Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <typename T1, typename T2>
pair<T1, T2> operator+(const pair<T1, T2>& l, const pair<T1, T2>& r) {
return make_pair(l.first + r.first, l.second + r.second);
}
template <typename T1, typename T2>
pair<T1, T2> operator-(const pair<T1, T2>& l, const pair<T1, T2>& r) {
return make_pair(l.first - r.first, l.second - r.second);
}
const long long int MOD = 1e9 + 7, INF = 1e18;
long long int N, arr[100000], sums[100000];
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
cin >> N;
for (long long int i = (0), i_end_ = (N); i < i_end_; i++) {
cin >> arr[i];
}
bool flag;
long long int sum = 0;
long long int ans = 0;
sums[0] = arr[0];
for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) {
sums[i + 1] = arr[i + 1] + arr[i];
}
if (sums[0] > 0)
flag = true;
else
flag = false;
for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) {
sums[i + 1] += sum;
if (flag ^ ((i % 2) == 1)) {
if (sums[i + 1] >= 0) {
sum -= (sums[i + 1] + 1);
ans += abs(sums[i + 1] + 1);
sums[i + 1] -= (sums[i + 1] + 1);
}
} else {
if (sums[i + 1] <= 0) {
sum -= (sums[i + 1] - 1);
ans += abs(sums[i + 1] - 1);
sums[i + 1] -= (sums[i + 1] - 1);
}
}
}
long long int tmp = ans;
sum = 0;
ans = 0;
sums[0] = arr[0];
for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) {
sums[i + 1] = arr[i + 1] + arr[i];
}
if (sums[0] >= 0)
flag = true;
else
flag = false;
for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) {
sums[i + 1] += sum;
if (flag ^ ((i % 2) == 1)) {
if (sums[i + 1] >= 0) {
sum -= (sums[i + 1] + 1);
ans += abs(sums[i + 1] + 1);
sums[i + 1] -= (sums[i + 1] + 1);
}
} else {
if (sums[i + 1] <= 0) {
sum -= (sums[i + 1] - 1);
ans += abs(sums[i + 1] - 1);
sums[i + 1] -= (sums[i + 1] - 1);
}
}
}
cout << min(tmp, ans) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
ans = 0
acc = A[0]
for a in A[1:]:
if acc + a == 0:
acc = 1 if acc < 0 else -1
ans += 1
elif (acc < 0) != (acc + a > 0):
ope = -(acc + a + (1 if acc + a > 0 else -1))
acc = acc + a + ope
ans += abs(ope)
else:
acc += a
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = [int(i) for i in input().split()]
S = A[0]
total = 0
for i in range(1, N):
if S > 0:
if S + A[i] < 0: S += A[i]
else:
total += abs(-1 - (S + A[i]))
S = -1
elif S < 0:
if S + A[i] > 0: S += A[i]
else:
total += 1 - (S + A[i])
S = 1
print(total) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long ans = 0;
long long sum = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
sum = a[i];
continue;
}
if (sum > 0) {
if (sum + a[i] >= 0) {
ans += sum + a[i] + 1;
a[i] -= sum + a[i] + 1;
}
} else {
if (sum + a[i] <= 0) {
ans -= sum + a[i] - 1;
a[i] -= sum + a[i] - 1;
}
}
sum += a[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.ArrayList;
import java.util.Scanner;
public class Main {
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
// 整数の入力
int n = sc.nextInt();
int a[] = new int[n];
for(int i = 0;i<a.length;i++)
{
a[i] = sc.nextInt();
}
int b[] = new int[n];
b[0] = a[0];
int count = 0;
for(int i = 0;i<a.length-1;i++)
{
b[i+1] = b[i] + a[i+1];
if(b[i+1]*b[i]>0)
{
count += Math.abs(b[i+1])+1;
if(b[i+1]>0) b[i+1]=-1;
else b[i+1] = 1;
}
else if(b[i+1] == 0)
{
if(b[i]>0) b[i+1]=-1;
else b[i+1] = 1;
count++;
}
}
System.out.println(count);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[100010];
long long sum1 = 0;
long long sum2 = 0;
long long res1 = 0;
long long res2 = 0;
for (int i = 1; i <= n; i++) {
cin >> a[i];
sum1 += a[i];
sum2 += a[i];
if (a[1] >= 0) {
if (i % 2 == 0) {
if (sum1 < 0)
continue;
else if (sum1 >= 0) {
res1 += sum1 + 1;
sum1 = -1;
}
} else if (i % 2 == 1) {
if (sum1 > 0)
continue;
else if (sum1 <= 0) {
res1 += -sum1 + 1;
sum1 = 1;
}
}
} else if (a[1] <= 0) {
if (i % 2 == 0) {
if (sum2 > 0)
continue;
else if (sum2 <= 0) {
res2 += -sum2 + 1;
sum2 = 1;
}
} else if (i % 2 == 1) {
if (sum2 < 0)
continue;
else if (sum2 >= 0) {
res2 += sum2 + 1;
sum2 = -1;
}
}
}
}
if (a[1] == 0)
cout << min(res1, res2) << endl;
else
cout << max(res1, res2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = [int(i) for i in input().split()]
def pura(a):
A = a[:]
ans = 0
check = 0
if A[0] <= 0:
ans += 1 + abs(A[0])
A[0] = 1
check += A[0]
for i in range(1, N):
if i % 2 != 0:
if check + A[i] >= 0:
ans += abs(A[i] + 1 + check)
A[i] = -1 + check
else:
if check + A[i] <= 0:
ans += abs(A[i] - (1 + check))
A[i] = 1 - check
check += A[i]
return ans
def mai(a):
A = a[:]
ans = 0
check = 0
if A[0] >= 1:
ans +=1+abs(A[0])
A[0] = -1
check += A[0]
for i in range(1, N):
if i % 2 != 0:
if check + A[i] <= 0:
ans += abs(A[i] - (1 - check))
A[i] = 1 - check
else:
if check + A[i] >= 0:
ans += abs(A[i] +( 1 + check))
A[i] = -1 - check
check += A[i]
return ans
print(min(pura(a), mai(a))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long calc(bool plus, vector<long long> a) {
long long ret = 0;
int n = a.size();
if (a[0] == 0) {
if (plus) {
a[0] = 1;
} else {
a[0] = -1;
}
ret++;
}
for (int i = 1; i <= n - 1; i++) {
a[i] += a[i - 1];
if (a[i] == 0) {
if (a[i - 1] < 0) a[i] = 1;
if (a[i - 1] > 0) a[i] = -1;
ret++;
} else if (a[i] > 0 && a[i - 1] > 0) {
ret += a[i] + 1;
a[i] = -1;
} else if (a[i] < 0 && a[i - 1] < 0) {
ret += 1 - a[i];
a[i] = 1;
}
}
return ret;
}
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
cout << min(calc(true, a), calc(false, a)) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ull = uint64_t;
using ll = int64_t;
using PII = pair<int, int>;
using VI = vector<int>;
string to_string(string s) { return '"' + s + '"'; }
string to_string(const char* s) { return to_string((string)s); }
string to_string(bool b) { return (b ? "true" : "false"); }
template <typename A, typename B>
string to_string(pair<A, B> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template <typename A>
string to_string(A v) {
bool first = true;
string res = "{";
for (const auto& x : v) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(x);
}
res += "}";
return res;
}
void debug_out() { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out(T...);
}
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N;
cin >> N;
vector<ll> V(N);
for (int _n = N, i = 0; i < _n; ++i) cin >> V[i];
if (V[0]) {
ll sum = V[0];
ull ans = 0;
for (int i = (1), _b = (N - 1); i <= _b; ++i) {
ll nsum = sum + V[i];
ll target = (ll)-1 * (sum / abs(sum));
if (nsum == 0) {
ans += abs(target - nsum);
sum = target;
} else {
ll nsign = nsum / abs(nsum);
if (nsign == target) {
sum = nsum;
continue;
} else {
ans += abs(target - nsum);
sum = target;
}
}
}
cout << ans << endl;
} else {
ull ans1 = 1;
ll sum = 1;
for (int i = (1), _b = (N - 1); i <= _b; ++i) {
ll nsum = sum + V[i];
ll target = (ll)-1 * (sum / abs(sum));
if (nsum == 0) {
ans1 += abs(target - nsum);
sum = target;
} else {
ll nsign = nsum / abs(nsum);
if (nsign == target) {
sum = nsum;
continue;
} else {
ans1 += abs(target - nsum);
sum = target;
}
}
}
ull ans2 = 1;
sum = -1;
for (int i = (1), _b = (N - 1); i <= _b; ++i) {
ll nsum = sum + V[i];
ll target = (ll)-1 * (sum / abs(sum));
if (nsum == 0) {
ans2 += abs(target - nsum);
sum = target;
} else {
ll nsign = nsum / abs(nsum);
if (nsign == target) {
sum = nsum;
continue;
} else {
ans2 += abs(target - nsum);
sum = target;
}
}
}
cout << min(ans1, ans2) << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = int64_t;
int main() {
ll n;
cin >> n;
ll a[n];
for (ll i = 0; i < n; i++) cin >> a[i];
ll sum = a[0];
ll cost = 0;
for (ll j = 1; j < n; j++) {
if (sum + a[j] != 0 &&
(sum + a[j]) / (ll)abs(sum + a[j]) * sum / (ll)abs(sum) == -1) {
sum += a[j];
} else {
ll sign = sum / (ll)abs(sum);
ll aim = sign * -1;
ll tmp = abs(aim - sum) * aim;
cost += abs(tmp - a[j]);
sum = aim;
}
}
cout << cost << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
long long a[100010];
signed main() {
long long n;
cin >> n;
for (long long i = 0; i < n; i++) {
cin >> a[i];
}
long long ans = 0;
long long wa = a[0];
for (long long i = 1; i < n; i++) {
long long nxt = abs(wa) + 1;
if (wa < 0) {
if (nxt > a[i]) {
ans += nxt - a[i];
wa += nxt;
} else {
wa += a[i];
}
} else {
nxt *= -1;
if (nxt < a[i]) {
ans += a[i] - nxt;
wa += nxt;
} else {
wa += a[i];
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.next());
int[] a1 = new int[n];
int[] a2 = new int[n];
for (int i = 0; i < n; i++) {
int temp = Integer.parseInt(sc.next());
a1[i] = temp;
a2[i] = temp;
}
int ans1 = 0;
int ans2 = 0;
long temp = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && temp + a1[i] >= 0) {
ans1 += temp + a1[i] + 1;
a1[i] -= temp + a1[i] + 1;
}
if (i % 2 != 0 && temp + a1[i] <= 0) {
ans1 += Math.abs(temp + a1[i] - 1);
a1[i] += Math.abs(temp + a1[i] - 1);
}
temp += a1[i];
}
if (Arrays.stream(a1).sum() == 0) {
ans1++;
}
temp = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && temp + a2[i] <= 0) {
ans2 += Math.abs(temp + a2[i] - 1);
a2[i] += Math.abs(temp + a2[i] - 1);
}
if (i % 2 != 0 && temp + a2[i] >= 0) {
ans2 += temp + a2[i] + 1;
a1[i] -= temp + a2[i] + 1;
}
temp += a2[i];
}
if (Arrays.stream(a2).sum() == 0) {
ans2++;
}
System.out.println(Math.min(ans1, ans2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans;
cin >> n;
int A[n];
for (int i = 0; i<n; i++) cin >> A[i];
int cnt=0, acm=0, ans=0;
for(int i = 0; i<n; i++) {
if(i%2) {
if(acm+A[i]>0) acm+=A[i];
else {
cnt += abs(acm+A[i]) + 1;
acm = 1;
}
}
else {
if(acm+A[i]<0) acm+=A[i];
else {
cnt += abs(acm+A[i]) + 1;
acm = -1;
}
}
}
ans = cnt;
cnt=0;
acm=0;
for(int i = 0; i<n; i++) {
if((i+1)%2) {
if(acm+A[i]>0) acm+=A[i];
else {
cnt += abs(acm+A[i]) + 1;
acm = 1;
}
}
else {
if(acm+A[i]<0) acm+=A[i];
else {
cnt += abs(acm+A[i]) + 1;
acm = -1;
}
}
}
ans = min(ans,cnt);
cout << ans << "\n";
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # https://atcoder.jp/contests/abc059/tasks/arc072_a
# 2020/02/21
import sys
input = sys.stdin.readline
def main():
n = int(input())
a_list = list(map(int, input().split()))
a_sum = a_list[0]
if a_list[0] > 0:
sign = "plus"
else:
sign = "minus"
ans = 0
for i in range(1, n):
if sign == "plus":
sign = "minus"
if a_sum + a_list[i] == 0:
a_sum -= 1
ans += 1
elif a_sum + a_list[i] > 0:
ans += a_sum + 1 + a_list[i]
a_sum = -1
else:
a_sum += a_list[i]
elif sign == "minus":
sign = "plus"
if a_sum + a_list[i] == 0:
a_sum += 1
ans += 1
elif a_sum + a_list[i] < 0:
ans += (-1 * a_sum + 1 + -1 * a_list[i])
a_sum = 1
else:
a_sum += a_list[i]
print(ans)
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int num[100005];
int tot = 0;
int fir = 0;
int sec = 0;
for (int i = 0; i < n; i++) {
cin >> num[i];
}
int jud = 1;
for (int i = 0; i < n; i++) {
tot += num[i];
if (tot > 0 && jud == 1) {
jud *= -1;
} else if (tot < 0 && jud == -1) {
jud *= -1;
} else if (tot >= 0 && jud == -1) {
fir += abs(-1 - tot);
tot += (-1 - tot);
jud *= -1;
} else if (tot <= 0 && jud == 1) {
fir += abs(1 - tot);
tot += (1 - tot);
jud *= -1;
}
}
jud = -1;
tot = 0;
for (int i = 0; i < n; i++) {
tot += num[i];
cout << tot << " " << jud << endl;
if (tot > 0 && jud == 1) {
jud *= -1;
} else if (tot < 0 && jud == 1) {
jud *= -1;
} else if (tot >= 0 && jud == -1) {
sec += abs(-1 - tot);
tot += -1 - num[i];
jud *= -1;
cout << tot << " " << jud << endl;
} else if (tot <= 0 && jud == 1) {
sec += abs(1 - tot);
tot += 1 - num[i];
jud *= -1;
cout << tot << " " << jud << endl;
}
}
cout << min(fir, sec) << " " << fir << " " << sec << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
a2 = a.copy()
ans1 = 0 #偶数インデックスが正
for i in range(n):
s1 = sum(a[:i+1])
if i % 2 == 0:
if s1 <= 0:
x = abs(s1) + 1
ans1 += x
a[i] += x
else:
continue
else:
if s1 >= 0:
x = abs(s1) + 1
ans1 += x
a[i] -= x
ans2 = 0 #偶数インデックスが負
for i in range(n):
s2 = sum(a2[:i+1])
if i % 2 == 1:
if s2 <= 0:
x = abs(s2) + 1
ans2 += x
a2[i] += x
else:
continue
else:
if s2 >= 0:
x = abs(s2) + 1
ans2 += x
a2[i] -= x
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | function Main(s) {
var s = s.split("\n");
var n = parseInt(s[0], 10);
var a = s[1].split(" ").map(e => parseInt(e, 10));
var acc = 0, cnt = 0, arr = [];
for (var i = 0; i < n; i++) {
acc += a[i];
if (i === 0) {
if (acc === 0) {
if (a[i + 1] >= 0) {
acc -= (a[i + 1] - 1);
if (acc === 0) acc--;
cnt += Math.abs(acc);
} else {
acc += (Math.abs(a[i + 1]) - 1);
if (acc === 0) acc++;
cnt += acc;
}
}
} else {
if (arr[i - 1] > 0) {
if (acc >= 0) {
cnt += (acc + 1);
acc -= (acc + 1);
}
} else {
if (acc <= 0) {
cnt += (Math.abs(acc) + 1);
acc += (Math.abs(acc) + 1);
}
}
}
arr.push(acc);
}
console.log(cnt);
}
Main(require("fs").readFileSync("/dev/stdin", "utf8")); |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cnt1 = 0
cnt2 = 0
total = 0
for i in range(len(a)):
total += a[i]
if i % 2 == 0:
if total >= 0:
cnt1 += 1 + total
total -= 1 + total
else:
if total <= 0:
cnt1 += 1 - total
total += 1 + total
total = 0
for i in range(len(a)):
total += a[i]
if i % 2 != 0:
if total >= 0:
cnt2 += 1 + total
total -= 1 + total
else:
if total <= 0:
cnt2 += 1 - total
total += 1 + total
print(min(cnt1, cnt2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a.at(i);
ll ans = 0, sum = 0;
bool f = false;
for (int i = 0; i < (int)(n); i++) {
int now = a.at(i);
if (f == false) {
if (now == 0) {
if (i + 1 < n) {
if (a.at(i + 1) != 0) f = true;
if (a.at(i + 1) > 0)
sum--;
else if (a.at(i + 1) < 0)
sum++;
}
ans++;
} else {
f = true;
sum += now;
}
continue;
}
if ((sum < 0 && sum + now > 0) || (sum > 0 && sum + now < 0)) {
sum += now;
} else {
ll add = abs(sum + now) + 1;
if (sum < 0)
sum = 1;
else
sum = -1;
ans += add;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
def input():
return sys.stdin.readline().strip()
sys.setrecursionlimit(20000000)
def main():
N = int(input())
A = list(map(int, input().split()))
if A[0] == 0:
answer = []
for a in (1, -1):
cnt = 1
S = a
for i in range(1, N):
s = S + A[i]
if A[i] == 0:
if S > 0:
cnt += S + 1
S = -1
else:
cnt += abs(S) + 1
S = 1
else:
if s == 0:
if S < 0:
cnt += 1
S = 1
else:
cnt += 1
S = -1
else:
if S * s > 0:
if S < 0:
cnt += abs(s) + 1
S = 1
else:
cnt += s + 1
S = -1
else:
S = s
answer.append(cnt)
print(min(answer))
else:
if A[0] >0:
cnt1 = 0
S1 = A[0]
cnt2 = A[0]+1
S1 = -1
else:
cnt1 = 0
S1= A[0]
cnt2 = abs(A[0])+1
S2 = 1
answer = []
for cnt,S in ((cnt1,S1),(cnt2,S2)):
for i in range(1, N):
s = S + A[i]
if A[i] == 0:
if S > 0:
cnt += S + 1
S = -1
else:
cnt += abs(S) + 1
S = 1
else:
if s == 0:
if S < 0:
cnt += 1
S = 1
else:
cnt += 1
S = -1
else:
if S * s > 0:
if S < 0:
cnt += abs(s) + 1
S = 1
else:
cnt += s + 1
S = -1
else:
S = s
answer.append(cnt)
print(min(answer))
if __name__ == "__main__":
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
template <class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
}
template <class T>
inline T sqr(T x) {
return x * x;
}
const double EPS = 1e-10;
const double PI = acos(-1.0);
const int INF = (int)1000000007;
const long long MOD = (long long)1000000007;
const long long INF2 = (long long)100000000000000000;
int main() {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long sum = 0;
long long tmp1 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
sum += a[i];
if (sum < 0) {
tmp1 += (1 - sum);
sum = 1;
}
} else {
sum += a[i];
if (sum > 0) {
tmp1 += (sum + 1);
sum = -1;
}
}
}
sum = 0;
long long tmp2 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
sum += a[i];
if (sum < 0) {
tmp2 += (1 - sum);
sum = 1;
}
} else {
sum += a[i];
if (sum > 0) {
tmp2 += (sum + 1);
sum = -1;
}
}
}
cout << min(tmp1, tmp2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int top = a[0], cnt = 0;
bool sign = (top >= 0 ? true : false);
for (int i = 1; i < n; i++) {
if (sign && top + a[i] < 0) {
top += a[i];
sign = false;
} else if (!sign && top + a[i] > 0) {
top += a[i];
sign = true;
} else if (top + a[i] == 0) {
cnt++;
if (sign) {
top = -1;
sign = false;
} else {
top = 1;
sign = false;
}
} else {
if (sign) {
cnt += (top + a[i]) + 1;
top = -1;
sign = false;
} else {
cnt += 1 - (top + a[i]);
top = 1;
sign = true;
}
}
}
int t = cnt;
top = a[0], cnt = a[0] + 1;
sign = (top <= 0 ? true : false);
for (int i = 1; i < n; i++) {
if (sign && top + a[i] < 0) {
top += a[i];
sign = false;
} else if (!sign && top + a[i] > 0) {
top += a[i];
sign = true;
} else if (top + a[i] == 0) {
cnt++;
if (sign) {
top = -1;
sign = false;
} else {
top = 1;
sign = false;
}
} else {
if (sign) {
cnt += (top + a[i]) + 1;
top = -1;
sign = false;
} else {
cnt += 1 - (top + a[i]);
top = 1;
sign = true;
}
}
}
cnt = min(cnt, t);
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int flag[100005], k[100005];
long long a[100005], sum[100005], ans, b[100005], tot[100005], ant;
int main() {
int m = 0;
scanf("%d", &n);
scanf("%lld", &a[1]);
b[1] = a[1];
sum[1] = a[1];
tot[1] = sum[1];
if (sum[1] > 0) flag[1] = 1;
if (sum[1] < 0) flag[1] = 0;
if (sum[1] == 0) m = 1;
if (m == 0) {
for (int i = 2; i <= n; i++) {
scanf("%lld", &a[i]);
sum[i] = a[i] + sum[i - 1];
if (sum[i] > 0) flag[i] = 1;
if (sum[i] < 0) flag[i] = 0;
if (flag[i - 1] == 1) {
if (sum[i] >= 0) {
ans += sum[i] + 1;
sum[i] = -1;
flag[i] = 0;
}
} else {
if (sum[i] <= 0) {
ans += 1 - sum[i];
sum[i] = 1;
flag[i] = 1;
}
}
}
printf("%lld\n", ans);
} else {
for (int i = 2; i <= n; i++) {
scanf("%lld", &a[i]);
flag[1] = 0;
b[i] = a[i];
sum[i] = a[i] + sum[i - 1];
if (sum[i] > 0) flag[i] = 1;
if (sum[i] < 0) flag[i] = 0;
if (flag[i - 1] == 1) {
if (sum[i] >= 0) {
ans += sum[i] + 1;
sum[i] = -1;
flag[i] = 0;
}
} else {
if (sum[i] <= 0) {
ans += 1 - sum[i];
sum[i] = 1;
flag[i] = 1;
}
}
}
k[1] = 1;
for (int i = 2; i <= n; i++) {
tot[i] = b[i] + tot[i - 1];
if (tot[i] > 0) k[i] = 1;
if (tot[i] < 0) k[i] = 0;
if (k[i - 1]) {
if (tot[i] >= 0) ant += tot[i] + 1;
tot[i] = -1;
k[i] = 0;
} else {
if (tot[i] <= 0) {
ant += 1 - tot[i];
tot[i] = 1;
k[i] = 1;
}
}
}
printf("%lld\n", min(ant, ans));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long mod = 1000000007;
int main() {
int n;
cin >> n;
vector<long long> v(n);
for (int i = 0; i < n; ++i) {
cin >> v[i];
}
long long cnt_a = 0;
long long sum_a = 0;
for (int i = 0; i < n; ++i) {
sum_a += v[i];
if (i % 2 == 0) {
if (sum_a >= 0) {
sum_a = -1;
cnt_a += sum_a + 1;
}
} else {
if (sum_a <= 0) {
sum_a = 1;
cnt_a += abs(sum_a) + 1;
}
}
}
long long cnt_b = 0;
long long sum_b = 0;
for (int i = 0; i < n; ++i) {
sum_b += v[i];
if (i % 2 == 0) {
if (sum_b <= 0) {
sum_b = 1;
cnt_b += abs(sum_b) + 1;
}
} else {
if (sum_b >= 0) {
sum_b = -1;
cnt_b += abs(sum_b) + 1;
}
}
}
cout << min(cnt_a, cnt_b) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def z(s,l):
for i in range(n-1):
r=l+a[i+1]
if r*l>=0:
if l<=0:
s+=1-r
r=1
else:
s+=1+r
r=-1
print(a[i+1],r,s)
l=r
return s
n=int(input())
a=list(map(int,input().split()))
s1=0
l1=a[0]
if a[0]<=0:
s1=1-a[0]
l1=1
s2=0
l2=a[0]
if a[0]>=0:
s2=a[0]+1
l2=-1
print(min(z(s1,l1),z(s2,l2))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | (defun solver ()
(let* ((n (read))
(numv (make-array n :fill-pointer 0))
(sum 0) (presum 0) (count 0))
(loop repeat n
do (vector-push (read) numv))
(loop for i from 0 to (1- n)
do (incf sum (aref numv i))
(loop
(cond
((and (zerop sum) (zerop presum) (plusp (aref numv (1+ i))))
(incf count) (decf sum))
((and (zerop sum) (zerop presum) (minusp (aref numv (1+ i))))
(incf count) (incf sum))
((and (zerop sum) (plusp presum))
(incf count) (decf sum))
((and (zerop sum) (minusp presum))
(incf count) (incf sum))
((and (plusp sum) (plusp presum))
(incf count (1+ sum)) (decf sum (1+ sum)))
((and (plusp sum) (minusp presum))
(return))
((and (minusp sum) (plusp presum))
(return))
((and (minusp sum) (minusp presum))
(incf count (1+ (abs sum))) (incf sum (1+ (abs sum))))
(t (return))))
(setf presum sum))
(format t "~A~%" count)))
(solver) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr long long mod = 1e9 + 7;
signed main() {
int N;
cin >> N;
vector<long long> a(N), A;
for (int i = 0, i_len = (N); i < i_len; ++i) cin >> a[i];
int ans = INT_MAX;
int sig[2] = {1, -1};
for (int j = 0, j_len = (2); j < j_len; ++j) {
A = a;
long long sum = 0;
int count = 0;
for (int i = 0, i_len = (N); i < i_len; ++i) {
sum += A[i];
if (i % 2 == 0 && sig[j] * sum <= 0) {
A[i] -= sum - sig[j] * 1;
count += llabs(sum - sig[j] * 1);
sum = sig[j] * 1;
}
if (i % 2 == 1 && sig[j] * sum >= 0) {
A[i] -= sum + sig[j] * 1;
count += llabs(sum + sig[j] * 1);
sum = -1 * sig[j];
}
}
ans = min(ans, count);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
even_is_negative = 0
odd_is_nagative = 0
for i in range(n):
if i % 2 == 0 and a[i] < 0:
even_is_negative += 1
elif i % 2 == 1 and a[i] < 0:
odd_is_nagative += 1
# print(even_is_negative)
# print(odd_is_nagative)
sum = a[0]
change = 0
if even_is_negative >= odd_is_nagative:
for i in range(1, n):
if i % 2 == 1 and sum + a[i] <= 0:
change += abs(sum + a[i]) + 1
sum = 1
# print("a " + str(sum))
elif i % 2 == 0 and sum + a[i] >= 0:
change += sum + abs(a[i]) + 1
sum = -1
# print("b " + str(sum))
else:
sum += a[i]
# print("c " + str(sum))
if even_is_negative < odd_is_nagative:
for i in range(1, n):
if i % 2 == 1 and sum + a[i] >= 0:
change += sum + abs(a[i]) + 1
sum = -1
# print("a " + str(sum) + str(change))
elif i % 2 == 0 and sum + a[i] <= 0:
change += abs(sum + a[i]) + 1
sum = 1
# print("b " + str(sum)+ str(change))
else:
sum += a[i]
# print("c " + str(sum)+ str(change))
if sum == 0:
print(change + 1)
else:
print(change)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int zerocount(vector<int>& a, int i, int n) {
cout << "strart" << endl;
if (a.at(i) != 0) {
return 0;
}
if (i == n - 1) {
a.at(i) = 1;
return 1;
}
int count = 0;
count += zerocount(a, i + 1, n);
if (a.at(i + 1) > 0) {
a.at(i) = -1;
} else {
a.at(i) = 1;
}
count++;
return count;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (auto& x : a) {
cin >> x;
}
bool hugou;
int sum = 0;
int count = 0;
if (a.at(0) < 0) {
hugou = false;
sum += a.at(0);
}
if (a.at(0) > 0) {
hugou = true;
sum += a.at(0);
}
if (a.at(0) == 0) {
count += zerocount(a, 0, n);
}
for (int i = 0; i < n - 1; i++) {
int i_sum;
i_sum = sum + a.at(i + 1);
cout << i_sum << endl;
if (i_sum >= 0) {
if (hugou) {
sum = -1;
count += (i_sum + 1);
hugou = false;
} else {
hugou = true;
sum = i_sum;
}
}
if (i_sum <= 0) {
if (!hugou) {
sum = 1;
count += (-1) * (i_sum - 1);
hugou = true;
} else {
hugou = false;
sum = i_sum;
}
}
}
if (sum == 0) count++;
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, const char* argv[]) {
long long int n, x;
long long int cnt;
vector<long long int> v, sum;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> x;
v.push_back(x);
sum.push_back(0);
}
sum[0] = v[0];
cnt = 0;
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + v[i];
if (sum[i - 1] >= 0 && sum[i] >= 0) {
cnt += sum[i - 1] + 1 + v[i];
v[i] = sum[i - 1] * (-1) - 1;
sum[i] = -1;
} else if (sum[i - 1] < 0 && sum[i] < 0) {
cnt += sum[i - 1] * (-1) + 1 - v[i];
v[i] = sum[i - 1] * (-1) + 1;
sum[i] = 1;
} else if (sum[i] == 0 && sum[i - 1] > 0) {
cnt++;
v[i]--;
sum[i] = -1;
} else if (sum[i] == 0 && sum[i - 1] < 0) {
cnt++;
v[i]++;
sum[i] = 1;
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
N = int(input())
A = [int(i) for i in input().split()]
ans = 0
S = [0] * N
S[0] = A[0]
for i in range(1, N):
S[i] = S[i-1] + A[i]
if S[i]*S[i-1] < 0:
continue
if S[i-1] > 0:
S[i] = -1
ans += abs((-1) - (S[i-1]+A[i]))
else:
S[i] = 1
ans += abs(1 - (S[i-1]+A[i]))
print(ans)
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
ll sum = 0;
cin >> sum;
ll ans = 0;
for (int i = 0; i < n - 1; ++i) {
int a;
cin >> a;
sum += a;
if ((sum - a < 0) != (sum > 0)) {
ll need = max(abs(sum - 1), abs(sum + 1));
sum += (sum > 0 ? -need : need);
ans += need;
} else if (sum == 0) {
sum += (sum - a > 0 ? -1 : 1);
ans += 1;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
long int n;
cin >> n;
vector<long int> a(n);
for (int i = 0; i < (n); i++) {
cin >> a[i];
}
long int oddcount = 0, evencount = 0;
long int oddsum = 0, evensum = 0;
bool oddplus = true, evenplus = false;
for (int i = 0; i < (n); i++) {
oddsum += a[i];
evensum += a[i];
if (oddplus && oddsum <= 0) {
oddcount += 1 - oddsum;
oddsum = 1;
}
if (!oddplus && oddsum >= 0) {
oddcount += 1 + oddsum;
oddsum = -1;
}
if (evenplus && evensum <= 0) {
evencount += 1 - evensum;
evensum = 1;
}
if (!evenplus && evensum >= 0) {
evencount += 1 + evensum;
evensum = -1;
}
oddplus = !oddplus;
evenplus = !evenplus;
}
cout << fmin(oddcount, evencount) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans, sum;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = a.at(0);
for (int i = 0; i < n - 1; i++) {
while ((sum > 0 && sum + a.at(i + 1) >= 0) ||
(sum < 0 && sum + a.at(i + 1) <= 0)) {
if (a.at(i) < 0) {
a.at(i + 1)++;
ans++;
}
if (a.at(i) > 0) {
a.at(i + 1)--;
ans++;
}
}
sum += a.at(i + 1);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const int MOD = 10000007;
static const int MAX = 100005;
int N;
int A[MAX];
long long int S[MAX];
int change(bool pos) {
int k = -1, diff = 0, cnt = 0, counter;
if (pos) {
for (int i = (0); i < (N); i++) {
if (S[i] + diff > 0 && i % 2 == 0)
continue;
else if (S[i] + diff < 0 && i % 2 == 1)
continue;
else {
k = i;
if (k % 2 == 0) {
counter = abs(1 - (S[k] + diff));
diff += 1 - (S[k] + diff);
cnt += counter;
} else {
counter = abs((S[k] + diff) + 1);
diff += -1 - (S[k] + diff);
cnt += counter;
}
}
}
} else {
for (int i = (0); i < (N); i++) {
if (S[i] + diff > 0 && i % 2 == 1)
continue;
else if (S[i] + diff < 0 && i % 2 == 0)
continue;
else {
k = i;
if (k % 2 == 1) {
counter = abs(1 - (S[k] + diff));
diff += 1 - (S[k] + diff);
cnt += counter;
} else {
counter = abs(1 + (S[k] + diff));
diff += -1 - (S[k] + diff);
cnt += counter;
}
}
}
}
return cnt;
}
int main() {
cin >> N;
long long int sum = 0;
for (int i = (0); i < (N); i++) {
int a;
cin >> a;
A[i] = a;
sum += a;
S[i] = sum;
}
bool pos = true;
int plus, minus;
plus = change(pos);
pos = false;
minus = change(pos);
cout << min(plus, minus) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long mod = 1000000007;
int main() {
int n;
cin >> n;
long long cnt_a = 0;
long long cnt_b = 0;
long long sum_a = 0;
long long sum_b = 0;
for (int i = 0; i < n; ++i) {
long long t;
cin >> t;
long long sign_t = (t > 0) ? 1 : -1;
if (i == 0) {
sum_a += t;
sum_b += -1 * sign_t;
cnt_b += abs(t) + 1;
} else {
long long tsum_a = sum_a + t;
long long tsum_b = sum_b + t;
long long sign_a = (sum_a > 0) ? 1 : -1;
long long sign_b = (sum_b > 0) ? 1 : -1;
if (tsum_a * sum_a > 0) {
cnt_a += abs(tsum_a) + 1;
sum_a = -1 * sign_a;
} else {
sum_a = tsum_a;
if (sum_a == 0) {
sum_a = -1 * sign_a;
cnt_a += 1;
}
}
if (tsum_b * sum_b > 0) {
cnt_b += abs(tsum_b) + 1;
sum_b = -1 * sign_b;
} else {
sum_b = tsum_b;
if (sum_b == 0) {
sum_b = -1 * sign_b;
cnt_b += 1;
}
}
}
}
cout << min(cnt_a, cnt_b) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long int mod = 1000000007;
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long int n;
cin >> n;
long long int arr[n];
long long int pref[n];
cin >> arr[0];
pref[0] = arr[0];
long long int cnt = 0;
for (long long int i = 1; i < n; i++) {
cin >> arr[i];
pref[i] = arr[i] + pref[i - 1];
if (pref[i] * pref[i - 1] > 0 || pref[i] == 0) {
long long int rep = -1 - pref[i - 1];
cnt = cnt + abs(arr[i] - rep);
arr[i] = rep;
pref[i] = pref[i - 1] + rep;
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int store[200007];
int main() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) scanf("%d", &store[i]);
long long cnt = 0;
long long sum = store[1];
if (sum == 0) sum++, store[1]++, cnt++;
for (int i = 2; i <= n; i++) {
if (sum < 0 && sum + store[i] <= 0) {
while (sum + store[i] <= 0) cnt++, store[i]++;
cnt += 1 - (sum + store[i]);
sum = 1;
} else if (sum > 0 && sum + store[i] > 0) {
cnt += (sum + store[i]) + 1;
sum = -1;
} else
sum += store[i];
}
cout << cnt << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < (int)(N); i++) {
cin >> a[i];
}
int ans = 0;
int sum = 0;
for (int i = 0; i < (int)(N - 1); i++) {
sum += a[i];
int next_sum = sum + a[i + 1];
if (sum > 0) {
if (next_sum < 0) {
;
} else {
int op = abs(-1 - next_sum);
ans += op;
sum += op;
}
} else {
if (next_sum > 0) {
;
} else {
int op = abs(1 - next_sum);
ans += op;
sum -= op;
}
}
}
int ans1 = ans;
ans = 0;
sum = 0;
for (int i = 0; i < (int)(N - 1); i++) {
sum += a[i];
int next_sum = sum + a[i + 1];
if (sum < 0) {
if (next_sum > 0) {
;
} else {
int op = abs(1 - next_sum);
ans += op;
sum += op;
}
} else {
if (next_sum < 0) {
;
} else {
int op = abs(-1 - next_sum);
ans += op;
sum -= op;
}
}
}
ans = min(ans, ans1);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long N;
cin >> N;
long a[100001];
for (long i = 0; i < N; i++) {
cin >> a[i];
}
long total0 = 0;
long ops0 = 0;
for (int i = 0; i < N; i++) {
total0 += a[i];
if (total0 < 1) {
total0 = 1;
ops0 += 1 - a[i];
}
}
long total1 = 0;
long ops1 = 0;
for (int i = 0; i < N; i++) {
total1 += a[i];
if (total1 > -1) {
total1 = -1;
ops1 += (a[i] + 1);
}
}
printf("%d\n", min(ops0, ops1));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!/usr/bin/env python3
from itertools import accumulate
def main():
n = int(input())
a = list(map(int, input().split()))
a = list(accumulate(a))
if a[0] != 0:
ans = 0
diff = 0
for i in range(1,n):
p = a[i] + diff
q = a[i-1] + diff
if p * q >= 0:
tmp = -q//abs(q) - p
ans += abs(tmp)
diff += tmp
print(ans)
else:
ans = 10**18
for d in [-1,1]:
ans2 = 1
for i in range(1,n):
p = a[i] + d
q = a[i-1] + d
if p * q >= 0:
tmp = -q//abs(q) - p
ans2 += abs(tmp)
diff += tmp
ans = min(ans, ans2)
print(ans)
if __name__ == "__main__":
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, a[100000];
int even() {
int res = 0;
int sum[n];
for (int i = 0; i < n; i++) {
if (i == 0) {
sum[0] = a[0];
} else {
sum[i] = sum[i - 1] + a[i];
}
}
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && sum[i] < 0) {
res += -sum[i] + 1;
for (int j = i + 1; j < n; j++) {
sum[j] += -sum[i] + 1;
}
} else if (i % 2 == 1 && sum[i] > 0) {
res += sum[i] + 1;
for (int j = i + 1; j < n; j++) {
sum[j] -= sum[i] + 1;
}
} else if (sum[i] == 0) {
if (i % 2 == 0) {
res += 1;
for (int j = i + 1; j < n; j++) {
sum[j] += 1;
}
} else {
res += 1;
for (int j = i + 1; j < n; j++) {
sum[j] -= 1;
}
}
}
}
return res;
}
int odd() {
int res = 0;
int sum[n];
for (int i = 0; i < n; i++) {
if (i == 0) {
sum[0] = a[0];
} else {
sum[i] = sum[i - 1] + a[i];
}
}
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && sum[i] > 0) {
res += sum[i] + 1;
for (int j = i + 1; j < n; j++) {
sum[j] -= sum[i] + 1;
}
} else if (i % 2 == 1 && sum[i] < 0) {
res += -sum[i] + 1;
for (int j = i + 1; j < n; j++) {
sum[j] += -sum[i] + 1;
}
} else if (sum[i] == 0) {
if (i % 2 == 0) {
res += 1;
for (int j = i + 1; j < n; j++) {
sum[j] -= 1;
}
} else {
res += 1;
for (int j = i + 1; j < n; j++) {
sum[j] += 1;
}
}
}
}
return res;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
cout << min(even(), odd()) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
// ABC 6-C
// http://abc006.contest.atcoder.jp/tasks/abc006_3
public class Main {
public static void main (String[] args) throws java.lang.Exception {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] nums = new int[n];
for (int i = 0; i < n; i++) {
nums[i] = in.nextInt();
}
long answer = 0;
if (nums[0] == 0) {
answer = solve(nums, 0, 0);
} else {
answer = solve(nums, nums[0], 1);
}
System.out.println(answer);
//
// long sum = 0;
// long answer = 0;
//
// for (int i = 0; i < n; i++) {
// int a = in.nextInt();
//
// if (sum < 0 && sum + a < 0) {
// answer += 1 + Math.abs(sum + a);
// sum = 1;
// } else if (sum > 0 && sum + a > 0) {
// answer += 1 + sum + a;
// sum = -1;
// } else if (sum + a == 0) {
// answer++;
// if (sum < 0) {
// sum = 1;
// } else {
// sum = -1;
// }
// } else {
// sum += a;
// }
// }
// System.out.println(answer);
}
public static long solve(int[] nums, long sum, int index) {
if (index == nums.length) {
return 0;
}
if (sum < 0 && sum + nums[index] < 0) {
return 1 + Math.abs(sum + nums[index]) + solve(nums, 1, index + 1);
} else if (sum > 0 && sum + nums[index] > 0) {
return 1 + sum + nums[index] + solve(nums, -1, index + 1);
} else if (sum + nums[index] == 0) {
if (sum < 0) {
return Math.abs(sum) + 1 + solve(nums, 1, index + 1);
} else if (sum > 0) {
return Math.abs(sum) + 1 + solve(nums, -1, index + 1);
} else {
return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1));
}
} else if (sum == 0) {
return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1));
} {
return solve(nums, sum + nums[index], index + 1);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) {
cin >> a.at(i);
}
int ans1 = 0, ans2 = 0, sum = 0;
for (int i = 0; i < N; i++) {
sum += a.at(i);
if (i % 2 == 0 and sum <= 0) {
ans1 += -sum + 1;
sum = 1;
} else if (i % 2 == 1 and sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
}
sum = 0;
for (int i = 0; i < N; i++) {
ans2 += a.at(i);
if (i % 2 == 0 and sum >= 0) {
ans2 += sum + 1;
sum = -1;
} else if (i % 2 == 1 and sum <= 0) {
ans2 += -sum + 1;
sum = 1;
}
}
int ans = min(ans1, ans2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int, input().split()))
cnt =0
def check(a,i,cnt):
sum1 = sum(a[:i])
sum2 = sum(a[:i+1])
if sum1<0 and sum2 <=0:
a[i] += abs(sum2)+1
cnt += abs(sum2)+1
elif sum1>0 and sum2 >=0:
a[i] -= abs(sum2)+1
cnt += abs(sum2)+1
return cnt
for i in range(n):
cnt=check(a,i,cnt)
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # encoding:utf-8
import copy
import random
import bisect #bisect_left これで二部探索の大小検索が行える
import fractions #最小公倍数などはこっち
import math
mod = 10**9+7
n = int(input())
a = [int(i) for i in input().split()]
def solve(a):
if a[0] > 0:
status_pos = True
else:
status_pos = False
tmp = 0
ans = 0
for i in range(n):
tmp += a[i]
if tmp == 0:
ans += 1
if status_pos:
tmp = -1
else:
tmp = 1
elif status_pos and tmp < 0:
ans += 1+abs(tmp)
tmp = 1
elif status_pos == False and tmp > 0:
ans += 1+abs(tmp)
tmp = -1
status_pos = not(status_pos)
return ans
ans = solve(a)
ans2 = abs(a[0])+1
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
ans2 += solve(a)
print(min(ans,ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ans=10**10
s = 0
cnt=0
for i in range(n):
s+=a[i]
if i%2==1:
if s<=0:
cnt += -s + 1
s = 1
else:
if s>=0:
cnt += s + 1
s = -1
ans=min(ans,cnt)
s = 0
cnt=0
for i in range(n):
s+=a[i]
if i%2==1:
if s<=0:
cnt += -s + 1
s = 1
else:
if s>=0:
cnt += s + 1
s = -1
ans=min(ans,cnt)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
list_a = list(map(int,input().split()))
i = 0
k = 0
count = 0
ans = list_a[0]
if list_a[0] > 0:
for i in range(1,n):
ans += list_a[i]
if ans / ((-1) ** i) <= 0:
count += abs(ans - (-1) ** i)
ans = (-1) ** i
else:
for i in range(1,n):
ans += list_a[i]
if ans / ((-1) ** (i+1)) <= 0:
count += abs(ans - (-1) ** (i+1))
ans = (-1) ** (i+1)
count1 = count
count = 0
if list_a[0] <= 0:
for i in range(1,n):
ans += list_a[i]
if ans / ((-1) ** i) <= 0:
count += abs(ans - (-1) ** i)
ans = (-1) ** i
else:
for i in range(1,n):
ans += list_a[i]
if ans / ((-1) ** (i+1)) <= 0:
count += abs(ans - (-1) ** (i+1))
ans = (-1) ** (i+1)
print(min(count1, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans, sum;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = a.at(0);
for (int i = 0; i < n - 1; i++) {
while ((a.at(i) > 0 && sum + a.at(i + 1) >= 0) ||
(a.at(i) < 0 && sum + a.at(i + 1) <= 0) || sum + a.at(i + 1) == 0) {
if (a.at(i) > 0) {
a.at(i + 1)--;
ans++;
}
if (a.at(i) < 0) {
a.at(i + 1)++;
ans++;
}
}
sum += a.at(i + 1);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
a = gets.strip.split.map(&:to_i)
b = Marshal.load(Marshal.dump(a))
c = Marshal.load(Marshal.dump(a))
answer1 = 0
answer2 = 0
for i in 0..n-1
if i % 2 == 0 && b.slice(0..i).inject(:+) <= 0
answer1 += 1 - b.slice(0..i).inject(:+)
b[i] = 1 - b.slice(0..i).inject(:+) + b[i]
elsif i % 2 == 1 && b.slice(0..i).inject(:+) >= 0
answer1 += b.slice(0..i).inject(:+) + 1
b[i] = - b.slice(0..i).inject(:+) - 1 + b[i]
end
end
for i in 0..n-1
if i % 2 == 0 && c.slice(0..i).inject(:+) >= 0
answer2 += c.slice(0..i).inject(:+) + 1
c[i] = -1 - c.slice(0..i).inject(:+) + c[i]
elsif i % 2 == 1 && c.slice(0..i).inject(:+) <= 0
answer2 += 1 - c.slice(0..i).inject(:+)
c[i] = - c.slice(0..i).inject(:+) + 1 + c[i]
end
end
puts [answer1,answer2].min
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
char ch, last;
int n, a[100002], s[100002], tmp, ans;
inline void read(int &x) {
x = ch = 0;
do {
last = ch;
ch = getchar();
} while (ch < '0' || '9' < ch);
do {
x = x * 10 + ch - '0';
ch = getchar();
} while ('0' <= ch && ch <= '9');
if (last == '-') x = -x;
}
int main(void) {
read(n);
for (int i = (1); i <= (n); i++) read(a[i]);
for (int i = (1); i <= (n); i++) {
s[i] = s[i - 1] + a[i];
if (i & 1) {
if (s[i] <= 0) tmp += 1 - s[i], s[i] = 1;
} else {
if (s[i] >= 0) tmp += s[i] + 1, s[i] = -1;
}
}
ans = tmp;
tmp = 0;
for (int i = (1); i <= (n); i++) {
s[i] = s[i - 1] + a[i];
if (i & 1) {
if (s[i] >= 0) tmp += s[i] + 1, s[i] = -1;
} else {
if (s[i] <= 0) tmp += 1 - s[i], s[i] = 1;
}
}
ans = min(ans, tmp);
printf("%d", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, m;
int i, j;
cin >> n;
vector<int> a(n);
for (i = 0; i < n; ++i) {
cin >> a.at(i);
}
int s = 0, h1 = 0, h2 = 0;
for (i = 0; i < n; ++i) {
s += a[i];
if (i % 2 && s >= 0) {
h1 += s + 1;
s = -1;
} else if (i % 2 == 0 && s <= 0) {
h1 += 1 - s;
s = 1;
}
}
s = 0;
for (i = 0; i < n; ++i) {
s += a[i];
if (i % 2 == 0 && s >= 0) {
h2 += s + 1;
s = -1;
} else if (i % 2 && s <= 0) {
h2 += 1 - s;
s = 1;
}
}
cout << min(h1, h2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline void chmax(T& a, T b) {
if (a < b) {
a = b;
}
}
template <class T>
inline void chmin(T& a, T b) {
if (a > b) {
a = b;
}
}
template <class T>
inline T gcd(T x, T y) {
if (y == 0) {
return x;
} else if (x == 0) {
return y;
}
return gcd(y, x % y);
}
template <class T>
inline T lcm(T x, T y) {
return (x * y) / gcd(x, y);
}
template <class T>
inline void print_vector(vector<T> vec) {
for (int i = 0; i < vec.size(); i++) {
cout << vec[i] << " ";
}
cout << endl;
}
const long long MOD = 1e9 + 7;
const long long LLINF = 1LL << 60;
const int INF = 1 << 30;
int main(void) {
long long N;
cin >> N;
vector<long long> A(N);
vector<long long> B(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
B[i] = A[i];
}
long long sum = A[0] > 0 ? A[0] : 1;
long long count = sum - A[0];
for (int i = 1; i < N; i++) {
long long tmp = A[i] + sum;
if (i % 2 == 1 and tmp >= 0) {
A[i] += (-1 - tmp);
count += abs(-1 - tmp);
} else if (i % 2 == 0 and tmp <= 0) {
A[i] += (1 - tmp);
count += (1 - tmp);
}
sum += A[i];
}
long long ans = count;
sum = B[0] < 0 ? B[0] : -1;
count = sum - B[0];
for (int i = 1; i < N; i++) {
long long tmp = B[i] + sum;
if (i % 2 == 0 and tmp >= 0) {
B[i] += (-1 - tmp);
count += abs(-1 - tmp);
} else if (i % 2 == 1 and tmp <= 0) {
B[i] += (1 - tmp);
count += (1 - tmp);
}
sum += B[i];
}
chmin(ans, count);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int CalcSumOfDigit(int n);
string upper(string str);
string lower(string str);
const int INF = 1e9;
using ull = unsigned long long;
using ll = long long;
int main() {
ll n;
cin >> n;
vector<ll> a(n);
for (int(i) = 0; (i) < (n); (i)++) cin >> a[i];
ll m = 0;
ll p = 0;
ll m_cnt = 0;
ll p_cnt = 0;
for (int(i) = 0; (i) < (n); (i)++) {
if ((i % 2 ? 1 : -1) * (m + a[i]) < 0) {
ll b_m = m + a[i];
m_cnt += 1 + abs(b_m);
m = i % 2 ? 1 : -1;
} else if (m + a[i] == 0) {
m = i % 2 ? 1 : -1;
m_cnt++;
} else {
m += a[i];
}
if ((i % 2 ? -1 : 1) * (p + a[i]) < 0) {
ll b_p = p + a[i];
p_cnt += 1 + abs(b_p);
p = i % 2 ? -1 : 1;
} else if (p + a[i] == 0) {
p = i % 2 ? 1 : -1;
p_cnt++;
} else {
p += a[i];
}
}
cout << min(m_cnt, p_cnt) << endl;
return 0;
}
int CalcSumOfDigit(int n) {
int s = 0;
while (n) {
s += n % 10;
n = n / 10;
}
return s;
}
string upper(string str) {
for (auto itr = str.begin(); itr != str.end(); itr++) {
if (97 <= *itr && *itr <= 122) {
*itr = *itr - 32;
}
}
return str;
}
string lower(string str) {
for (auto itr = str.begin(); itr != str.end(); itr++) {
if (65 <= *itr && *itr <= 90) {
*itr = *itr + 32;
}
}
return str;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = [int(i) for i in input().split()]
sam = a[0]
old = sam
num = 0
for i in range(1, len(a)):
sam += a[i]
if sam >= 0 and old > 0:
num += (abs(sam) + 1)
sam -= (-sam + 1)
elif sam <= 0 and old < 0:
num += (abs(sam) + 1)
sam += (-sam + 1)
old = sam
print(num)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
int s = a[0];
long long ans1 = 0, ans2 = 0;
if (s <= 0) ans1 += -s + 1;
for (int i = (1); i < (int)(n); i++) {
if (i % 2 && s + a[i] >= 0) {
ans1 += s + a[i] + 1;
s = -1;
} else if (i % 2 == 0 && s + a[i] <= 0) {
ans1 += -(s + a[i]) + 1;
s = 1;
} else
s += a[i];
}
s = a[0];
if (s >= 0) ans2 += s + 1;
for (int i = (1); i < (int)(n); i++) {
if (i % 2 == 0 && s + a[i] >= 0) {
ans2 += s + a[i] + 1;
s = -1;
} else if (i % 2 && s + a[i] <= 0) {
ans2 += -(s + a[i]) + 1;
s = 1;
} else
s += a[i];
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
class Program
{
static void Main()
{
int n = int.Parse(Console.ReadLine());
var a = Array.ConvertAll(Console.ReadLine().Split(), int.Parse);
int sum = a[0];
long ans = 0;
for (int i = 1; i < n; i++)
{
int temp = a[i];
if (sum * a[i] > 0 || Math.Abs(sum) >= Math.Abs(a[i])) a[i] = sum > 0 ? -(sum + 1) : -(sum - 1);
ans += Math.Abs(a[i] - temp);
sum += a[i];
}
Console.WriteLine(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf = 1e9;
const long long int linf = 1LL << 50;
int main(int argc, char const* argv[]) {
int n;
cin >> n;
vector<int> a;
for (int i = 0; i < n; i++) {
int x;
cin >> x;
a.push_back(x);
}
long long int res = 0;
long long int sum = a[0];
for (int i = 1; i < n; i++) {
long long int tmp = sum + a[i];
if ((sum > 0 && tmp < 0) || (sum < 0 && tmp > 0)) {
sum = tmp;
} else {
int target;
if (sum > 0)
target = -1;
else
target = 1;
res += abs(target - tmp);
sum = target;
}
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(1001);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int c1 = 0, s1 = 0;
int c2 = 0, s2 = 0;
for (int i = 0; i < n; i++) {
s1 += a[i];
s2 += a[i];
if (i % 2 == 0) {
if (s1 < 0) {
c1 += 1 - s1;
s1 = 1;
}
if (s2 > 0) {
c2 += s2 + 1;
s2 = -1;
}
} else {
if (s2 < 0) {
c2 += 1 - s2;
s2 = 1;
}
if (s1 > 0) {
c1 += s1 + 1;
s1 = -1;
}
}
}
printf("%d\n", min(c1, c2));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
import java.util.Arrays;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int [n];
for(int i = 0;i < n;i++){
a[i] = sc.nextInt();
}
int[] sum = new int[n];
sum[0] = a[0];
int count = 0;
if(sum[0] == 0){
count++;
}
count = solve(sum,a,count);
System.out.println(count);
}
public static int solve(int[] sum,int[] a,int count){
for(int i = 0;i < sum.length-1;i++){
sum[i+1] = sum[i] + a[i+1];
if(sum[0] > 0){
if((i+1) % 2 == 1){
while(sum[i+1] >= 0){
sum[i+1]--;
count++;
}
}
if((i+1) % 2 == 0){
while(sum[i+1] <= 0){
sum[i+1]++;
count++;
}
}
}
if(sum[0] < 0){
if((i+1) % 2 == 1){
while(sum[i+1] <= 0){
sum[i+1]++;
count++;
}
}
if((i+1) % 2 == 0){
while(sum[i+1] >= 0){
sum[i+1]--;
count++;
}
}
}
}
return count;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> v(n);
for (__typeof(n) i = (0) - ((0) > (n)); i != (n) - ((0) > (n));
i += 1 - 2 * ((0) > (n)))
cin >> v[i];
long long res1 = 0, res2 = 0, res3, res4;
long long som = v[0];
if (som >= 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = v[0] + 1;
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
} else {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = 1 - v[0];
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
if (v[0] == 0) {
res1 = 1;
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
res2 = 1;
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
cout << min(res1, res2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
enum State { Plus, Minus, Zero };
State GetState(int sum) {
State state;
if (sum > 0)
state = Plus;
else if (sum == 0)
state = Zero;
else
state = Minus;
return state;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
cin >> a[0];
int count = 0;
State state = GetState(a[0]);
if (state == Zero) {
a[0] = 1;
state = Plus;
count++;
}
int sum = a[0];
for (int i = 1; i < n; i++) {
cin >> a[i];
State nextState = GetState(sum + a[i]);
switch (nextState) {
case Plus:
if (state == Plus) {
int bf_a = a[i];
a[i] = -1 - sum;
count += abs(a[i] - bf_a);
nextState = Minus;
}
break;
case Minus:
if (state == Minus) {
int bf_a = a[i];
a[i] = 1 - sum;
count += abs(a[i] - bf_a);
nextState = Plus;
}
break;
default:
break;
}
sum += a[i];
state = nextState;
}
if (sum == 0) count++;
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long zero = 0;
int N;
cin >> N;
vector<int> sum(N,0);
int now;
cin >> now;
sum[0] = now;
for (int i=1; i<N; i++) {
cin >> now;
sum[i] = sum[i-1] + now;
}
long change = 0;
long ansp = 0;
int i = 0;
while (i<N) {
ansp += max(1-(sum[i]+change),0);
change += max(1-(sum[i]+change),0);
i++;
if (i==N) {
break;
}
ansp += max((sum[i]+change)+1,0);
change -= max((sum[i]+change)+1,0);
i++;
}
change = 0;
long ansm = 0;
i = 0;
while (i<N) {
ansm += max((sum[i]+change)+1,zero);
change -= max((sum[i]+change)+1,zero);
i++;
if (i==N) {
break;
}
ansm += max(1-(sum[i]+change),zero);
change += max(1-(sum[i]+change),zero)
i++;
}
cout << min(ansp,ansm) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long MOD = 1e9 + 7;
const long LINF = 1e13;
const long LLINF = 1e18;
template <class T>
void Swap(T& r, T& l) {
T tmp = r;
r = l;
l = tmp;
}
int main() {
long n;
cin >> n;
vector<long> a(n);
vector<long> accum(n, 0);
for (int i = 0; i < n; ++i) {
cin >> a[i];
accum[i] = a[i];
if (i > 0) accum[i] += accum[i - 1];
}
vector<long> accumtmp(n, 0);
copy(accum.begin(), accum.end(), accumtmp.begin());
long ans = 0;
long count = 0;
long tmpcount = 0;
for (int i = 1; i < n; ++i) {
long accump = accumtmp[i] + tmpcount;
if (i % 2 == 1) {
if (accump >= 0) {
long tmpc = -(-1 - accump);
count += tmpc;
accumtmp[i] = -1;
tmpcount -= tmpc;
}
} else {
if (accump <= 0) {
long tmpc = 1 - accump;
count += tmpc;
tmpcount += tmpc;
}
}
}
ans = count;
count = 0;
copy(accum.begin(), accum.end(), accumtmp.begin());
tmpcount = 0;
for (int i = 1; i < n; ++i) {
long accump = accumtmp[i] + tmpcount;
if (i % 2 == 0) {
if (accump >= 0) {
long tmpc = -(-1 - accump);
count += tmpc;
accumtmp[i] = -1;
tmpcount -= tmpc;
}
} else {
if (accump <= 0) {
long tmpc = 1 - accump;
count += tmpc;
tmpcount += tmpc;
}
}
}
ans = min(ans, count);
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | macro_rules ! input { ( source = $ s : expr , $ ( $ r : tt ) * ) => { let mut iter = $ s . split_whitespace ( ) ; input_inner ! { iter , $ ( $ r ) * } } ; ( $ ( $ r : tt ) * ) => { let s = { use std :: io :: Read ; let mut s = String :: new ( ) ; std :: io :: stdin ( ) . read_to_string ( & mut s ) . unwrap ( ) ; s } ; let mut iter = s . split_whitespace ( ) ; input_inner ! { iter , $ ( $ r ) * } } ; }
macro_rules ! input_inner { ( $ iter : expr ) => { } ; ( $ iter : expr , ) => { } ; ( $ iter : expr , mut $ var : ident : $ t : tt $ ( $ r : tt ) * ) => { let mut $ var = read_value ! ( $ iter , $ t ) ; input_inner ! { $ iter $ ( $ r ) * } } ; ( $ iter : expr , mut $ var : ident $ ( $ r : tt ) * ) => { let mut $ var = $ iter . next ( ) . unwrap ( ) . parse ::< usize > ( ) . unwrap ( ) ; input_inner ! { $ iter $ ( $ r ) * } } ; ( $ iter : expr , $ var : ident : $ t : tt $ ( $ r : tt ) * ) => { let $ var = read_value ! ( $ iter , $ t ) ; input_inner ! { $ iter $ ( $ r ) * } } ; ( $ iter : expr , $ var : ident $ ( $ r : tt ) * ) => { let $ var = $ iter . next ( ) . unwrap ( ) . parse ::< usize > ( ) . unwrap ( ) ; input_inner ! { $ iter $ ( $ r ) * } } ; }
macro_rules ! read_value { ( $ iter : expr , ( $ ( $ t : tt ) ,* ) ) => { ( $ ( read_value ! ( $ iter , $ t ) ) ,* ) } ; ( $ iter : expr , [ $ t : tt ; $ len : expr ] ) => { ( 0 ..$ len ) . map ( | _ | read_value ! ( $ iter , $ t ) ) . collect ::< Vec < _ >> ( ) } ; ( $ iter : expr , chars ) => { read_value ! ( $ iter , String ) . chars ( ) . collect ::< Vec < char >> ( ) } ; ( $ iter : expr , usize1 ) => { read_value ! ( $ iter , usize ) - 1 } ; ( $ iter : expr , $ t : ty ) => { $ iter . next ( ) . unwrap ( ) . parse ::<$ t > ( ) . unwrap ( ) } ; }
fn main() {
input! {
n: usize,
a: [i64; n],
}
let mut ans0 = 0;
let mut sum = 0;
for (i, &v) in a.iter().enumerate() {
sum += v;
if i % 2 == 0 && sum <= 0 {
ans0 += 1 - sum;
sum = 1;
} else if i % 2 == 1 && sum >= 0 {
ans0 += sum + 1;
sum = -1;
}
}
let mut ans1 = 0;
sum = 0;
for (i, &v) in a.iter().enumerate() {
sum += v;
if i % 2 == 1 && sum <= 0 {
ans1 += 1 - sum;
sum = 1;
} else if i % 2 == 1 && sum >= 0 {
ans1 += sum + 1;
sum = -1;
}
}
println!("{}", std::cmp::min(ans1, ans0));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using static System.Console;
using static System.Convert;
using static System.Math;
class Program
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
int[] arr = Console.ReadLine().Split(' ').Select(int.Parse).ToArray();
long[] arrSum = new long[n];
long sum_Plus = 0;
long sum_minus = 0;
bool isChange = false;
bool isChange_minus = false;
long nPreSum_Plus = 0;
long nPreSum_minus = 0;
for (int i = 0; i < n; i++)
{
if (i == 0)
{
arrSum[0] = arr[0];
nPreSum_minus = arr[0];
nPreSum_Plus = arr[0];
}
else
{
arrSum[i] = (arrSum[i - 1] + arr[i]);
}
#region //plusStart
if (i % 2 == 0)
{
if (!isChange)
{
//一回も変更していない
if (arrSum[i] > 0)
{
//isChange = false;
}
else if (arrSum[i] < 0)
{
long tmpcnt = (1 - arrSum[i]);
sum_Plus += tmpcnt;
nPreSum_Plus = 1;
isChange = true;
}
else
{
sum_Plus += 1;
nPreSum_Plus = 1;
isChange = true;
}
}
else
{
//一回でも変更したとき arrSum[i-1]=-1
long tmpsum = (nPreSum_Plus) + arr[i];
if (0<tmpsum)
{
//isChange = false;
nPreSum_Plus = tmpsum;
}
else if (tmpsum < 0)
{
long tmpcnt = Math.Abs(1 - (nPreSum_Plus));
sum_Plus += tmpcnt;
nPreSum_Plus = nPreSum_Plus + arr[i];
}
else
{
sum_Plus += 1;
nPreSum_Plus = 1;
}
}
}
else
{
//奇数インデックス⇒マイナスにする
if (!isChange)
{
//一回も変更していない
if (arrSum[i] < 0)
{
//isChange = false;
}
else if (arrSum[i] > 0)
{
long tmpcnt = (arrSum[i] - (-1));
sum_Plus += tmpcnt;
nPreSum_Plus = -1;
isChange = true;
}
else
{
sum_Plus += 1;
nPreSum_Plus = -1;
isChange = true;
}
}
else
{
//一回でも変更したとき⇒arrSum[i-1]=1;
long tmpSum = nPreSum_Plus + arr[i];
if (tmpSum < 0)
{
//isChange = false;
nPreSum_Plus= tmpSum;
}
else if (0<tmpSum)
{
long tmpcnt = (Math.Abs((-1)-nPreSum_Plus));
sum_Plus += tmpcnt;
nPreSum_Plus = nPreSum_Plus + arr[i];
}
else
{
sum_Plus += 1;
nPreSum_Plus = -1;
}
}
}
#endregion
#region //minusStart
if (i % 2 == 1)
{
if (!isChange_minus)
{
//一回も変更していない
if (arrSum[i] > 0)
{
//isChange_minus = false;
}
else if (arrSum[i] < 0)
{
long tmpcnt = (1 - arrSum[i]);
sum_minus += tmpcnt;
nPreSum_minus = 1;
isChange_minus = true;
}
else
{
sum_minus += 1;
nPreSum_minus = 1;
isChange_minus = true;
}
}
else
{
//一回でも変更したとき arrSum[i-1]=-1
long tmpsum = (nPreSum_minus) + arr[i];
if (0 < tmpsum)
{
//isChange_minus = false;
nPreSum_minus= tmpsum;
}
else if (tmpsum < 0)
{
long tmpcnt = Math.Abs(1 - (nPreSum_minus));
sum_minus += tmpcnt;
nPreSum_minus = nPreSum_minus + arr[i];
}
else
{
sum_minus += 1;
nPreSum_minus = 1;
}
}
}
else
{
//奇数インデックス⇒マイナスにする
if (!isChange_minus)
{
//一回も変更していない
if (arrSum[i] < 0)
{
//isChange_minus = false;
}
else if (arrSum[i] > 0)
{
long tmpcnt = (arrSum[i] - (-1));
sum_minus += tmpcnt;
nPreSum_minus = -1;
isChange_minus = true;
}
else
{
sum_minus += 1;
nPreSum_minus = -1;
isChange_minus = true;
}
}
else
{
//一回でも変更したとき⇒arrSum[i-1]=1;
long tmpSum = nPreSum_minus + arr[i];
if (tmpSum < 0)
{
//isChange_minus = false;
nPreSum_minus = tmpSum;
}
else if (0 < tmpSum)
{
long tmpcnt = (Math.Abs((-1) - nPreSum_minus));
sum_minus += tmpcnt;
nPreSum_minus = nPreSum_minus + arr[i];
}
else
{
sum_Plus += 1;
nPreSum_minus = -1;
}
}
}
#endregion
}
var ans = sum_minus <= sum_Plus ? sum_minus : sum_Plus;
Console.WriteLine(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n][2];
for (int i = 0; i < n; i++) {
cin >> a[i][0];
a[i][1] = a[i][0];
}
int sum = 0;
int res[2];
for (int check = 0; check < 2; check++) {
sum = 0;
for (int i = 0; i < n - 1; i++) {
sum += a[i][check];
if (sum * (sum + a[i + 1][check]) >= 0) {
if (sum > 0) {
int temp = -1 - sum - a[i + 1][check];
a[i + 1][check] += temp;
res[check] += temp * -1;
} else {
int temp = 1 - sum - a[i + 1][check];
a[i + 1][check] += temp;
res[check] += temp;
}
}
}
}
cout << min(res[0], res[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def ops_needed(x, target):
if abs(target - x) < abs(x):
return 0
else:
return target - x
def count_ops(a):
total_ops = 0
accum = a[0]
for i in range(1, len(a)):
new_accum = accum + a[i]
if new_accum == 0:
ops = -1 * (accum / abs(accum))
else:
ops = ops_needed(new_accum, -1 * (accum / abs(accum)))
total_ops += abs(ops)
accum = new_accum + ops
return int(total_ops)
if __name__ == '__main__':
_ = int(input())
a = list(map(int, input().split()))
print(count_ops(a))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int store[200007];
int main() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) scanf("%d", &store[i]);
long long cnt = 0;
long long sum = store[1];
if (sum == 0) sum++, store[1]++, cnt++;
for (int i = 2; i <= n; i++) {
if (sum < 0 && sum + store[i] <= 0) {
while (sum + store[i] <= 0) cnt++, store[i]++;
sum += store[i];
} else if (sum > 0 && sum + store[i] > 0) {
while (sum + store[i] >= 0) cnt++, store[i]--;
sum += store[i];
} else
sum += store[i];
}
cout << cnt << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
int min_ans = INT_MAX;
for (int mod = 0; mod < 2; ++mod) {
int ans = 0;
int sum = 0;
for (int i = 0; i < n; ++i) {
int sign = ((i % 2) == mod) * -2 + 1;
sum += a[i];
cout << i << " : target is " << sign << " sum: " << sum;
if (sign * sum <= 0) {
int diff = sign - sum;
cout << " move: " << diff;
sum = sign;
ans += abs(diff);
}
cout << "\n";
}
min_ans = min(min_ans, ans);
}
cout << min_ans << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
int[] A = new int[N + 1];
A[0] = 0;
for (int i = 1; i <= N; ++i) {
A[i] = sc.nextInt();
}
sc.close();
int sum1 = 0;
int sum2 = 0;
int ans1 = 0;
int ans2 = 0;
for (int i = 1; i <= N; ++i) {
sum1 += A[i];
if (i % 2 == 0 && sum1 >= 0) {
ans1 += sum1 +1;
sum1 = -1;
} else if (i % 2 != 0 && sum1 <= 0) {
ans1 += Math.abs(sum1) + 1;
sum1 = 1;
}
}
for (int i = 1; i <= N; ++i) {
sum2 += A[i];
if (i % 2 == 0 && sum2 <= 0) {
ans2 += sum1 +1;
sum2 = 1;
} else if (i % 2 != 0 && sum2 >= 0) {
ans2 += Math.abs(sum2) + 1;
sum2 = -1;
}
}
System.out.println(Math.min(ans1, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long Num[1111111];
long long Sum[1111111];
long long Out;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld", &Num[i]);
if (Num[1] == 0) {
long long Out1 = 0;
long long Out2 = 0;
Num[1] = 1;
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 0) {
if (Sum[i] >= 0) {
Out1 += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out1 += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
Num[1] = -1;
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 1) {
if (Sum[i] >= 0) {
Out2 += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out2 += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
printf("%lld", min(Out1, Out2));
return 0;
}
if (Num[1] > 0) {
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 0) {
if (Sum[i] >= 0) {
Out += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
} else {
for (int i = 1; i <= n; i++) {
Sum[i] = Sum[i - 1] + Num[i];
if (i % 2 == 1) {
if (Sum[i] >= 0) {
Out += (Sum[i] + 1);
Sum[i] = -1;
}
} else {
if (Sum[i] <= 0) {
Out += (1 - Sum[i]);
Sum[i] = 1;
}
}
}
}
printf("%lld\n", Out);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = int64_t;
int dx[] = {1, 0, -1, 0};
int dy[] = {0, 1, 0, -1};
int DX[] = {1, 1, 0, -1, -1, -1, 0, 1};
int DY[] = {0, -1, -1, -1, 0, 1, 1, 1};
void solve() {
int n;
cin >> n;
ll a[n], ans = 0;
for (int(i) = 0; (i) < (n); (i)++) cin >> a[i];
int temp = 0;
for (int(i) = 0; (i) < (n); (i)++) {
if (temp > 0 && temp + a[i] > 0) {
ans += abs(-1 - temp - a[i]);
a[i] = -1 - temp;
} else if (temp < 0 && temp + a[i] < 0) {
ans += abs(1 - temp - a[i]);
a[i] = 1 - temp;
} else if (temp + a[i] == 0) {
if (temp > 0) {
a[i] -= 1;
} else {
a[i] += 1;
}
ans += 1;
}
temp += a[i];
}
cout << ans << endl;
}
int main() {
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long ms = 1e5 + 9;
long long vet[ms], n;
long long resp(long long soma, long long ans, int f) {
long long val;
for (long long i = 1; i < n; i++) {
val = vet[i];
soma += val;
if (f) {
if (soma == 0) {
ans += 1;
soma++;
} else if (soma < 0) {
ans += ((-soma) + 1);
soma = 1;
}
} else {
if (soma == 0) {
ans++;
soma--;
} else if (soma > 0) {
ans += (soma + 1);
soma = -1;
}
}
f = 1 - f;
}
return ans;
}
int main() {
long long f = 0;
cin >> n;
for (long long i = 0; i < n; i++) cin >> vet[i];
int soma = vet[0];
long long ans = 0x3f3f3f3f3f3f3f3f;
if (soma < 0) {
ans = min(ans, resp(soma, 0, 1));
ans = min(ans, resp(1, 0 - soma + 1, 0));
} else if (soma > 0) {
ans = min(ans, resp(soma, 0, 0));
cout << ans << "\n";
ans = min(ans, resp(-1, 0 + soma + 1, 1));
cout << ans << "\n";
} else if (soma == 0) {
ans = min(resp(-1, 1, 1), ans);
ans = min(resp(1, 1, 0), ans);
}
cout << ans << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (auto& x : a) {
cin >> x;
}
int sum1 = 0;
int sum2 = 0;
int time1 = 0;
int time2 = 0;
for (int i = 0; i < n; i++) {
sum1 += a.at(i);
sum2 += a.at(i);
if (i % 2 == 0) {
if (sum1 <= 0) {
time1 += sum1 * (-1) + 1;
sum1 = 1;
}
if (sum2 >= 0) {
time2 += sum2 + 1;
sum2 = -1;
}
}
if (i % 2 == 1) {
if (sum1 >= 0) {
time1 += sum1 + 1;
sum1 = -1;
}
if (sum2 <= 0) {
time2 += sum2 * (-1) + 1;
sum2 = 1;
}
}
}
cout << min(time1, time2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int solve();
int adds(int i, int num);
int show();
vector<long> adder;
int N;
int main() {
cin >> N;
adder = vector<long>(N + 1);
adder.at(0) = 0;
long buf;
for (int i = 0; i < N; i++) {
cin >> buf;
adder.at(i + 1) = adder.at(i) + buf;
}
solve();
}
int solve() {
int flag = 0;
int count = 0;
for (int i = 0; i < N;) {
show();
if (adder.at(i + 1) > 0) {
if (flag != 1) {
flag = 1;
i++;
} else {
adds(i + 1, -1);
count++;
}
} else if (adder.at(i + 1) < 0) {
if (flag != -1) {
flag = -1;
i++;
} else {
adds(i + 1, 1);
count++;
}
} else {
if (flag == -1) {
adds(i + 1, 1);
count++;
} else if (flag == 1) {
adds(i + 1, -1);
count++;
} else {
if (i == 0) {
adds(i + 1, 1);
}
}
}
}
cout << count << endl;
return 0;
}
int adds(int i, int num) {
for (int j = i; j < N + 1; j++) {
adder.at(j) += num;
}
return 0;
}
int show() { return 0; }
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long dptemp[100010];
long long s1[100010], dp[100010];
int main() {
long long mi = 0x3f3f3f3f, n, a, sum, pri1, pri2, all;
scanf("%lld", &n);
dp[0] = 0;
for (a = 1; a <= n; a++) {
scanf("%lld", &s1[a]);
dp[a] = s1[a] + dp[a - 1];
dptemp[a] = dp[a];
}
if (dp[1] == 0) {
dp[1]++;
all = 1;
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
for (a = 1; a <= n; a++) dp[a] = dptemp[a];
dp[1]--;
all = 1;
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
} else if (dp[1] > 0) {
all = 0;
for (a = 1; a <= n; a++) dp[a] = dptemp[a];
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
} else {
sum = 0;
all = 0;
for (a = 1; a <= n; a++) dp[a] = dptemp[a];
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
}
printf("%lld\n", mi);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
ll mod = 1e9 + 7;
int dx[] = {0, 1, 0, -1};
int dy[] = {1, 0, -1, 0};
int main() {
ll n;
cin >> n;
ll a[n];
ll sum = 0;
ll cnt = 0;
cin >> a[0];
sum += a[0];
bool flg;
if (sum > 0) {
flg = true;
} else if (sum < 0) {
flg = false;
}
for (ll i = 1; i < n; i++) {
cin >> a[i];
sum += a[i];
if (flg) {
if (sum >= 0) {
cnt += (sum + 1);
sum = -1;
}
flg = false;
} else if (!flg) {
if (sum <= 0) {
cnt += (1 + abs(sum));
sum = 1;
}
flg = true;
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long N[100000];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> N[i];
}
for (int i = 1; i < n; i++) {
N[i] = N[i] + N[i - 1];
}
int ans = 0;
if (N[0] == 0) {
if (N[1] <= 0) {
for (int i = 0; i < n; i++) {
N[i]++;
ans = 1;
}
} else {
for (int i = 0; i < n; i++) {
N[i] = N[i] - 1;
}
ans = 1;
}
}
for (int i = 1; i < n; i++) {
if (N[i - 1] < 0) {
while (N[i] <= 0) {
for (int j = i; j < n; j++) {
N[j]++;
}
ans++;
}
}
if (N[i - 1] > 0) {
while (N[i] >= 0) {
for (int j = i; j < n; j++) {
N[j] = N[j] - 1;
}
ans++;
}
}
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using llong = long long;
const int MOD = 1000000007;
int main(int argc, char** argv) {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum = 0;
int c1 = 0, c2 = 0;
int sign = 1;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum * sign <= 0) {
c1 += abs(sum) + 1;
sum = sign;
}
sign *= -1;
}
sign = -1;
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum * sign <= 0) {
c2 += abs(sum) + 1;
sum = sign;
}
sign *= -1;
}
cout << min(c1, c2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long max(long long a, long long b) { return (a > b) ? a : b; }
long long min(long long a, long long b) { return (a < b) ? a : b; }
long long abss(long long a) { return (a < 0) ? -a : a; }
long long gcd(long long a, long long b) {
if (b > a) {
long long tmp = b;
b = a;
a = tmp;
}
if (b == 0)
return a;
else
return gcd(b, a % b);
}
long long lcm(long long a, long long b) {
long long gcdi = gcd(a, b);
return a / gcdi * (b);
}
int a[100001];
int sum[100001];
int main() {
long long N;
scanf("%lld", &N);
for (int i = 0; i < N; i++) {
scanf("%d", a + i);
}
long long cnt = 0;
char sign;
long long sum = 0;
sign = 1;
sum = a[0];
for (int i = 1; i < N; i++) {
sum += a[i];
if (sign * sum > 0) {
} else {
cnt += abss(sum - sign);
sum = sign;
}
sign = -sign;
}
long long ans = cnt;
sign = -1;
sum = a[0];
for (int i = 1; i < N; i++) {
sum += a[i];
if (sign * sum > 0) {
} else {
cnt += abss(sum - sign);
sum = sign;
}
sign = -sign;
}
printf("%lld\n", min(ans, cnt));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) throws Exception {
// Your code here!
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = sc.nextInt();
}
int countA = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += array[i];
if (i % 2 == 0) {
if (sum >= 0) {
countA += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
countA += sum * (-1) + 1;
sum = 1;
}
}
}
int countB = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += array[i];
if (i % 2 == 0) {
if (sum <= 0) {
countB += sum * (-1) + 1;
sum = 1;
}
} else {
if (sum >= 0) {
countB += sum + 1;
sum = -1;
}
}
}
System.out.println(Math.min(countA, countB));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int iy[] = {0, 0, 1, -1};
int ix[] = {1, -1, 0, 0};
int n, a[10001], sum[10001], ans;
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
sum[0] = a[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (sum[i - 1] > 0 && sum[i] > 0) {
ans += sum[i] + 1;
sum[i] = -1;
for (int j = i + 1; j < n; j++) {
a[i] -= sum[i] + 1;
}
} else if (sum[i - 1] < 0 && sum[i] < 0) {
ans += -sum[i] + 1;
sum[i] = 1;
for (int j = i + 1; j < n; j++) {
a[i] += -sum[i] + 1;
}
} else if (sum[i] == 0) {
if (sum[i - 1] > 0) {
ans++;
sum[i] = -1;
for (int j = i + 1; j < n; j++) {
a[i]--;
}
} else {
ans++;
sum[i] = 1;
for (int j = i + 1; j < n; j++) {
a[i]++;
}
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
A = []
cnt = 0
for i in range(n-1):
A.append(a[i])
if sum(A) > 0 and sum(A) + a[i+1] > 0:
cnt += abs(sum(A) + a[i+1])+1
a[i+1] -= abs(sum(A) + a[i+1])+1
elif sum(A) < 0 and sum(A) + a[i+1] < 0:
cnt += abs(sum(A) - a[i+1])-1
a[i+1] += abs(sum(A) - a[i+1])-1
if sum(a) == 0:
cnt += 1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import java.util.*
fun main(args: Array<String>) {
val sc = Scanner(System.`in`)
val n = sc.nextInt()
val a = (0 until n).map { sc.next().toLong() }
println(problem059c(n, a))
}
fun problem059c(n: Int, a: List<Long>): Long {
val count1 = compute(n, a)
val a = a.toMutableList()
val a0 = a[0]
var count = 0L
if (a0 > 0) {
val tmp = a0 + 1
a[0] = a0 - tmp
count += tmp
} else {
val tmp = a0 - 1
a[0] = a0 - tmp
count -= tmp
}
val count2 = compute(n, a) + count
return Math.min(count1, count2)
}
fun compute(n: Int, a: List<Long>): Long {
val a = a.toMutableList()
var count = 0L
var sum = 0L
for (i in 0 until n) {
if (sum + a[i] == 0L) {
count++
if (a[i] < 0) {
a[i] = a[i] - 1
} else {
a[i] = a[i] + 1
}
}
sum += a[i]
if (i >= n - 1) {
continue
}
val sum2 = sum + a[i + 1]
if (sum * sum2 < 0) {
continue
} else {
if (sum > 0) {
val tmp = sum2 + 1
a[i + 1] = sum2 - tmp
count += tmp
} else {
val tmp = sum2 - 1
a[i + 1] = sum2 - tmp
count -= tmp
}
}
}
return count
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
int n;
std::cin >> n;
std::vector<int> a(n);
for (int i = 0; i < n; ++i) std::cin >> a[i];
int cost = 0;
std::vector<int> s(n, 0);
s[0] = a[0];
for (int i = 1; i < n; ++i) {
s[i] = s[i - 1] + a[i];
if (s[i] * s[i - 1] < 0)
continue;
else {
if (s[i - 1] < 0) {
cost += std::abs(1 - s[i - 1] - a[i]);
a[i] = 1 - s[i - 1];
} else {
cost += std::abs(-1 - s[i - 1] - a[i]);
a[i] = -1 - s[i - 1];
}
}
s[i] = s[i - 1] + a[i];
}
std::cout << cost << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from copy import copy
n = int(input())
a = [int(x) for x in input().split()]
ans1=[(-1)**i for i in range(n)]
b=copy(a)
res_b=0
sb=0
c=copy(a)
res_c=0
sc=0
for i in range(n):
sb+=a[i]
print("sb:",sb)
if ans1[i]*sb>0:
pass
else:
b[i]=ans1[i]-(sb-b[i])
sb=sb-a[i]+b[i]
res_b+=abs(b[i]-a[i])
sc+=a[i]
if -1*ans1[i]*sc>0:
pass
else:
c[i]=-1*ans1[i]-(sc-c[i])
sc=sc-a[i]+c[i]
res_c+=abs(c[i]-a[i])
print(min(res_b,res_c)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <typename T1, typename T2>
inline void chmin(T1& a, T2 b) {
if (a > b) a = b;
}
template <typename T1, typename T2>
inline void chmax(T1& a, T2 b) {
if (a < b) a = b;
}
using namespace std;
std::mt19937 mt((long long)time(0));
long long dx[4] = {0, 1, 0, -1};
long long dy[4] = {1, 0, -1, 0};
using Weight = long long;
using Flow = long long;
struct Edge {
long long src, dst;
Weight weight;
Flow cap;
Edge() : src(0), dst(0), weight(0) {}
Edge(long long s, long long d, Weight w) : src(s), dst(d), weight(w) {}
};
using Edges = std::vector<Edge>;
using Graph = std::vector<Edges>;
using Array = std::vector<Weight>;
using Matrix = std::vector<Array>;
void add_edge(Graph& g, long long a, long long b, Weight w = 1) {
g[a].emplace_back(a, b, w);
g[b].emplace_back(b, a, w);
}
void add_arc(Graph& g, long long a, long long b, Weight w = 1) {
g[a].emplace_back(a, b, w);
}
struct uf_tree {
std::vector<long long> parent;
long long __size;
uf_tree(long long size_) : parent(size_, -1), __size(size_) {}
void unite(long long x, long long y) {
if ((x = find(x)) != (y = find(y))) {
if (parent[y] < parent[x]) std::swap(x, y);
parent[x] += parent[y];
parent[y] = x;
__size--;
}
}
bool is_same(long long x, long long y) { return find(x) == find(y); }
long long find(long long x) {
return parent[x] < 0 ? x : parent[x] = find(parent[x]);
}
long long size(long long x) { return -parent[find(x)]; }
long long size() { return __size; }
};
template <signed M, unsigned T>
struct mod_int {
constexpr static signed MODULO = M;
constexpr static unsigned TABLE_SIZE = T;
signed x;
mod_int() : x(0) {}
mod_int(long long y)
: x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {}
mod_int(signed y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {}
mod_int& operator+=(const mod_int& rhs) {
if ((x += rhs.x) >= MODULO) x -= MODULO;
return *this;
}
mod_int& operator-=(const mod_int& rhs) {
if ((x += MODULO - rhs.x) >= MODULO) x -= MODULO;
return *this;
}
mod_int& operator*=(const mod_int& rhs) {
x = static_cast<signed>(1LL * x * rhs.x % MODULO);
return *this;
}
mod_int& operator/=(const mod_int& rhs) {
x = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO);
return *this;
}
mod_int operator-() const { return mod_int(-x); }
mod_int operator+(const mod_int& rhs) const { return mod_int(*this) += rhs; }
mod_int operator-(const mod_int& rhs) const { return mod_int(*this) -= rhs; }
mod_int operator*(const mod_int& rhs) const { return mod_int(*this) *= rhs; }
mod_int operator/(const mod_int& rhs) const { return mod_int(*this) /= rhs; }
bool operator<(const mod_int& rhs) const { return x < rhs.x; }
mod_int inv() const {
assert(x != 0);
if (x <= static_cast<signed>(TABLE_SIZE)) {
if (_inv[1].x == 0) prepare();
return _inv[x];
} else {
signed a = x, b = MODULO, u = 1, v = 0, t;
while (b) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return mod_int(u);
}
}
mod_int pow(long long t) const {
assert(!(x == 0 && t == 0));
mod_int e = *this, res = mod_int(1);
for (; t; e *= e, t >>= 1)
if (t & 1) res *= e;
return res;
}
mod_int fact() {
if (_fact[0].x == 0) prepare();
return _fact[x];
}
mod_int inv_fact() {
if (_fact[0].x == 0) prepare();
return _inv_fact[x];
}
mod_int choose(mod_int y) {
assert(y.x <= x);
return this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact();
}
static mod_int _inv[TABLE_SIZE + 1];
static mod_int _fact[TABLE_SIZE + 1];
static mod_int _inv_fact[TABLE_SIZE + 1];
static void prepare() {
_inv[1] = 1;
for (long long i = 2; i <= (long long)TABLE_SIZE; ++i) {
_inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO;
}
_fact[0] = 1;
for (unsigned i = 1; i <= TABLE_SIZE; ++i) {
_fact[i] = _fact[i - 1] * signed(i);
}
_inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv();
for (long long i = (long long)TABLE_SIZE - 1; i >= 0; --i) {
_inv_fact[i] = _inv_fact[i + 1] * (i + 1);
}
}
};
template <signed M, unsigned F>
std::ostream& operator<<(std::ostream& os, const mod_int<M, F>& rhs) {
return os << rhs.x;
}
template <signed M, unsigned F>
std::istream& operator>>(std::istream& is, mod_int<M, F>& rhs) {
long long s;
is >> s;
rhs = mod_int<M, F>(s);
return is;
}
template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1];
template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1];
template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1];
template <signed M, unsigned F>
bool operator==(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) {
return lhs.x == rhs.x;
}
template <long long M, unsigned F>
bool operator!=(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) {
return !(lhs == rhs);
}
const signed MF = 1000010;
const signed MOD = 1000000007;
using mint = mod_int<MOD, MF>;
mint binom(long long n, long long r) {
return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r);
}
mint fact(long long n) { return mint(n).fact(); }
mint inv_fact(long long n) { return mint(n).inv_fact(); }
template <typename T, typename E>
struct SegmentTree {
typedef function<T(T, T)> F;
typedef function<T(T, E)> G;
typedef function<E(E, E)> H;
typedef function<E(E, long long)> P;
long long n;
F f;
G g;
H h;
P p;
T d1;
E d0;
vector<T> dat;
vector<E> laz;
SegmentTree(
long long n_, F f, G g, H h, T d1, E d0, vector<T> v = vector<T>(),
P p = [](E a, long long b) { return a; })
: f(f), g(g), h(h), d1(d1), d0(d0), p(p) {
init(n_);
if (n_ == (long long)v.size()) build(n_, v);
}
void init(long long n_) {
n = 1;
while (n < n_) n *= 2;
dat.clear();
dat.resize(2 * n - 1, d1);
laz.clear();
laz.resize(2 * n - 1, d0);
}
void build(long long n_, vector<T> v) {
for (long long i = 0; i < n_; i++) dat[i + n - 1] = v[i];
for (long long i = n - 2; i >= 0; i--)
dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]);
}
inline void eval(long long len, long long k) {
if (laz[k] == d0) return;
if (k * 2 + 1 < n * 2 - 1) {
laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]);
laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]);
}
dat[k] = g(dat[k], p(laz[k], len));
laz[k] = d0;
}
T update(long long a, long long b, E x, long long k, long long l,
long long r) {
eval(r - l, k);
if (r <= a || b <= l) return dat[k];
if (a <= l && r <= b) {
laz[k] = h(laz[k], x);
return g(dat[k], p(laz[k], r - l));
}
return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2),
update(a, b, x, k * 2 + 2, (l + r) / 2, r));
}
T update(long long a, long long b, E x) { return update(a, b, x, 0, 0, n); }
T query(long long a, long long b, long long k, long long l, long long r) {
eval(r - l, k);
if (r <= a || b <= l) return d1;
if (a <= l && r <= b) return dat[k];
T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
return f(vl, vr);
}
T query(long long a, long long b) { return query(a, b, 0, 0, n); }
};
class compress {
public:
static const long long MAP = 10000000;
map<long long, long long> zip;
long long unzip[MAP];
compress(vector<long long>& x) {
sort(x.begin(), x.end());
x.erase(unique(x.begin(), x.end()), x.end());
for (long long i = 0; i < x.size(); i++) {
zip[x[i]] = i;
unzip[i] = x[i];
}
}
};
unsigned euclidean_gcd(unsigned a, unsigned b) {
while (1) {
if (a < b) swap(a, b);
if (!b) break;
a %= b;
}
return a;
}
template <class T>
struct CumulativeSum2D {
vector<vector<T>> data;
CumulativeSum2D(long long W, long long H)
: data(W + 1, vector<long long>(H + 1, 0)) {}
void add(long long x, long long y, T z) {
++x, ++y;
if (x >= data.size() || y >= data[0].size()) return;
data[x][y] += z;
}
void build() {
for (long long i = 1; i < data.size(); i++) {
for (long long j = 1; j < data[i].size(); j++) {
data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1];
}
}
}
T query(long long sx, long long sy, long long gx, long long gy) {
return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]);
}
};
long long nC2(long long n) { return n * (n - 1) / 2; }
class node {
public:
long long depth;
long long num;
node(long long d, long long n) {
depth = d;
num = n;
}
};
CumulativeSum2D<long long> sumB(4001, 4001);
template <class T>
struct CumulativeSum {
vector<T> data;
CumulativeSum(long long sz) : data(sz, 0){};
void add(long long k, T x) { data[k] += x; }
void build() {
for (long long i = 1; i < data.size(); i++) {
data[i] += data[i - 1];
}
}
T query(long long k) {
if (k < 0) return (0);
return (data[min(k, (long long)data.size() - 1)]);
}
T query(long long left, long long right) {
return query(right) - query(left - 1);
}
};
std::vector<bool> IsPrime;
void sieve(size_t max) {
if (max + 1 > IsPrime.size()) {
IsPrime.resize(max + 1, true);
}
IsPrime[0] = false;
IsPrime[1] = false;
for (size_t i = 2; i * i <= max; ++i)
if (IsPrime[i])
for (size_t j = 2; i * j <= max; ++j) IsPrime[i * j] = false;
}
vector<int64_t> divisor(int64_t n) {
vector<int64_t> ret;
for (int64_t i = 1; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) ret.push_back(n / i);
}
}
sort(begin(ret), end(ret));
return (ret);
}
long long binary_search(function<bool(long long)> isOk, long long ng,
long long ok) {
while (abs(ok - ng) > 1) {
long long mid = (ok + ng) / 2;
if (isOk(mid))
ok = mid;
else
ng = mid;
}
return ok;
}
std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s) {
long long n = g.size();
const Weight inf = std::numeric_limits<Weight>::max() / 8;
Edges es;
for (long long i = 0; i < n; i++)
for (auto& e : g[i]) es.emplace_back(e);
std::vector<Weight> dist(n, inf);
dist[s] = 0;
bool negCycle = false;
for (long long i = 0;; i++) {
bool update = false;
for (auto& e : es) {
if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) {
dist[e.dst] = dist[e.src] + e.weight;
update = true;
}
}
if (!update) break;
if (i > n) {
negCycle = true;
break;
}
}
return std::make_pair(dist, !negCycle);
}
std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s,
long long d) {
long long n = g.size();
const Weight inf = std::numeric_limits<Weight>::max() / 8;
Edges es;
for (long long i = 0; i < n; i++)
for (auto& e : g[i]) es.emplace_back(e);
std::vector<Weight> dist(n, inf);
dist[s] = 0;
bool negCycle = false;
for (long long i = 0; i < n * 2; i++) {
bool update = false;
for (auto& e : es) {
if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) {
dist[e.dst] = dist[e.src] + e.weight;
update = true;
if (e.dst == d && i == n * 2 - 1) negCycle = true;
}
}
if (!update) break;
}
return std::make_pair(dist, !negCycle);
}
vector<long long> Manachar(string S) {
long long len = S.length();
vector<long long> R(len);
long long i = 0, j = 0;
while (i < S.size()) {
while (i - j >= 0 && i + j < S.size() && S[i - j] == S[i + j]) ++j;
R[i] = j;
long long k = 1;
while (i - k >= 0 && i + k < S.size() && k + R[i - k] < j)
R[i + k] = R[i - k], ++k;
i += k;
j -= k;
}
return R;
}
std::vector<long long> tsort(const Graph& g) {
long long n = g.size(), k = 0;
std::vector<long long> ord(n), in(n);
for (auto& es : g)
for (auto& e : es) in[e.dst]++;
std::queue<long long> q;
for (long long i = 0; i < n; ++i)
if (in[i] == 0) q.push(i);
while (q.size()) {
long long v = q.front();
q.pop();
ord[k++] = v;
for (auto& e : g[v]) {
if (--in[e.dst] == 0) {
q.push(e.dst);
}
}
}
return *std::max_element(in.begin(), in.end()) == 0
? ord
: std::vector<long long>();
}
std::vector<Weight> dijkstra(const Graph& g, long long s) {
const Weight INF = std::numeric_limits<Weight>::max() / 8;
using state = std::tuple<Weight, long long>;
std::priority_queue<state> q;
std::vector<Weight> dist(g.size(), INF);
dist[s] = 0;
q.emplace(0, s);
while (q.size()) {
Weight d;
long long v;
std::tie(d, v) = q.top();
q.pop();
d *= -1;
if (dist[v] < d) continue;
for (auto& e : g[v]) {
if (dist[e.dst] > dist[v] + e.weight) {
dist[e.dst] = dist[v] + e.weight;
q.emplace(-dist[e.dst], e.dst);
}
}
}
return dist;
}
Matrix WarshallFloyd(const Graph& g) {
auto const INF = std::numeric_limits<Weight>::max() / 8;
long long n = g.size();
Matrix d(n, Array(n, INF));
for (long long i = (0); i < (long long)(n); i++) d[i][i] = 0;
for (long long i = (0); i < (long long)(n); i++)
for (auto& e : g[i]) d[e.src][e.dst] = std::min(d[e.src][e.dst], e.weight);
for (long long k = (0); k < (long long)(n); k++)
for (long long i = (0); i < (long long)(n); i++)
for (long long j = (0); j < (long long)(n); j++) {
if (d[i][k] != INF && d[k][j] != INF) {
d[i][j] = std::min(d[i][j], d[i][k] + d[k][j]);
}
}
return d;
}
void solve() {
long long n, m;
cin >> n;
vector<long long> p(n);
for (long long i = (0); i < (long long)(n); i++) {
cin >> p[i];
}
cin >> m;
vector<long long> q(m);
for (long long i = (0); i < (long long)(m); i++) {
cin >> q[i];
}
long long pEven = 0, pOdd = 0, qEven = 0, qOdd = 0;
for (long long i : p) {
if (i % 2 == 0) {
pEven++;
} else {
pOdd++;
}
}
for (long long i : q) {
if (i % 2 == 0) {
qEven++;
} else {
qOdd++;
}
}
long long ans = 0;
ans += pEven * qEven;
ans += pOdd * qOdd;
cout << ans << "\n";
}
const long long BLACK = 1, WHITE = 0;
bool isValid(vector<vector<long long>>& mapData, long long gyo,
long long retu) {
bool f = true;
for (long long i = (0); i < (long long)(gyo); i++) {
for (long long j = (0); j < (long long)(retu); j++) {
long long colorCnt = 0;
if (j > 0 && mapData[i][j] == mapData[i][j - 1]) {
colorCnt++;
}
if (i > 0 && mapData[i][j] == mapData[i - 1][j]) {
colorCnt++;
}
if (i < gyo - 1 && mapData[i][j] == mapData[i + 1][j]) {
colorCnt++;
}
if (j < retu - 1 && mapData[i][j] == mapData[i][j + 1]) {
colorCnt++;
}
if (colorCnt > 1) {
f = false;
}
}
}
return f;
}
void getNext(long long nowX, long long nowY, long long* pOutX, long long* pOutY,
long long gyo, long long retu) {
if (nowX == retu - 1) {
*pOutY = nowY + 1;
*pOutX = 0;
return;
}
*pOutX = nowX + 1;
*pOutY = nowY;
}
void dfs(vector<vector<long long>> mapData, long long nowX, long long nowY,
long long gyo, long long retu, long long* outCnt) {
if (nowX == retu - 1 && nowY == gyo - 1) {
mapData[nowY][nowX] = BLACK;
if (isValid(mapData, gyo, retu)) {
*outCnt = *outCnt + 1;
}
mapData[nowY][nowX] = WHITE;
if (isValid(mapData, gyo, retu)) {
*outCnt = *outCnt + 1;
}
return;
}
mapData[nowY][nowX] = BLACK;
long long nextX, nextY;
getNext(nowX, nowY, &nextX, &nextY, gyo, retu);
dfs(mapData, nextX, nextY, gyo, retu, outCnt);
mapData[nowY][nowX] = WHITE;
getNext(nowX, nowY, &nextX, &nextY, gyo, retu);
dfs(mapData, nextX, nextY, gyo, retu, outCnt);
}
void dec(map<long long, long long>& ma, long long a) {
ma[a]--;
if (ma[a] == 0) {
ma.erase(a);
}
}
signed main() {
long long N;
cin >> N;
vector<long long> A(N + 2);
vector<long long> cu(N + 2);
long long su = 0;
for (long long i = (0); i < (long long)(N); i++) {
cin >> A[i];
su += A[i];
cu[i] = su;
}
long long ans = 0;
for (long long i = (0); i < (long long)(N); i++) {
if (cu[i] == 0) {
ans++;
if (i == 0) {
if (cu[i + 1] < 0) {
cu[i] = 1;
} else {
cu[i] = -1;
}
} else {
if (cu[i - 1] < 0) {
cu[i] = 1;
} else {
cu[i] = -1;
}
}
}
if (i == N - 1) {
break;
}
if (cu[i] < 0 == cu[i + 1] < 0) {
if (cu[i + 1] > 0) {
ans += cu[i + 1] + 1;
cu[i + 1] -= cu[i + 1] + 1;
} else {
ans += -cu[i + 1] + 1;
cu[i + 1] += -cu[i + 1] + 1;
}
}
cu[i + 2] = cu[i + 1] + A[i + 2];
}
cout << ans << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
N = int(input())
a_s = input().split()
for i in range(N):
a_s[i] = int(a_s[i])
a_s = np.array(a_s)
#sum = 1,-1,1, ...
ans1 = 0
sum0 = 0
for i ,a in enumerate(a_s):
sum1 = sum0 + a
if i%2==0:
if sum1*sum0<0:
pass
else:
ans1 += abs(1 - sum1)
sum1 = 1
else:
if sum1*sum0<0:
pass
else:
ans1 += abs(-1 - sum1)
sum1 = -1
sum0 = sum1
#sum = -1,1,-1, ...
ans2 = 0
sum0 = 0
for i ,a in enumerate(a_s):
sum2 = sum0 + a
if i%2==0:
if sum2*sum0<0:
pass
else:
ans2 += abs(-1 - sum2)
sum2 = -1
else:
if sum2*sum0<0:
pass
else:
ans2 += abs(1 - sum2)
sum2 = 1
sum0 = sum2
ans = min(ans1,ans2)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string to_hex(int x) {
stringstream ss;
ss << hex << x;
return ss.str();
}
inline int get_int() {
int ret;
scanf("%d", &ret);
return ret;
}
inline vector<int> get_ints(int n) {
vector<int> ret(n);
for (int i = 0; i < (int)n; i++) {
scanf("%d", &ret[i]);
}
return ret;
}
inline string get_str() {
string ret;
cin >> ret;
return ret;
}
bool is_prime(int n) {
int s = sqrt(n) + 1;
for (int i = 2; i <= s; ++i) {
if (n % i == 0) {
return 0;
}
}
return 1;
}
vector<pair<int, int> > prime_division(int n) {
vector<pair<int, int> > ret;
int s = sqrt(n) + 1;
int c = 0;
for (int i = 2; i <= n; ++i) {
if (n % i == 0) {
c = 0;
do {
++c;
n /= i;
} while (n % i == 0);
ret.push_back(pair<int, int>(i, c));
}
}
return ret;
}
string to_string(string s) { return s; }
template <class T>
string to_string(vector<T> v) {
string ret = "{";
for (int i = 0; i < (int)v.size() - 1; i++) {
ret += to_string(v[i]) + ",";
}
if (v.size() > 0) {
ret += to_string((v)[(v).size() - 1]);
}
ret += "}";
return ret;
}
void debug_print() { cerr << endl; }
template <class Head, class... Tail>
void debug_print(Head head, Tail... tail) {
cerr << to_string(head) << " ";
debug_print(tail...);
}
template <class... T>
void debug(T... args) {
cerr << "[" << 85 << "]: ";
debug_print(args...);
}
void print() { cout << endl; }
template <class Head, class... Tail>
void print(Head head, Tail... tail) {
cout << to_string(head);
print(tail...);
}
int main() {
int(n);
scanf("%d", &(n));
long long ans = 0, sum = 0;
int(a);
scanf("%d", &(a));
sum = a;
for (int i = 0; i < (int)n - 1; i++) {
int(a);
scanf("%d", &(a));
if (sum < 0 && sum + a <= 0) {
ans += 1 - (sum + a);
sum = 1;
} else if (sum > 0 && sum + a >= 0) {
ans += (sum + a) + 1;
sum = -1;
} else {
sum += a;
}
}
print(ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<ll> v(n, 0);
for (int i = (int)(0); i < (int)(n); i++) cin >> v[i];
vector<int> p1(n + 1, 1), p2(n + 1, 1);
for (int i = (int)(0); i < (int)(n + 1); i++) {
if (i % 2 == 0) p1[i] *= -1;
}
for (int i = (int)(0); i < (int)(n + 1); i++) {
if (i % 2 == 1) p2[i] *= -1;
}
cerr << "p1"
":[ ";
for (auto macro_vi : p1) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
cerr << "p2"
":[ ";
for (auto macro_vi : p2) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
priority_queue<int, vector<int>, greater<int> > pq;
cerr << "v"
":[ ";
for (auto macro_vi : v) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
vector<ll> sum_until(n + 1, 0);
int cnt;
cnt = 0;
for (int i = 1; i <= n; i++) {
sum_until[i] = sum_until[i - 1] + v[i - 1];
cerr << "sum_until"
":[ ";
for (auto macro_vi : sum_until) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
if (sum_until[i] * p1[i] < 0) {
int plus = abs(sum_until[i]);
cerr << "("
"i"
","
"plus * p1[i]"
"):("
<< i << "," << plus * p1[i] << ")" << endl;
cerr << "sum_until[i]"
":"
<< sum_until[i] << endl;
sum_until[i] += plus * p1[i] + p1[i];
cerr << "sum_until[i]"
":"
<< sum_until[i] << endl;
cnt += abs(plus * p1[i]) + 1;
}
}
cerr << "cnt"
":"
<< cnt << endl;
pq.push(cnt);
p1 = p2;
cerr << "sum_until"
":[ ";
for (auto macro_vi : sum_until) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
cnt = 0;
for (int i = 1; i <= n; i++) {
cerr << "i"
":"
<< i << endl;
sum_until[i] = sum_until[i - 1] + v[i - 1];
cerr << "sum_until"
":[ ";
for (auto macro_vi : sum_until) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
if (sum_until[i] * p1[i] < 0) {
int plus = abs(sum_until[i]);
cerr << "("
"i"
","
"plus * p1[i]"
"):("
<< i << "," << plus * p1[i] << ")" << endl;
cerr << "sum_until[i]"
":"
<< sum_until[i] << endl;
sum_until[i] += plus * p1[i] + p1[i];
cerr << "sum_until[i]"
":"
<< sum_until[i] << endl;
cnt += abs(plus * p1[i]) + 1;
} else if (sum_until[i] == 0) {
sum_until[i] = p1[i];
cnt += 1;
}
}
pq.push(cnt);
cerr << "cnt"
":"
<< cnt << endl;
cout << pq.top() << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long MOD = 1000000007;
const int MAX_N = 100000005;
int n;
int a[MAX_N];
int check(long long sum, long long ans) {
for (int i = 1; i < n; i++) {
long long t = sum + a[i];
if ((sum >= 0 && t < 0) || (sum < 0 && t >= 0)) {
sum = t;
if (sum == 0) {
sum = 1;
ans++;
}
continue;
}
long long at;
if (sum >= 0)
at = -1 - sum;
else
at = 1 - sum;
ans = ans + abs(a[i] - at);
sum = sum + at;
}
return ans;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long ta, s;
ta = a[0];
s = 0;
if (ta == 0) {
ta = 1;
s = 1;
}
long long another;
if (a[0] >= 0)
another = -1;
else
another = 1;
long long a1 = check(ta, s);
long long a2 = check(another, abs(a[0] - another));
long long ans = min(a1, a2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int,input().split()))
cur = 1
ans1 = abs(A[0] - 1)
ans2 = abs(A[0] + 1)
for a in A[1:]:
if cur > 0:
if a + cur >= 0:
ans1 += abs(-1 - (a + cur))
cur = -1
else:
cur = a + cur
elif cur < 0:
if a + cur <= 0:
ans1 += abs(1 - (a + cur))
cur = 1
else:
cur = a + cur
for a in A[1:]:
if cur > 0:
if a + cur >= 0:
ans2 += abs(-1 - (a + cur))
cur = -1
else:
cur = a + cur
elif cur < 0:
if a + cur <= 0:
ans2 += abs(1 - (a + cur))
cur = 1
else:
cur = a + cur
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
int sum1 = 0, res1 = 0;
for (int i = 0; i < N; i++) {
sum1 += A[i];
if (i % 2 == 0 && sum1 <= 0) {
res1 += (1 - sum1);
sum1 = 1;
}
if (i % 2 == 1 && sum1 >= 0) {
res1 += (sum1 + 1);
sum1 = -1;
}
}
int sum2 = 0, res2 = 0;
for (int i = 0; i < N; i++) {
sum2 += A[i];
if (i % 2 == 0 && sum2 >= 0) {
res2 += (1 + sum2);
sum2 = -1;
}
if (i % 2 == 1 && sum2 <= 0) {
res2 += (1 - sum2);
sum2 = 1;
}
}
cout << min(res1, res2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ansa = 0, ansb = 0, suma = 0, sumb = 0;
cin >> n;
for (int i = 0; i < (n); i++) {
int a, b;
cin >> b;
a = b;
if (i % 2 == 0) {
if (suma + a <= 0) {
ansa = 1 - a - suma;
a = 1 - suma;
}
if (sumb + b >= 0) {
ansb = sumb + b + 1;
b = -1 - sumb;
}
} else {
if (suma + a >= 0) {
ansa = suma + a + 1;
a = -1 - suma;
}
if (sumb + b <= 0) {
ansb = 1 - b - sumb;
b = 1 - sumb;
}
}
suma += a;
sumb += b;
}
cout << min(ansa, ansb) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
read = sys.stdin.buffer.read
readline = sys.stdin.buffer.readline
readlines = sys.stdin.buffer.readlines
sys.setrecursionlimit(10 ** 7)
n = int(readline())
a = list(map(int, readline().split()))
if a[0] > 0:
cnt2 = a[0] + 1
now2 = -1
cnt1 = 0
now1 = a[0]
else:
cnt2 = 0
now2 = a[0]
cnt1 = -a[0] + 1
now1 = 1
for i, aa in enumerate(a[1:]):
if i % 2 == 0:
if aa + now2 > 0:
now2 += aa
else:
cnt2 += abs(now2 + aa) + 1
now2 = 1
if now1 + aa < 0:
now1 += aa
else:
cnt1 += now1 + aa + 1
now1 = -1
else:
if aa + now1 > 0:
now1 += aa
else:
cnt1 += abs(now1 + aa) + 1
now1 = 1
if now2 + aa < 0:
now2 += aa
else:
cnt2 += now2 + aa + 1
now2 = -1
print(min(cnt1, cnt2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void answer1() {
cin.tie(0);
ios_base::sync_with_stdio(false);
int n;
cin >> n;
vector<int> a(n);
for (int& a_i : a) {
cin >> a_i;
}
long long count = 0;
long long sum = 0;
long long count2 = 0;
long long sum2 = 0;
bool is_positive = a.at(0) > 0;
for (int i = 0; i < a.size(); i++) {
sum += a.at(i);
if (is_positive) {
if (sum <= 0) {
long long diff = 1 - sum;
count += diff;
sum += diff;
}
if (sum2 >= 0) {
long long diff = 1 + sum2;
count2 += diff;
sum2 -= diff;
}
} else {
if (sum >= 0) {
long long diff = 1 + sum;
count += diff;
sum -= diff;
}
if (sum2 <= 0) {
long long diff = 1 - sum2;
count2 += diff;
sum2 += diff;
}
}
is_positive = !is_positive;
}
cout << min(count, count2) << endl;
}
int main() { answer1(); }
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.PrintWriter;
import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
final int MOD = 1000000007;
final int INF = 1100000000;
//入力
int n = sc.nextInt();
int[] a = new int[n];
for(int i = 0; i < n; i++){
a[i] = sc.nextInt();
}
sc.close();
//処理
long ans = -1;
boolean bool = true;
for(int count = 0; count < 2; count++){
long temp = 0;
bool ^= true;
boolean f = bool;
long sum = 0;
for(int i = 0; i < n; i++){
sum += a[i];
if(sum > 0 == f){
//nothing
}else{
temp += Math.abs(sum) + 1;
if(f){
sum = 1;
}else{
sum = -1;
}
}
f ^= true;
}
if(ans == -1){
ans = temp;
}else{
ans = Math.min(ans, temp);
}
}
//出力
out.println(ans);
out.flush();
}
static class Pair{
int w,v;
public Pair(int a, int b){
this.w = a;
this.v = b;
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
R = [0] * n
R[0] = A[0]
for i in range(1, n):
R[i] = R[i-1] + A[i]
def solve(r, inc=0):
ans = 0
# search
is_plus = (r[0] > 0)
for i in range(1, n):
if (is_plus and r[i]+inc < 0) or (not is_plus and r[i]+inc > 0):
pass
else:
ans += abs(r[i]+inc) + 1
if is_plus:
inc -= abs(r[i]+inc) + 1
else:
inc += abs(r[i]+inc) + 1
is_plus = (r[i]+inc > 0)
return ans
ret = solve(R, 0)
# modify
is_plus = (R[0] > 0)
ans0 = abs(R[0]) + 1
if is_plus:
for i in range(n):
R[i] -= abs(R[0]) + 1
else:
for i in range(n):
R[i] += abs(R[0]) + 1
print(min(ret, ans0 + solve(R, 0))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int check(vector<long> a) {
long time = 0;
long pre_sum = a.at(0);
int n = a.size();
if (a.at(0) < 0) {
for (int i = 1; i < n; i++) {
long sum = pre_sum + a.at(i);
if (i % 2 == 1 && sum <= 0) {
time += abs(sum - 1);
sum = 1;
} else if (i % 2 == 0 && sum >= 0) {
time += abs(sum + 1);
sum = -1;
}
pre_sum = sum;
}
} else if (a.at(0) > 0) {
for (int i = 1; i < n; i++) {
long sum = pre_sum + a.at(i);
if (i % 2 == 0 && sum <= 0) {
time += abs(sum - 1);
sum = 1;
} else if (i % 2 == 1 && sum >= 0) {
time += abs(sum + 1);
sum = -1;
}
pre_sum = sum;
}
}
return time;
}
int zerocheck(vector<long> a) {
a.at(0) = 1;
long time1 = check(a) + 1;
a.at(0) = -1;
long time2 = check(a) + 1;
long time = min(time1, time2);
return time;
}
int main() {
int n;
cin >> n;
int time = 0;
vector<long> a(n);
for (auto& x : a) {
cin >> x;
}
if (a.at(0) == 0) {
time = zerocheck(a);
} else {
time = check(a);
}
cout << time << endl;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.