Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = (1e+9) + 7;
const long long INF = 2e+9 + 10;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long res1 = 0, sum1 = 0;
for (int i = 0, sign = 1; i < n; i++, sign *= -1) {
sum1 += a[i];
if (sign == 1)
while (sum1 <= 0) {
sum1++;
res1++;
}
else
while (sum1 >= 0) {
sum1--;
res1++;
}
}
long long res2 = 0, sum2 = 0;
for (int i = 0, sign = -1; i < n; i++, sign *= -1) {
sum2 += a[i];
if (sign == 1)
while (sum2 <= 0) {
sum2++;
res2++;
}
else
while (sum2 >= 0) {
sum2--;
res2++;
}
}
int res = min(res1, res2);
cout << res << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n =sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
int[] sum = new int[n+1];
for (int i = 1; i <= n; i++) {
sum[i] = sum[i-1] + a[i-1];
}
int count1 = count(n, true, sum, 0 );
int count2 = count(n, false, sum, 0);
System.out.println(Math.min(count1, count2));
}
private static int count(int n , boolean pastPlus, int[] sum, long carry){
int count2 = 0;
for (int i = 1; i <= n; i++) {
long cur = sum[i] + carry;
if (pastPlus && cur >= 0) {
// minus nisinaito
count2 += cur + 1;
carry = - cur - 1;
}
if (!pastPlus && cur <= 0) {
count2 += -cur + 1;
carry = -cur + 1;
}
pastPlus = !pastPlus;
}
return count2;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
cin >> N;
long long sum1 = 0, sum2 = 0;
long long ans1 = 0, ans2 = 0;
for (int i = 0; i < N; ++i) {
long long t;
cin >> t;
if (i == 0) {
sum1 = t;
sum2 = t > 0 ? -1 : 1;
ans2 += t + 1;
} else {
if (sum1 < 0 && sum1 + t <= 0) {
ans1 += 1 - sum1 - t;
sum1 = 1;
} else if (sum1 > 0 && sum1 + t >= 0) {
ans1 += abs(-1 - sum1 - t);
sum1 = -1;
} else {
sum1 += t;
}
if (sum2 < 0 && sum2 + t <= 0) {
ans2 += 1 - sum2 - t;
sum2 = 1;
} else if (sum2 > 0 && sum2 + t >= 0) {
ans2 += abs(-1 - sum2 - t);
sum2 = -1;
} else {
sum2 += t;
}
}
}
cout << min(ans1, ans2) << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long N, ans, sum;
vector<int> a;
void calc() {
for (int i = 0; i < (N - 1); i++) {
sum += a[i];
if (!(signbit(sum) ^ signbit(sum + a[i + 1]))) {
ans += abs(sum + a[i + 1]) + 1;
if (sum < 0)
a[i + 1] = 1;
else
a[i + 1] = -1;
}
}
}
void solve() {
cin >> N;
a.resize(N);
for (int i = 0; i < (N); i++) cin >> a[i];
if (a[0] == 0) {
ans = 1;
a[0] = 1;
calc();
a[0] = -1;
calc();
cout << ans << endl;
return;
}
calc();
cout << ans << endl;
}
int main() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(20);
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<long long> a(n);
cin >> a[0];
for (int i = 1; i < n; i++) {
cin >> a[i];
a[i] += a[i - 1];
}
long long ans1 = 0, def1 = 0;
if (a[0] == 0) {
ans1++;
def1++;
}
for (int i = 1; i < n; i++) {
if (i % 2 == 0 && a[i] + def1 <= 0) {
ans1 += 1 - (a[i] + def1);
def1 += 1 - (a[i] + def1);
} else if (i % 2 == 1 && a[i] + def1 >= 0) {
ans1 += a[i] + def1 + 1;
def1 -= a[i] + def1 + 1;
}
}
long long ans2 = 0, def2 = 0;
if (a[0] == 0) {
ans2++;
def2++;
}
for (int i = 1; i < n; i++) {
if (i % 2 == 1 && a[i] + def2 <= 0) {
ans2 += 1 - (a[i] + def2);
def2 += 1 - (a[i] + def2);
} else if (i % 2 == 0 && a[i] + def2 >= 0) {
ans2 += a[i] + def2 + 1;
def2 -= a[i] + def2 + 1;
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; ++i) {
cin >> A[i];
}
int ans0 = 0;
{
int sum0 = 0;
for (int i = 0; i < N; ++i) {
sum0 += A[i];
if (0 == i % 2) {
if (sum0 <= 0) {
ans0 += (1 - sum0);
sum0 = 1;
}
} else {
if (sum0 >= 0) {
ans0 += (sum0 - (-1));
sum0 = -1;
}
}
}
}
int ans1 = 0;
{
int sum1 = 0;
for (int i = 0; i < N; ++i) {
sum1 += A[i];
if (1 == i % 2) {
if (sum1 <= 0) {
ans1 += (1 - sum1);
sum1 = 1;
}
} else {
if (sum1 >= 0) {
ans1 += (sum1 - (-1));
sum1 = -1;
}
}
}
}
cout << min(ans0, ans1) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, a, s = 0, count1 = 0, count2 = 0, i, news;
cin >> n;
vector<int> as(n);
for (int i = 0; i < n; i++) {
cin >> a;
s += a;
as[i] = s;
}
i = 0;
s = 0;
while (i < n) {
news = as[i] + s;
if (news > -1) {
s -= news + 1;
count1 += news + 1;
}
if (++i >= n) break;
news = as[i] + s;
if (news < 1) {
s += 1 - news;
count1 += 1 - news;
}
i++;
}
i = 0;
s = 0;
while (i < n) {
news = as[i] + s;
if (news < 1) {
s += 1 - news;
count2 += 1 - news;
}
if (++i >= n) break;
news = as[i] + s;
if (news > -1) {
s -= news + 1;
count2 += news + 1;
}
i++;
}
cout << (count1 < count2 ? count1 : count2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf = 1e9;
int main() {
int n;
cin >> n;
int a[100010];
for (int i = (0); i < (int)n; i++) {
cin >> a[i];
}
long long ans = 0;
long long sum = a[0];
for (int i = (1); i < (int)n; i++) {
long long tmp;
tmp = sum;
sum += a[i];
if (sum >= 0 && tmp > 0) {
ans += sum + 1;
sum = -1;
} else if (sum <= 0 && tmp < 0) {
ans += -sum + 1;
sum = 1;
}
}
cout << (ans) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, sum = 0, tmp = 0, c = 0, tmp2 = 0, c2 = 0;
bool chg = false;
cin >> n;
vector<long long> a(n);
vector<long long> b(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
b[i] = sum;
}
vector<long long> bb(b);
for (int i = 0; i < n; i++) {
b[i] += tmp;
if (i % 2 == 0 && b[i] <= 0) {
tmp = abs(b[i]) + 1;
chg = true;
}
if (i % 2 == 1 && b[i] >= 0) {
tmp = -(abs(b[i]) + 1);
chg = true;
}
if (chg) c += abs(tmp);
chg = false;
}
chg = false;
for (int i = 0; i < n; i++) {
bb[i] += tmp2;
if (i % 2 == 0 && bb[i] >= 0) {
tmp2 = -(abs(bb[i]) + 1);
chg = true;
}
if (i % 2 == 1 && bb[i] <= 0) {
tmp2 = abs(bb[i]) + 1;
chg = true;
}
if (chg) c2 += abs(tmp2);
chg = false;
}
cout << min(c, c2);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import std.stdio, std.algorithm, std.conv, std.array, std.string;
long check(long op, long sum, long[] as)
{
foreach (a; as) {
if (sum < 0) {
if ((sum + a) <= 0) {
op += (1 - (sum + a));
sum = 1;
} else {
sum += a;
}
} else {
if ((sum + a) >= 0) {
op += sum + a + 1;
sum = -1;
} else {
sum += a;
}
}
}
return op;
}
void main()
{
readln;
auto as = readln.chomp.split(" ").map!(to!long).array;
auto op1 = check(0, as[0], as[1..$]);
auto op2 = check(as[0] < 0 ? 1 - as[0] : as[0] - 1, 1, as[1..$]);
auto op3 = check(as[0] < 0 ? -as[0] - 1 : 1 + as[0], -1, as[1..$]);
writeln(min(op1, op2, op3));
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | import sys
from collections import deque
import copy
import math
def get_read_func(fileobject):
if fileobject == None :
return raw_input
else:
return fileobject.readline
def calc(A, N):
s = 0L
count = 0
pre_sign = 0
for i in range(N):
s += A[i]
if s == 0:
if pre_sign == 1:
s -= 1L
elif pre_sign == -1:
s += 1L
count += 1
elif pre_sign == s/abs(s):
if s < 0L:
ope = 1L - s
else:
ope = -1L - s
s += ope
count += abs(ope)
pre_sign = s/abs(s)
return count
def main():
if len(sys.argv) > 1:
f = open(sys.argv[1])
else:
f = None
read_func = get_read_func(f);
input_raw = read_func().strip().split()
[N] = [int(input_raw[0])]
input_raw = read_func().strip().split()
A = [int(input_raw[i]) for i in range(N)]
s = 0
count = 0
pre_sign = 0
if A[0] != 0:
count = calc(A, N)
else:
A[0] = -1
count_minus =calc(A, N) + 1
A[0] = 1
count_plus =calc(A, N) + 1
count = min(count_minus, count_plus)
print count
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
L = list(map(int,input().split()))
accum = 0
cnt = 0
for i in range(N):
accum += L[i]
if i % 2 == 0 and accum <= 0:
cnt += 1 - accum
accum += cnt
if i % 2 == 1 and accum >= 0:
cnt += accum - (-1)
accum -= cnt
ans = cnt
accum = 0
cnt = 0
for i in range(N):
accum += L[i]
if i % 2 == 1 and accum <= 0:
cnt += 1 - accum
accum += cnt
if i % 2 == 0 and accum >= 0:
cnt += accum - (-1)
accum -= cnt
ans = min(ans,cnt)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int t;
if (a[0] >= 0)
t = 1;
else
t = -1;
long long sum = a[0];
long long ans = 0;
for (int i = 1; i < n; i++) {
long long sum2 = sum + a[i];
if (sum > 0 && sum2 > 0) {
ans += sum2 + 1;
sum = -1;
} else if (sum < 0 && sum2 < 0) {
ans += -sum2 + 1;
sum = 1;
} else if (sum2 == 0) {
ans++;
if (sum < 0)
sum = 1;
else
sum = -1;
} else
sum = sum2;
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main() {
int n, a[100010], i, ans1 = 0, ans2 = 0, sum = 0;
scanf("%d", &n);
for (i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for (i = 1; i <= n; i++) {
sum += a[i];
if (i % 2 == 1 && sum <= 0) {
ans1 += 1 - sum;
sum = 1;
} else if (i % 2 == 0 && sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
}
sum = 0;
for (i = 1; i <= n; i++) {
sum += a[i];
if (i % 2 == 1 && sum >= 0) {
ans2 += sum + 1;
sum = -1;
} else if (i % 2 == 0 && sum <= 0) {
ans2 += 1 - sum;
sum = 1;
}
}
if (ans1 > ans2) {
printf("\n%d\n\n", ans2);
} else {
printf("\n%d\n\n", ans1);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys, os
f = lambda:list(map(int,input().split()))
if 'local' in os.environ :
sys.stdin = open('./input.txt', 'r')
def solve():
n = f()[0]
a = f()
suma = [0] * n
minop = 1e9
for greater in [True, False]:
oper = 0
greater0 = greater
for i in range(n):
if i == 0:
suma[i] = a[i]
else:
suma[i] = a[i] + suma[i-1]
greater0 = not greater0
if greater0 and suma[i]<=0:
oper += 1 - suma[i]
suma[i] = 1
continue
if (not greater0) and suma[i]>=0:
oper += 1 + suma[i]
suma[i] = -1
continue
minop = min(minop, oper)
print(minop)
solve()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
long long a[n];
for (int(i) = 0; (i) < (n); (i)++) cin >> a[i];
long long ans1 = 0, ans2 = 0;
long long now = a[0];
for (int(i) = 0; (i) < (n - 1); (i)++) {
if (i == 0 && now == 0) {
now = -1;
ans1 += 1;
}
if ((now + a[i + 1]) * now < 0) {
now += a[i + 1];
continue;
} else {
if (now < 0) {
ans1 += (1 - now) - a[i + 1];
now = 1;
} else {
ans1 += a[i + 1] + (now + 1);
now = -1;
}
}
}
now = a[0];
for (int(i) = 0; (i) < (n - 1); (i)++) {
if (i == 0 && now == 0) {
now = 1;
ans2 += 1;
}
if ((now + a[i + 1]) * now < 0) {
now += a[i + 1];
continue;
} else {
if (now < 0) {
ans2 += (1 - now) - a[i + 1];
now = 1;
} else {
ans2 += a[i + 1] + (now + 1);
now = -1;
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
L = list(map(int, input().split()))
tmp = L[0]
res = 0
def diff(a,b):
if a*b < 0:
return True
else:
return False
if tmp == 0:
tmp = -1
res = 1
for i in range(1, N):
n = L[i] + tmp
if diff(n, tmp):
tmp = n
else:
if tmp < 0:
res = res + abs(n) + 1
tmp = 1
else:
res = res + abs(n) + 1
tmp = -1
res1 = res
res = 1
tmp = 1
for i in range(1, N):
n = L[i] + tmp
if diff(n, tmp):
tmp = n
else:
if tmp < 0:
res = res + abs(n) + 1
tmp = 1
else:
res = res + abs(n) + 1
tmp = -1
print(min(res, res1))
else:
tmp = L[0]
res = 0
for i in range(1, N):
n = L[i] + tmp
if diff(n, tmp):
tmp = n
else:
if tmp < 0:
res = res + abs(n) + 1
tmp = 1
else:
res = res + abs(n) + 1
tmp = -1
print(res) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a[100000];
int getTotal(int n, int dir) {
int total{}, sum{};
for (int i{0}; i < n; ++i) {
sum += a[i];
if (dir > 0 && sum <= 0) {
total += -sum + 1;
sum = 1;
} else if (dir < 0 && sum >= 0) {
total += sum + 1;
sum = -1;
}
dir *= -1;
}
return total;
}
int main() {
int n;
cin >> n;
for (int i{0}; i < n; ++i) cin >> a[i];
int try1 = getTotal(n, 1);
int try2 = getTotal(n, -1);
cout << ((try1) < (try2) ? (try1) : (try2)) << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
ans=10**15
for i in[-1,1]:
ansi,sum=0,0
for a in A:
sum+=a
if sum*i<=0:;ansi+=abs(sum-i);sum=i
i*=-1
ans=min(ans,ansi)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long N;
cin >> N;
vector<long long> v(N);
bool check = false;
for (int i = 0; i < N; i++) {
cin >> v[i];
if (v[0] < 0) check = true;
if (check) v[i] = -v[i];
}
vector<long long> a(N), b(N);
int cntA = 0, cntB = 0;
if (v[0] == 0) {
cntA++;
cntB++;
a[0] = 1;
b[0] = 1;
} else {
a[0] = v[0];
b[0] = -1;
cntB += v[0] + 1;
}
for (int i = 1; i < N; i++) {
long long tmp_a = a[i - 1] + v[i];
if (tmp_a == 0) {
if (i % 2 == 0) {
a[i] = 1;
} else {
a[i] = -1;
}
cntA++;
} else if (i % 2 == 0 && tmp_a < 0) {
a[i] = 1;
cntA += (-tmp_a) + 1;
} else if (i % 2 == 1 && tmp_a > 0) {
a[i] = -1;
cntA += tmp_a + 1;
} else {
a[i] = tmp_a;
}
long long tmp_b = b[i - 1] + v[i];
if (tmp_b == 0) {
if (i % 2 == 0) {
b[i] = -1;
} else {
b[i] = 1;
}
cntB++;
} else if (i % 2 == 0 && tmp_b > 0) {
b[i] = -1;
cntB += tmp_b + 1;
} else if (i % 2 == 1 && tmp_b < 0) {
b[i] = 1;
cntB += (-tmp_b) + 1;
} else {
b[i] = tmp_b;
}
}
cout << min(cntA, cntB) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n;
cin >> n;
long long int i;
vector<long long int> v(n);
vector<long long int> prefix(n, 0);
for (i = 0; i < n; i++) cin >> v[i];
prefix[0] = v[0];
long long int ans = 0;
for (i = 1; i < n; i++) {
prefix[i] = prefix[i - 1] + v[i];
long long int check = prefix[i - 1] * prefix[i];
if (check >= 0) {
ans = ans + abs(prefix[i]) + 1;
if (prefix[i - 1] < 0)
prefix[i] = 1;
else
prefix[i] = -1;
}
}
cout << ans << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
N = int(input())
S = list(map(int, input().split()))
mod_count = 0
mod_count = 0
pre_fugou = 1 ## 前の符号がなんであったか 1ならplus 0ならマイナス
for i in range(N):
if i==0 and S[i]==0:
if S[i+1]>0:
S[i] -= 1
mod_count += 1
pre_fugou = 0
else:
S[i] += 1
mod_count += 1
pre_fugou = 1
elif i==0 and S[i]>0:
pre_fugou = 1
elif i==0 and S[i]<0:
pre_fugou = 0
else:
if pre_fugou == 1:
while True:
if sum(S[:i+1]) > -1:
S[i] -= 1
mod_count += 1
pre_fugou = 0
else:
pre_fugou = 0
break
elif pre_fugou == 0:
while True:
if sum(S[:i+1]) < 1:
S[i] += 1
mod_count += 1
pre_fugou = 1
else:
pre_fugou = 1
break
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long int a[n], sum[n], sum2[n];
cin >> a[0];
sum[0] = a[0];
long long int ans = 0;
for (int i = 1; i < n; i++) cin >> a[i];
if (sum[0] > 0) {
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (i & 1) {
if (sum[i] >= 0) {
ans += sum[i] + 1;
sum[i] = -1;
}
} else {
if (sum[i] <= 0) {
ans += 1 - sum[i];
sum[i] = 1;
}
}
}
} else if (sum[0] < 0) {
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (i & 1) {
if (sum[i] <= 0) {
ans += 1 - sum[i];
sum[i] = 1;
}
} else {
if (sum[i] >= 0) {
ans += sum[i] + 1;
sum[i] = -1;
}
}
}
} else {
long long int ans2 = 1, ans3 = 1;
sum[0] = 1;
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (i & 1) {
if (sum[i] >= 0) {
ans2 += sum[i] + 1;
sum[i] = -1;
}
} else {
if (sum[i] <= 0) {
ans2 += 1 - sum[i];
sum[i] = 1;
}
}
}
sum2[0] = -1;
for (int i = 1; i < n; i++) {
sum2[i] = sum2[i - 1] + a[i];
if (i & 1) {
if (sum2[i] <= 0) {
ans3 += 1 - sum2[i];
sum2[i] = 1;
}
} else {
if (sum2[i] >= 0) {
ans3 += sum2[i] + 1;
sum2[i] = -1;
}
}
}
ans = min(ans2, ans3);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, c = 0;
cin >> n;
int sum[n];
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] == 0) {
a[0]++;
c++;
}
sum[0] = a[0];
int e = a[0] / abs(a[0]);
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (sum[i - 1] * sum[i] >= 0) {
c += abs(sum[i] - pow(-1, i) * e);
sum[i] = pow(-1, i) * e;
}
}
cout << c << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(ai) for ai in input().split()]
count = 0
a_sum = 0
for i, ai in enumerate(a):
if i == 0:
a_sum = ai
else:
tmp_sum = a_sum + ai
if tmp_sum < 0 and a_sum < 0:
c = abs(tmp_sum) + 1
elif tmp_sum > 0 and a_sum > 0:
c = -abs(tmp_sum) - 1
elif tmp_sum == 0 and a_sum < 0:
c = -1
elif tmp_sum == 0 and a_sum > 0:
c = 1
else:
c = 0
count += abs(c)
a_sum = tmp_sum + c
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int ddx[8] = {0, 1, 1, 1, 0, -1, -1, -1};
const int ddy[8] = {1, 1, 0, -1, -1, -1, 0, 1};
const int dx[4] = {0, 1, 0, -1};
const int dy[4] = {1, 0, -1, 0};
static const int NIL = -1;
int n;
void printArray(int array[], int n) {
for (int i = (0); i < (n); ++i) {
if (i) cout << " ";
cout << array[i];
}
cout << endl;
}
int sequence(int* a, bool sign) {
int sum = 0, cnt = 0;
for (int i = (0); i < (n); ++i) {
if (sign) {
sum += a[i];
if (sum > 0) {
int rem = abs(-1 - sum);
cnt += rem;
sum = -1;
}
sign = false;
} else {
sum += a[i];
if (sum < 0) {
int rem = abs(1 - sum);
cnt += rem;
sum = 1;
}
sign = true;
}
}
if (sum == 0) cnt++;
return cnt;
}
int main(int argc, char const* argv[]) {
cin.tie(0);
ios::sync_with_stdio(false);
cin >> n;
int a[n];
for (int i = (0); i < (n); ++i) cin >> a[i];
int pos = sequence(a, true);
int neg = sequence(a, false);
cout << min(pos, neg) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
static int[][] map;
static int[][] label;
static ArrayList<String> list;
static int M;
static int N;
static int T;
static int P;
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
long[] map = new long[n];
for (int i = 0; i < n; i++) {
map[i] = scanner.nextLong();
}
long sum = map[0];
long ans = 0;
boolean sign = true;
if(sum < 0){
sign = false;
sum = -1;
}
for (int i = 1; i < n; i++) {
sum += map[i];
if (sign) {
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
sign = false;
} else {
if (sum <= 0) {
ans -= sum - 1;
sum = 1;
}
sign = true;
}
}
sum = map[0];
long ans2 = 0;
sign = false;
if(sum < 0){
sign = true;
sum = 1;
}
for (int i = 1; i < n; i++) {
sum += map[i];
if (sign) {
if (sum >= 0) {
ans2 += sum + 1;
sum = -1;
}
sign = false;
} else {
if (sum <= 0) {
ans2 -= sum - 1;
sum = 1;
}
sign = true;
}
}
System.out.println(Math.min(ans, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long ans = 0;
int sum = a[0];
bool plus = (sum > 0);
if (sum == 0) {
ans++;
plus = true;
}
for (int i = 1; i < n; i++) {
sum += a[i];
if ((plus && sum < 0) || (!plus && sum > 0)) {
plus = !plus;
continue;
}
if (plus) {
ans += (sum + 1);
sum = -1;
} else {
ans += (-sum + 1);
sum = 1;
}
plus = !plus;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
currentSum = 0
count3 = 0
count4 = 0
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count3 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count3 += abs(currentSum) + 1
currentSum = -1
elif A[i] <= 0 and restSum == 0:
count3 += abs(currentSum) + 1
currentSum = 1
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count4 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count4 += abs(currentSum) + 1
currentSum = -1
elif A[i] >= 0 and restSum == 0:
count4 += abs(currentSum) + 1
currentSum = -1
print(count1, count2, count3, count4)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(ai) for ai in input().split()]
count = 0
a_sum = a[0]
for ai in a[1:]:
next_sum = a_sum + ai
if next_sum * a_sum < 0:
a_sum = next_sum
continue
count += abs(next_sum) + 1
if a_sum < 0:
a_sum = 1
else:
a_sum = -1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = (long long)1e9;
const long long MOD = (long long)1e9 + 7;
const double EPS = (double)1e-10;
struct Accelerate_Cin {
Accelerate_Cin() {
cin.tie(0);
ios::sync_with_stdio(0);
cout << fixed << setprecision(20);
};
};
signed main() {
long long n;
cin >> n;
static long long sum[100010] = {0};
long long cont = 0;
for (long long t = 0; t < n; t++) {
long long a;
cin >> a;
if (t == 0) sum[t] = a;
if (t != 0) sum[t] = sum[t - 1] + a;
if (sum[t] * sum[t - 1] >= 0 && t != 0) {
cont += abs(sum[t]) + 1;
if (sum[t - 1] < 0) sum[t] = 1;
if (sum[t - 1] > 0) sum[t] = -1;
}
}
cout << cont << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[100010];
long long ans = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
if (i != 0) {
a[i] += a[i - 1];
if (a[i] == 0 && i == n - 1) {
if (a[i - 1] > 0) {
ans++;
a[i]--;
} else {
ans++;
a[i]++;
}
} else if (a[i - 1] > 0) {
if (a[i] > 0) {
ans += llabs(-1 - a[i]);
a[i] = -1;
}
} else if (a[i - 1] < 0) {
if (a[i] < 0) {
ans += 1 - a[i];
a[i] = 1;
}
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int N;
cin >> N;
vector<long long> a(N);
for (int i = 0; i < N; i++) {
cin >> a[i];
}
long long sum = 0;
long long cnt = 0;
for (int i = 0; i < N; i++) {
if (sum + a[i] == 0) {
if (sum < 0) {
cnt++;
a[i]++;
} else if (sum > 0) {
cnt++;
a[i]--;
} else {
if (a[i + 1] > 0)
a[i]++;
else if (a[i + 1] < 0)
a[i]--;
else
a[i]++;
cnt++;
}
}
if (sum < 0 && sum + a[i] < 0) {
long long diff = abs(sum + a[i]) + 1;
cnt += diff;
a[i] += diff;
} else if (sum > 0 && sum + a[i] > 0) {
long long diff = abs(sum + a[i]) + 1;
cnt += diff;
a[i] -= diff;
}
sum += a[i];
}
for (int i = 0; i < N; i++) {
cerr << a[i] << " ";
}
cerr << endl;
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
b = [int(x) for x in input().split()]
a = list()
temp = 0
count1 = 0
count2 = 0
a = b.copy()
if a[0] == 0:
a[0] = 1
count1 = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
if sum > 0:
temp = -1 * abs(sum) - 1
count1 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count1 += abs(temp - a[i])
a[i] = temp
sum += a[i]
a = b.copy()
if a[0] == 0:
a[0] = 1
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
count2 = abs(a[0]) + 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
count2 += abs(sum - a[i]) + 1
if sum > 0:
temp = -1 * abs(sum) - 1
count2 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count2 += abs(temp - a[i])
a[i] = temp
sum += a[i]
print(min(count1, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.next());
ArrayList<Integer> aArrayList = new ArrayList<>();
for (int i=0; i<n; i++) {
aArrayList.add(Integer.parseInt(sc.next()));
}
int sign = 1;
int ans1 = 0;
int sum1 = 0;
for (Integer a : aArrayList) {
if (sign > 0){
int d = Math.max(sign-(sum1+a), 0);
ans1 += d;
sum1 += d + a;
}else {
int d = Math.min(sign-(sum1+a), 0);
ans1 -= d;
sum1 += d + a;
}
sign *= -1;
}
sign = -1;
int ans2 = 0;
int sum2 = 0;
for (Integer a : aArrayList) {
if (sign > 0){
int d = Math.max(sign-(sum2+a), 0);
ans2 += d;
sum2 += d + a;
}else {
int d = Math.min(sign-(sum2+a), 0);
ans2 -= d;
sum2 += d + a;
}
sign *= -1;
}
System.out.println(Math.min(ans1, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long ans = 0, cumsum = a[0];
if (a[0] == 0) {
int i = 1;
while (a[i] == 0 && i < n) i++;
if (i == n || a[i] < 0)
cumsum = 1;
else
cumsum = -1;
ans += 1;
}
for (int i = 1; i < n; i++) {
if (cumsum > 0) {
if (cumsum + a[i] >= 0) {
ans += cumsum + a[i] + 1;
cumsum = -1;
} else
cumsum += a[i];
} else {
if (cumsum + a[i] <= 0) {
ans += 1 - cumsum - a[i];
cumsum = 1;
} else
cumsum += a[i];
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
int sum = 0, sign = 1;
int ans_a = 0;
for (int i = 0; i < n; i++) {
sum += a.at(i);
if (sum <= 0 && sign == 1) {
while (sum <= 0) {
sum++;
ans_a++;
}
}
if (sum >= 0 && sign == -1) {
while (sum >= 0) {
sum--;
ans_a++;
}
}
sign *= -1;
}
sum = 0, sign = -1;
int ans_b = 0;
for (int i = 0; i < n; i++) {
sum += a.at(i);
if (sum <= 0 && sign == 1) {
while (sum <= 0) {
sum++;
ans_b++;
}
}
if (sum >= 0 && sign == -1) {
while (sum >= 0) {
sum--;
ans_b++;
}
}
sign *= -1;
}
int ans = min(ans_a, ans_b);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
"""
Created on Sat Sep 8 15:51:53 2018
@author: maezawa
"""
n = int(input())
a = list(map(int, input().split()))
sa = 0
cnt = 0
for i in range(0,n-1):
sa += a[i]
na = -sa//abs(sa)*(abs(sa)+1)
if abs(a[i+1]) > abs(na) and a[i+1]*na > 0:
continue
cnt += abs(na-a[i+1])
a[i+1] = na
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n + 1];
for (int i = 0; i < n; i++) cin >> a[i];
int sum = a[0];
int c = 1;
int ans0 = 0, ans1 = 0;
for (int i = 1; i < n; i++) {
sum += a[i];
if (sum * c < 1) {
ans0 += 1 - sum * c;
sum = c;
}
c *= -1;
}
c = -1;
for (int i = 1; i < n; i++) {
sum += a[i];
if (sum * c < 1) {
ans1 += 1 - sum * c;
sum = c;
}
c *= -1;
}
if (ans0 < ans1)
cout << ans0 << endl;
else
cout << ans1 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int N, count = 0;
cin >> N;
vector<long int> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
long long int su = A[0];
bool plus = A[0] > 0;
for (int i = 1; i < N; i++) {
plus = !plus;
su += A[i];
if (plus) {
if (su <= 0) {
count += -1 * su + 1;
su = 1;
}
} else {
if (su >= 0) {
count += su + 1;
su = -1;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N=int(input())
A=list(map(int,input().split()))
cur=A[0]
ans=0
isplus=True
ind=1
if cur<0:
isplus=False
if cur==0:
# すべて0の場合
allzero=True
firstNotZero=0
firstNotZeroInd=0
for i in range(N):
if A[i]!=0:
firstNotZero=A[i]
firstNotZeroInd=i
allzero=False
break
if allzero:
print(N)
exit(0)
# 0以外が出てくる場合
if firstNotZero>0:
cur=-1
ind=firstNotZeroInd
isplus=False
print("ind",ind,"isplus",isplus)
else:
cur=1
ind=firstNotZeroInd
isplus=True
print("ind",ind,"isplus",isplus)
for i in range(ind,N):
print("i",i,"cur",cur,"A[i]",A[i])
if isplus:
if cur+A[i]>=0:
diff=abs((cur+A[i])-(-1))
print("cur",cur,"cur+A[i]",cur+A[i]," -> -1 diff",diff)
ans+=diff
print("ans",ans)
cur=-1
else:
print("no problem")
cur+=A[i]
isplus=False
else:
if cur+A[i]<=0:
diff=abs((cur+A[i])-1)
print("cur",cur,"cur+A[i]",cur+A[i]," -> 1 diff",diff)
ans+=diff
print("ans",ans)
cur=1
else:
print("no problem")
cur+=A[i]
isplus=True
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const constexpr int INF = 1e9;
const constexpr long long MOD = 1e9 + 7;
vector<pair<int, int> > vp;
struct Less {
bool operator()(const pair<int, int>& x, const pair<int, int>& y) const {
return x.first > y.first;
}
};
long long GCD(long long a, long long b) {
if (b == 0) return a;
return GCD(b, a % b);
}
vector<int> g[200010];
int h[100010];
int n;
long long f(long long a[]) {
long long ans = 0;
if (a[0] < 0) {
ans += abs(a[0]) + 1;
a[0] = 1;
}
long long sum = a[0];
for (int i = 1; i < n; ++i) {
if (i % 2 != 0) {
if (sum + a[i] >= 0) {
ans += abs(sum + a[i]) + 1;
a[i] = -(sum)-1;
}
}
if (i % 2 == 0) {
if (sum + a[i] <= 0) {
ans += abs(sum + a[i]) + 1;
a[i] = -(sum) + 1;
}
}
sum += a[i];
}
return ans;
}
long long ff(long long a[]) {
long long ans = 0;
if (a[0] > 0) {
ans += abs(a[0]) + 1;
a[0] = -1;
}
long long sum = a[0];
for (int i = 1; i < n; ++i) {
if (i % 2 != 0) {
if (sum + a[i] <= 0) {
ans += abs(sum + a[i]) + 1;
a[i] = -(sum) + 1;
}
}
if (i % 2 == 0) {
if (sum + a[i] >= 0) {
ans += abs(sum + a[i]) + 1;
a[i] = -(sum)-1;
}
}
sum += a[i];
}
return ans;
}
int main(void) {
cin >> n;
long long a[100010] = {0};
long long b[100010] = {0};
for (long long i = (long long)0; i < (long long)n; ++i) {
cin >> a[i];
b[i] = a[i];
}
long long ans1 = f(a);
long long ans2 = ff(b);
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
namespace ProgramingStydying
{
class Program
{
static void Main(string[] args)
{
var n = int.Parse(Console.ReadLine());
var a = Console.ReadLine().Split().Select(int.Parse).ToList();
var ans = 0;
if(a[0] == 0)
{
ans = Math.Min(Solve(n, a, 1), Solve(n, a, -1)) + 1;
}
else
{
ans = Solve(n, a, a[0]);
}
Console.WriteLine(ans);
}
static int Solve(int n, List<int> a, int sum)
{
var ans = 0;
for (int i = 1; i < n; i++)
{
if (sum > 0)
{
sum += a[i];
if (sum < 0)
{
continue;
}
else
{
while (sum >= 0)
{
sum--;
ans++;
}
}
}
else if (sum < 0)
{
sum += a[i];
if (sum > 0)
{
continue;
}
else
{
while (sum <= 0)
{
sum++;
ans++;
}
}
}
}
return ans;
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | <?php
error_reporting(0);
$stdin = file_get_contents('php://stdin');
$line = explode("\n",$stdin);
$fi = 0;
$cnt = 0;
$list = array();
$key = new stdclass();
foreach($line as $l) {
if (strlen($l)==0) continue;
if ($fi == 0) {
$a = explode(" ",$l);
$key->A = $a;
$fi++;
continue;
}
if ($fi > 0) {
$a = explode(" ",$l);
$key->X[] = $a;
}
}
$cnt=0;
$prev=null;
$new=array();
foreach($key->X[0] as $v) {
if ($prev != null) {
//2回目以降処理
if ($prev > 0) {
//前の数が正なら、この数を負にする必要がある
if (($prev + $v) >= 0) {
//ダメなので-1まで減らす
$wk = $prev + $v;
$cnt += $wk+1;
$prev = -1;
$new[]=$v-$cnt;
}
else {
$prev = $prev + $v;
$new[]=$v;
}
}
else {
//前はマイナスなのでプラスにする必要がある
if (($prev + $v)<= 0) {
$wk = $prev + $v;
$cnt += 1-$wk;
$prev = 1;
$new[]=$v+$cnt;
}
else {
$prev = $prev + $v;
$new[]=$v;
}
}
}
else {
$prev = $v;
$new[]=$v;
}
}
$chk=0;
printf("%d\n",$cnt);
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
import java.text.DecimalFormat;
// warm-up
public class Main {
static void solve() {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt(), t=n, i=0;
double[] a = new double[n];
double o = 0, s = 0;
while (t-->0) a[i++] = sc.nextDouble();
for (i=0; i<n; i++) {
double k=a[i];
if (s+a[i]==0) a[i]=(-s<0) ? s+1 : 1-s;
else if ((s<0 && s+a[i]<0)||(s>0 && s+a[i]>0)) a[i]=(s+a[i]<0) ? -s+1 : -s-1;
o+=Math.abs(k-a[i]);
s+=a[i];
}
System.out.println(new DecimalFormat("#").format(o));
sc.close();
}
public static void main(String args[]) {
solve();
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | #coding:utf-8
if __name__ == "__main__":
n = int(raw_input())
seq = map(int, raw_input().split(" "))
is_positive = True
if seq[0] < 0:
is_positive = False
sum = seq[0]
operation = 0
for i in range(1, n):
sum += seq[i]
if sum == 0:
operation += 1
if is_positive:
sum -= 1
else:
sum += 1
elif sum > 0 and is_positive:
operation += abs(sum) + 1
sum = -1
elif sum < 0 and not is_positive:
operation += abs(sum) + 1
sum = 1
if sum > 0:
is_positive = True
else:
is_positive = False
print operation |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
cnt1=cnt2=sm1=sm2=0
for x,y in enumerate(a):
sm1+=y
if x%2 ==1:
if sm1<1:
cnt1 += 1-sm1
sm1=1
elif sm1>-1:
cnt1+= 1+sm1
sm1=-1
for x,y in enumerate(a):
sm2+=y
if x%2 ==0:
if sm2<1:
cnt2 += 1-sm2
sm2=1
elif sm1>-1:
cnt2 += 1+sm2
sm2=-1
print(min(cnt1,cnt2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | 'use strict'
let input = require("fs").readFileSync("/dev/stdin", "utf8");
let Nums = input.split('\n');
let amount = Nums[0]*1;
let arr = Nums[1].split(" ").map(x => x*1);
let isPrus = arr[0] > 0? true: false;
let sum = 0;
let ans = 0;
for(let i = 0; i < amount; i++){
//console.log(arr[i])
//console.log(isPrus)
sum += arr[i];
if(sum > 0 != isPrus){
ans += Math.abs(sum);
sum = 0;
}
// 足し合わせが0になった時も合わせて処理
if(sum == 0){
if(isPrus){
sum = 1;
ans += 1;
} else {
sum = -1;
ans += 1;
}
}
isPrus = !isPrus;
}
console.log(ans);
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) cin >> a[i];
int count = 0;
if (a[0] == 0) {
for (int i = 1; i < N; i++) {
if (a[i] > 0) {
a[0] = 1;
break;
} else if (a[i] < 0) {
a[0] = -1;
break;
}
}
count++;
}
int sum = a[0];
for (int i = 1; i < N; i++) {
if (sum * a[i] < 0 && abs(sum) < abs(a[i])) {
sum += a[i];
} else {
if (sum > 0) {
count += a[i] + sum + 1;
sum = -1;
} else {
count += 1 - sum - a[i];
sum = 1;
}
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100000];
long long c;
long long csum;
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
c = 0;
csum = 0;
for (int i = 0; i < n; i++) {
long long bsum = csum;
bsum += a[i];
if (csum != 0 && csum * bsum >= 0) {
if (csum > 0) {
c += (bsum + 1);
bsum -= (bsum + 1);
} else {
c += (-bsum + 1);
bsum += (-bsum + 1);
}
}
csum = bsum;
}
cout << c << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!/usr/bin/env python3
import sys
sys.setrecursionlimit(10**7)
def read_h(typ=int):
return list(map(typ, input().split()))
def read_v(n, m=1, typ=int):
return [read_h() if m > 1 else typ(input()) for _ in range(n)]
def calc_num_op(cumul, a):
tmp_cumul = cumul + a
# print('current cumul:', cumul)
# print('current a:', a)
# print('bare cumul:', tmp_cumul)
# print('goodiness:', tmp_cumul != 0 and cumul // abs(cumul) != tmp_cumul // abs(tmp_cumul))
if (cumul <= 0 and tmp_cumul <= 0):
return abs(-cumul - a + 1), 1
if (cumul >= 0 and tmp_cumul >= 0):
return abs(-cumul - a - 1), -1
return 0, tmp_cumul
def solve(arr, sign):
num_op = 0
cumul = arr[0]
# print('current cumul:', cumul)
if cumul == 0:
num_op += 1
cumul += 1 if sign == '+' else -1
# print('modified cumul:', cumul)
for a in arr[1:]:
delta, cumul = calc_num_op(cumul, a)
# print('delta:', delta)
# print('modified cumul:', cumul)
num_op += delta
return num_op
def main():
_ = read_h()
arr = read_h()
op_plus = solve(arr, '+')
# print('op plus:', op_plus)
op_minus = solve(arr, '-')
# print('op minus:', op_minus)
print(min(op_plus, op_minus))
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sumi = a[0];
long long sump = a[0];
long long cnt = 0;
for (int i = 0; i < n - 1; i++) {
sump += a[i + 1];
if (sumi < 0) {
if (sump <= 0) {
cnt += 1 - sump;
sump = 1;
}
} else if (sumi > 0) {
if (sump >= 0) {
cnt += sump + 1;
sump = -1;
}
}
sumi = sump;
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n, a[100010];
cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
int sum = a[0], cnt = 0;
for (int i = 1; i < n; ++i) {
if (sum < 0) {
if (sum + a[i] > 0) {
sum += a[i];
} else {
cnt += abs(sum + a[i]) + 1;
sum = 1;
}
} else {
if (sum + a[i] < 0) {
sum += a[i];
} else {
cnt += abs(sum + a[i]) + 1;
sum = -1;
}
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
// 整数の入力
int n = sc.nextInt();
int a[] = new int[n];
int ans = 0;
for(int i = 0; i<n;i++){
int j = sc.nextInt();
a[i] = j;
}
if(a[0] == 0){
a[0] = -1;
int ans1 = calc(a,ans,n) + 1;
a[0] = 1;
ans = 0;
int ans2 = calc(a,ans,n) + 1;
ans = Math.min(ans1, ans2);
}else{
ans = calc(a,ans,n);
}
System.out.println(ans);
sc.close();
}
private static int calc(int[] a,int ans,int n) {
int sum=a[0];
boolean plusFlag;
// TODO 自動生成されたメソッド・スタブ
if(a[0] > 0){
plusFlag = true;
}else{
plusFlag = false;
}
for(int i = 1;i<n;i++){
sum += a[i];
if(plusFlag){
if(sum >= 0){
ans += Math.abs(sum)+1;
sum = -1;
}
}else{
if(sum <= 0){
ans += Math.abs(sum)+1;
sum = 1;
}
}
plusFlag = !plusFlag;
}
return ans;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
_arr = list(map(int, input().split()))
ans = []
for first in (_arr[0], 1, -1):
arr = _arr[:]
c = 0
prev = 0
for i in range(n):
t = prev + arr[i]
if i == 0:
arr[i] = first
elif prev > 0 and t >= 0:
diff = t + 1
c += diff
arr[i] -= diff
elif prev < 0 and t <= 0:
diff = -1 * t + 1
c += diff
arr[i] += diff
prev += arr[i]
ans.append(c)
print(arr)
print(min(ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from itertools import accumulate
import copy
def sol(acmA, sign=1):
add = 0
ans = 0
sumA = acmA[0]
for i in range(1,N):
acmA[i] += add
if sign == 1:
if (i%2==0 and acmA[i-1]<0 and 0<acmA[i]) or (i%2==1 and 0<acmA[i-1] and acmA[i]<0) :continue
else:
if (i%2==1 and acmA[i-1]<0 and 0<acmA[i]) or (i%2==0 and 0<acmA[i-1] and acmA[i]<0) :continue
tmp_add = -acmA[i]-1 if acmA[i] > 0 else -acmA[i]+1
#print(i, tmp_add, acmA[i])
acmA[i] += tmp_add
sumA += acmA[i]
add += tmp_add
ans +=abs(tmp_add)
if acmA == 0: return ans +1
else: return ans
N = int(input())
A = list(map(int,input().split()))
acmA = list(accumulate(A))
acmA2 = copy.deepcopy(acmA)
print(min(sol(acmA, 1),sol(acmA2,-1)))
#print(acmA) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> a(n), dp1(n), dp2(n);
for (long long i = (0); i < (long long)(n); i++) cin >> a[i];
long long ans1 = 0, ans2 = 0;
if (a[0] > 0) {
ans2 = a[0] - (-1);
dp1[0] = a[0];
dp2[0] = -1;
} else {
ans1 = 1 - a[0];
dp1[0] = 1;
dp2[0] = a[0];
}
for (long long i = (1); i < (long long)(n); i++) {
if (dp1[i - 1] < 0) {
if (dp1[i - 1] + a[i] > 0) {
dp1[i] = dp1[i - 1] + a[i];
} else {
dp1[i] = 1;
ans1 += 1 - (dp1[i - 1] + a[i]);
}
} else {
if (dp1[i - 1] + a[i] < 0) {
dp1[i] = dp1[i - 1] + a[i];
} else {
dp1[i] = -1;
ans1 += (dp1[i - 1] + a[i]) - (-1);
}
}
if (dp2[i - 1] < 0) {
if (dp2[i - 1] + a[i] > 0) {
dp2[i] = dp2[i - 1] + a[i];
} else {
dp2[i] = 1;
ans2 += 1 - (dp2[i - 1] + a[i]);
}
} else {
if (dp2[i - 1] + a[i] < 0) {
dp2[i] = dp2[i - 1] + a[i];
} else {
dp2[i] = -1;
ans2 += (dp2[i - 1] + a[i]) - (-1);
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int mod = 1e9 + 7;
int main() {
int n;
cin >> n;
int sum;
cin >> sum;
long long ans = 0;
for (int i = 1; i < n; i++) {
int a;
cin >> a;
if (sum > 0) {
if (sum + a >= 0) {
ans += abs(sum + a) + 1;
sum = -1;
} else
sum += a;
} else {
if (sum + a <= 0) {
ans += abs(sum + a) + 1;
sum = 1;
} else
sum += a;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx")
constexpr int INF = 2147483647;
constexpr long long int INF_LL = 9223372036854775807;
constexpr int MOD = 1000000007;
constexpr double PI = 3.14159265358979323846;
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) cin >> a[i];
long long int ans = INF_LL;
{
long long int tmp = 0;
long long int sum = a[0];
if (sum < 0) {
tmp += abs(sum) + 1;
sum = 1;
}
for (int i = 1; i < N; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum <= 0) {
tmp += abs(sum) + 1;
sum = 1;
}
} else {
if (sum >= 0) {
tmp += abs(sum) + 1;
sum = -1;
}
}
}
ans = min(ans, tmp);
}
{
long long int tmp = 0;
long long int sum = a[0];
if (sum > 0) {
tmp += abs(sum) + 1;
sum = -1;
}
for (int i = 1; i < N; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum >= 0) {
tmp += abs(sum) + 1;
sum = -1;
}
} else {
if (sum <= 0) {
tmp += abs(sum) + 1;
sum = 1;
}
}
}
ans = min(ans, tmp);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(_) for _ in input().split()]
new_a_plus = [a[i] for i in range(n)]
new_a_minus = [a[i] for i in range(n)]
count_plus = 0
if a[0] <= 0:
new_a_plus[0] = 1
count_plus += 1 - a[0]
for i in range(1, n):
if i % 2 == 0:
if sum(new_a_plus[:i+1]) <= 0:
new_a_plus[i] = -sum(new_a_plus[:i])+1
count_plus += new_a_plus[i] - a[i]
else:
if sum(new_a_plus[:i+1]) >= 0:
new_a_plus[i] = -sum(new_a_plus[:i])-1
count_plus += a[i] - new_a_plus[i]
count_minus = 0
if a[0] >= 0:
new_a_minus[0] = -1
count_minus += a[0] + 1
for i in range(1, n):
if i % 2 == 0:
if sum(new_a_minus[:i+1]) >= 0:
new_a_minus[i] = -sum(new_a_minus[:i])-1
count_minus += a[i] - new_a_minus[i]
else:
if sum(new_a_minus[:i+1]) <= 0:
new_a_minus[i] = -sum(new_a_minus[:i])+1
count_minus += new_a_minus[i] - a[i]
print(min(count_plus, count_minus)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1000000000;
const long INF64 = 1000000000000000ll;
const long long MOD = 1000000007ll;
int main() {
int n;
std::cin >> n;
std::vector<int> a(n);
for (int i = 0; i < (int)(n); i++) std::cin >> a[i];
int ans1 = 0, ans2 = 0;
int sum = 0;
int han = -1;
for (int i = 0; i < (int)(n); i++) {
han *= -1;
sum += a[i];
if (han < 0) {
ans1 += max(0, sum + 1);
sum -= max(0, sum + 1);
} else {
ans1 -= min(0, sum - 1);
sum -= min(0, sum - 1);
}
}
han = 1;
sum = 0;
for (int i = 0; i < (int)(n); i++) {
han *= -1;
sum += a[i];
if (han < 0) {
ans2 += max(0, sum + 1);
sum -= max(0, sum + 1);
} else {
ans2 -= min(0, sum - 1);
sum -= min(0, sum - 1);
}
}
std::cout << min(ans1, ans2) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #![allow(non_snake_case)]
#![allow(dead_code)]
#![allow(unused_macros)]
#![allow(unused_imports)]
use std::str::FromStr;
use std::io::*;
use std::collections::*;
use std::cmp::*;
struct Scanner<I: Iterator<Item = char>> {
iter: std::iter::Peekable<I>,
}
macro_rules! exit {
() => {{
exit!(0)
}};
($code:expr) => {{
if cfg!(local) {
writeln!(std::io::stderr(), "===== Terminated =====")
.expect("failed printing to stderr");
}
std::process::exit($code);
}}
}
impl<I: Iterator<Item = char>> Scanner<I> {
pub fn new(iter: I) -> Scanner<I> {
Scanner {
iter: iter.peekable(),
}
}
pub fn safe_get_token(&mut self) -> Option<String> {
let token = self.iter
.by_ref()
.skip_while(|c| c.is_whitespace())
.take_while(|c| !c.is_whitespace())
.collect::<String>();
if token.is_empty() {
None
} else {
Some(token)
}
}
pub fn token(&mut self) -> String {
self.safe_get_token().unwrap_or_else(|| exit!())
}
pub fn get<T: FromStr>(&mut self) -> T {
self.token().parse::<T>().unwrap_or_else(|_| exit!())
}
pub fn vec<T: FromStr>(&mut self, len: usize) -> Vec<T> {
(0..len).map(|_| self.get()).collect()
}
pub fn mat<T: FromStr>(&mut self, row: usize, col: usize) -> Vec<Vec<T>> {
(0..row).map(|_| self.vec(col)).collect()
}
pub fn char(&mut self) -> char {
self.iter.next().unwrap_or_else(|| exit!())
}
pub fn chars(&mut self) -> Vec<char> {
self.get::<String>().chars().collect()
}
pub fn mat_chars(&mut self, row: usize) -> Vec<Vec<char>> {
(0..row).map(|_| self.chars()).collect()
}
pub fn line(&mut self) -> String {
if self.peek().is_some() {
self.iter
.by_ref()
.take_while(|&c| !(c == '\n' || c == '\r'))
.collect::<String>()
} else {
exit!();
}
}
pub fn peek(&mut self) -> Option<&char> {
self.iter.peek()
}
}
fn main() {
let cin = stdin();
let cin = cin.lock();
let mut sc = Scanner::new(cin.bytes().map(|c| c.unwrap() as char));
let n: usize = sc.get();
let a: Vec<i64> = sc.vec(n);
let mut p = 0;
let mut ans = 0;
for i in 0..n {
let mut s = p + a[i];
if s == 0 {
s += if p > 0 { 1 } else { -1 };
ans += 1;
} else if s * p > 0 {
ans += s.abs()+1;
s += if s > 0 { -s - 1 } else { s + 1 };
}
p = s;
}
println!("{}", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = INT_MAX;
const long long INFL = LLONG_MAX;
const long double pi = acos(-1);
int dx[] = {1, -1, 0, 0};
int dy[] = {0, 0, 1, -1};
long long xx(vector<long long> &v) {
long long s = 0;
long long ans = 0;
int n = int((v).size());
for (int i = 0; i < n; i++) {
if (!i)
s = v[0];
else {
if (s > 0) {
if (s + v[i] < 0) {
s += v[i];
continue;
}
long long x, y;
x = max(s + v[i] + 1, (long long)0);
ans += x;
if (x != 0) s = -1;
} else {
if (s + v[i] > 0) {
s += v[i];
continue;
}
long long x, y;
x = max(1 - (s + v[i]), (long long)0);
ans += x;
if (x != 0) s = 1;
}
}
}
return ans;
}
int main() {
ios_base::sync_with_stdio(0);
cout.precision(15);
cout << fixed;
cout.tie(0);
cin.tie(0);
int n;
cin >> n;
vector<long long> v(n);
for (int(i) = 0; (i) < (n); (i)++) cin >> v[i];
if (n == 1) {
cout << 0 << '\n';
return 0;
}
long long ans = INFL;
if (v[0] == 0) {
v[0] += 1;
ans = min(ans, xx(v) + 1);
v[0] = -1;
ans = min(ans, xx(v) + 1);
} else if (v[0] > 0) {
ans = min(ans, xx(v));
v[0] = -1;
ans = min(ans, xx(v) + v[0] + 1);
} else {
ans = min(ans, xx(v));
v[0] = 1;
ans = min(ans, xx(v) + 1 - v[0]);
}
cout << ans << '\n';
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
#include <cmath>
int main(void) {
// in
int n;
std::cin >> n;
std::vector<long long> a(n);
for(int i = 0; i < n; ++i) std::cin >> a[i];
// sum
int cost_all = 0;
std::vector<long long> s(n, 0);
for(int k = 0; k < 2; ++k) {
int cost = 0;
if(k == 0) {
s[0] = (a[0] > 0 ? a[0] : 1);
cost += std::abs(a[0] - s[0]);
}
else {
s[0] = (a[0] < 0 ? a[0] : -1);
cost += std::abs(a[0] - s[0]);
}
for(int i = 1; i < n; ++i) {
// current sum
s[i] = s[i-1] + a[i];
if(s[i] * s[i-1] < 0) continue;
else {
if(s[i-1] < 0) {
cost += std::abs(1 - s[i-1] - a[i]);
a[i] = 1 - s[i-1];
}
else {
cost += std::abs(- 1 - s[i-1] - a[i]);
a[i] = - 1 - s[i-1];
}
}
s[i] = s[i-1] + a[i];
}
cost_all = (cost < cost_all ? cost : cost_all);
}
//for(int i = 0; i < n; ++i) {
// std::cout << a[i] << std::endl;
//}
std::cout << cost << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int a[100010];
int sum[100010] = {0};
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
int ans = 0;
if (a[0] >= 0) {
for (int i = 0; i < n; i++) {
int j = i;
while (j >= 0) {
sum[i] += a[j];
j--;
}
if (i % 2 == 0) {
if (sum[i] < 0) {
while (sum[i] <= 0) {
sum[i]++;
a[i]++;
ans++;
}
}
} else {
if (sum[i] >= 0) {
while (sum[i] >= 0) {
sum[i]--;
a[i]--;
ans++;
}
}
}
}
if (sum[n - 1] == 0) ans++;
} else {
for (int i = 0; i < n; i++) {
int j = i;
while (j >= 0) {
sum[i] += a[j];
j--;
}
if (i % 2 == 0) {
if (sum[i] >= 0) {
while (sum[i] >= 0) {
sum[i]--;
a[i]--;
ans++;
}
}
} else {
if (sum[i] < 0) {
while (sum[i] < 0) {
sum[i]++;
a[i]++;
ans++;
}
}
}
}
if (sum[n - 1] == 0) ans++;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main() {
int n;
scanf("%d", &n);
int a[n];
for (int i = 0; i < n; i++) {
scanf("%d", &a[i]);
}
int sub[n];
long long ans = 0;
sub[0] = a[0];
int i = 0;
if (a[0] == 0) {
while (a[i] == 0) {
i++;
}
ans = (i - 1) * 2 + 1;
if (a[i] > 0) {
sub[i - 1] = -1;
} else {
sub[i - 1] = 1;
}
}
for (; i < n; i++) {
sub[i] = sub[i - 1] + a[i];
if ((sub[i] > 0 && sub[i - 1] < 0) || (sub[i] < 0 && sub[i - 1] > 0)) {
continue;
}
if (sub[i - 1] < 0 && sub[i] <= 0) {
ans += (1 - sub[i]);
sub[i] = 1;
}
if (sub[i - 1] > 0 && sub[i] >= 0) {
ans += sub[i] + 1;
sub[i] = -1;
}
}
printf("%d", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN |
solver::[Integer]->Integer
solver xs = let h = head xs in min (check_tot (abs (h-1)) 1 (tail xs)) (check_tot (abs (h+1)) (-1) (tail xs))
main::IO()
main=do
_<-getLine
datc<-getLine
print (solver (map read (words datc)))
--おそい。Step_sumを作る事無く、シーケンシャルにいく
--今のカウント手数、ここまでの修正されたトータル(これはゼロでない事が保証される)、食べるリスト。
check_tot::Integer -> Integer -> [Integer] -> Integer
check_tot st _ [] = st
check_tot st tot xs
| (tot > 0)&&((tot+(head xs))>=0) = let dec = (tot+(head xs))+1 in check_tot (dec+st) (-1) (tail xs)
| (tot > 0)&&((tot+(head xs)) <0) = check_tot st (tot+(head xs)) (tail xs)
| (tot < 0)&&((tot+(head xs)) >0) = check_tot st (tot+(head xs)) (tail xs)
| (tot < 0)&&((tot+(head xs))<=0) = let inc = 1-(tot+(head xs)) in check_tot (inc+st) 1 (tail xs)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long c1 = 0, c2 = 0;
long long sum = 0;
long long c = 1;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (sum * c <= 0) {
c1 += abs(sum) + 1;
sum = c;
}
c *= -1;
cout << sum << endl;
}
c = -1;
sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (sum * c <= 0) {
c2 += abs(sum) + 1;
sum = c;
}
c *= -1;
}
cout << min(c1, c2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
new Main().solve();
}
void solve() {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
long A = 0;
long ANS = 0;
long ans = 0;
long q = 1;
a[0] = sc.nextLong();
A = a[0];
for (int i = 1; i < n; i++) {
a[i] = sc.nextLong();
A += a[i];
q = q * -1;
if (A <= 0 && q == 1) {
ans += Math.abs(A - 1);
A += Math.abs(A - 1);
} else if (A >= 0 && q == -1) {
ans += Math.abs(A + 1);
A -= Math.abs(A + 1);
}
}
ANS = ans;
A = a[0];
ans = 0;
q = -1;
for (int i = 0; i < n; i++) {
A += a[i];
q = q * -1;
if (A <= 0 && q == 1) {
ans += Math.abs(A - 1);
A += Math.abs(A - 1);
} else if (A >= 0 && q == -1) {
ans += Math.abs(A + 1);
A -= Math.abs(A + 1);
}
}
ANS = Math.min(ANS, ans);
System.out.println(ANS);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
def sol(S):
ret = 0
B = [S]
for a in A[1:]:
b = a
if S * (S + b) > 0:
b = (abs(S) + 1) * (1 if S < 0 else -1)
if S + b == 0:
b = b - 1 if b < 0 else b + 1
ret += abs(b - a)
S += b
B.append(b)
return ret
ans = min(
sol(A[0]),
sol(-A[0] // abs(A[0]) if A[0] != 0 else -1) + abs(A[0]) + 1
)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static uint64_t calc_count(vector<long long> &vec, int64_t sign) {
unsigned long long count = 0;
long long total = vec[0];
if (total == 0) {
total = sign;
count++;
}
for (uint64_t i = 1; i < vec.size(); i++) {
sign *= -1;
total += vec[i];
if ((total == 0) || (sign * total < 0)) {
count += abs(sign - total);
total = sign;
}
}
return count;
}
int32_t main() {
uint64_t N;
cin >> N;
vector<long long> vec;
for (uint64_t i = 0; i < N; i++) {
long long val;
cin >> val;
vec.push_back(val);
}
cout << min(calc_count(vec, 1), calc_count(vec, -1)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import Control.Applicative
import Data.List
main = do
_ <- getLine
as <- (map read) . words <$> getLine
print $ minimum
[sum $ zipWith (\a b -> abs (a-b)) (f 0 as True) as,
sum $ zipWith (\a b -> abs (a-b)) (f 0 as False) as]
where
f :: Integer -> [Integer] -> Bool -> [Integer]
f _ [] _ = []
f ps (x:xs) m =
if ps * (ps+x) < 0 then
x : (f (ps+x) xs m)
else
if ps > 0 then
(-ps-1) : (f (-1) xs m)
else if ps < 0 then
(-ps+1) : (f 1 xs m)
else
if x /= 0 then
x : (f x xs m)
else
if m then
1 : (f 1 xs m)
else
(-1) : (f (-1) xs m)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long ans = 1e9;
;
for (int j = 0; j < 2; j++) {
long long sum = 0, cnt = 0;
if (j == 0) {
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum > 0) continue;
cnt += 1 - sum;
sum = 1;
} else {
if (sum < 0) continue;
cnt += 1 + sum;
sum = -1;
}
}
ans = min(ans, cnt);
} else {
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum < 0) continue;
cnt += 1 + sum;
sum = -1;
} else {
if (sum > 0) continue;
cnt += 1 - sum;
sum = 1;
}
}
ans = min(ans, cnt);
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # @oj: atcoder
# @id: hitwanyang
# @email: [email protected]
# @date: 2020-08-17 17:23
# @url:https://atcoder.jp/contests/abc059/tasks/arc072_a
import sys,os
from io import BytesIO, IOBase
import collections,itertools,bisect,heapq,math,string
from decimal import *
# region fastio
BUFSIZE = 8192
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# ------------------------------
def main():
n=int(input())
a=list(map(int,input().split()))
prefix=[a[0]]
for i in range(1,len(a)):
prefix.append(prefix[-1]+a[i])
print (prefix)
s,t=0,0
ans1,ans2=0,0
for i in range(len(prefix)):
if i%2==0:
if prefix[i]+s<=0:
ans1+=abs(prefix[i]+s)+1
s=s+abs(prefix[i]+s)+1
else:
if prefix[i]+s>=0:
ans1+=abs(prefix[i]+s+1)
s=s-abs(prefix[i]+s+1)
for i in range(len(prefix)):
if i%2==1:
if prefix[i]+t<=0:
ans2+=abs(prefix[i]+t)+1
t=t+abs(prefix[i]+t)+1
else:
if prefix[i]+t>=0:
ans2+=abs(prefix[i]+t+1)
t=t-abs(prefix[i]+t+1)
print (min(ans1,ans2))
if __name__ == "__main__":
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int, input().split()))
c1 = 0
sum = a[0]
for i in range(1, n):
if not (np.sign(sum) != np.sign(sum + a[i]) and sum + a[i] != 0):
if sum > 0:
c1 += a[i] + sum + 1
sum = -1
else:
c1 += -a[i] - sum + 1
sum = 1
else:
sum += a[i]
c2 = abs(a[0]) + 1
sum = - a[0]
for i in range(1, n):
if not (np.sign(sum) != np.sign(sum + a[i]) and sum + a[i] != 0):
if sum > 0:
c2 += a[i] + sum + 1
sum = -1
else:
c2 += -a[i] - sum + 1
sum = 1
else:
sum += a[i]
print(min(c1, c2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> v(n);
for (__typeof(n) i = (0) - ((0) > (n)); i != (n) - ((0) > (n));
i += 1 - 2 * ((0) > (n)))
cin >> v[i];
long long res1 = 0, res2 = 0;
long long som = v[0];
if (som > 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
} else {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
cout << min(res1, res2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<int, int>;
using Pl = pair<ll, ll>;
using vi = vector<int>;
using vii = vector<vi>;
using vl = vector<ll>;
using vll = vector<vl>;
using vs = vector<string>;
using vb = vector<bool>;
using vc = vector<char>;
using vcc = vector<vc>;
const int dx[] = {0, 1, 0, -1, 1, 1, -1, -1};
const int dy[] = {1, 0, -1, 0, 1, -1, -1, 1};
const int inf = (1 << 30) - 1;
const ll infll = (1LL << 62) - 1;
ll ceil(const ll& a, const ll& b) { return ((a) + (b)-1) / b; }
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int h, w, n;
cin >> h >> w >> n;
vi a(n);
for (int i = 0; i < n; i++) cin >> a[i];
vii ans(h, vi(w));
int cur = 1;
for (int i = 0; i < h; i++) {
if (i % 2 == 0) {
for (int j = 0; j < w; j++) {
ans[i][j] = cur;
a[cur - 1]--;
if (a[cur - 1] == 0) cur++;
}
} else {
for (int j = w - 1; j >= 0; j--) {
ans[i][j] = cur;
a[cur - 1]--;
if (a[cur - 1] == 0) cur++;
}
}
}
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
cout << ans[i][j] << ' ';
}
cout << '\n';
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long int;
using ull = unsigned long long int;
using P = pair<ll, ll>;
using P3 = pair<P, int>;
using PP = pair<P, P>;
constexpr ll INF = 1LL << 60;
constexpr ll MOD = ll(1e9) + 7;
constexpr int di[] = {0, 1, 0, -1};
constexpr int dj[] = {1, 0, -1, 0};
constexpr int di8[] = {0, 1, 1, 1, 0, -1, -1, -1};
constexpr int dj8[] = {1, 1, 0, -1, -1, -1, 0, 1};
constexpr double EPS = 1e-9;
int main() {
int n;
cin >> n;
vector<ll> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 1; i < n; i++) a[i] += a[i - 1];
ll s = 0, ans1 = 0, ans2 = 0;
for (int i = 0; i < n; i++) {
if (i % 2) {
if (a[i] + s <= 0) {
ll d = abs(a[i] + s) + 1;
ans1 += d;
s += d;
}
} else {
if (a[i] + s >= 0) {
ll d = abs(a[i] + s) + 1;
ans1 += d;
s -= d;
}
}
}
s = 0;
for (int i = 0; i < n; i++) {
if (i % 2) {
if (a[i] + s >= 0) {
ll d = abs(a[i] + s) + 1;
ans2 += d;
s -= (abs(a[i]) + 1);
}
} else {
if (a[i] + s <= 0) {
ll d = abs(a[i] + s) + 1;
ans2 += d;
s += d;
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main() {
long long n;
std::cin >> n;
long long a;
long long sum_plus[n], sum_minus[n];
for (long long i = 0; i < n; ++i) {
std::cin >> a;
if (i == 0)
sum_plus[i] = a;
else
sum_plus[i] = sum_plus[i - 1] + a;
sum_minus[i] = sum_plus[i];
}
long long count = 0;
bool plus = true;
for (long long i = 0; i < n; ++i) {
if (plus) {
if (sum_plus[i] <= 0) {
long long add = -sum_plus[i] + 1;
count += add;
for (long long j = i; j < n; ++j) sum_plus[j] += add;
}
} else {
if (sum_plus[i] >= 0) {
long long add = sum_plus[i] + 1;
count += add;
for (long long j = i; j < n; ++j) sum_plus[j] -= add;
}
}
plus = !plus;
}
long long ans = count;
count = 0;
plus = false;
for (long long i = 0; i < n; ++i) {
if (plus) {
if (sum_minus[i] <= 0) {
long long add = -sum_minus[i] + 1;
count += add;
for (long long j = i; j < n; ++j) sum_minus[j] += add;
}
} else {
if (sum_minus[i] >= 0) {
long long add = sum_minus[i] + 1;
count += add;
for (long long j = i; j < n; ++j) sum_minus[j] -= add;
}
}
plus = !plus;
}
ans = std::min(ans, count);
std::cout << ans << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[20000];
int getsign(long long int n) {
if (n > 0) {
return 1;
}
if (n < 0) {
return -1;
}
return -1;
}
long long int count(int sign0, long long a[], int n) {
long long int sum = 0;
long long int sign = sign0;
long long int count = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (getsign(sum) != sign) {
count += abs(sign - sum);
sum = sign;
}
sign = (sign * -1);
}
return count;
}
int main() {
int n;
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
cout << min(count(1, a, n), count(-1, a, n)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n,a=int(input()),list(map(int,input().split()));ans=0
if a[0]==0:
bol=True
for i in range(1,n):
if a[i-1]!=a[i]:
bol=False
if a[i]>0:a[0]=(1if i%2==0else-1)
else:a[0]=(1if i%2!=0else-1)
ans+=1;break
if bol:print(n*2-1);exit()
b=[a[0]];m=("+"if a[0]<0else"-")
for i in range(1,n):
b.append(b[i-1]+a[i])
if b[i-1]*b[i]>=0:
r=eval(m+"1")-b[i]
ans+=abs(r)
b[i]+=r
m=("+"if b[i]<0else"-")
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input = sys.stdin.readline
N = int(input())
a = list(map(int, input().split()))
res = -min(0, ~a[0])
sm = 1
if a[0] >= 1:
res = 0
sm = a[0]
#print(res, sm)
for i in range(1, N):
if sm > 0:
res += max(-1, a[i] + sm) + 1
sm = min(-1, sm + a[i])
else:
res += -min(1, sm + a[i]) + 1
sm = max(1, sm + a[i])
#print(res, sm)
res2 = max(0, a[0] + 1)
sm = -1
if a[0] <= -1:
res = 0
sm = a[0]
for i in range(1, N):
if sm > 0:
res2 += max(-1, a[i] + sm) + 1
sm = min(-1, sm + a[i])
else:
res2 += -min(1, sm + a[i]) + 1
sm = max(1, sm + a[i])
#print(res2, sm)
print(min(res, res2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long ans = 0;
long long sum1 = 0;
long long sum2 = 0;
if (a[0] > 0) {
sum1 = a[0];
for (int i = 1; i < n; i++) {
if (i % 2 == 1) {
if (sum1 + a[i] < 0) {
sum1 += a[i];
} else {
ans += sum1 + a[i] + 1;
sum1 = -1;
}
} else if (i % 2 == 0) {
if (sum1 + a[i] > 0) {
sum1 += a[i];
} else {
ans += 1 - sum1 - a[i];
sum1 = 1;
}
}
}
} else if (a[0] < 0) {
sum1 = a[0];
for (int i = 1; i < n; i++) {
if (i % 2 == 1) {
if (sum1 + a[i] > 0) {
sum1 += a[i];
} else {
ans += 1 - sum1 - a[i];
sum1 = 1;
}
} else if (i % 2 == 0) {
if (sum1 + a[i] < 0) {
sum1 += a[i];
} else {
ans += 1 + sum1 + a[i];
sum1 = -1;
}
}
}
} else {
long long ans1 = 1;
long long ans2 = 1;
sum1 = 1;
sum2 = -1;
for (int i = 1; i < n; i++) {
if (i % 2 == 1) {
if (sum1 + a[i] < 0) {
sum1 += a[i];
} else {
ans1 += sum1 + a[i] + 1;
sum1 = -1;
}
} else if (i % 2 == 0) {
if (sum1 + a[i] > 0) {
sum1 += a[i];
} else {
ans1 += 1 - sum1 - a[i];
sum1 = 1;
}
}
}
for (int i = 1; i < n; i++) {
if (i % 2 == 1) {
if (sum2 + a[i] > 0) {
sum2 += a[i];
} else {
ans2 += 1 - sum2 - a[i];
sum2 = 1;
}
} else if (i % 2 == 0) {
if (sum2 + a[i] < 0) {
sum2 += a[i];
} else {
ans2 += 1 + sum2 + a[i];
sum2 = -1;
}
}
}
ans = min(ans1, ans2);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
std::vector<int> a;
for (int i = 0; i < N; i++) {
int temp;
cin >> temp;
a.push_back(temp);
}
int Num1 = 0, Num2 = 0;
int sum1 = 0, sum2 = 0;
for (int i = 0; i < N; i += 2) {
if (sum1 + a[i] < 0)
sum1 += a[i];
else
Num1 += sum1 + a[i] + 1, sum1 = -1;
if (sum2 + a[i] > 0)
sum2 += a[i];
else
Num2 += 1 - sum2 - a[i], sum2 = 1;
if (i != N - 1) {
if (sum1 + a[i + 1] > 0)
sum1 += a[i + 1];
else
Num1 += 1 - sum1 - a[i + 1], sum1 = 1;
if (sum2 + a[i + 1] < 0)
sum2 += a[i + 1];
else
Num2 += sum2 + a[i + 1] + 1, sum2 = -1;
}
}
printf("%d\n", Num1 < Num2 ? Num1 : Num2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const long long INF = 1000000000000000000;
int main() {
int n;
cin >> n;
long long A[n];
long long B[n];
long long sum[n];
long long ans = 0;
for (int i = 0; i < n; i++) {
cin >> A[i];
B[i] = A[i];
sum[i] = 0;
}
long long minans = INF;
long long temp = 0;
int p[2] = {1, -1};
if (A[0] == 0) {
for (int k = 0; k < 2; k++) {
ans = 0;
ans++;
A[0] = p[k];
sum[0] = A[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + A[i];
if (sum[i - 1] * sum[i] < 0) continue;
if (sum[i - 1] * sum[i] == 0) {
if (sum[i - 1] < 0) {
ans++;
sum[i] = 1;
continue;
} else if (sum[i - 1] > 0) {
sum[i] = -1;
ans++;
continue;
}
}
if (sum[i - 1] < 0) {
temp = sum[i];
sum[i] = 1;
ans = ans + 1 + (-temp);
continue;
} else if (sum[i - 1] > 0) {
temp = sum[i];
sum[i] = -1;
ans = ans + 1 + temp;
continue;
}
}
minans = min(minans, ans);
}
}
ans = 0;
sum[0] = A[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + A[i];
if (sum[i - 1] * sum[i] < 0) continue;
if (sum[i - 1] * sum[i] == 0) {
if (sum[i - 1] < 0) {
ans++;
sum[i] = 1;
continue;
} else if (sum[i - 1] > 0) {
sum[i] = -1;
ans++;
continue;
}
}
if (sum[i - 1] < 0) {
temp = sum[i];
sum[i] = 1;
ans = ans + 1 + (-temp);
continue;
} else if (sum[i - 1] > 0) {
temp = sum[i];
sum[i] = -1;
ans = ans + 1 + temp;
continue;
}
}
minans = min(minans, ans);
ans = 0;
if (B[0] > 0) {
temp = B[0];
B[0] = -1;
ans = temp + 1;
sum[0] = B[0];
} else {
temp = B[0];
B[0] = 1;
ans = -temp + 1;
sum[0] = B[0];
}
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + B[i];
if (sum[i - 1] * sum[i] < 0) continue;
if (sum[i - 1] * sum[i] == 0) {
if (sum[i - 1] < 0) {
ans++;
sum[i] = 1;
continue;
} else if (sum[i - 1] > 0) {
sum[i] = -1;
ans++;
continue;
}
}
if (sum[i - 1] < 0) {
temp = sum[i];
sum[i] = 1;
ans = ans + 1 + (-temp);
continue;
} else if (sum[i - 1] > 0) {
temp = sum[i];
sum[i] = -1;
ans = ans + 1 + temp;
continue;
}
}
minans = min(minans, ans);
cout << minans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[100000];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long int Mp = 0;
int Sp = 0;
int dif = 0;
for (int i = 0; i < n; i++) {
Sp += a[i];
if (i % 2 == 0) {
if (Sp <= 0) {
dif = 1 - Sp;
Mp += dif;
Sp += dif;
}
} else {
if (Sp >= 0) {
dif = Sp + 1;
Mp += dif;
Sp += -dif;
}
}
}
long long int Mn = 0;
int Sn = 0;
int di = 0;
for (int i = 0; i < n; i++) {
Sn += a[i];
if (i % 2 == 1) {
if (Sn <= 0) {
di = 1 - Sp;
Mn += di;
Sn += di;
}
} else {
if (Sn >= 0) {
di = Sn + 1;
Mn += di;
Sn += -di;
}
}
}
if (Mp < Mn) {
cout << Mp;
} else {
cout << Mn;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int count(int sign0, vector<int> a, int n) {
int count = 0;
long total = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
if ((total + a.at(i)) * sign0 < 0)
total += a.at(i);
else {
count += abs(total + a.at(i)) + 1;
total = -1 * sign0;
}
} else if (i % 2 == 0) {
if ((total + a.at(i)) * sign0 > 0)
total += a.at(i);
else {
count += abs(total + a.at(i)) + 1;
total = sign0;
}
}
}
return count;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a.at(i);
int plus = count(1, a, n);
int minus = count(-1, a, n);
cout << min(plus, minus) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
num_list = list(map(int, input().split()))
count = 0
sum_ = num_list[0]
if sum_ > 0:
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 0:
if sum_ <= 0:
while sum_ <= 0:
sum_ += 1
count += 1
else:
if sum_ >= 0:
while sum_ >= 0:
sum_ -= 1
count += 1
elif sum_ < 0:
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 1:
if sum_ <= 0:
while sum_ <= 0:
sum_ += 1
count += 1
else:
if sum_ >= 0:
while sum_ >= 0:
sum_ -= 1
count += 1
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1001001001;
const long long LINF = 1001001001001001001ll;
const int MOD = 1000000007;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
long long sign(long long A) { return (A > 0) - (A < 0); }
int main() {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long ans = 0;
long long sum = 0;
long long sig;
for (int i = 0; i < (n); ++i) {
sum += a[i];
if (i == 0) {
sig = sign(sum);
continue;
}
if (sig == -sign(sum)) {
sig = sign(sum);
continue;
}
long long diff = -sig - sum;
sum += diff;
ans += abs(diff);
sig = sign(sum);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
a_orig = a[:]
ans1 = 0
ans2 = 0
tot = [0 for i in range(n)]
tot[0] = a[0]
if a[0] <= 0:
a[0] = 1
tot[0] = 1
for i in range(1, n):
tot[i] = tot[i-1] + a[i]
if i % 2 == 0:
if tot[i] <= 0:
tot[i] = 1
a[i] = tot[i] - tot[i-1]
else:
if tot[i] >= 0:
tot[i] = -1
a[i] = tot[i] - tot[i-1]
print(tot)
print(a)
for i in range(n):
ans1 += abs(a[i]-a_orig[i])
a = a_orig[:]
tot = [0 for i in range(n)]
tot[0] = a[0]
if a[0] >= 0:
a[0] = -1
tot[0] = -1
for i in range(1, n):
tot[i] = tot[i-1] + a[i]
if i % 2 == 1:
if tot[i] <= 0:
tot[i] = 1
a[i] = tot[i] - tot[i-1]
else:
if tot[i] >= 0:
tot[i] = -1
a[i] = tot[i] - tot[i-1]
for i in range(n):
ans2 += abs(a[i]-a_orig[i])
print(tot)
print(a)
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(_) for _ in input().split()]
even_p = 0
even_n = 0
odd_p = 0
odd_n = 0
for i in range(n):
if i % 2 == 0:
if a[i] > 0:
odd_p += 1
elif a[i] < 0:
odd_n += 1
else:
if a[i] > 0:
even_p += 1
elif a[i] < 0:
even_n += 1
cnt = 0
if odd_p - odd_n > even_p - even_n:
if a[0] > 0:
sum_i = a[0]
else:
cnt += abs(a[0]-1)
sum_i = 1
else:
if a[0] < 0:
sum_i = a[0]
else:
cnt += abs(a[0] + 1)
sum_i = -1
for i in range(1, n):
if sum_i > 0:
if sum_i + a[i] < 0:
sum_i += a[i]
else:
cnt += abs(a[i]+sum_i+1)
sum_i = -1
elif sum_i < 0:
if sum_i + a[i] > 0:
sum_i += a[i]
else:
cnt += abs(a[i]+sum_i-1)
sum_i = 1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int a[100010];
int solve(int sign) {
int ans = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sign == 1) {
if (sum <= 0) {
ans += 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
ans += 1 + sum;
sum = -1;
}
}
sign *= -1;
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
long t = 1;
while (t--) {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
cout << min(solve(1), solve(-1));
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long n, a[100000], b[100000]{}, ans = 0;
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
b[0] += a[0];
for (int i = 1; i < n; i++) {
b[i] += a[i] + b[i - 1];
if (b[i] * b[i - 1] >= 0) {
if (b[i - 1] > 0) {
ans += abs(b[i]) + 1;
b[i] = -1;
} else {
ans += abs(b[i]) + 1;
b[i] = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from sys import stdin
import sys
import math
n = int(input())
a = list(map(int, stdin.readline().rstrip().split()))
pair = 0
odd = 1
for i in range(0, len(a), 2):
pair += a[i]
for i in range(1, len(a), 2):
odd += a[i]
#print(odd)
#print(pair)
count = 0
current_sum = 0
for i in range(len(a)):
## odd
if i % 2 == 1 and odd > pair:
if current_sum + a[i] < 1:
diff = 1 - (current_sum + a[i])
a[i] += diff
count += diff
## odd
elif i % 2 == 1 and odd < pair:
if current_sum + a[i] > -1:
diff = -1 - (current_sum + a[i])
a[i] += diff
count += -1 * diff
## pair
elif i % 2 == 0 and odd > pair:
if current_sum + a[i] > -1:
diff = -1 - (current_sum + a[i])
a[i] += diff
count += -1 * diff
elif i % 2 == 0 and odd < pair:
if current_sum + a[i] < 1:
diff = 1 - (current_sum + a[i])
a[i] += diff
count += diff
else:
print("error")
current_sum += a[i]
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long int cnt = 0;
long int total = a[0];
if (total == 0) {
total = 1;
cnt++;
}
for (int i = 1; i < n; i++) {
if (total > 0) {
int temp = total;
temp += a[i];
if (temp >= 0) {
cnt += temp + 1;
total = -1;
continue;
} else {
total = temp;
continue;
}
}
if (total < 0) {
int temp = total;
temp += a[i];
if (temp <= 0) {
cnt += (-temp + 1);
total = 1;
continue;
} else {
total = temp;
continue;
}
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
int n;
int a[100010];
void input() {
cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
input();
int cost1 = 0;
int cost2 = 0;
int s1 = 0;
int s2 = 0;
for (int i = 0; i < n; ++i) {
s1 += a[i];
if (i % 2 && s1 >= 0) {
cost1 += (s1 + 1);
s1 = -1;
} else if (i % 2 == 0 && s1 <= 0) {
cost1 += (1 - s1);
s1 = 1;
}
}
for (int i = 0; i < n; ++i) {
s2 += a[i];
if (i % 2 && s2 <= 0) {
cost2 += (1 - s2);
s2 = 1;
} else if (i % 2 == 0 && s2 >= 0) {
cost2 += (s2 + 1);
s2 = -1;
}
}
cout << min(cost1, cost2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
long long prev = 1000000000000000000, sum = 0, cnt = 0;
for (int i = 0; i < (int)(N); i++) {
cin >> a[i];
sum += a[i];
if (prev != 1000000000000000000) {
if (prev <= 0 && sum <= 0) {
cnt += (1 - sum);
sum = 1;
} else if (prev >= 0 && sum >= 0) {
cnt += (abs(-1 - sum));
sum = -1;
}
}
prev = sum;
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
s = a[0]
count=0
for i in range(1,n):
if (s+a[i])*s>=0:
if s+a[i]<0:
a[i]+=(abs(s+a[i])+1)
count+=(abs(s+a[i])+1)
elif s+a[i]>0:
a[i]-=(abs(s+a[i])+1)
count+=(abs(s+a[i])+1)
elif s+a[i]==0:
if s>0:
a[i]-=1
count+=1
elif s<0:
a[i]+=1
count+=1
s+=a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int64_t> vec(N);
for (int i = 0; i < N; i++) {
cin >> vec.at(i);
}
int64_t ans = 0;
int64_t x = vec.at(0);
for (int i = 1; i < N; i++) {
while ((vec.at(i) + x) * x >= 0) {
if (x > 0) {
vec.at(i)--;
ans++;
}
if (x < 0) {
vec.at(i)++;
ans++;
}
}
x = vec.at(i) + x;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N;
const int MAX_N = 1.0e5 + 100;
int a[MAX_N];
int main() {
cin >> N;
for (int i = 0; i < N; i++) cin >> a[i];
long long e_sum = 0;
long long even = 0;
for (int i = 0; i < N; i++) {
e_sum += a[i];
if (i % 2 == 0 && e_sum < 0) {
even += abs(e_sum) + 1;
e_sum = 1;
} else if (i % 2 == 1 && e_sum > 0) {
even += abs(e_sum) + 1;
e_sum = -1;
}
}
long long o_sum = 0;
long long odd = 0;
for (int i = 0; i < N; i++) {
o_sum += a[i];
if (i % 2 == 1 && o_sum <= 0) {
odd += abs(o_sum) + 1;
o_sum = 1;
} else if (i % 2 == 0 && o_sum >= 0) {
odd += abs(o_sum) + 1;
o_sum = -1;
}
}
cout << min(even, odd) << endl;
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.