Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>; using vb = vector<bool>; using vvb = vector<vb>; using mii = map<int, int>; using pqls = priority_queue<long long>; using pqlg = priority_queue<long long, vector<long long>, greater<long long>>; using mll = map<long long, long long>; using pll = pair<long long, long long>; using sll = set<long long>; long long divup(long long a, long long b); long long kaijou(long long i); long long P(long long n, long long k); long long C(long long n, long long k); long long GCD(long long a, long long b); long long LCM(long long a, long long b); bool prime(long long N); double distance(vector<long long> p, vector<long long> q, long long n); void press(vector<long long> &v); void ranking(vector<long long> &v); void erase(vector<long long> &v, long long i); void unique(vector<long long> &v); void printv(vector<long long> v); vector<ll> keta(ll x); long long modpow(long long a, long long n, long long mod); long long modinv(long long a, long long mod); vector<long long> inputv(long long n); vector<long long> yakusuu(int n); map<long long, long long> soinsuu(long long n); vector<vector<long long>> maze(long long i, long long j, vector<string> &s); vector<long long> eratos(long long n); set<long long> eraset(long long n); long long divup(long long a, long long b) { long long x = abs(a); long long y = abs(b); long long z = (x + y - 1) / y; if ((a < 0 && b > 0) || (a > 0 && b < 0)) return -z; else if (a == 0) return 0; else return z; } long long kaijou(long long i) { if (i == 0) return 1; long long j = 1; for (long long k = 1; k <= i; k++) { j *= k; } return j; } long long P(long long n, long long k) { if (n < k) return 0; long long y = 1; for (long long i = 0; i < k; i++) { y *= (n - i); } return y; } long long C(long long n, long long k) { if (n < k) return 0; return P(n, k) / kaijou(k); } long long GCD(long long a, long long b) { if (a < b) swap(a, b); long long d = a % b; if (d == 0) { return b; } return GCD(b, d); } long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; } bool prime(long long N) { if (N == 1) { return false; } if (N < 0) return false; long long p = sqrt(N); for (long long i = 2; i <= p; i++) { if (N % i == 0) { return false; } } return true; } double distance(vector<long long> p, vector<long long> q, long long n) { double x = 0; for (long long i = 0; i < n; i++) { x += pow((p.at(i) - q.at(i)), 2); } return sqrt(x); } void press(vector<long long> &v) { long long n = v.size(); vector<long long> w(n); map<long long, long long> m; for (auto &p : v) { m[p] = 0; } long long i = 0; for (auto &p : m) { p.second = i; i++; } for (long long i = 0; i < n; i++) { w.at(i) = m[v.at(i)]; } v = w; return; } void ranking(vector<long long> &v) { long long n = v.size(); map<long long, long long> m; long long i; for (i = 0; i < n; i++) { m[v.at(i)] = i; } vector<long long> w(n); i = 0; for (auto &p : m) { v.at(i) = p.second; i++; } return; } void erase(vector<long long> &v, long long i) { long long n = v.size(); if (i > n - 1) return; for (long long j = i; j < n - 1; j++) { v.at(j) = v.at(j + 1); } v.pop_back(); return; } void unique(vector<long long> &v) { long long n = v.size(); set<long long> s; long long i = 0; while (i < n) { if (s.count(v.at(i))) { erase(v, i); n--; } else { s.insert(v.at(i)); i++; } } return; } void printv(vector<long long> v) { cout << "{ "; for (auto &p : v) { cout << p << ","; } cout << "}" << endl; } vector<ll> keta(ll x) { if (x == 0) return {0}; ll n = log10(x) + 1; vll w(n, 0); for (ll i = 0; i < n; i++) { ll p; p = x % 10; x = x / 10; w[n - 1 - i] = p; } return w; } long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); } vector<long long> inputv(long long n) { vector<long long> v(n); for (long long i = 0; i < n; i++) { cin >> v[i]; } return v; } vector<long long> yakusuu(long long n) { vector<long long> ret; for (long long i = 1; i <= sqrt(n); ++i) { if (n % i == 0) { ret.push_back(i); if (i * i != n) { ret.push_back(n / i); } } } sort(ret.begin(), ret.end()); return ret; } map<long long, long long> soinsuu(long long n) { map<long long, long long> m; long long p = sqrt(n); while (n % 2 == 0) { n /= 2; if (m.count(2)) { m[2]++; } else { m[2] = 1; } } for (long long i = 3; i * i <= n; i += 2) { while (n % i == 0) { n /= i; if (m.count(i)) { m[i]++; } else { m[i] = 1; } } } if (n != 1) m[n] = 1; return m; } vector<vector<long long>> maze(ll i, ll j, vector<string> &s) { ll h = s.size(); ll w = s[0].size(); queue<vector<long long>> q; vector<vector<long long>> dis(h, vll(w, -1)); q.push({i, j}); dis[i][j] = 0; while (!q.empty()) { auto v = q.front(); q.pop(); if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) { dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] - 1, v[1]}); } if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) { dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] - 1}); } if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) { dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] + 1, v[1]}); } if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) { dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] + 1}); } } return dis; } long long modC(long long n, long long k, long long mod) { if (n < k) return 0; long long p = 1, q = 1; for (long long i = 0; i < k; i++) { p = p * (n - i) % mod; q = q * (i + 1) % mod; } return p * modinv(q, mod) % mod; } long long POW(long long a, long long n) { long long res = 1; while (n > 0) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } vector<long long> eratos(long long n) { if (n < 2) return {}; vll v(n - 1); for (long long i = 0; i < n - 1; i++) { v[i] = i + 2; } ll i = 0; while (i < n - 1) { ll p = v[i]; for (ll j = i + 1; j < n - 1; j++) { if (v[j] % p == 0) { v.erase(v.begin() + j); n--; } } i++; } v.resize(n - 1); return v; } set<long long> eraset(long long n) { set<long long> s; vll v = eratos(n); for (auto &t : v) { s.insert(t); } return s; } vll line(ll x1, ll y1, ll x2, ll y2) { vector<ll> v(3); v[0] = y1 - y2; v[1] = x2 - x1; v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2); return v; } double dis(vll v, ll x, ll y) { double s = sqrt(v[0] * v[0] + v[1] * v[1]); return (double)abs(v[0] * x + v[1] * y + v[2]) / s; } ll const mod = 1e9 + 7; int main() { ll n; cin >> n; auto a = inputv(n); ll l = 0; ll res = 0; for (long long i = 0; i < n; i++) { if (l == 0 && a[0] == 0) { for (long long j = 0; j < n - 1; j++) { if (a[j + 1]) { a[0] = a[j + 1] / abs(a[j + 1]); if ((j + 1) & 1) a[0] *= (-1); break; } } if (!a[0]) a[0] = 1; res++; } else if (l < 0) { if (a[i] < -l + 1) { res += -l + 1 - a[i]; a[i] = -l + 1; l = 1; } else { l += a[i]; } } else if (l > 0) { if (a[i] > -l - 1) { res += abs(a[i] - (-l - 1)); a[i] = -l - 1; l = -1; } else { l += a[i]; } } else if (l == 0) { l = a[i]; } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int sum = 0; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } sum += a[0]; int count = 0; for (int i = 1; i < n; i++) { if (sum < 0) { sum += a[i]; if (sum <= 0) { count += abs(sum) + 1; sum = 1; } } else { sum += a[i]; if (sum >= 0) { count += sum + 1; sum = -1; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i ary = gets.split.map(&:to_i) #even > 0 sumE = ary[0] sumO = ary[0] > 0 ? -1 : 1 ansE = 0 ansO = ary[0].abs + 1 for i in 1 .. n - 1 if sumE * (sumE + ary[i]) >= 0 if sumE > 0 ansE += (- sumE - 1 - ary[i]).abs sumE = -1 else ansE += (- sumE - 1 - ary[i]).abs sumE = 1 end else sumE += ary[i] end if sumO * (sumO + ary[i]) >= 0 if sumO > 0 ansO += (- sumO - 1 - ary[i]).abs sumO = -1 else ansO += (- sumO - 1 - ary[i]).abs sumO = 1 end else sumO += ary[i] end end puts [ansE, ansO].min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } int main() { int n; cin >> n; vector<ll> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; ll sum = a[0]; ll ans = 0; if (sum >= 0) { ans = (sum - (-1)); } for (int i = (1); i < (n); ++i) { sum += a[i]; if (sum * (sum - a[i]) < 0) ; else { if (sum == 0) { if (sum - a[i] < 0) { sum = 1; ans++; } else { ans++; sum = -1; } } else if (sum > 0) { ans += (sum - (-1)); sum = -1; } else { ans += (1 - sum); sum = 1; } } } ll tmp = ans; sum = a[0]; ans = 0; if (sum <= 0) { ans = (1 - sum); } for (int i = (1); i < (n); ++i) { sum += a[i]; if (sum * (sum - a[i]) < 0) ; else { if (sum == 0) { if (sum - a[i] < 0) { sum = 1; ans++; } else { ans++; sum = -1; } } else if (sum > 0) { ans += (sum - (-1)); sum = -1; } else { ans += (1 - sum); sum = 1; } } } ans = min(tmp, ans); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int i = 0; int N; int a[100000]; int wa[2] = {0, 0}; int ans[2] = {0, 0}; cin >> N; for (i = 0; i < N; i++) { cin >> a[i]; } wa[0] = a[0]; if (wa[0] < 0) { ans[0] = ans[0] + 1 - wa[0]; wa[0] = 1; } for (i = 1; i < N; i++) { wa[1] = wa[0] + a[i]; if (wa[0] > 0) { if (wa[1] >= 0) { ans[0] = ans[0] + wa[1] + 1; wa[1] = -1; } } else { if (wa[1] <= 0) { ans[0] = ans[0] + 1 - wa[1]; wa[1] = 1; } } wa[0] = wa[1]; } wa[0] = a[0]; if (wa[0] > 0) { ans[1] = ans[1] + 1 + wa[0]; wa[0] = -1; } for (i = 1; i < N; i++) { wa[1] = wa[0] + a[i]; if (wa[0] > 0) { if (wa[1] >= 0) { ans[1] = ans[1] + wa[1] + 1; wa[1] = -1; } } else { if (wa[1] <= 0) { ans[1] = ans[1] + 1 - wa[1]; wa[1] = 1; } } wa[0] = wa[1]; } if (ans[0] < ans[1]) { cout << ans[0]; } else { cout << ans[1]; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; vector<long long> s(n + 1); vector<long long> sm(n + 1); for (int i = 0; i < (int)(n); i++) { s[i + 1] = s[i] + a[i]; sm[i + 1] = s[i] + a[i]; } long long ans1 = 0; long long ans2 = 0; long long cnt1 = 0; long long cnt2 = 0; if (0 < s[1]) { ans2 = s[1] + 1; sm[1] = -1; cnt2 = -s[1] - 1; } else if (0 > s[1]) { ans1 = -s[1] + 1; s[1] = 1; cnt1 = abs(s[1]) + 1; } else { sm[1] = -1; cnt2 = -1; s[1] = 1; ans1 = 1; cnt1 = 1; ans2 = 1; } for (int i = 1; i < (int)(n); i++) { s[i + 1] += cnt1; sm[i + 1] += cnt2; if (0 <= s[i] * (s[i + 1])) { if ((i + 1) % 2 == 1) { ans1 += abs(s[i + 1]) + 1; cnt1 += abs(s[i + 1]) + 1; s[i + 1] = 1; } else { ans1 += abs(s[i + 1]) + 1; cnt1 += -1 * abs(s[i + 1]) - 1; s[i + 1] = -1; } } if (0 <= sm[i] * sm[i + 1]) { if ((i + 1) % 2 == 0) { ans2 += abs(sm[i + 1]) + 1; cnt2 += abs(sm[i + 1]) + 1; sm[i + 1] = 1; } else { ans2 += abs(sm[i + 1]) + 1; cnt2 += -1 * sm[i + 1] - 1; sm[i + 1] = -1; } } } long long res = min(ans1, ans2); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Abc059c { static public void main(String argv[]) { Scanner sc = new Scanner(System.in); int num; num = sc.nextInt(); int a[] = new int[num]; for (int i = 0; i < num; i++) { a[i] = sc.nextInt(); } int nowPN = 0; int curPN = 0; nowPN = sign(a[0]); int sum = a[0]; int op = 0; int totalop = 0; for (int i = 1; i < num; i++) { sum = sum + a[i]; nowPN = -nowPN; curPN = sign(sum); System.out.println("nowPN: " + nowPN + " / curPN: " + curPN); System.out.println("a[" + i + "]= " + a[i] + " / sum = " + sum); if (curPN != nowPN) { if (nowPN == 1) { // ++++ op = 1 - sum; sum = sum + op; } if (nowPN == -1) { // ---- op = sum + 1; sum = sum - op; } totalop += op; System.out.println(" op: " + op + " / newsum: " + sum); } } System.out.println(totalop); } static public int sign(int a) { if (a == 0) { return 0; } else if (a > 0) { return 1; } else if (a < 0) { return -1; } return 0; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) s = a[0] ans = 0 for e in a[1:]: if (s+e)*s >= 0: if s+e < 0: ans += 1-(s+e) s = 1 else: ans += 1+(s+e) s = -1 else: s += e print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import itertools def sign(num): if num < 0: return -1 elif num > 0: return 1 else: return 0 N = input() a_i = list(map(int, input().split())) a_sum = [a_i[0]] for i, a in enumerate(a_i[1:]): i += 1 a_sum.append(a_sum[-1]+a) signs = [1, -1] for i, sum_i in enumerate(a_sum): if sum_i != 0 && i%2 == 0: signs = [sign(sum_i), -sign(sum_i)] break elif sum_i != 0 && i%2 == 1: signs = [-sign(sum_i), sign(sum_i)] break a_sum = 0 changes = 0 for i, a in enumerate(a_i): a_sum += a if sign(a_sum) != signs[i%2]: changes += abs(a_sum) + 1 a_sum = signs[i%2] print(changes) # # for i, sum_i in enumerate(a_sum): # if i == 0: # signs = [sign(sum_i), -sign(sum_i)] # elif sign(sum_i) != signs[i%2]: # a_sum[i:] = [num + (abs(sum_i) + 1) * signs[i%2] for num in a_sum[i:]] # changes += abs(sum_i) + 1 # # print(a_sum) # print(changes)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long ans = 0; vector<long long> sum(n); sum[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (signbit(sum[i]) == signbit(sum[i - 1])) { ans += abs(sum[i]) + 1; sum[i] = sum[i - 1] / abs(sum[i - 1]) * (-1); } else if (sum[i] == 0) { sum[i] = sum[i - 1] / abs(sum[i - 1]) * (-1); ans += 1; } } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0; cin >> n; vector<int> a(n), s(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } s.at(0) = a.at(0); for (int i = 1; i <= n - 1; i++) { s.at(i) = a.at(i) + s.at(i - 1); } for (int i = 0; i < n; i++) { if (i % 2 == 0 && s.at(i) + sum1 <= 0) { sum2 += 1 - s.at(i) - sum1; ans1 += abs(1 - s.at(i) - sum1); } else if (i % 2 == 1 && s.at(i) + sum1 >= 0) { sum2 -= s.at(i) + sum1 + 1; ans1 += abs(s.at(i) + sum1 + 1); } sum1 = sum2; } sum1 = 0; sum2 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 1 && s.at(i) + sum1 <= 0) { sum2 += 1 - s.at(i) - sum1; ans2 += abs(1 - s.at(i) - sum1); } else if (i % 2 == 0 && s.at(i) + sum1 >= 0) { sum2 -= s.at(i) + sum1 + 1; ans2 += abs(s.at(i) + sum1 + 1); } sum1 = sum2; } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long cnt = 0; for (int i = 1; i < n; i++) { long long nsum = sum + a[i]; if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) { sum = nsum; continue; } if (nsum == 0) { sum = (sum > 0 ? -1 : 1); cnt += 1; } else { if (sum > 0 && nsum > 0) sum = -1; else sum = 1; cnt += abs(nsum) + 1; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
///Bismillahir Rahmanir Rahim #include<bits/stdc++.h> #define ll long long #define int ll #define fi first #define si second #define mp make_pair #define pb push_back #define pi pair<ll,ll> #define clr(x) memset(x,0,sizeof(x)); #define f(i,l,r) for(int i=l;i<=r;i++) #define rf(i,r,l) for(int i=r;i>=l;i--) #define done(i) cout<<"done = "<<i<<endl; #define show(x,y) cout<<x<<" : ";for(auto z:y)cout<<z<<" ";cout<<endl; #define fast ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0); using namespace std; const ll inf=1e18; const int mod=1e9+7; const int M=100005; int n; int a[M]; main() { fast cin>>n; int ses; f(i,1,n) { cin>>a[i]; } int sum=0; int cost=0; f(i,1,n) { sum+=a[i]; if(i%2==0) { if(sum>0) { cost+=(sum+1); sum=-1; } } else { if(sum<0) { cost+=(abs(sum)+1); sum=1; } } } //cout<<cost<<"!"<<endl; ses=cost; sum=0; cost=0; f(i,1,n) { sum+=a[i]; if(i%2==1) { if(sum>=0) { cost+=(sum+1); sum=-1; } } else { if(sum<=0) { cost+=(abs(sum)+1); sum=1; } } } // cout<<cost<<"!!"<<endl; ses=min(ses,cost); cout<<ses<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) Cost = lambda a, Sum:0 if (Sum > 0) ^ (Sum + a > 0) else abs(Sum + a) + 1 Sum = lambda a, preSum:preSum+a if (Sum > 0) ^ (preSum + a > 0) else -preSum//abs(preSum) pSum = Sum(A[0],0) nSum = Sum(A[0],0) pCost = 0 nCost = 0 for a in A[1:]: pCost += Cost(a, pSum) pSum = Sum(a, pSum) nCost += Cost(a, nSum) nSum = Sum(a, nSum) print(min(pCost, nCost))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) sm=A[0] cnt=0 if A[0]>0: for i in range(1,N): sm+=A[i] if i%2==1: if sm>=0: cnt+=sm+1 sm=-1 else: if sm<=0: cnt+=sm*-1+1 sm=1 elif A[0]<0: for i in range(1,N): sm+=A[i] if i%2==1: if sm<=0: cnt+=sm*-1+1 sm=1 else: if sm>=0: cnt+=sm+1 sm=-1 elif A[0]==0: a=0 for i in range(1,N): if A[i]==0: a=i else: break if A[a+1]>0: sm=-1 for i in range(a+1,N): sm+=A[i] if i%2==1: if sm>=0: cnt+=sm+1 sm=-1 else: if sm<=0: cnt+=sm*-1+1 sm=1 if A[a+1]<0: sm=1 for i in range(a+1,N): sm+=A[i] if i%2==1: if sm<=0: cnt+=sm*-1+1 sm=1 else: if sm>=0: cnt+=sm+1 sm=-1 cnt+=2*a+1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[110000], sumpl[110000] = {}; int summi[110000] = {}; int mi = 0, pl = 0; for (int i = 0; i < n; i++) { cin >> a[i]; if (i == 0) { sumpl[0] = a[i]; summi[0] = a[i]; } else { sumpl[i] = sumpl[i - 1] + a[i]; summi[i] = summi[i - 1] + a[i]; } if (i % 2 == 0) { if (sumpl[i] <= 0) { pl += abs(sumpl[i]) + 1; sumpl[i] += (-1 * sumpl[i] + 1); } if (summi[i] >= 0) { mi += abs(summi[i]) + 1; summi[i] += (-1 * summi[i] - 1); } } else { if (sumpl[i] >= 0) { pl += abs(sumpl[i]) + 1; sumpl[i] += (-1 * sumpl[i] - 1); } if (summi[i] <= 0) { mi += abs(summi[i]) + 1; summi[i] += (-1 * summi[i] + 1); } } } cout << (pl < mi ? pl : mi) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<int> v(1e5); long long solve(int n) { long long sum = v[0]; long long ans = 0; for (int i = 1; i < n; i++) { if (sum < 0 && sum + v[i] > 0) sum += v[i]; else if (sum > 0 && sum + v[i] < 0) sum += v[i]; else if (sum < 0 && sum + v[i] <= 0) ans += abs(sum + v[i]) + 1, sum = 1; else if (sum > 0 && sum + v[i] >= 0) ans += abs(sum + v[i]) + 1, sum = -1; } return ans; } int main() { int n; cin >> n; for (int i = 0; i < n; i++) cin >> v[i]; long long ans = solve(n); for (int i = 0; i < n; i++) v[i] *= -1; ans = max(ans, solve(n)); cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int64_t N; cin >> N; int64_t score = 0; int64_t hard; for (int64_t i = 1; i <= N; i++) { score += i; if (score >= N) { hard = i; break; } } vector<int64_t> ans; ans.push_back(hard); N -= hard; for (int64_t i = hard - 1; i > 0; i--) { if (N >= i) { ans.push_back(i); N -= i; } } for (int64_t i = 0; i < ans.size(); i++) { cout << ans[i] << "\n"; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100000]; int getTotal(int n, int dir) { int total{}, sum{}; for (int i{0}; i < n; ++i) { sum += a[i]; if (dir > 0 && sum <= 0) { total += -sum + 1; sum = 1; } else if (dir < 0 && sum >= 0) { total += sum + 1; sum = -1; } dir *= -1; } return total; } int main() { int n; cin >> n; for (int i{0}; i < n; ++i) cin >> a[i]; int try1 = getTotal(n, 1); int try2 = getTotal(n, -1); printf("%d\n", ((try1) < (try2) ? (try1) : (try2))); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long ans = 0; vector<long long> inp; vector<long long> comp; long long num1; cin >> num1; comp.push_back(num1); if (num1 >= 0) { for (int i = 0; i < n - 1; i++) { long long num; cin >> num; if (i % 2 == 0) { if (num + comp[i] < 0) { comp.push_back(num + comp[i]); } else { comp.push_back(-1); ans += max(num, comp[i]) + 1 + min(num, comp[i]); } } else { if (num + comp[i] > 0) { comp.push_back(num + comp[i]); } else { comp.push_back(1); ans += abs(min(num, comp[i])) + 1 - max(num, comp[i]); } } } } else { for (int i = 0; i < n - 1; i++) { long long num; cin >> num; if (i % 2 != 0) { if (num + comp[i] < 0) { comp.push_back(num + comp[i]); } else { comp.push_back(-1); ans += max(num, comp[i]) + 1 + min(num, comp[i]); } } else { if (num + comp[i] > 0) { comp.push_back(num + comp[i]); } else { comp.push_back(1); ans += abs(min(num, comp[i])) + 1 - max(num, comp[i]); } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n, cnt = 0; cin >> n; bool flag; ll a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } if (a[0] >= 0) { flag = true; } else { flag = false; } int sum = a[0]; for (int i = 1; i < n; i++) { bool flag2; int tmp = sum; sum += a[i]; if (sum == 0) { if (flag) { sum -= 1; flag = false; cnt++; } else { sum += 1; flag = true; cnt++; } } else { if (sum > 0) { flag2 = true; } else { flag2 = false; } if (flag == flag2) { if (flag2) { while (sum >= 0) { sum--; cnt++; } flag2 = false; } else { while (sum <= 0) { sum++; cnt++; } flag2 = true; } } flag = flag2; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) nums = list(map(int, input().split())) ans = 10**10+1 for start in [-1, 1]: before = start cnt = 0 sum_n = 0 for num in nums: sum_n += num if before*sum_n >= 0: if before < 0: cnt += 1-sum_n sum_n = 1 else: cnt += 1+sum_n sum_n = -1 before = sum_n ans = min(ans, cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Main main = new Main(); main.run(); } public void run() { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int sum[]=new int[n]; sum[0]=sc.nextInt(); boolean evenPlus = true; if(sum[0]<0) evenPlus=false; int ans = 0; for(int i=1; i<n; i++) { int a = sc.nextInt(); if(i%2==0) { if(evenPlus) { if(sum[i-1]+a <= 0) { ans += 1-(sum[i-1]+a); sum[i]=1; } else { sum[i]=sum[i-1]+a; } } else { if(sum[i-1]+a >= 0) { ans += Math.abs(sum[i-1]+a)+1; sum[i]=-1; } else { sum[i]=sum[i-1]+a; } } } else { if(!evenPlus) { if(sum[i-1]+a <= 0) { ans += 1-(sum[i-1]+a); sum[i]=1; } else { sum[i]=sum[i-1]+a; } } else { if(sum[i-1]+a >= 0) { ans += Math.abs(sum[i-1]+a)+1; sum[i]=-1; } else { sum[i]=sum[i-1]+a; } } } } System.out.println(ans); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> signed main() { long long n; std::cin >> n; std::vector<long long> a(n); for (long long i = 0; i < (n); i++) std::cin >> a[i]; long long sum = a[0]; long long count = 0; for (long long i = 1; i < n; i++) { if ((sum + a[i]) * sum >= 0) { if (sum > 0) { count += a[i] + sum + 1; sum = -1; } else if (sum < 0) { count += -a[i] - sum + 1; sum = 1; } } else sum += a[i]; } std::cout << (count) << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) counter = 0 ####操作回数 A.reverse() S = 0 a = A.pop() if a==0: counter += 1 while A: b = A.pop() if b == 0: counter += 2 elif b>0: A.append(b) S = -1 break elif b<0: A.append(b) S = 1 break else: S += a while A: c = A.pop() if c>=0 and S>0: counter += abs(c+S)+1 S = -1 elif c<=0 and S<0: counter += abs(c+S)+1 S = 1 elif (c>=0 and S<0) and S+c<=0: counter += abs(S+c)+1 S = 1 elif (c=<0 and S>0) and S+c>=0: counter += abs(S+c)+1 S = -1 else: S += c print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long long a[N]; for (int i = 0; i < N; i++) cin >> a[i]; long long sum = a[0]; long long ans = 0; for (int i = 1; i < N; i++) { if (sum + a[i] > 0 && sum > 0) { ans += abs(-sum - 1 - a[i]); sum = -1; } else if (sum + a[i] < 0 && sum < 0) { ans += abs(-sum + 1 - a[i]); sum = 1; } else if (sum + a[i] == 0) { if (sum < 0) { sum = 1; ans++; } else { sum = -1; ans++; } } else sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = __int64_t; int dx[] = {1, 0, -1, 0}; int dy[] = {0, 1, 0, -1}; int DX[] = {1, 1, 0, -1, -1, -1, 0, 1}; int DY[] = {0, -1, -1, -1, 0, 1, 1, 1}; void solve() { int n; ll x, sum = 0, count = 0; cin >> n; for (int(i) = 0; (i) < (n); (i)++) { cin >> x; if (i > 0) { ll temp; if (sum < 0) { if (sum + x < 0) { temp = (sum + x) * (-1) + 1; x += temp; count += temp; } else if (sum + x == 0) { x++; count++; } } else { if (sum + x > 0) { temp = (sum + x) * (-1) - 1; x += temp; count += abs(temp); } else if (sum + x == 0) { x--; count++; } } } sum += x; cout << "sum:" << sum << endl; } cout << count << endl; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) S = 0 C = 0 S = a[0] if S > 0: pm = 1 else: pm = 0 for i in range(1, n): S += a[i] if pm == 1 and S >= 0: C += S + 1 S -= S + 1 elif pm == 0 and S <= 0: C += -S + 1 S += -S + 1 pm = 1 - pm T = 0 D = 0 T = a[0] if T > 0: D += T + 1 T -= T + 1 pm = 0 else: D += -T + 1 T += -T + 1 pm = 1 for i in range(1, n): T += a[i] if pm == 1 and T >= 0: D += T + 1 T -= T + 1 elif pm == 0 and T <= 0: D += -T + 1 T += -T + 1 pm = 1 - pm print(min(C, D))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n), tot(n); for (int i = 0; i < (n); ++i) cin >> a[i]; tot[0] = a[0]; for (int i = 0; i < (n - 1); ++i) tot[i + 1] += tot[i] + a[i + 1]; int p = tot[0] / abs(tot[0]); long long ans = 0; long long wa = 0; for (int i = 0; i < (n); ++i) { tot[i] += wa; if (p == 1) { if (tot[i] <= 0) { wa += abs(tot[i]) + 1; ans += abs(tot[i]) + 1; } } else { if (tot[i] >= 0) { wa -= abs(tot[i]) + 1; ans += abs(tot[i]) + 1; } } p *= -1; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const int MOD = 1e9 + 7; const long long LLINF = 1e18; int main() { int n; cin >> n; long long ruisekiwa; cin >> ruisekiwa; long long ans = 0; if (ruisekiwa != 0) { for (int i = (1); i < (n); i++) { long long a; cin >> a; if (ruisekiwa * (ruisekiwa + a) < 0) { ruisekiwa += a; } else if (ruisekiwa > 0) { ans += (ruisekiwa + a) + 1; ruisekiwa = -1; } else { ans += 1 - (ruisekiwa + a); ruisekiwa = 1; } } } else { long long ans1 = 1; ruisekiwa = 1; long long a[n]; a[0] = 0; for (int i = (1); i < (n); i++) cin >> a[i]; for (int i = (1); i < (n); i++) { if (ruisekiwa * (ruisekiwa + a[i]) < 0) { ruisekiwa += a[i]; } else if (ruisekiwa > 0) { ans1 += (ruisekiwa + a[i]) + 1; ruisekiwa = -1; } else { ans1 += 1 - (ruisekiwa + a[i]); ruisekiwa = 1; } } long long ans2 = 1; ruisekiwa = -1; for (int i = (1); i < (n); i++) { if (ruisekiwa * (ruisekiwa + a[i]) < 0) { ruisekiwa += a[i]; } else if (ruisekiwa > 0) { ans2 += (ruisekiwa + a[i]) + 1; ruisekiwa = -1; } else { ans2 += 1 - (ruisekiwa + a[i]); ruisekiwa = 1; } } ans = min(ans1, ans2); } cout << (ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n; long long sum1 = 0; long long sum2 = 0; long long tmp; long long lcount = 0; long long rcount = 0; long long a[100000]; char input[1000000]; int i = 0, j = 0; int cp = 0, tcp = 0; char tp[12]; tp[12] = '\0'; fgets(input, 1000000, stdin); n = atoi(input); fgets(input, 1000000, stdin); for (i = 0; i < n; i++) { while (input[cp] != ' ' && input[cp] != '\n') { tp[tcp] = input[cp]; tcp++; cp++; } tp[tcp] = '\0'; tcp = 0; cp++; a[i] = atoi(tp); } tmp = a[0]; for (i = 1; i < n; i++) { if (i % 2 == 0) { tmp += a[i]; while (tmp > -1) { lcount++; tmp--; } } else { tmp += a[i]; while (tmp < 1) { lcount++; tmp++; } } } tmp = a[0]; for (i = 1; i < n; i++) { if (i % 2 == 1) { tmp += a[i]; while (tmp > -1) { rcount++; tmp--; } } else { tmp += a[i]; while (tmp < 1) { rcount++; tmp++; } } } printf("%lld\n", lcount > rcount ? rcount : lcount); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using static Input; public class Prog { private const int INF = 1000000007; public static void Main() { int n = NextInt(); int[] a = LineInt(); //凸凹の2パターンっぽい int costA = 0; int costB = 0; int now = a[0]; if (now < 0) { now = 1; costA = Math.Abs(a[0]) + 1; } for (int i = 1; i < n; i++) { if (now > 0) { //今0より大きいので小さくする. if (now + a[i] < 0) { //ok now += a[i]; } else { //ng costA += Math.Abs(now + a[i]) + 1; now = -1; } } else { //今0より小さいので大きくする if (now + a[i] > 0) { //ok now += a[i]; } else { //ng costA += Math.Abs(now + a[i]) + 1; now = 1; } } } now = a[0]; if (now > 0) { now = -1; costB = Math.Abs(a[0]) + 1; } for (int i = 1; i < n; i++) { if (now > 0) { //今0より大きいので小さくする. if (now + a[i] < 0) { //ok now += a[i]; } else { //ng costB += Math.Abs(now + a[i]) + 1; now = -1; } } else { //今0より小さいので大きくする if (now + a[i] > 0) { //ok now += a[i]; } else { //ng costB += Math.Abs(now + a[i]) + 1; now = 1; } } } Console.WriteLine(Math.Min(costA, costB)); } } public class Input { private static Queue<string> q = new Queue<string>(); private static void Confirm() { if (q.Count == 0) foreach (var s in Console.ReadLine().Split(' ')) q.Enqueue(s); } public static int NextInt() { Confirm(); return int.Parse(q.Dequeue()); } public static long NextLong() { Confirm(); return long.Parse(q.Dequeue()); } public static string NextString() { Confirm(); return q.Dequeue(); } public static double NextDouble() { Confirm(); return double.Parse(q.Dequeue()); } public static int[] LineInt() { return Console.ReadLine().Split(' ').Select(int.Parse).ToArray(); } public static long[] LineLong() { return Console.ReadLine().Split(' ').Select(long.Parse).ToArray(); } public static string[] LineString() { return Console.ReadLine().Split(' ').ToArray(); } public static double[] LineDouble() { return Console.ReadLine().Split(' ').Select(double.Parse).ToArray(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[100010]; long long ans = 0; long long cnt = 0; int flag = 1; for (int i = 0; i < n; i++) cin >> a[i]; if (a[0] > 0) flag = 1; else if (a[0] < 0) flag = -1; cnt = a[0]; for (int i = 1; i < n; i++) { cnt += a[i]; if (cnt * flag >= 0) { ans += abs(cnt) + 1; if (flag == -1) { cnt = 1; } else { cnt = -1; } } if (flag == -1) { flag = 1; } else { flag = -1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) A = [] cnt = 0 for i in range(n-1): A.append(a[i]) x = sum(A) + a[i+1] if sum(A) > 0 and x > 0: y = abs(x)+1 cnt += y a[i+1] -= y elif sum(A) < 0 and x < 0: y = abs(sum(A) - a[i+1])-1 cnt += y a[i+1] += y if sum(a) == 0: cnt += 1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static double sequence(int a[], double start) { double count = 0.0, presum = -1.0 * start, sum = 0.0; for(int i = 0; i < a.length; ++i) { sum += (double)a[i]; if(i == 0)sum = start; if(sum * presum > 0) { double min = Math.abs(sum) + 1; if(presum > 0)sum -= min; else sum += min; count += min; } if(sum == 0) { if(presum > 0)sum--; else sum++; ++count; } presum = sum; } return count; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n, a[]; double count = 0.0, tmp2 = 0.0, tmp3 = 0.0; n = sc.nextInt(); a = new int[n]; for(int i = 0; i < n; ++i) a[i] = sc.nextInt(); sc.close(); if(a[0] == 0) { a[0]++; ++tmp3; } int tmp = Math.abs(a[0]) + 1; if(a[0] > 0) { tmp2 = tmp + tmp3; tmp = a[0] - tmp; } else { tmp2 = tmp + tmp3; tmp = a[0] + tmp; } count = Math.min((tmp3 + sequence(a, (double)a[0])),(tmp2 + sequence(a, (double)tmp))); System.out.printf("%.0f\n", count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) data = input().split() for i in range(n): data[i] = int(data[i]) count = 0 sum = data[0] i = 1 while(i < n): while(sum * (sum + data[i]) >= 0): if sum > 0: data[i] -= 1 count += 1 elif sum < 0: data[i] += 1 count += 1 sum += data[i] i += 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int,input().split())) a = [A,A] res = [0,0] sum = 0 for check in range(2): sum = 0 if check == 1: if a[1][0] > 0: temp = -1 - a[1][0] a[1][0] += temp res[1] += temp * -1 elif a[1][0] < 0: temp = 1 - a[1][0] a[1][0] += temp res[1] += temp # if a[check][0] == 0: # if check == 0: # a[0][0] += 1 # else: # a[0][0] -= 1 # res[check] += 1 for i in range(n-1): sum += a[check][i] if sum * (sum + a[check][i+1]) >= 0: if sum > 0: temp = -1 - sum - a[check][i+1] a[check][i+1] += temp res[check] += temp * -1 else: temp = 1 - sum - a[check][i+1] a[check][i+1] += temp res[check] += temp print(min(res[0],res[1]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split(' '))) result = 0 h = 0 if a[0] == 0: counter += 1 result += 1 else: counter += a[0] for i in range(1, n): if counter < 0: counter += a[i] if counter == 0: counter += 1 result +=1 elif counter > 0: continue else: result += 1-counter counter = 1 else: counter += a[i] if counter == 0: counter -= 1 result += 1 elif counter < 0: continue else: result += counter+1 counter = -1 out = [] out.append(result) result = 0 counter = 0 if a[0] == 0: counter -= 1 result +=1 elif a[0]< 0: counter += 1 result += 1-a[0] else: counter -= 1 result += 1+a[0] for i in range(1, n): if counter < 0: counter += a[i] if counter == 0: counter += 1 result += 1 elif counter > 0: continue else: result += 1-counter counter = 1 else: counter += a[i] if counter == 0: counter -= 1 result +=1 elif counter < 0: continue else: result += counter+1 counter = -1 out.append(result) print(min(out))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, ai; cin >> n; cin >> ai; long long sum = ai; long long ans = 0; for (int i = (1); i < (n); ++i) { cin >> ai; if (sum > 0) { if (sum < -ai) sum += ai; else { ans += ai + sum + 1; sum = -1; } } else { if (-sum < ai) sum += ai; else { ans += -sum + 1 - ai; sum = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long cnt = 0; for (int i = 1; i < n; i++) { long long nsum = sum + a[i]; if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) { sum = nsum; continue; } if (nsum == 0) { sum = (sum >= 0 ? -1 : 1); cnt += 1; } else { if (sum > 0 && nsum > 0) sum = -1; else sum = 1; cnt += abs(nsum) + 1; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { vector<int> v; int res = 0; int sign = 0; int n, t; int sum = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> t; v.push_back(t); } sign = 0; for (int i = 0; i < v.size(); i++) { sum += v[i]; if (sign == 0) { if (sum >= 0) { res += (sum + 1); sum = -1; } } else { if (sum <= 0) { res += (abs(sum) + 1); sum = 1; } } sign = 1 - sign; } t = 0; sign = 1; for (int i = 0; i < v.size(); i++) { sum += v[i]; if (sign == 0) { if (sum >= 0) { t += (sum + 1); sum = -1; } } else { if (sum <= 0) { t += (abs(sum) + 1); sum = 1; } } sign = 1 - sign; } res = min(res, t); cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) lst1 = list(map(int,input().split())) odd = sum(lst1[::2]) even = sum(lst1[1::2]) if odd < even: need = "-" else: need = "+" ans = 0 now = 0#現在のi迄の和 for i in range(n): if lst1[i] < 0: if need == "-": if abs(now) >= abs(lst1[i]): ans += abs(now)-lst1[i]+1 now = -1 else: now += lst1[i] need = "+" else: #need == "+" ans += abs(now)-lst1[i] + 1 now = 1 need = "-" else: if need == "+": if abs(now) >= abs(lst1[i]): ans += abs(now)-lst1[i]+1 now = 1 else: now += lst1[i] need = "-" else: #need == "-" ans += abs(now)+lst1[i]+1 now = -1 need = "+" print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using vin = vector<int>; using vll = vector<long long>; using vvin = vector<vector<int>>; using vvll = vector<vector<long long>>; using vstr = vector<string>; using vvstr = vector<vector<string>>; using vch = vector<char>; using vvch = vector<vector<char>>; using vbo = vector<bool>; using vvbo = vector<vector<bool>>; using vpii = vector<pair<int, int>>; using pqsin = priority_queue<int, vector<int>, greater<int>>; const int inf = 1e9 + 7; const ll INF = 1e18; int main() { int n; cin >> n; vll a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; ll count1 = 0; ll count2 = 0; ll sum = 0; if (a[0] != 0) { sum += a[0]; for (int i = (1); i < (int)(n); i++) { if ((sum + a[i]) * sum >= 0) { count1 += abs(-abs(sum) / sum - sum - a[i]); sum = -abs(sum) / sum; } else sum += a[i]; } sum = -abs(a[0]) / a[0]; for (int i = (1); i < (int)(n); i++) { if ((sum + a[i]) * sum >= 0) { count2 += abs(-abs(sum) / sum - sum - a[i]); sum = -abs(sum) / sum; } else sum += a[i]; } cout << min(count1, count2) << endl; return 0; } sum = 1; count1++; for (int i = (1); i < (int)(n); i++) { if ((sum + a[i]) * sum >= 0) { count1 += abs(-abs(sum) / sum - sum - a[i]); sum = -abs(sum) / sum; } else sum += a[i]; } sum = -1; count2++; for (int i = (1); i < (int)(n); i++) { if ((sum + a[i]) * sum >= 0) { count2 += abs(-abs(sum) / sum - sum - a[i]); sum = -abs(sum) / sum; } else sum += a[i]; } cout << min(count1, count2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) numbers = list(map(int, input().split())) counter = 0 for i in range(len(numbers) - 1): sum_i_n = sum(numbers[:i + 1]) sum_i_n_1 = sum(numbers[:i + 2]) if sum_i_n == 0: numbers[i] += 1 counter += 1 if sum_i_n * sum_i_n_1 > 0: if sum_i_n_1 > 0: numbers[i + 1] -= (sum_i_n_1 + 1) counter += sum_i_n_1 + 1 else: numbers[i + 1] += (abs(sum_i_n_1) + 1) counter += abs(sum_i_n_1) + 1 if sum(numbers) == 0: counter += 1 print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; // ABC 6-C // http://abc006.contest.atcoder.jp/tasks/abc006_3 public class Main { public static void main (String[] args) throws java.lang.Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); long sum = 0; long answer = 0; for (int i = 0; i < n; i++) { int a = in.nextInt(); if (i > 0) { if (sum < 0 && sum + a < 0) { answer += 1 - (sum + a); sum = 1; } else if (sum > 0 && sum + a > 0) { answer += Math.abs(-1 - (sum + a)); sum = -1; } else if (sum + a == 0) { answer++; if (sum < 0) { sum = 1; } else { sum = -1; } } else { sum += a; } } else { sum += a; } } System.out.println(answer); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, ans1 = 0, ans2 = 0; cin >> N; vector<int> A1(N), A2(N); for (int i = 0; i < N; i++) { cin >> A1[i]; A2[i] = A1[i]; } if (A1[0] <= 0) { ans1 -= A1[0] - 1; A1[0] -= A1[0] - 1; } for (int i = 1; i < N; i++) { A1[i] += A1[i - 1]; if (A1[i - 1] > 0 && A1[i] >= 0) { ans1 += A1[i] + 1; A1[i] -= A1[i] + 1; } if (A1[i - 1] < 0 && A1[i] <= 0) { ans1 -= A1[i] - 1; A1[i] -= A1[i] - 1; } } if (A2[0] >= 0) { ans2 += A2[0] + 1; A2[0] -= A2[0] + 1; } for (int i = 1; i < N; i++) { A2[i] += A2[i - 1]; if (A2[i - 1] > 0 && A2[i] >= 0) { ans2 += A2[i] + 1; A2[i] -= A2[i] + 1; } if (A2[i - 1] < 0 && A2[i] <= 0) { ans2 -= A2[i] - 1; A2[i] -= A2[i] - 1; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100001]; int main() { long long n, ai; cin >> n; cin >> ai; a[0] = ai; long long sum = ai, sum1 = -1; if (sum == 0) sum = 1; long long ans = 0, ans1 = 0; for (int i = (1); i < (n); ++i) { cin >> ai; a[i] = ai; if (sum > 0) { if (sum < -ai) sum += ai; else { ans += ai + sum + 1; sum = -1; } } else { if (-sum < ai) sum += ai; else { ans += -sum + 1 - ai; sum = 1; } } } for (int i = (1); i < (n); ++i) { ai = a[i]; if (sum1 > 0) { if (sum1 < -ai) sum1 += ai; else { ans1 += ai + sum1 + 1; sum1 = -1; } } else { if (-sum1 < ai) sum1 += ai; else { ans1 += -sum1 + 1 - ai; sum1 = 1; } } } cout << min(ans, ans1) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
io = STDIN $n=io.gets.chomp.to_i $a=io.gets.chomp.split.map(&:to_i) $b=[] $a.unshift 0 sm=0 (1..$n).each do |i| sm+=$a[i] $b<<sm end def adjust(b,i,delta) (i..($n-1)).each do |j| b[j]+=delta end b end def calc(ar) cnt=0 ($n-1).times do |i| delta=0 if ar[i]>0 && ar[i+1]<0 elsif ar[i]<0 && ar[i+1]>0 elsif ar[i]>0 && ar[i+1]>0 delta =-(ar[i+1]+1) elsif ar[i]<0 && ar[i+1]<0 delta =(ar[i+1].abs+1) else if ar[i]>0 delta=-1 else delta=1 end end (ar = adjust(ar,i+1,delta)) unless delta==0 cnt+=delta.abs end cnt end if $a[1]==0 b1=$b.clone b2=$b.clone puts [calc(adjust(b1,0,1)),calc(adjust(b1,0,-1))].min else puts calc($b) end __END__
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) trueans = 1000000000000 for k in [-1,1]: sign = k ans = 0 s = 0 for i in range(n): s += a[i] if s == 0: s = sign ans += 1 elif s//abs(s) == sign: pass else: ans += abs(sign-s) s = sign sign *= -1 trueans = min(ans,trueans) print(trueans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N, A[100000]; int main() { scanf("%d", &N); for (int i = 0; i < N; i++) scanf("%d", &A[i]); long long cnt = 0, sum = A[0]; if (sum == 0 && sum + A[1] < 0) cnt++, sum++; else if (sum == 0 && sum + A[1] > 0) cnt++, sum--; else if (sum == 0) cnt++, sum++; for (int i = 1; i < N; i++) { long long prev = sum; sum += A[i]; if (sum < 0 && prev < 0) cnt += sum + 1, sum = 1; else if (sum > 0 && prev > 0) cnt += sum + 1, sum = -1; else if (sum == 0 && prev > 0) cnt++, sum = -1; else if (sum == 0 && prev < 0) cnt++, sum = 1; } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long n; cin >> n; int i; long a[n], su, cnt, cnt2; su = 0; cnt = 0; cnt2 = 0; for (i = 0; i < n; i++) { cin >> a[i]; } for (i = 0; i < n; i++) { su += a[i]; if (a[0] >= 0) { if (i % 2 == 0) { if (su <= 0) { cnt += 1 - su; su = 1; } } else { if (su >= 0) { cnt += su + 1; su = -1; } } } else { if (i % 2 == 0) { if (su >= 0) { cnt += su + 1; su = -1; } } else { if (su <= 0) { cnt += 1 - su; su = 1; } } } } su = 0; for (i = 0; i < n; i++) { su += a[i]; if (a[0] > 0) { if (i % 2 == 0) { if (su <= 0) { cnt2 += 1 - su; su = 1; } } else { if (su >= 0) { cnt2 += su + 1; su = -1; } } } else { if (i % 2 == 0) { if (su >= 0) { cnt2 += su + 1; su = -1; } } else { if (su <= 0) { cnt2 += 1 - su; su = 1; } } } } cout << min(cnt, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import math N = int(input()) a = [int(i) for i in input().split()] num = 0 i = 0 if a[0] == 0: while a[i] == 0: i += 1 if i % 2 == 0: a[0] = math.copysign(1, a[i]) else: a[0] = math.copysign(1, -a[i]) num += 1 old = a[0] sam = a[0] for n in range(2): if n != 0: old = -a[0] sam = -a[0] for i in range(1, len(a)): sam += a[i] sam_sign = int(math.copysign(1, sam)) old_sign = int(math.copysign(1, old)) if sam_sign == old_sign or sam == 0: num += abs(sam) + 1 a[i] = a[i] + (-old_sign)*(abs(sam)+1) old += a[i] sam = old if n == 0: num2 = num print(min(num,num2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int a[100001]; int sumo[100001]; int sume[100001]; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i + 1]; } int anso = 0; int anse = 0; sumo[0] = 0; sume[0] = 0; for (int i = 1; i <= n; i++) { if (i % 2 == 0) { if (sume[i - 1] + a[i] > 0) sume[i] = sume[i - 1] + a[i]; if (sume[i - 1] + a[i] <= 0) { sume[i] = 1; anse += 1 - (sume[i - 1] + a[i]); } if (sumo[i - 1] + a[i] < 0) sumo[i] = sumo[i - 1] + a[i]; if (sumo[i - 1] + a[i] >= 0) { sumo[i] = -1; anso += sumo[i - 1] + a[i] + 1; } } else if (i % 2 == 1) { if (sumo[i - 1] + a[i] > 0) sumo[i] = sumo[i - 1] + a[i]; if (sumo[i - 1] + a[i] <= 0) { sumo[i] = 1; anso += 1 - (sumo[i - 1] + a[i]); } if (sume[i - 1] + a[i] < 0) sume[i] = sume[i - 1] + a[i]; if (sume[i - 1] + a[i] >= 0) { sume[i] = -1; anse += sume[i - 1] + a[i] + 1; } } } int ans; ans = min(anso, anse); printf("%d", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const long long mod = 1e9 + 7; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)n; i++) cin >> a[i]; ll sum = a[0]; ll count = 0; for (int i = 1; i < n; i++) { if (signbit(sum) != signbit(sum + a[i])) if (sum + a[i] == 0) { count += abs(sum + a[i]) + 1; if (sum < 0) a[i] += count; else a[i] -= count; sum += a[i]; } else sum += a[i]; else { count += abs(sum + a[i]) + 1; if (sum < 0) a[i] += count; else a[i] -= count; sum += a[i]; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> long long ans, cnt; long long z[100005]; int main() { int n, flag, a; scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%lld", &z[i]); if (z[0] != 0) { if (z[0] > 0) flag = 1; else flag = -1; ans = z[0]; for (int i = 1; i < n; i++) { ans += z[i]; if (flag == 1) { if (ans >= 0) { cnt += ans + 1; ans = -1; } flag = -1; } else { if (ans <= 0) { cnt += 1 - ans; ans = 1; } flag = 1; } } } else { flag = cnt = ans = 1; for (int i = 1; i < n; i++) { ans += z[i]; if (flag == 1) { if (ans >= 0) { cnt += ans + 1; ans = -1; } flag = -1; } else { if (ans <= 0) { cnt += 1 - ans; ans = 1; } flag = 1; } } long long tmp = cnt; flag = ans = -1; cnt = 1; for (int i = 1; i < n; i++) { ans += z[i]; if (flag == 1) { if (ans >= 0) { cnt += ans + 1; ans = -1; } flag = -1; } else { if (ans <= 0) { cnt += 1 - ans; ans = 1; } flag = 1; } } cnt = std::min(cnt, tmp); } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int num_integer; if (scanf("%d", &num_integer) != 1) { puts("num_integer input error."); return 1; } int integer, sum_1 = 0, sum_2 = 0, num_operation_1 = 0, num_operation_2 = 0; for (int i = 0; i < num_integer; i++) { if (scanf("%d", &integer) != 1) { puts("integer input error."); } if (sum_1 > 0 && (sum_1 + integer) >= 0) { num_operation_1 += sum_1 + integer + 1; sum_1 = -1; } else if (sum_1 < 0 && (sum_1 + integer) <= 0) { num_operation_1 += -(sum_1 + integer) + 1; sum_1 = 1; } else { sum_1 += integer; } if (sum_2 > 0 && (sum_2 + integer) >= 0) { num_operation_2 += sum_2 + integer + 1; sum_2 = -1; } else if (sum_2 < 0 && (sum_2 + integer) <= 0) { num_operation_2 += -(sum_2 + integer) + 1; sum_2 = 1; } else { num_operation_2 = (integer > 0) ? integer + 1 : -integer + 1; sum_2 = (integer > 0) ? integer : -integer; } } printf("%d", (num_operation_1 < num_operation_2) ? num_operation_1 : num_operation_2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!/usr/bin/env python3 import sys sys.setrecursionlimit(300000) def solve(n: int, a: "List[int]"): o, e = 0, 0 tmp = 0 for i, v in enumerate(a): if i % 2 == 0: e += v if e < 0: tmp += abs(e) + 1 e = 1 else: tmp += max(0, abs(o) - abs(e) + 1) e += tmp else: o += v if o > 0: tmp += abs(o) + 1 o = -1 else: tmp += max(0, abs(e) - abs(o) + 1) o -= tmp ret = tmp o, e = 0, 0 tmp = 0 for i, v in enumerate(a): if i % 2 == 0: e += v if e > 0: tmp += abs(e) + 1 e = -1 else: tmp += max(0, abs(o) - abs(e) + 1) e -= tmp else: o += v if o < 0: tmp += abs(o) + 1 o = 1 else: tmp += max(0, abs(e) - abs(o) + 1) o += tmp ret = min(ret, tmp) print(ret) return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() n = int(next(tokens)) # type: int a = [ int(next(tokens)) for _ in range(n) ] # type: "List[int]" solve(n, a) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
var read = require('readline').createInterface({ input: process.stdin, output: process.stdout }); var obj; var inLine = []; read.on('line', function(input){inLine.push(input);}); read.on('close', function(){ obj = init(inLine); myerr("-----start-----"); var start = new Date(); Main(); var end = new Date() - start; myerr("----- end -----"); myerr("time : " + (end) + "ms"); }); function nextInt(){return myconv(next(),1);} function nextStrArray(){return myconv(next(),2);} function nextIntArray(){return myconv(next(),4);} function nextCharArray(){return myconv(next(),6);} function next(){return obj.next();} function hasNext(){return obj.hasNext();} function init(input){ var returnObj = { list : input, index : 0, max : input.length, hasNext : function(){return (this.index < this.max);}, next : function(){if(!this.hasNext()){throw "ArrayIndexOutOfBoundsException これ以上ないよ";}else{var returnInput = this.list[this.index];this.index++;return returnInput;}} }; return returnObj; } function myout(s){console.log(s);} function myerr(s){console.error("debug:" + require("util").inspect(s,false,null));} //[no]要素の扱い。数値型 //不明値、異常時:引数そのまま返す 1:数値へ変換 //2:半角SPで分割 4:半角SPで分割し、数値配列へ //6:1文字で分割 7:1文字で分割し、数値配列へ //8:半角SPで結合 9:改行で結合 0:文字なしで結合 function myconv(i,no){try{switch(no){case 1:return parseInt(i);case 2:return i.split(" ");case 4:return i.split(" ").map(Number);case 6:return i.split("");case 7:return i.split("").map(Number);case 8:return i.join(" ");case 9:return i.join("\n");case 0:return i.join("");default:return i;}}catch(e){return i;}} function Main(){ var N = nextInt(); var list = nextIntArray(); var oddCount = 0; var evenCount = 0; var oddSum = new Array(N);//1, -1, 1, -1 var evenSum = new Array(N);//-1, 1 ,-1 ,1 if(list[0] == 0){ oddCount++; evenCount++; }else{ if(list[0] < 0){ oddCount += Math.abs(list[0]) + 1; oddSum[0] = 1; evenSum[0] = list[0]; }else{ evenCount += Math.abs(list[0]) + 1; evenSum[0] = -1; oddSum[0] = list[0]; } } for(var i = 1; i < N; i++){ oddSum[i] = oddSum[i - 1] + list[i]; evenSum[i] = evenSum[i - 1] + list[i]; if((oddSum[i - 1] < 0 && oddSum[i] > 0) || (oddSum[i - 1] > 0 && oddSum[i] < 0)){ }else{ if((oddSum[i - 1] > 0)){ oddCount += oddSum[i] + 1; oddSum[i] = -1; }else{ oddCount += Math.abs(oddSum[i]) + 1; oddSum[i] = 1; } } if((evenSum[i - 1] < 0 && evenSum[i] > 0) || (evenSum[i - 1] > 0 && evenSum[i] < 0)){ }else{ if((evenSum[i - 1] > 0)){ evenCount += evenSum[i] + 1; evenSum[i] = -1; }else{ evenCount += Math.abs(evenSum[i]) + 1; evenSum[i] = 1; } } } myout(Math.min(evenCount, oddCount)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans = 0 sum_a = a[0] if sum_a > 0: for i in range(1,n): sum_a += a[i] if i%2 == 1 and sum_a >= 0: ans += sum_a + 1 sum_a = -1 elif i%2 == 0 and sum_a <= 0: ans += -sum_a + 1 sum_a = 1 else: for i in range(1,n): sum_a += a[i] if i%2 == 0 and sum_a >= 0: ans += sum_a + 1 sum_a = -1 #いや違くね? elif i%2 == 1 and sum_a <= 0: ans += -sum_a + 1 sum_a = 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[100100]; for (int i = 0; i < n; i++) cin >> a[i]; int ans = 0, sum = a[0]; int sign = (a[0] > 0 ? 1 : -1); for (int i = 1; i < n; i++) { sum += a[i]; if (sum == 0) { sum += -sign; ans++; } if (sign > 0 && sum > 0) { int x = sum + 1; sum -= x; ans += x; } else if (sign < 0 && sum < 0) { int y = abs(sum) + 1; sum += y; ans += y; } sign *= -1; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int beginPositive(std::vector<int> &v) { int sum = v[0] + v[1]; int count = 0; if (sum < 0) { count = 1 - sum; sum = 1; } for (int i = 2; i < v.size(); i++) { int tmp = sum + v[i]; if (sum * tmp < 0) { sum = tmp; continue; } int next_sum = (-1) * sum / abs(sum); count += abs(next_sum - tmp); sum = next_sum; } return count; } int beginNegative(std::vector<int> &v) { int sum = v[0] + v[1]; int count = 0; if (sum > 0) { count = sum + 1; sum = -1; } for (int i = 2; i < v.size(); i++) { int tmp = sum + v[i]; if (sum * tmp < 0) { sum = tmp; continue; } int next_sum = (-1) * sum / abs(sum); count += abs(next_sum - tmp); sum = next_sum; } return count; } int main() { int n; std::cin >> n; std::vector<int> v(n); for (int i = 0; i < v.size(); i++) { std::cin >> v[i]; } int count; count = std::min(beginPositive(v), beginNegative(v)); std::cout << count << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import java.util.* fun main(args: Array<String>) { val sc = Scanner(System.`in`) val n = sc.nextInt() val a = (0 until n).map { sc.next().toLong() } println(problem059c(n, a)) } fun problem059c(n: Int, a: List<Long>): Long { val count1 = compute(n, a) // val a = a.toMutableList() // var a0 = a[0] // var count = 0L // if (a0 > 0) { // val tmp = a0 + 1 // a[0] = a0 - tmp // count += tmp // } else { // val tmp = a0 - 1 // a[0] = a0 - tmp // count -= tmp // } // val count2 = compute(n, a) + count return count1 } fun compute(n: Int, a: List<Long>): Long { val a = a.toMutableList() var count = 0L var sum = 0L for (i in 0 until n) { val ai = a[i] sum = sum + ai if (sum == 0L) { break } if (i >= n - 1) { continue } val sum2 = sum + a[i + 1] if (sum * sum2 < 0) { continue } else { if (sum > 0) { val tmp = sum2 + 1 a[i + 1] = sum2 - tmp count += tmp } else { val tmp = sum2 - 1 a[i + 1] = sum2 - tmp count -= tmp } } } return count }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> v(n); for (int i = 0; i < n; i++) cin >> v[i]; long long sum = v[0]; long long ans = 0; for (int i = 1; i < n; i++) { if (sum < 0 && sum + v[i] > 0) sum += v[i]; else if (sum > 0 && sum + v[i] < 0) sum += v[i]; else if (sum < 0 && sum + v[i] <= 0) ans += abs(sum + v[i]) + 1, sum = 1; else if (sum > 0 && sum + v[i] >= 0) ans += abs(sum + v[i]) + 1, sum = -1; } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> x; int temp, ans = 0; for (int i = 0; i != n; ++i) { cin >> temp; x.push_back(temp); } if (!x[0]) { x[0] = 1; ++ans; int val, ind; for (int i = 1; i != n; ++i) { if (x[i]) { val = x[i]; ind = i; break; } } if ((val > 0 && ind % 2) || (val < 0 && !(ind % 2))) x[0] = -1; } int sum = x[0]; for (int i = 1; i != n; ++i) { int sum2 = sum + x[i]; if (sum * sum2 >= 0) { ans += abs(sum2) + 1; if (sum < 0) sum2 = 1; else sum2 = -1; } sum = sum2; } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) import numpy as np na = np.array(a).cumsum() cnt = 0 if(na[0] > 0): for i in range(n): delta = abs(na[i]) + 1 if(i % 2 == 0 and na[i] <= 0): cnt = cnt + delta for j in range(i, n): na[j] += delta elif(i % 2 == 1 and na[i] >= 0): cnt = cnt + delta for j in range(i, n): na[j] -= delta else: na[i] else: for i in range(n): delta = abs(na[i]) + 1 if(i % 2 == 1 and na[i] <= 0): cnt = cnt + delta for j in range(i, n): na[j] += delta elif(i % 2 == 0 and na[i] >= 0): cnt = cnt + delta for j in range(i, n): na[j] -= delta else: na[i] print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# encoding:utf-8 import copy import random import bisect #bisect_left これで二部探索の大小検索が行える import fractions #最小公倍数などはこっち import math mod = 10**9+7 n = int(input()) a = [int(i) for i in input().split()] sums = [0 for i in range(n)] tmp = 0 if a[0] > 0: status_pos = True else: status_pos = False ans = 0 for i in range(n): tmp += a[i] if status_pos and tmp <= 0: ans += 1-tmp tmp = 1 elif status_pos == False and tmp >= 0: ans += 1+tmp tmp = -1 status_pos = not(status_pos) print(ans) # ans2 = abs(a[0])+1 # if a[0] > 0: # a[0] = -1 # else: # a[0] = 1 # # tmp = a[0] # if a[0] > 0: # status_pos = True # else: # status_pos = False # for i in range(1,n): # tmp += a[i] # if status_pos and tmp <= 0: # ans2 += 1-tmp # tmp = 1 # elif status_pos == False and tmp >= 0: # ans2 += 1+tmp # tmp = -1 # status_pos = not(status_pos) # # print(min(ans,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n], b[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long cnt1 = 0; long long sum = a[0]; if (sum == 0) { sum = 1; cnt1++; } for (int i = 1; i < n; i++) { long long sumNext = sum + a[i]; if ((sum > 0) && (sumNext >= 0) || (sum < 0) && (sumNext <= 0)) { if (sum < 0) { cnt1 += 1 - sumNext; sumNext = 1; } else { cnt1 += 1 + sumNext; sumNext = -1; } } sum = sumNext; } long long cnt2 = 0; sum = a[0]; if (sum == 0) { sum = -1; cnt2++; } for (int i = 1; i < n; i++) { long long sumNext = sum + a[i]; if ((sum > 0) && (sumNext >= 0) || (sum < 0) && (sumNext <= 0)) { if (sum < 0) { cnt2 += 1 - sumNext; sumNext = 1; } else { cnt2 += 1 + sumNext; sumNext = -1; } } sum = sumNext; } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def is_plus(x): return 0 <= x _=int(input()) A = list(map(int, input().split())) total_cnt = 1 if A[0] == 0 else 0 cur_sum = A[0] + total_cnt pre_sum = cur_sum for a in A[1:]: cur_sum += a if is_plus(pre_sum) == is_plus(cur_sum): total_cnt += abs(cur_sum) + 1 cur_sum = -1 if is_plus(cur_sum) else +1 elif cur_sum == 0: total_cnt += 1 cur_sum = 1 else: pass pre_sum = cur_sum print(total_cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1LL << 60; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<int> A(n); vector<int> B(n + 1); vector<int> B2(n + 1); B[0] = 0; B2[0] = 0; for (long long i = 0; i < n; i++) { cin >> A[i]; B[i + 1] = A[i] + B[i]; B2[i + 1] = B[i + 1]; } long long sum_p = 0; long long pm = 0; for (long long i = 1; i < n + 1; i++) { long long del = 0; if (i % 2 && B[i] + pm <= 0) del = abs(B[i] + pm) + 1; if (i % 2 == 0 && B[i] + pm >= 0) del = -(B[i] + pm + 1); pm += del; sum_p += abs(del); } int sum_m = 0; pm = 0; for (long long i = 1; i < n + 1; i++) { long long del = 0; if (i % 2 == 0 && B2[i] + pm <= 0) del = abs(B2[i] + pm) + 1; if (i % 2 && B2[i] + pm >= 0) del = -(B2[i] + pm + 1); pm += del; sum_m += abs(del); } cout << ((sum_p < sum_m) ? sum_p : sum_m) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 100; const int mod = 1e9 + 7; int a[N]; int n; int slove(int f) { int sum = 0, ans = 0; for (int i = 1; i <= n; i++) { sum += a[i]; if (sum * f <= 0) { ans += abs(f - sum); sum = f; } f = -f; } return ans; } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i]; } int ans = min(slove(1), slove(-1)); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) import sys sum=0 cnt=0 # 奇数+ for i in range(n): z=sum+a[i] if i%2==0: if z<0: sum=z else: cnt+=(z+1) sum=-1 else: if z>0: sum=z else: cnt+=(1-z) sum=1 cnt_sbst=cnt # 奇数- for i in range(n): z=sum+a[i] if i%2==1: if z<0: sum=z else: cnt+=(z+1) sum=-1 else: if z>0: sum=z else: cnt+=(1-z) sum=1 cnt_plus=cnt ans=min(cnt_plus,cnt_sbst) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { long long n; cin >> n; long long a[n]; for (long long i = 0; i < n; i++) cin >> a[i]; long long sum = 0, cnt = 0, sum1 = 0, cnt1 = 0, sum2 = 0, cnt2 = 0; if (a[0]) sum += a[0]; else { cnt1++; cnt2++; sum1 = 1, sum2 = -1; } for (long long i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) sum += a[i]; else { cnt += (abs(sum + a[i]) + 1); sum = (sum < 0 ? 1 : -1); } if (sum1 * (sum1 + a[i]) < 0) sum1 += a[i]; else { cnt1 += (abs(sum1 + a[i]) + 1); sum1 = (sum1 < 0 ? 1 : -1); } if (sum2 * (sum2 + a[i]) < 0) sum2 += a[i]; else { cnt2 += (abs(sum2 + a[i]) + 1); sum2 = (sum2 < 0 ? 1 : -1); } } cout << (a[0] ? cnt : min(cnt1, cnt2)) << endl; } int main() { cin.sync_with_stdio(0); cin.tie(0); cin.exceptions(cin.failbit); solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) wa=a[0] ans1,ans2=0,0 if a[0]==0: ans1+=1 wa=1 for i in range(1,n): # print(wa) if wa>0: if wa+a[i]<0: wa+=a[i] else: ans1+=abs(wa+a[i])+1 wa=-1 else: if wa+a[i]>0: wa+=a[i] else: ans1+=abs(wa+a[i])+1 wa=1 if a[0]>0: ans2+=a[0]+1 wa=-1 else: ans2+=-a[0]+1 wa=1 for i in range(1,n): if wa>0: if wa+a[i]<0: wa+=a[i] else: ans2+=abs(wa+a[i])+1 wa=-1 else: if wa+a[i]>0: wa+=a[i] else: ans2+=abs(wa+a[i])+1 wa=1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) A=list(map(int,input().split())) W=[] wa=0 for i in range(n): wa=A[i]+wa W.append(wa) counter=0 for i in range(n): if i==n-1: break elif W[i]<0 and W[i+1]<0: counter=abs(W[i])-abs(A[i+1])+1+counter A[i+1]=1 elif W[i]>0 and W[i+1]>0: counter=abs(W[i])+1+counter-abs(A[i+1]) A[i+1]=-1 if A[n-1]==0: if W[n-2]*W[n-1]>0: counter=counter+abs(W[n-2])+1 print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n, sign; long long a[100002], sum = 0, ans = 0; scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); if (i == 0) { if (a[i] >= 0) sign = 1; if (a[i] < 0) sign = -1; } sum += a[i]; if ((i % 2 == 0 && sign == 1) || (i % 2 == 1 && sign == -1)) { if (sum <= 0) { ans += -sum + 1; sum = 1; } } if ((i % 2 == 1 && sign == 1) || (i % 2 == 0 && sign == -1)) { if (sum >= 0) { ans += sum + 1; sum = -1; } } } printf("%lld\n", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); int count = 0; if (a.at(0) == 0) { if (a.at(1) < 0) { a.at(0) = -1; } else { a.at(0) = 1; } count++; } int sum = a.at(0); for (int i = 1; i < N; i++) { if (sum > 0 && sum + a.at(i) >= 0) { count += abs(-1 - sum - a.at(i)); a.at(i) = -1 - sum; } else if (sum < 0 && sum + a.at(i) <= 0) { count += abs(1 - sum - a.at(i)); a.at(i) = 1 - sum; } sum += a.at(i); } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const unsigned long long MOD = 1000000000 + 7; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int minn = 1 << 30; for (int j = 0; j < 2; j++) { int cnt = 0; int sum = 0; for (int i = 0; i < n; i++) { if (j == 1 && i == 0) { a.at(0) *= -1; } int s = a.at(i) + sum; if (s == 0) { if (sum <= 0) { cnt += 1 - s; sum = 1; } else { cnt += 1 + s; sum = 1; } } else if (sum < 0 && s < 0) { cnt += 1 - s; sum = 1; } else if (sum > 0 && s > 0) { cnt += 1 + s; sum = -1; } else { sum = s; } } minn = min(minn, cnt); } cout << minn << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans = 0 s = [0]*(n+1) for i in range(n): s[i+1] = s[i] + a[i] if s[i] < 0: if s[i+1] != 0 and s[i+1] > 0: continue else: ans += abs(s[i+1])+1 s[i+1] = 1 elif s[i] > 0: if s[i+1] != 0 and s[i+1] < 0: continue else: ans += abs(s[i+1])+1 s[i+1] = -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N; long long int A[100005]; int main() { scanf("%d", &N); for (int i = 0; i < N; i++) { scanf("%lld", &A[i]); } long long int plus, sum; if (A[0] <= 0) { plus = abs(1 - A[0]); sum = 1; } else { plus = 0; sum = A[0]; } for (int i = 1; i < N; i++) { sum += A[i]; if (i % 2 == 1) { if (sum < 0) continue; plus += abs(-1 - sum); sum = -1; } else { if (sum > 0) continue; plus += abs(1 - sum); sum = 1; } } long long int minus; if (A[0] >= 0) { minus = (-1 - A[0]); sum = -1; } else { minus = 0; sum = A[0]; } for (int i = 1; i < N; i++) { sum += A[i]; if (i % 2 == 1) { if (sum > 0) continue; minus += abs(1 - sum); sum = 1; } else { if (sum < 0) continue; minus += abs(-1 - sum); sum = -1; } } printf("%lld\n", min(plus, minus)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int a[] = new int[N]; for(int i=0; i<N; i++){ a[i] = sc.nextInt(); } sc.close(); int count = 0; int sum = a[0]; for(int i=1; i<N; i++){ int diff = checkSum(sum, sum+a[i]); count += Math.abs(diff); sum = sum+a[i]+diff; } System.out.println(count); } private static int checkSum(int a, int b){ if ( a>0 && b>=0){ return -(b+1); }else if( a<0 && b<=0){ return -(b-1); }else{ return 0; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i as = gets.chomp.split.map(&:to_i) ans_o = ans_e = 0 sum_o = sum_e = as[0] 1.upto(n-1) do |i| sum_e += as[i] sum_o += as[i] if i.even? until sum_e > 0 ans_e += 1 sum += 1 end until sum_o < 0 ans_o += 1 sum_o -= 1 end else until sum_e < 0 ans_e += 1 sum -= 1 end until sum_o > 0 ans_o += 1 sum += 1 end end end puts [ans_e,ans_o].min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int solve(vector<int> A) { long res = 0; long sum = A[0]; for (int i = 1; i < A.size(); i++) { if (sum > 0) { sum += A[i]; while (sum >= 0) { res++; sum--; } } else if (sum < 0) { sum += A[i]; while (sum <= 0) { res++; sum++; } } } return res; } int main() { int N; cin >> N; vector<int> A(N); for (int i = 0; i < N; i++) { cin >> A[i]; } long res; if (A[0] != 0) { res = solve(A); cout << res << endl; } else { long res_first_plus = 1, res_first_minus = 1; A[0] = 1; res_first_plus += solve(A); A[0] = -1; res_first_minus += solve(A); res = min(res_first_plus, res_first_minus); cout << res << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, b, a[100005]; int abs(int p) { return p > 0 ? p : -p; } int f(int p) { int i, s = 0; for (i = 1; i < n; i++) { if (p > 0) { p += a[i]; if (p >= 0) s += p + 1, p = -1; } else { p += a[i]; if (p <= 0) s += -p + 1, p = 1; } } return s; } int main() { int i, t; cin >> n; for (i = 0; i < n; i++) scanf("%d", &a[i]); if (a[0] < 0) t = f(1) - a[0] + 1; else t = f(-1) + a[0] - 1; cout << min(f(a[0]), t); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
fun main() { val n = readLine()!!.toInt() val a = readLine()!!.split(" ").map { it.toLong() } var answer = 0L var total = a[0] for (i in 1 until n) { val tmp = total total = total + a[i] if (total == 0L) { if (tmp > 0) { answer += 1 total = -1 } else if (tmp < 0) { answer += 1 total = 1 } } if (tmp > 0 && total > 0) { answer += (total + 1) total = -1 } else if (tmp < 0 && total < 0) { answer += (-total + 1) total = 1 } } println("$answer") }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int n, a[111111], hoge, huga, nyaa = 0, nyan = 0; int main() { scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } if (!a[0]) { hoge = 1; huga = -1; nyaa = nyan = 1; } else { hoge = ((a[0]) > (-a[0]) ? (a[0]) : (-a[0])); huga = ((a[0]) > (-a[0]) ? (-a[0]) : (a[0])); } int p = 1; for (int i = 1; i < n; i++) { hoge += a[i]; if (p) { if (hoge >= 0) { nyaa += hoge + 1; hoge = -1; } } else { if (hoge <= 0) { nyaa += 1 - hoge; hoge = 1; } } huga += a[i]; if (p) { if (huga <= 0) { nyan += 1 - huga; huga = 1; } } else { if (huga >= 0) { nyan += huga + 1; huga = -1; } } p ^= 1; } printf("%d\n", ((nyaa) > (nyan) ? (nyan) : (nyaa))); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("-O3") using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); } const int inf = INT_MAX / 2; const long long infl = 1LL << 60; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } enum PosiNega { POSITIVE = 0, NEGATIVE = 1 }; int solve(int N, long long *a, PosiNega odd_posinega) { long long ans = 0; long long sum = 0; PosiNega posi_nega = odd_posinega; for (int i = 0; i < N; i++) { sum += a[i]; if (POSITIVE == posi_nega) { if (0 >= sum) { ans += 1 - sum; sum = 1; } posi_nega = NEGATIVE; } else { if (0 <= sum) { ans += 1 + sum; sum = -1; } posi_nega = POSITIVE; } } return ans; } void _main() { int N; cin >> N; long long a[N]; for (int i = 0; i < N; i++) cin >> a[i]; long long ans = solve(N, a, POSITIVE); long long _ans = solve(N, a, NEGATIVE); chmin(ans, _ans); cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); vector<int> a; for (int i = 0; i < n; i++) { int an; scanf("%d", &an); a.push_back(an); } int op_count = 0; int now_sum = 0; if (a[0] == 0) { a[0] = 1; op_count++; } int adding = a[0] > 0 ? -1 : 1; for (int i = 0; i < n; i++) { now_sum += a[i]; adding *= -1; if (now_sum == 0) { a[i] += adding; now_sum += adding; op_count++; continue; } if (adding > 0) { while (now_sum <= 0) { a[i] += adding; now_sum += adding; op_count++; } } else { while (now_sum >= 0) { a[i] += adding; now_sum += adding; op_count++; } } } printf("%d\n", op_count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const long long LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; bool diff(long long a, long long b) { if (a < 0 && b > 0) return true; if (a > 0 && b < 0) return true; return false; } int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int n; cin >> n; vector<int> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; long long ans = 0, sum = a[0]; for (int i = (1); i < (n); ++i) { if (diff(sum + a[i], sum)) { sum += a[i]; } else { long long need = (sum > 0 ? -1 : 1); long long now = need - sum; ans += abs(now - a[i]); sum = need; } } cout << ans << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
from strutils import split, parseInt, parseFloat from sequtils import map import macros macro unpack*(input: seq; count: static[int]): untyped = result = quote do: () when NimMinor <= 13: # 本当にここが区切りかどうかは知らない for i in 0..<count: result[0].add quote do: `input`[`i`] else: for i in 0..<count: result.add quote do: `input`[`i`] # count == 0 のとき unpackしない # count > 0 のとき count個分 unpack した結果の tuple を返す type UnselectableTypeError = object of Exception template input(typ: typedesc; count: static[Natural] = 0): untyped = let line = stdin.readLine.split when count == 0: when typ is int: line.map(parseInt) elif typ is float: line.map(parseFloat) elif typ is string: line else: raise newException(UnselectableTypeError, "You selected a type other than int, float or string") else: when typ is int: line.map(parseInt).unpack(count) elif typ is float: line.map(parseFloat).unpack(count) elif typ is string: line.unpack(count) else: raise newException(UnselectableTypeError, "You selected a type other than int, float or string") # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # from math import nextPowerOfTwo from sequtils import newSeqWith type SegmentTree*[T] = ref object of RootObj tree: seq[T] leafCount: Natural initValue: T mergeProc: proc (x, y: T): T {.closure.} proc merge[T](this: SegmentTree[T]; left, right: Natural): T = this.mergeProc(this.tree[left], this.tree[right]) proc toSegmentTree*[T](a: openArray[T]; initValue: T; mergeProc: proc (x, y: T): T {.closure.}): SegmentTree[T] = let leafCount = a.len.nextPowerOfTwo result = SegmentTree[T](tree: newSeqWith(2 * leafCount - 1, initValue), leafCount: leafCount, initValue: initValue, mergeProc: mergeProc) for i, ai in a: result.tree[i + result.leafCount - 1] = ai for i in countdown(result.leafCount - 2, 0): result.tree[i] = result.merge(2 * i + 1, 2 * i + 2) proc update*[T](this: SegmentTree[T]; i, v: int): SegmentTree[T] = result = this var j = result.leafCount + i - 1 result.tree[j] = v while j > 0: j = (j - 1) div 2 result.tree[j] = result.merge(2 * j + 1, 2 * j + 2) proc update*[T](this: var SegmentTree[T]; i, v: int) = var j = this.leafCount + i - 1 this.tree[j] = v while j > 0: j = (j - 1) div 2 this.tree[j] = this.merge(2 * j + 1, 2 * j + 2) proc query*[T](this: SegmentTree[T]; requiredRange: Slice[int]; k = 0; coveredRange: Slice[Natural] = 0.Natural..high(int).Natural): T = let left = coveredRange.a right = coveredRange.b if right == high(int) and this.leafCount != high(int): return this.query(requiredRange, k, left..(this.leafCount - 1).Natural) if right < requiredRange.a or requiredRange.b < left: return this.initValue if requiredRange.a <= left and right <= requiredRange.b: return this.tree[k] let lv = this.query(requiredRange, 2 * k + 1, left..((left + right) div 2).Natural) rv = this.query(requiredRange, 2 * k + 2, ((left + right + 1) div 2).Natural..right) return this.mergeProc(lv, rv) let n = input(int, 1) var a = input(int, 0).toSegmentTree(0, proc (x, y: int): int = x + y) result = 0 for i in 1..<n: let sum = a.query(0..i) preSum = a.query(0..(i - 1)) if sum > 0 and preSum > 0 or sum < 0 and preSum < 0 or sum == 0: let p = preSum.abs - 1 c = sum.abs - p + 1 result += p + c if sum <= 0: a.update(i - 1, a.tree[a.leafCount + i - 2] + p) a.update(i, a.tree[a.leafCount + i - 1] + c) else: a.update(i - 1, a.tree[a.leafCount + i - 2] - p) a.update(i, a.tree[a.leafCount + i - 1] - c) echo result
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = np.array(list(map(int, input().split()))) b = a.copy() for i in range(1, n): if sum(a[:i]) >= 0 and sum(a[:i+1]) >= 0: a[i] = -1 - sum(a[:i]) elif sum(a[:i]) <= 0 and sum(a[:i+1]) <= 0: a[i] = 1 - sum(a[:i]) print(sum(abs(b-a)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(NULL); ios::sync_with_stdio(false); int n; cin >> n; long long a[n]; long long sum = 0; long long count = 0; for (int i = 0; i < n; i++) { cin >> a[i]; if (i == 0) { sum = a[i]; } else { if (sum < 0) { if (sum + a[i] <= 0) { count += 1 - (sum + a[i]); sum = 1; } else { sum = sum + a[i]; } } else if (sum > 0) { if (sum + a[i] >= 0) { count += sum + a[i] - (-1); sum = -1; } else { sum = sum + a[i]; } } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner no=new Scanner(System.in); int n=no.nextInt(); int arr[]=new int[n]; // int sum1[]=new int[n]; for(int i=0;i<n;i++){ arr[i]=no.nextInt(); /* if(i==0){ sum1[i]=arr[i]; } else{ sum1[i]=sum1[i]+sum1[i-1]; }*/ } int sum=0; int count=0; if(arr[0]>0){ sum=arr[0]; for(int i=1;i<n;i++){ if(i%2==1&&sum+arr[i]>0){ int t=arr[i]; arr[i]=(sum+1)*-1; count=count+Math.abs((t-arr[i])); // sum=sum+arr[i]; } else if(i%2==0&&sum+arr[i]<0){ int t=arr[i]; arr[i]=(Math.abs(sum)+1); count=count+Math.abs((Math.abs(t)-arr[i])); //sum=sum+arr[i]; } else if(sum+arr[i]==0){ count++; } sum=sum+arr[i]; } } else if(arr[0]<0){ sum=arr[0]; for(int i=1;i<n;i++){ if(i%2==1&&sum+arr[i]<0){ int t=arr[i]; arr[i]=(Math.abs(sum)+1); count=count+Math.abs((Math.abs(t)-arr[i])); // sum=sum+arr[i]; // System.out.println(count); } else if(i%2==0&&sum+arr[i]>0){ int t=arr[i]; arr[i]=(sum+1)*-1; count=count+Math.abs((t-arr[i])); //System.out.println(count); //sum=sum+arr[i]; } else if(sum+arr[i]==0){ count++; } sum=sum+arr[i]; } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class MYCP { public: static const long long TEISUU = 1000 * 1000 * 1000 + 7; static long long DebugFlag; static string MakeString_LongLong(vector<long long> const& numbers, string const& str) { if (numbers.size() == 0) return ""; string result = "" + to_string(numbers[0]); for (long long i = 1; i < numbers.size(); i++) { result += str; result += to_string(numbers[i]); } return result; } static string MakeString_LongLong(vector<long long> const& numbers) { if (numbers.size() == 0) return ""; string result = "" + to_string(numbers[0]); for (long long i = 1; i < numbers.size(); i++) { result += " "; result += to_string(numbers[i]); } return result; } static string MakeString_VectorString(vector<string> const& str) { string result = ""; for (long long i = 0; i < str.size(); i++) { result += str[i] + "\n"; } return result; } static vector<string> MyReadLineSplit(long long n) { vector<string> str(n); for (long long i = 0; i < n; i++) { std::cin >> str[i]; } return str; } static vector<long long> ReadInts(long long number) { vector<long long> a(number); for (int i = 0; i < number; i++) { std::cin >> a[i]; } return a; } static bool PrimeCheck_Int(long long number) { if (number < 2) return false; for (unsigned long long i = 2; i * i <= number; i++) { if (number % i == 0) return false; } return true; } static vector<long long> MakePrimeList(long long n) { vector<long long> list; long long i, j, p; bool flag; for (i = 2; i <= n; i++) { flag = true; for (j = 0; j < list.size(); j++) { if (!(list[j] * list[j] <= i)) break; if (i % list[j] == 0) { flag = false; break; } } if (flag) list.push_back(i); } return list; } static vector<string> split(string const& str, char sep) { vector<std::string> v; auto first = str.begin(); while (first != str.end()) { auto last = first; while (last != str.end() && *last != sep) last++; v.push_back(string(first, last)); if (last != str.end()) last++; first = last; } return v; } static long long Sum(vector<long long> a) { long long i, sum = 0; for (i = 0; i < a.size(); i++) { sum += a[i]; } return sum; } static bool Komoji(char a) { if (a >= 'a' && a <= 'z') return true; return false; } static bool Oomoji(char a) { if (a >= 'A' && a <= 'Z') return true; return false; } static long long KiriageWarizan(long long a, long long b) { long long result = a / b; if (a % b > 0) result++; return result; } static long long GreatestCommonFactor(long long a, long long b) { long long temp; if (a < b) { temp = b; b = a; a = temp; } while (true) { temp = a % b; a = b; b = temp; if (b == 0) break; } return a; } static long long LeastCommonMultiple(long long a, long long b) { return (a / GreatestCommonFactor(a, b)) * b; } static vector<vector<long long> > PrimeFactorization(long long n) { vector<long long> p_list, s_list; long long i, j, k, count; for (i = 2; n > 1; i++) { if (i * i > n) { p_list.push_back(n); s_list.push_back(1); break; } if (n % i == 0) { count = 0; while (n % i == 0) { n /= i; count++; } p_list.push_back(i); s_list.push_back(count); } } vector<vector<long long> > result; result.push_back(p_list); result.push_back(s_list); return result; } static long long Combination(long long n, long long r) { r = min(r, n - r); vector<long long> p(n + 1, 0); long long i, j, k, a, b, c; for (i = 1; i <= r; i++) { auto temp = MYCP::PrimeFactorization(i); for (j = 0; j < temp[0].size(); j++) { p[temp[0][j]] -= temp[1][j]; } a = i + n - r; temp = MYCP::PrimeFactorization(a); for (j = 0; j < temp[0].size(); j++) { p[temp[0][j]] += temp[1][j]; } } long long result = 1; for (i = 0; i < p.size(); i++) { if (p[i] > 0) { for (j = 0; j < p[i]; j++) { result *= i; result %= MYCP::TEISUU; } } } return result; } static long long sign(long long x) { if (x > 0) return 1; if (x < 0) return -1; return 0; } static long long DebugPrintf(string output) { if (MYCP::DebugFlag != 0) { std::cout << output << endl; } return MYCP::DebugFlag; } static long long DebugCin() { long long a; if (MYCP::DebugFlag != 0) { cin >> a; } return a; } }; long long MYCP::DebugFlag = 0; class Syakutori { private: vector<long long> list; public: void MakeArray(vector<long long> data) { long long i; list = data; list.push_back(0); list[0] = 0; for (i = 1; i < list.size(); i++) { list[i] = list[i - 1] + data[i - 1]; } } long long Sum(long long start, long long end) { if (end < start) { std::cout << "startがendより大きいです"; return 0; } if (start < 0 || end >= list.size()) { std::cout << "範囲が異常"; return 0; } return list[end] - list[start]; } }; int main(void) { MYCP::DebugFlag = 0; long long i, j, k, n, m; long long count = 0; cin >> n; auto a = MYCP::ReadInts(n); long long sum = a[0], next; for (i = 1; i < n; i++) { long long sign = MYCP::sign(sum); sign *= MYCP::sign(sum + a[i]); if (sign != -1) { sign = MYCP::sign(sum) * (-1); k = sign - sum; count += abs(a[i] - k); a[i] = k; } sum += a[i]; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } vector<long long int> b = a, c = a; long long int count1 = 0, count2 = 0; if (b[0] <= 0) { count1 += 1 - b[0]; b[0] = 1; } if (c[0] >= 0) { count2 += c[0] - (-1); c[0] = -1; } for (int i = 1; i < n; i++) { b[i] += b[i - 1]; c[i] += c[i - 1]; if (i % 2 == 0) { if (b[i] <= 0) { count1 += 1 - b[i]; b[i] = 1; } if (c[i] >= 0) { count2 += c[i] - (-1); c[i] = -1; } } if (i % 2 != 0) { if (b[i] >= 0) { count1 += b[i] - (-1); b[i] = -1; } if (c[i] <= 0) { count2 += 1 - c[i]; c[i] = -1; } } } cout << min(count1, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[200005] = {0}; int main() { long long n, i; cin >> n; for (i = 1; i <= n; i++) { scanf("%lld", &a[i]); } long long sum1 = 0, sum2 = 0; long long ans1 = 0, ans2 = 0; sum1 += a[1], sum2 += a[1]; if (a[1] == 0) ans1 += 1, sum1 = 1, ans2 += 1, sum2 = -1; for (i = 2; i <= n; i++) { sum1 += a[i]; if (i % 2 == 0 && sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } else if (i % 2 != 0 && sum1 <= 0) { ans1 += 1 - sum1; sum1 = 1; } } for (i = 2; i <= n; i++) { sum2 += a[i]; if (i % 2 == 0 && sum2 <= 0) { ans2 += 1 - sum2; sum2 = 1; } else if (i % 2 == 1 && sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); List<Long> alist = new ArrayList<>(); for (int i = 0; i < n; i++) { alist.add(sc.nextLong()); } int cntOdd = 0; int cntEvn = 0; long sum = 0; for (int i = 0; i < alist.size(); i++) { sum += alist.get(i); //iが偶数のとき正 if(i%2 == 0) { if(sum > 0) { continue; } else { while(sum <= 0) { int calc = 1; sum += calc; cntEvn++; } } } else { if(sum < 0) { continue; } else { while(sum >= 0) { int calc = -1; sum += calc; cntEvn++; } } } } sum =0; for (int i = 0; i < alist.size(); i++) { sum += alist.get(i); //iが偶数のとき負 if (i%2 == 0) { if(sum < 0) { continue; } else { while(sum >= 0) { int calc = -1; sum += calc; cntOdd++; } } } else { if(sum > 0) { continue; } else { while(sum <= 0) { int calc = 1; sum += calc; cntOdd++; } } } } if(cntOdd <= cntEvn) { System.out.println(cntOdd); } else { System.out.println(cntEvn); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 200010; long long n, m, md, ans; long long a[maxn], pre[maxn]; ; long long read() { long long s = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { s = s * 10 + ch - '0'; ch = getchar(); } return s * f; } int main() { md = 0, ans = 0; memset(pre, 0, sizeof(pre)); n = read(); for (long long i = 1; i <= n; i++) { a[i] = read(); pre[i] = a[i]; pre[i] += pre[i - 1]; } if (pre[1] != 0) { for (long long i = 1; i < n; i++) { long long tmp = md; if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) { if ((pre[i] + tmp) < 0) { md += (1ll - (pre[i + 1] + tmp)); ans += (1ll - (pre[i + 1] + tmp)); } else { md -= ((pre[i + 1] + tmp) + 1ll); ans += (1ll + (pre[i + 1] + tmp)); } } } } else { long long ans1 = 0, ans2 = 0; md = 0, ans = 0; pre[0] = -1; for (long long i = 0; i < n; i++) { long long tmp = md; if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) { if ((pre[i] + tmp) < 0) { md += (1ll - (pre[i + 1] + tmp)); ans1 += (1ll - (pre[i + 1] + tmp)); } else { md -= ((pre[i + 1] + tmp) + 1ll); ans1 += (1ll + (pre[i + 1] + tmp)); } } } md = 0, ans = 0; pre[0] = 1ll; for (long long i = 0; i < n; i++) { long long tmp = md; if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) { if ((pre[i] + tmp) < 0) { md += (1ll - (pre[i + 1] + tmp)); ans2 += (1ll - (pre[i + 1] + tmp)); } else { md -= ((pre[i + 1] + tmp) + 1ll); ans2 += (1ll + (pre[i + 1] + tmp)); } } } ans = min(ans1, ans2); } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long cal(long long b0, int n, long long* a, long long ans) { long long b[n]; b[0] = b0; for (int i = 1; i < n; i++) { b[i] = b[i - 1] + a[i]; if (b[i] == 0) { ans++; b[i] = -1 * b[i - 1] / b[i - 1]; } if (a[i] * b[i - 1] > 0 || (abs(a[i]) - abs(b[i - 1])) < 0) { ans += abs(a[i] + b[i - 1]) + 1; b[i] = -1 * b[i - 1] / b[i - 1]; } } return ans; } int main() { int n; cin >> n; long long a[n], ans = 0; for (int i = 0; i < n; i++) cin >> a[i]; if (a[0] != 0) { cout << cal(a[0], n, a, ans) << endl; } else { ans++; cout << (cal(1, n, a, ans) < cal(-1, n, a, ans) ? cal(1, n, a, ans) : cal(-1, n, a, ans)) << endl; return 0; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# input = sys.stdin.readline from bisect import * from collections import * from heapq import * # import functools # import itertools # import math n=int(input()) A=list(map(int,input().split())) def main(c,temp): if temp>0: flag=1 elif temp<0: flag=0 for i in range(1,n): temp+=A[i] if flag: if temp>=0: c+=temp-(-1) temp=-1 flag=0 else: if temp<=0: c+=1-temp temp=1 flag=1 return(c) temp=A[0] if temp: print(main(0,temp)) else: temp=1 a=main(1,temp) temp=-1 b=main(1,temp) print(min(a,b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100010] = {0}; long long sequence(long long n) { long long sum = 0, count = 0; bool sign = true; if (a[1] > 0) { sum = a[1]; sign = false; for (long long i = 2; i <= n; i++) { sum += a[i]; if (!sign) { if (sum > 0) { count += sum + 1; sum = sum - sum - 1; sign = true; } else { if (sum == 0) { count++; sum -= 1; sign = true; } else sign = true; } } else { if (sum < 0) { count += -sum + 1; sum = sum - sum + 1; sign = false; } else { if (sum == 0) { count++; sum += 1; sign = false; } else sign = false; } } } } else { if (a[1] < 0) { sum = a[1]; sign = true; for (long long i = 2; i <= n; i++) { sum += a[i]; if (!sign) { if (sum > 0) { count += sum + 1; sum = sum - sum - 1; sign = true; } else { if (sum == 0) { count++; sum -= 1; sign = true; } else sign = true; } } else { if (sum < 0) { count += -sum + 1; sum = sum - sum + 1; sign = false; } else { if (sum == 0) { count++; sum += 1; sign = false; } else sign = false; } } } } else { count++; sum = 1; sign = false; for (long long i = 2; i <= n; i++) { sum += a[i]; if (!sign) { if (sum > 0) { count += sum + 1; sum = sum - sum - 1; sign = true; } else { if (sum == 0) { count++; sum -= 1; sign = true; } else sign = true; } } else { if (sum < 0) { count += -sum + 1; sum = sum - sum + 1; sign = false; } else { if (sum == 0) { count++; sum += 1; sign = false; ; } else sign = false; } } } } } return count; } int main() { long long n, sum = 0, count = 0; cin >> n; for (long long i = 1; i <= n; i++) cin >> a[i]; cout << sequence(n) << endl; return 0; }