine() string { sc.Scan() return sc.Text() } // NextIntsLine reads a line text, that consists of **ONLY INTEGERS DELIMITED BY SPACES**, from stdin. // And then returns intergers slice. func NextIntsLine() []int { ints := []int{} intsStr := NextLine() tmp := strings.Split(intsStr, " ") for _, s := range tmp { integer, _ := strconv.Atoi(s) ints = append(ints, integer) } return ints } func NextStringsLine() []string { strs := []string{} stringsStr := NextLine() tmp := strings.Split(stringsStr, " ") for _, s := range tmp { strs = append(strs, s) } return strs } // NextRunesLine reads a line text, that consists of **ONLY CHARACTERS ARRANGED CONTINUOUSLY**, from stdin. // Ant then returns runes slice. func NextRunesLine() []rune { return []rune(NextLine()) } // Max returns the max integer among input set. // This function needs at least 1 argument (no argument causes panic). func Max(integers ...int) int { m := integers[0] for i, integer := range integers { if i == 0 { continue } if m < integer { m = integer } } return m } // Min returns the min integer among input set. // This function needs at least 1 argument (no argument causes panic). func Min(integers ...int) int { m := integers[0] for i, integer := range integers { if i == 0 { continue } if m > integer { m = integer } } return m } // PowInt is integer version of math.Pow func PowInt(a, e int) int { if a < 0 || e < 0 { panic(errors.New("[argument error]: PowInt does not accept negative integers")) } fa := float64(a) fe := float64(e) fanswer := math.Pow(fa, fe) return int(fanswer) } // AbsInt is integer version of math.Abs func AbsInt(a int) int { fa := float64(a) fanswer := math.Abs(fa) return int(fanswer) } // DeleteElement returns a *NEW* slice, that have the same and minimum length and capacity. // DeleteElement makes a new slice by using easy slice literal. func DeleteElement(s []int, i int) []int { if i < 0 || len(s) <= i { panic(errors.New("[index error]")) } // appendのみの実装 n := make([]int, 0, len(s)-1) n = append(n, s[:i]...) n = append(n, s[i+1:]...) return n } // Concat returns a *NEW* slice, that have the same and minimum length and capacity. func Concat(s, t []rune) []rune { n := make([]rune, 0, len(s)+len(t)) n = append(n, s...) n = append(n, t...) return n } // sort package (snippets) //sort.Sort(sort.IntSlice(s)) //sort.Sort(sort.Reverse(sort.IntSlice(s))) //sort.Sort(sort.Float64Slice(s)) //sort.Sort(sort.StringSlice(s)) // copy function //a = []int{0, 1, 2} //b = make([]int, len(a)) //copy(b, a) /*******************************************************************/ var n int var A []int func main() { tmp := NextIntsLine() n = tmp[0] A = NextIntsLine() S := make([]int, len(A)) S[0] = A[0] for i := 1; i < len(A); i++ { sum := S[i-1] S[i] = sum + A[i] } // 最初を正とする場合と負とする場合の両方を試す answers := []int{} for _, firstSign := range []int{1, -1} { comp, answer := 0, 0 if (firstSign == 1 && S[0] <= 0) || (firstSign == -1 && S[0] >= 0) { comp = firstSign - S[0] answer = AbsInt(comp) } for i := 1; i < len(S); i++ { var befSign int if S[i-1]+comp < 0 { befSign = -1 } else { befSign = 1 } if (befSign == -1 && S[i]+comp > 0) || (befSign == 1 && S[i]+comp < 0) { continue } x := -befSign - (S[i] + comp) answer += AbsInt(x) comp += x } answers = append(answers, answer) } fmt.Println(Min(answers...)) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long> A(N); int index_not0 = N; bool flag = 0; for (int i = 0; i < N; i++) { cin >> A[i]; if (!flag && A[i] != 0) { index_not0 = i; flag = 1; } } long long ans = 0; vector<long long> sum(N); for (int i = 0; i < index_not0; i++) { ans += i + 1; } bool minus = 0; if (index_not0 != N) { if (A[index_not0] > 0) minus = 0; else minus = 1; } for (int i = index_not0; i < N; i++) { if (i == 0) sum[i] = A[i]; else sum[i] = sum[i - 1] + A[i]; if (minus == 0) { if ((i - index_not0) % 2 == 0) { if (sum[i] < 1) { ans += 1 - sum[i]; sum[i] = 1; } } else { if (sum[i] > -1) { ans += sum[i] + 1; sum[i] = -1; } } } else { if ((i - index_not0) % 2 == 1) { if (sum[i] < 1) { ans += 1 - sum[i]; sum[i] = 1; } } else { if (sum[i] > -1) { ans += sum[i] + 1; sum[i] = -1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 300000000; const long long MOD = 1000000007; long long gcd(long long a, long long b) { if (b == 0) return a; return gcd(b, a % b); } int main() { int n; cin >> n; long long a[100100]; for (int i = 0; i < n; ++i) { cin >> a[i]; } long long ans = INF; for (int i = 0; i < 2; ++i) { long long count = 0; long long su = 0; for (int j = 0; j < n; ++j) { su += a[j]; if (i == 0) { if (j % 2 == 1 && su <= 0) { count += -su + 1; su = 1; } else if (j % 2 == 0 && su >= 0) { count += su + 1; su = -1; } } if (i == 1) { if (j % 2 == 1 && su >= 0) { count += su + 1; su = -1; } else if (j % 2 == 0 && su <= 0) { count += -su + 1; su = 1; } } } ans = min(ans, count); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int,input().split())) totals = [0] * N totals[0] = A[0] con = 0 if totals[0] == 0: for i in range(1,N): if A[i] != 0: f = A[i] if f > 0: totals[0] = -1 else: totals[0] = 1 break else: totals[0] = 1 con += 1 for i in range(1,N): totals[i] = totals[i - 1] + A[i] #チェック ##符号が等しいか、ゼロなら、A[i - 1]と異符号で絶対値が1の数にする if totals[i - 1] * totals[i] >= 0: if totals[i - 1] < 0: con += abs(1 - totals[i]) totals[i] = 1 else: con += abs(-1 - totals[i]) totals[i] = -1 print(con)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(a) for a in input().split()] times = 0 previous = a[0] for i in range(1, n): if previous < 0: if previous + a[i] > 0: previous = previous + a[i] else: times += 1 - (previous + a[i]) previous = 1 elif previous > 0: if previous + a[i] < 0: previous = previous + a[i] else: times += abs(-1 - (previous + a[i])) previous = -1 times2 = 0 # if a[0] > 0: # times2 += abs(-1 - a[0]) # previous = -1 # else: # times2 += 1 - a[0] # previous = 1 previous = -a[0] for i in range(1, n): if previous < 0: if previous + a[i] > 0: previous = previous + a[i] else: times2 += 1 - (previous + a[i]) previous = 1 elif previous > 0: if previous + a[i] < 0: previous = previous + a[i] else: times2 += abs(-1 - (previous + a[i])) previous = -1 print(min(times, times2))