Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = [int(_) for _ in input().split()] def counter(dp): count = 0 is_positive = dp > 0 for i in range(1, N): is_positive *= -1 dp += A[i] if dp * is_positive <= 0: count += abs(dp)+1 dp = is_positive return count print(min(1+abs(A[0])+counter(-1), 1+abs(A[0])+counter(1), counter(A[0])))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <stdlib.h> #include <list> #include <queue> #include <map> #include <stack> #include <set> #define inf 0x3f3f3f3f #define PI acos(double(-1)) using namespace std; typedef long long ll; const int maxn=1e5+10; int a[maxn]; int main() { int n; ll sum,num=1e18; scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d",&a[i]); sum=a[0]; ll cnt=0; if(sum==0) { int i=1; while(a[i]==0&&i<n) i++; if(i==n) { cnt=(n-1)*2+1; printf("%lld\n",cnt); return 0; } for(int i=1;i<n;i++) { sum=1; // scanf("%d",&a[i]); if(sum>0) { ll t=sum+a[i]; if(t<0) sum=t; else { ll b=abs(t+1); cnt+=b; sum=-1; } } else if(sum<0) { ll t=sum+a[i]; if(t>0) sum=t; else { ll b=abs(1-t); cnt+=b; sum=1; } } num=min(num,cnt); } for(int i=1;i<n;i++) { sum=-1; // scanf("%d",&a[i]); if(sum>0) { ll t=sum+a[i]; if(t<0) sum=t; else { ll b=abs(t+1); cnt+=b; sum=-1; } } else if(sum<0) { ll t=sum+a[i]; if(t>0) sum=t; else { ll b=abs(1-t); cnt+=b; sum=1; } } num=min(num,cnt) } printf("%lld\n",num); return 0; } for(int i=1;i<n;i++) { // scanf("%d",&a[i]); if(sum>0) { ll t=sum+a[i]; if(t<0) sum=t; else { ll b=abs(t+1); cnt+=b; sum=-1; } } else if(sum<0) { ll t=sum+a[i]; if(t>0) sum=t; else { ll b=abs(1-t); cnt+=b; sum=1; } } } printf("%lld\n",cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N; long long a[100001]; int main() { cin >> N; for (int i = 0; i < N; i++) { cin >> a[i]; } long long ans = 0; long long ans2 = 0; long long R = a[0]; if (a[0] <= 0) { ans = 1 - a[0]; R = 1; } for (int i = 1; i < N; i++) { if (R > 0) { R += a[i]; if (R >= 0) { ans += R + 1; R = -1; } } else { R += a[i]; if (R <= 0) { ans += 1 - R; R = 1; } } } if (a[0] >= 0) { ans2 = a[0] - 1; R = -1; } for (int i = 1; i < N; i++) { if (R < 0) { R += a[i]; if (R <= 0) { ans2 += 1 - R; R = 1; } } else { R += a[i]; if (R >= 0) { ans2 += R + 1; R = -1; } } } long long ans3 = min(ans, ans2); cout << ans3 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import itertools def main(): N = int(input()) A = tuple(map(int, input().split())) a = list(itertools.accumulate(A)) even, odd = [], [] e_apnd, o_apnd = even.append, odd.append for i, v in enumerate(a): if i % 2: o_apnd(v) else: e_apnd(v) if sum(even) > sum(odd): func = (plus, minus) elif sum(even) < sum(odd): func = (minus, plus) elif max(even) > max(odd): func = (plus, minus) else: func = (minus, plus) cnt = 0 add_ = 0 for i, v in enumerate(a): ret = func[i%2](v + add_) add_ += ret cnt += abs(ret) print(cnt) def plus(n): if n <= 0: x = 1 - n return x else: return 0 def minus(n): if n >= 0: x = -1 - n return x else: return 0 main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {-1, 0, 1, 0}; int dy[] = {0, -1, 0, 1}; int inf = 1e9 + 1000; long long infi = 1e18 + 100; long long n; long long a[100005]; int main() { cin >> n; for (int i = 0; i <= (int)(n - 1); i++) cin >> a[i]; a[n] = 0; long long sum; long long ans = 0; for (int i = 0; i <= (int)(n - 1); i++) { long long p = sum; sum += a[i]; if (p < 0 && sum < 0) { ans += (1 - sum); sum = 1; } else if (p > 0 && sum > 0) { ans += (sum + 1); sum = -1; } else if (sum == 0) { if (a[i + 1] > 0) { ans += 1; sum = -1; } else { ans += 1; sum = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; class Main{ public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] sum = new int[n]; int ans = 0; sum[0] = sc.nextInt(); for(int i = 1; i < n; i++){ int a = sc.nextInt(); sum[i] = sum[i-1] + a; if(sum[i-1] < 0 && sum[i] <= 0){ ans += -sum[i] + 1; sum[i] += ans; }else if(sum[i-1] > 0 && sum[i] >= 0){ ans += sum[i] + 1; sum[i] -= ans; } } System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INFF = 0x3f3f3f3f3f3f3f3f; long long a[1000010]; int n; long long solve() { long long sum = 0; long long oo = 0, flag; if (a[0] > 0) flag = -1; else if (a[0] < 0) flag = 1; for (int i = 0; i < n; i++) { oo += a[i]; if (flag == 1) { if (oo >= 0) { sum += oo + 1; oo = -1; } } if (flag == -1) { if (oo <= 0) { sum += 0 - oo + 1; oo = 1; } } flag = -flag; } return sum; } int main() { while (scanf("%d", &n) != EOF) { long long sum = INFF; for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); } if (a[0] == 0) { a[0] = 1; long long sum1 = solve(); a[0] = -1; long long sum2 = solve(); sum = min(sum1, sum2) + 1; } else { long long sum0 = solve(); a[0] = 1; long long sum1 = solve() + abs(a[0] - 1); a[0] = -1; long long sum2 = solve() + abs(a[0] + 1); sum = min(sum0, min(sum1, sum2)); } printf("%lld\n", sum); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Main main = new Main(); main.run(); } public void run() { Scanner sc = new Scanner(System.in); int n=sc.nextInt(); int a[]=new int[n]; a[0]=sc.nextInt(); int cnt=0; for(int i=1; i<n; i++) { int v=sc.nextInt(); if(a[i-1]>0) { if(a[i-1]+v>=0) { while(a[i-1]+v>=0) { v--; cnt++; } } } else { if(a[i-1]+v<=0) { while(a[i-1]+v<=0) { v++; cnt++; } } } a[i]=a[i-1]+v; } System.out.println(cnt); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n, a[]; long count = 0, sum = 0, presum; n = sc.nextInt(); a = new int[n]; for(int i = 0; i < n; ++i)a[i] = sc.nextInt(); sc.close(); presum = -a[0]; for(int i: a) { sum += (long)i; if(sum * presum > 0) { long tmp = Math.abs(sum) + 1; if(presum > 0)sum -= tmp; else sum += tmp; count += tmp; } if(sum == 0) { if(presum > 0)sum--; else sum++; ++count; } presum = sum; } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sign(x): if x > 0: return 1 elif x < 0: return -1 else: return 0 n = int(input()) a = list(map(int, input().split())) ac=0 ans1 = 0 for i in range(n): ac += a[i] if ac * (-1) ** i > 0: continue else: ans1 += abs(ac) + 1 ac = -sign(ac) ac=0 ans2 = 0 for i in range(n): ac += a[i] if ac * (-1) ** i < 0: continue else: ans2 += abs(ac) + 1 ac = -sign(ac) print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n], suma[n]; long long eplus = 0, oplus = 0, ans; cin >> a[0]; suma[0] = a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; suma[i] += suma[i - 1] + a[i]; } for (int i = 0; i < n; i++) { if (suma[i] == 0) { eplus++; oplus++; } else { if (i % 2 == 0) { if (suma[i] < 0) { eplus += 1 - suma[i]; } else { oplus += 1 + suma[i]; } } else { if (0 < suma[i]) { eplus += 1 + suma[i]; } else { oplus += 1 - suma[i]; } } } } ans = min(eplus, oplus); cout << ans; cout << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n = 0; int sum[2] = {0, 0}, ans[2] = {0, 0}; int hoge, foo; int flag[2] = {0, 1}; scanf("%d", &n); int in[n]; for (int i = 0; i < n; i++) { scanf("%d", &in[i]); } for (int i = 0; i < n; i++) { int tmp[2]; tmp[0] = in[i]; tmp[1] = tmp[0]; if (i == 0) { sum[0] = tmp[0]; sum[1] = tmp[1]; continue; } int foo[2] = {tmp[0], tmp[0]}; for (int j = 0; j < 2; j++) { if (sum[j] + tmp[j] <= 0 && !flag[j]) { tmp[j] = abs(sum[j]) + 1; ans[j] += abs(sum[j]) - abs(foo[j]) + 1; sum[j] += tmp[j]; flag[j] = 1; } else if (sum[j] + tmp[j] > 0 && !flag[j]) { flag[j] = 1; sum[j] += tmp[j]; } else if (sum[j] + tmp[j] < 0 && flag[j]) { sum[j] += tmp[j]; flag[j] = 0; } else if (sum[j] + tmp[j] >= 0 && flag[j]) { tmp[j] = -1 * (abs(sum[j]) + 1); ans[j] += abs(sum[j]) + abs(foo[j]) + 1; sum[j] += tmp[j]; flag[j] = 0; } } } printf("%d\n", ans[0] < ans[1] ? ans[0] : ans[1]); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int32_t main() { uint64_t N; cin >> N; long long total, sign; unsigned long long count; cin >> total; if (total == 0) { total = 1; sign = 1; count = 1; } else { sign = total / abs(total); count = 0; } for (uint64_t i = 1; i < N; i++) { sign *= -1; long long val; cin >> val; total += val; if ((total == 0) || (sign * total < 0)) { count += abs(sign - total); total = sign; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } int main() { cin.tie(0); ios::sync_with_stdio(false); long long N; cin >> N; long long a[N]; long long sum = 0, cnt = 0; for (long long i = 0; i < N; i++) cin >> a[i]; for (long long i = 0; i < N; i++) { if (i == 0) { sum += a[i]; if (a[i] == 0) { if (a[i + 1] < 0) { sum++; cnt++; } else { sum-- + cnt++; } } continue; } if (sum > 0 && sum + a[i] > 0) { cnt += abs(sum) + abs(a[i]) + 1; sum = -1; } else if (sum < 0 && sum + a[i] < 0) { cnt += abs(sum) + abs(a[i]) + 1; sum = 1; } else if (sum + a[i] == 0) { if (a[i] >= 0) { sum++; cnt++; } else { sum--; cnt++; } } else sum += a[i]; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; const int MAX_N = int(1e5); long long n, a[MAX_N], dp[MAX_N]; void solve() { long long sum_diff = 0, ans = 0; if (dp[0] == 0) { if (dp[1] < 0) { dp[0] = 1; sum_diff++, ans++; } else { dp[0] = -1; sum_diff--, ans++; } } for (long long i = 0; i < (long long)(n - 1); i++) { long long diff = 0; dp[i + 1] += sum_diff; if (dp[i] * dp[i + 1] > 0) { if (dp[i + 1] > 0) { diff = -1 - dp[i + 1]; sum_diff += diff; dp[i + 1] = -1; } else { diff = 1 - dp[i + 1]; sum_diff += diff; dp[i + 1] = 1; } } if (dp[i + 1] == 0) { if (dp[i] > 0) { sum_diff--, diff = -1; dp[i + 1] = -1; } else { sum_diff++, diff = 1; dp[i + 1] = 1; } } ans += abs(diff); } cout << ans << endl; } int main() { cin >> n; for (long long i = 0; i < (long long)(n); i++) { cin >> a[i]; if (i == 0) dp[0] = a[0]; else dp[i] = dp[i - 1] + a[i]; } solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Main { public static void main(String[] args) { new Main().compute(); } void compute() { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int sum = sc.nextInt(); long ans = 0; for (int i = 0; i < N - 1; i++) { int cur = sc.nextInt(); if (Math.signum(sum) == Math.signum(sum + cur) || Math.signum(sum + cur) == 0) { int tmp = -(int) Math.signum(sum); ans += Math.abs(tmp - sum - cur); sum = tmp; } else { sum += cur; } } System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); long n; cin >> n; vector<long> a(n); for (long i = 0; i < n; i++) cin >> a[i]; long sum = a[0]; long long j = 0; for (long i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) sum += a[i]; else { j += abs(sum + a[i]) + 1; if (sum < 0) sum = 1; else if (sum > 0) sum = -1; } } cout << j << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = [int(x) for x in input().split()] count = 0 for i in range(n): if i == 0: continue sum_for_i = sum(A[:i]) sum_for_next = sum(A[:i+1]) if (sum_for_i != 0 and ((sum_for_i > 0 and sum_for_next <0) or (sum_for_i < 0 and sum_for_next >0))): continue else: #print("needs to be changed: A[{}] ({})".format(i, A[i])) while not (sum_for_i != 0 and ((sum_for_i > 0 and sum_for_next <0) or (sum_for_i < 0 and sum_for_next >0))): if A[i-1] < 0: A[i] += 1 count += 1 else: A[i] -= 1 count += 1 sum_for_i = sum(A[:i]) sum_for_next = sum(A[:i+1]) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n], b[n]; cin >> a[0]; b[0] = a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; b[i] = b[i - 1] + a[i]; } if (count(a, a + n, 0) == n) { cout << 2 * n - 1 << endl; return 0; } int sgn = 1; long long ans = 0; long long shift = 0; for (int i = 0; i < n; i++) { if ((b[i] + shift) * sgn <= 0) { ans += abs(b[i] + shift) + 1; shift += -b[i] + (b[i] == 0 ? 0 : -b[i] / abs(b[i])); } sgn *= -1; } sgn = -1; shift = 0; long long ans2 = 0; for (int i = 0; i < n; i++) { if ((b[i] + shift) * sgn <= 0) { ans2 += abs(b[i] + shift) + 1; shift += -b[i] + (b[i] == 0 ? 0 : -b[i] / abs(b[i])); } sgn *= -1; } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long INF = 1e18; const double pi = acos(-1.0); int main(void) { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long ans = 0, sum = 0; for (int i = 0; i < (n); ++i) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { ans += abs(1 - sum); sum = 1; } else { if (sum >= 0) { ans += abs(1 - sum); sum = -1; } } } } long long tmp = 0; sum = 0; for (int i = 0; i < (n); ++i) { sum += a[i]; if (i % 2 == 1) { if (sum <= 0) { tmp += abs(1 - sum); sum = 1; } else { if (sum >= 0) { tmp += abs(1 - sum); sum = -1; } } } } ans = min(ans, tmp); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using lli = long long int; using ulli = unsigned long long int; vector<lli> N, rN; lli in, n, d = 0, dp; ulli ans = 0; int main() { cin >> n; for (lli l = 0; l < n; l++) { cin >> in; if (l == 0) { N.push_back(in); } else { N.push_back(N[l - 1] + in); } {}; } {}; for (int l = 1; l < (int)N.size(); l++) { {}; dp = d; if (N[l - 1] + d < 0) { if (N[l] + d < 0) { d += 1 - N[l] - dp; ans += 1 - N[l] - dp; {} {}; {}; {}; {}; } else if (N[l] + dp == 0) { d += 1; ans += 1; } } else if (N[l - 1] + dp > 0) { if (N[l] + dp > 0) { d -= N[l] + dp + 1; ans += N[l] + dp + 1; {} {}; {}; {}; {}; } else if (N[l] + dp == 0) { d -= 1; ans += 1; } } {}; {}; {}; {}; } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i arr = gets.split(' ').map(&:to_i) min = 1000000001 (0..1).each do |i| plus = i == 0 sum = 0 modify = 0 (0...n).each do |j| sum += arr[j] if plus && sum <= 0 modify += (1 - sum).abs sum = 1 elsif !plus && sum >= 0 modify += (-1 - sum).abs sum = -1 end plus = !plus end min = [min, modify].min end puts min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 2e18; const long long MOD = 1e9 + 7; long long N; long long a[100010]; int main() { cin >> N; for (long long i = 0; i < N; i++) cin >> a[i]; long long ans = 0; long long preSum = 0; if (a[0] == 0) { a[0] = 1; long long sum = a[0]; for (long long i = 1; i < N; i++) { preSum = sum; sum += a[i]; if ((preSum < 0) ^ (sum > 0)) { if (preSum > 0) { ans += abs(-1 - sum); sum = -1; } else { ans += abs(1 - sum); sum = 1; } } } a[0] = -1; } long long sum = a[0]; for (long long i = 1; i < N; i++) { preSum = sum; sum += a[i]; if ((preSum < 0) ^ (sum > 0)) { if (preSum > 0) { ans += abs(-1 - sum); sum = -1; } else { ans += abs(1 - sum); sum = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int count = 0; vector<int> a(100000); cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } vector<int> sum(100000); if (a[0] == 0) { if (a[1] > 0) { a[0]--; count++; } else { a[0]++; count++; } } sum[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (sum[i] * sum[i - 1] >= 0) { if (sum[i - 1] < 0) { while (sum[i] * sum[i - 1] >= 0) { sum[i]++; count++; } } else { while (sum[i] * sum[i - 1] >= 0) { sum[i]--; count++; } } } } cout << count; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX_N = 300000; const unsigned long long mod = 1000000000 + 7; int main() { long long N; cin >> N; vector<long long> A(N); for (int i = 0; i < (int)N; ++i) { cin >> A[i]; } long long S = A[0]; long long S_pre = A[0]; long long res = 0; for (int i = 1; i < N; i++) { S += A[i]; if (S * S_pre >= 0) { if (S_pre > 0) { res += (S + 1); S = -1; } else { res += (1 - S); S = 1; } } S_pre = S; } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; int* a = new int[n]; int flg = 0; long long sum = 0; long long cnt = 0; for (int i = 0; i < n; ++i) { cin >> a[i]; if (i == 0) { if (a[0] < 0) flg = 1; else if (a[0] > 0) flg = 2; } sum += a[i]; if (flg == 0 && sum != 0) { if (i % 2 == 0 && sum > 0) { flg = 2; cnt = 2 * i - 1; } else if (i % 2 == 0 && sum < 0) { flg = 1; cnt = 2 * i - 1; } else if (i % 2 == 1 && sum > 0) { flg = 1; cnt = 2 * i - 1; } else if (i % 2 == 1 && sum < 0) { flg = 2; cnt = 2 * i - 1; } } if (flg == 1 && i % 2 == 0 && sum >= 0) { while (sum >= 0) { --sum; ++cnt; } } else if (flg == 1 && i % 2 == 1 && sum <= 0) { while (sum <= 0) { ++sum; ++cnt; } } else if (flg == 2 && i % 2 == 0 && sum <= 0) { while (sum <= 0) { ++sum; ++cnt; } } else if (flg == 2 && i % 2 == 1 && sum >= 0) { while (sum >= 0) { --sum; ++cnt; } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const int MOD = 1000000007; int main() { int n; cin >> n; vector<ll> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } ll t = 0; ll sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { t += 1 - sum; sum += t; } } else { if (sum >= 0) { t += sum + 1; sum -= t; } } } ll u = 0; sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { if (sum <= 0) { u += 1 - sum; sum += u; } } else { if (sum >= 0) { u += sum + 1; sum -= u; } } } cout << min(t, u) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using ull = unsigned long long; using uint = unsigned int; static ull tenq = 1000000000; static ull mod = tenq + 7; using namespace std; int main() { ll N; cin >> N; ll sum = 0; ll res = 0; for (auto i = 0; i < N; i++) { ll a; cin >> a; if (sum == 0) { sum = a; continue; } if (sum * (sum + a) >= 0) { res += abs(sum + a) + 1; if (sum > 0) sum = -1; else sum = 1; } else { sum += a; } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!usr/bin/env python3 from collections import defaultdict from collections import deque from heapq import heappush, heappop import sys import math import bisect import random import itertools sys.setrecursionlimit(10**5) stdin = sys.stdin bisect_left = bisect.bisect_left bisect_right = bisect.bisect_right def LI(): return list(map(int, stdin.readline().split())) def LF(): return list(map(float, stdin.readline().split())) def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split())) def II(): return int(stdin.readline()) def IF(): return float(stdin.readline()) def LS(): return list(map(list, stdin.readline().split())) def S(): return list(stdin.readline().rstrip()) def IR(n): return [II() for _ in range(n)] def LIR(n): return [LI() for _ in range(n)] def FR(n): return [IF() for _ in range(n)] def LFR(n): return [LI() for _ in range(n)] def LIR_(n): return [LI_() for _ in range(n)] def SR(n): return [S() for _ in range(n)] def LSR(n): return [LS() for _ in range(n)] mod = 1000000007 inf = float('INF') #A def A(): a = input().split() a = list(map(lambda x: x.capitalize(), a)) a,b,c = a print(a[0]+b[0]+c[0]) return #B def B(): a = II() b = II() if a > b: print("GREATER") if a < b: print("LESS") if a == b: print("EQUAL") return #C def C(): II() a = LI() def f(suma, b, tern): for i in a[1:]: #print((suma + i < 0) ^ tern, i, suma + i < 0 , tern, b, suma) if not ((suma + i <= 0) ^ tern): suma = suma + i tern ^= 1 continue #print(b,i) b += abs(suma + i) + 1 suma = -1 * tern or 1 tern ^= 1 #print(b) return b if a[0] == 0: ans = min(f(1, 1, 1), f(-1, 1, 0)) else: ans = min(f(a[0], 0, a[0] > 0), f(-a[0], 2 * abs(a[0]), a[0] > 0)) print(ans) return #D def D(): s = S() for i in range(len(s) - 1): if s[i] == s[i+1]: print(i + 1, i + 2) return for i in range(len(s) - 2): if s[i] == s[i + 2]: print(i + 1, i + 3) return print(-1, -1) return #Solve if __name__ == '__main__': C()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int execOne(const vector<int> &a) { int sum = 0; int ans = 0; for (int i = 0; i < a.size();) { sum += a[i]; if (0 <= sum) { ans += (abs(sum) + 1); sum = -1; } i++; if (i == a.size()) { break; } sum += a[i]; if (0 >= sum) { ans += (abs(sum) + 1); sum = 1; } i++; } return ans; } int execOneRev(const vector<int> &a) { int sum = 0; int ans = 0; for (int i = 0; i < a.size();) { sum += a[i]; if (0 >= sum) { ans += (abs(sum) + 1); sum = 1; } i++; if (i == a.size()) { break; } sum += a[i]; if (0 <= sum) { ans += (abs(sum) + 1); sum = -1; } i++; } return ans; } int main() { int n; cin >> n; vector<int> a(n); for (int(i) = 0; (i) < (int)(n); ++(i)) { cin >> a[i]; } int ans1 = execOne(a); int ans2 = execOneRev(a); cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> inline void chmin(T1 &a, T2 b) { if (a > b) a = b; } template <typename T1, typename T2> inline void chmax(T1 &a, T2 b) { if (a < b) a = b; } signed main() { int n; cin >> n; long long ans = 0; long long sum = 0; bool fl = 0; for (int i = 0; i < (n); i++) { int a; cin >> a; if (i == 0) { if (a == 0) { fl = 1; break; } sum += a; continue; } if (0 < sum) { if (0 < sum + a) { ans += sum + a + 1; sum = -1; } else if (sum + a == 0) { ans++; sum = -1; } else { sum += a; } } else { if (0 > sum + a) { ans += abs(sum + a) + 1; sum = 1; } else if (sum + a == 0) { ans++; sum = 1; } else { sum += a; } } } if (fl) { long long sum1 = 1, sum2 = -1; ans++; int ans2 = 1; for (int i = 0; i < (n - 1); i++) { int a; cin >> a; if (0 < sum1) { if (0 < sum1 + a) { ans += sum1 + a + 1; sum1 = -1; } else if (sum1 + a == 0) { ans++; sum1 = -1; } else { sum1 += a; } } else { if (0 < sum1 + a) { ans += abs(sum1 + a) + 1; sum1 = 1; } else if (sum1 + a == 0) { ans++; sum1 = 1; } else { sum1 += a; } } if (0 < sum2) { if (0 < sum2 + a) { ans2 += sum2 + a + 1; sum2 = -1; } else if (sum2 + a == 0) { ans2++; sum2 = -1; } else { sum2 += a; } } else { if (0 < sum2 + a) { ans2 += abs(sum2 + a) + 1; sum2 = 1; } else if (sum2 + a == 0) { ans2++; sum2 = 1; } else { sum2 += a; } } } chmax(ans, ans2); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ttl = a[0] cst = 0 if a[0]>0: flg = 1 elif a[0]<0: flg = -1 for i in range(1,n): ttl += a[i] if ttl*flg < 0: flg *= -1 else: if flg > 0: memo = abs(ttl)+1 ttl -= memo cst += memo elif flg < 0: memo = abs(ttl)+1 ttl += memo cst += memo flg *= -1 ttl = a[0] cst2 = 0 if a[0]>0: flg = -1 cst2 += abs(ttl)+1 ttl += 0-ttl-1 elif a[0]<0: flg = 1 cst2 += abs(ttl)+1 ttl += 0-ttl+1 for i in range(1,n): ttl += a[i] if ttl*flg < 0: flg *= -1 else: if flg > 0: memo = abs(ttl)+1 ttl -= memo cst2 += memo elif flg < 0: memo = abs(ttl)+1 ttl += memo cst2 += memo flg *= -1 print(cst2," ",ttl)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, cost1 = 0, cost2 = 0; int sum1 = 0, sum2 = 0; cin >> n; vector<int> data(n); for (int i = 0; i < n; i++) cin >> data[i]; for (int i = 0; i < n; i++) { if (i % 2 == 1) { sum1 += data[i]; if (sum1 >= 0) { cost1 += 1 + sum1; sum1 = -1; } } else { sum1 += data[i]; if (sum1 <= 0) { cost1 += 1 - sum1; sum1 = 1; } } } for (int i = 0; i < n; i++) { if (i % 2 == 1) { sum2 += data[i]; if (sum2 <= 0) { cost2 += 1 - sum2; sum2 = 1; } } else { sum2 += data[i]; if (sum2 >= 0) { cost2 += 1 + sum2; sum2 = -1; } } } cout << min(cost1, cost2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(int argc, char const* argv[]) { uint64_t n; std::cin >> n; int64_t sum, current; std::cin >> current; sum = current; uint64_t result = 0; if (current == 0) { sum = -1; result++; } bool is_sum_negative = sum < 0; for (int i = 1; i < n; ++i) { std::cin >> current; sum += current; auto tmp = std::abs(sum) + 1; if (is_sum_negative) { if (sum <= 0) { sum += tmp; result += tmp; assert(sum == 1); } } else { if (sum >= 0) { sum -= tmp; result += tmp; assert(sum == -1); } } is_sum_negative = !is_sum_negative; } std::cout << result << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using LL = long long; using ULL = unsigned long long; template <class T> using VEC = std::vector<T>; template <class T> using MAT = std::vector<std::vector<T>>; void DUMP() { cerr << endl; } template <class Head, class... Tail> void DUMP(Head &&head, Tail &&...tail) { cerr << head << ", "; DUMP(std::move(tail)...); } template <typename T> ostream &operator<<(ostream &os, vector<T> &vec) { os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } int sign(LL n) { return n == 0 ? 0 : n / abs(n); } int main() { int n; cin >> n; VEC<LL> a(n); for (int i = (0); i < (int)(n); ++i) { cin >> a[i]; } auto make = [&](LL tgt) -> LL { VEC<LL> cur(n, 0); cur[0] = a[0]; LL cnt = 0; if (sign(cur[0]) == sign(tgt)) { cnt = 0; } else { cnt += abs(a[0] - tgt); } for (int i = (1); i < (int)(n); ++i) { tgt = -tgt; cur[i] = cur[i - 1] + a[i]; if (sign(cur[i]) != sign(tgt)) { cnt += abs(cur[i] - tgt); cur[i] = tgt; } } return cnt; }; cout << min(make(1), make(-1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a_lst = [int(x) for x in input().split()] def my_sign(num): return (num > 0) - (num < 0) sum = 0 cnt = 0 sum_lst = [] for i in range(N): if i == 0: if a_lst[i] == 0: a_lst[i] = 1 sum_lst.append(a_lst[i]) else: sum_lst.append(a_lst[i] + sum_lst[i - 1]) if my_sign(sum_lst[i]) == my_sign(sum_lst[i - 1]) or my_sign(sum_lst[i]) == 0: cnt += max(-my_sign(sum_lst[i - 1]), sum_lst[i]) - min(-my_sign(sum_lst[i - 1]), sum_lst[i]) a_lst[i] += -my_sign(sum_lst[i - 1]) - sum_lst[i] sum_lst[i] = -my_sign(sum_lst[i - 1]) #print(a_lst) #print(sum_lst) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <inttypes.h> #include <ctype.h> #include <stdint.h> #include <string.h> #include <wchar.h> #include <math.h> #define N_MAX (100) #define P_MAX (100) #define DP_ARRAY_SIZE (N_MAX * P_MAX / 32 + 1) #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define ABS(a) ((a) < 0 ? -(a) : (a)) #define ABSS(a, b) ((a) > (b) ? (a) - (b) : (b) - (a)) int compare_sz_asc(const void* a, const void* b) { return *((size_t*)a) < *((size_t*)b) ? -1 : 1; } int compare_sz_desc(const void* a, const void* b) { return *((size_t*)a) > * ((size_t*)b) ? -1 : 1; } int compare_i64_asc(const void* a, const void* b) { return *((int64_t*)a) < *((int64_t*)b) ? -1 : 1; } int compare_i64_desc(const void* a, const void* b) { return *((int64_t*)a) > * ((int64_t*)b) ? -1 : 1; } int compare_c_asc(const void* a, const void* b) { return *((char*)a) < *((char*)b) ? -1 : 1; } int compare_c_desc(const void* a, const void* b) { return *((char*)a) > * ((char*)b) ? -1 : 1; } static size_t powSz(const size_t base, const size_t exp) { if (exp == 0) { return 1; } if (exp == 1) { return base; } if (exp % 2 == 0) { return powSz(base * base, exp / 2); } else { return base * powSz(base, exp - 1); } } static size_t comb(const size_t n, const size_t r) { size_t result = 1; for (size_t i = 0; i < r; i++) { result *= n - i; result /= i + 1; } return result; } static uint64_t combU64(const uint64_t n, const uint64_t r) { uint64_t result = 1; for (uint64_t i = 0; i < r; i++) { result *= n - i; result /= i + 1; } return result; } static size_t gcdZu(size_t m, size_t n) { size_t temp; while (m % n != 0) { temp = n; n = m % n; m = temp; } return n; } static uint64_t gcdU64(uint64_t m, uint64_t n) { uint64_t temp; while (m % n != 0) { temp = n; n = m % n; m = temp; } return n; } static int64_t a[100000]; int main(void) { size_t n; scanf("%zu\n", &n); for (size_t i = 0; i < n; i++) { scanf("%"PRId64, &a[i]); } size_t cnt[2] = { 0,0 }; int64_t base[2] = { 1,-1 }; int64_t sum = 0; for (size_t i = 0; i < n; i++) { sum += a[i]; cnt[0] += (size_t)ABSS(base[0], sum); cnt[1] += (size_t)ABSS(base[1], sum); base[0] = -base[0]; base[1] = -base[1]; } printf("%zu", MIN(cnt[0], cnt[1])); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) sum = A[0] ans = 0 if sum == 0: sum += 1 ans += 1 for i in range(1, len(A)): if sum > 0: if sum + A[i] >= 0: ans += abs(sum + A[i]) + 1 sum = -1 else: sum += A[i] continue elif sum < 0: if sum + A[i] <= 0: ans += abs(sum + A[i]) + 1 sum = 1 else: sum += A[i] continue print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); long long sum = a[0]; long long ans = 0; for (int i = 1; i < n; i++) { if (sum + a[i] == 0) { ans++; if (sum > 0) { sum = 1; } else { sum = -1; } } else if (sum > 0 && sum + a[i] > 0) { ans += abs(a[i] + sum + 1); sum = -1; } else if (sum < 0 && sum + a[i] < 0) { ans += abs(1 - sum - a[i]); sum = 1; } else { sum += a[i]; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int sum = 0, prev = 0; long long int ans = 0; for (int i = 0; i < n; i++) { int a; cin >> a; sum += a; if (prev > 0) { if (sum >= 0) { ans += abs(sum) + 1; sum = -1; } } else if (prev < 0) { if (sum <= 0) { ans += abs(sum) + 1; sum = 1; } } prev = sum; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") using namespace std; const long long MAX_N = 1E5; long long N; long long A[MAX_N], S[MAX_N]; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cin >> N; for (int i = 0; i < N; i++) { cin >> A[i]; } S[0] = A[0]; for (int i = 1; i < N; i++) { S[i] = S[i - 1] + A[i]; } int cnt1 = 0; int d = 0; for (int i = 0; i < N; i++) { if (i & 1) { if (S[i] + d >= 0) { int cost = S[i] + d + 1; d -= cost; cnt1 += cost; } } else { if (S[i] + d <= 0) { int cost = -(S[i] + d) + 1; d += cost; cnt1 += cost; } } } int cnt2 = 0; d = 0; for (int i = 0; i < N; i++) { if (!(i & 1)) { if (S[i] + d >= 0) { int cost = S[i] + d + 1; d -= cost; cnt2 += cost; } } else { if (S[i] + d <= 0) { int cost = -(S[i] + d) + 1; d += cost; cnt2 += cost; } } } cout << min(cnt1, cnt2) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- """ https://abc059.contest.atcoder.jp/tasks/arc072_a WA """ import sys from sys import stdin input = stdin.readline def check_sign(n): if n > 0: return 1 elif n < 0: return -1 else: return 0 def solve(A): p_ans = 0 n_ans = 0 # 最初をプラス側に振った場合の解 total = A[0] prev_sign = check_sign(total) if prev_sign == 0: p_ans += 1 total += 1 prev_sign = 1 for a in A[1:]: total += a sign = check_sign(total) if sign == 0: total -= prev_sign p_ans += 1 elif prev_sign != sign: prev_sign = sign else: p_ans += (abs(total) + 1) if prev_sign < 0: total = 1 prev_sign = 1 else: total = -1 prev_sign = -1 # 最初をマイナス側に振った場合の解 total = A[0] prev_sign = check_sign(total) if prev_sign == 0: n_ans += 1 total -= 1 prev_sign = -1 for a in A[1:]: total += a sign = check_sign(total) if sign == 0: total -= prev_sign n_ans += 1 elif prev_sign != sign: prev_sign = sign else: n_ans += (abs(total) + 1) if prev_sign < 0: total = 1 prev_sign = 1 else: total = -1 prev_sign = -1 return min(p_ans, n_ans) def main(args): n = int(input()) A = [int(x) for x in input().split()] ans = solve(A) print(ans) if __name__ == '__main__': main(sys.argv[1:])
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int iNum[100000] = {0}; int iNumber = 0; int iLoop; int iSum = 0; int iFlg = 0; int iResult = 0; scanf("%d", &iNumber); for (iLoop = 0; iLoop < iNumber; iLoop++) { scanf("%d", &iNum[iLoop]); } for (iLoop = 0; iLoop < iNumber; iLoop++) { if (iFlg == 0 && iNum[iLoop] == 0) { if (iLoop == 0) { iResult++; } else { iResult += 2; } continue; } iSum += iNum[iLoop]; if (iFlg == 0) { if (iNum[iLoop] > 0) { iFlg = 1; } else { iFlg = -1; } continue; } if (iFlg * iSum >= 0) { iResult += abs(iSum) + 1; iSum = iFlg * -1; } iFlg *= -1; } printf("%d\n", iResult); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) cnt=0 for i in range(1,n): # 条件満たすまでループ while True: print(a) now_tmp = sum(a[:i]) next_tmp = sum(a[:i+1]) print(i, now_tmp, next_tmp) # 符号が逆転していればOK かつ 現在までの総和が0でない # 異なる符号を掛けるとマイナスになる if now_tmp * next_tmp <0 and now_tmp !=0: break else: # 現在の合計がマイナスの場合 if now_tmp < 0: a[i] += next_tmp+1 cnt +=abs(next_tmp+1) # 現在の合計がプラスの場合 elif now_tmp > 0 : a[i] += -next_tmp-1 cnt +=abs(next_tmp+1) # 現在の合計が0の場合 elif now_tmp == 0 : # 1個前がプラスの場合、 if sum(a[:i]) > 0: a[i] += -next_tmp+1 cnt +=abs(next_tmp+1) # 1個前がマイナスの場合 else: a[i] += next_tmp+1 cnt +=abs(next_tmp+1) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=[int(i) for i in input().split()] check=a[0] ans=0 if check==0: for i in range(1,n): if check+a[i]==0: continue elif check+a[i]>0: if i%2==0: check=1 ans=1 break else: check=-1 ans=1 break else: if i%2==0: check=-1 ans=1 break else: check=1 ans=1 break else: check=1 ans=1 for i in range(1,n): check2=check+a[i] if check<0: if check2>0: check=check2 else: ans+=(abs(check2)+1) check=1 else: if check2<0: check=check2 else: ans+=(abs(check2)+1) check=-1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int odd = 0, even = 0, sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { odd += abs(sum) + 1; sum = +1; } else if (i % 2 == 1 && sum >= 0) { odd += abs(sum) + 1; sum = -1; } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { even += abs(sum) + 1; sum = +1; } else if (i % 2 == 0 && sum >= 0) { even += abs(sum) + 1; sum = -1; } } cout << min(odd, even) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const long long INF = 1LL << 60; using namespace std; template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } int main(void) { long long n, i, a[100001], sum, ans = 0; cin >> n; for (i = 1; i <= n; i++) { cin >> a[i]; } if (a[1] == 0) { if (a[2] > 0) { a[1] = -1; ans++; } else { a[1] = 1; ans++; } } sum = a[1]; for (i = 2; i <= n; i++) { if (sum > 0) { if (sum + a[i] < 0) { sum += a[i]; } else { ans += abs(sum + a[i] + 1); sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { private static Scanner sc = new Scanner(System.in); public static void main(String[] args) { int n = sc.nextInt(); long[] a = new long[n]; for (int i = 0;i < n;i++) a[i] = sc.nextLong(); long ret = calc(a,true); ret = Math.min(calc(a,false),ret); System.out.println(ret); } private static long calc(long[] a, boolean b) { long sum = a[0]; if (b) { sum *= -1; } long ret = 0; long tmp = 0; for (int i = 1;i < a.length;i++) { long num = a[i]; tmp = sum; sum += num; if ((tmp<0&&sum>=0)||(tmp>=0&&sum<0)) continue; long l = Math.abs(sum)+1; if (sum>=0) { sum -= l; } else { sum += l; } ret += l; } if (sum==0) ret++; return ret; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) cnt=0 for i in range(n-1): sum_a = sum(a[0:i+1]) if abs(sum_a) >= abs(a[i+1]) or sum_a*a[i+1]>=0: if sum_a<0: cnt += abs(-sum_a+1 -a[i+1]) a[i+1]=-sum_a+1 elif sum_a>=0: cnt+=abs(-sum_a-1-a[i+1]) a[i+1]=-sum_a-1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using long long = long long; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const long long INF = 1e9; long long n; vector<long long> a; int main() { cin >> n; a.resize(n); for (long long i = 0; i < (n); ++i) cin >> a[i]; long long sum; long long ans = 0; sum = -1; ans += abs(a[0] - sum); for (long long i = 0; i < (n - 1); ++i) { if (sum < 0) { if (sum + a[i + 1] > 0) { sum += a[i + 1]; continue; } else { ans += 1 - sum - a[i + 1]; sum = 1; } } else { if (sum + a[i + 1] < 0) { sum += a[i + 1]; continue; } else { ans += a[i + 1] + sum + 1; sum = -1; } } } long long ans2 = 0; sum = 1; ans2 += abs(a[0] - sum); for (long long i = 0; i < (n - 1); ++i) { if (sum < 0) { if (sum + a[i + 1] > 0) { sum += a[i + 1]; continue; } else { ans2 += 1 - sum - a[i + 1]; sum = 1; } } else { if (sum + a[i + 1] < 0) { sum += a[i + 1]; continue; } else { ans2 += a[i + 1] + sum + 1; sum = -1; } } } chmin(ans, ans2); long long ans3 = 0; sum = a[0]; for (long long i = 0; i < (n - 1); ++i) { if (sum == 0) { ans3 = INF; continue; } if (sum < 0) { if (sum + a[i + 1] > 0) { sum += a[i + 1]; continue; } else { ans3 += 1 - sum - a[i + 1]; sum = 1; } } else { if (sum + a[i + 1] < 0) { sum += a[i + 1]; continue; } else { ans3 += a[i + 1] + sum + 1; sum = -1; } } } chmin(ans, ans3); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Linq; using System.Collections.Generic; using System.Numerics; using static System.Console; class Program { static Scanner sc = new Scanner(); internal static void Main(string[] args) { var N = sc.nextInt(); var a = sc.ArrayInt(N); var sum = a[0]; var ans = 0; bool bef = a[0] >= 0; for (int i = 1; i < N; i++) { sum += a[i]; if (sum == 0 || (sum > 0) == bef ) { if (bef) { while (sum >= 0) { sum--; ans++; } } else { while (sum < 1) { sum++; ans++; } } } bef = !bef; } WriteLine(ans); } } class Scanner { string[] s; int i; char[] cs = new char[] { ' ' }; public Scanner() { s = new string[0]; i = 0; } public string next() { if (i < s.Length) return s[i++]; string st = Console.ReadLine(); while (st == "") st = Console.ReadLine(); s = st.Split(cs, StringSplitOptions.RemoveEmptyEntries); if (s.Length == 0) return next(); i = 0; return s[i++]; } public int nextInt() { return int.Parse(next()); } public int[] ArrayInt(int N, int add = 0) { int[] Array = new int[N]; for (int i = 0; i < N; i++) { Array[i] = nextInt() + add; } return Array; } public long nextLong() { return long.Parse(next()); } public long[] ArrayLong(int N, long add = 0) { long[] Array = new long[N]; for (int i = 0; i < N; i++) { Array[i] = nextLong() + add; } return Array; } public double nextDouble() { return double.Parse(next()); } public double[] ArrayDouble(int N, double add = 0) { double[] Array = new double[N]; for (int i = 0; i < N; i++) { Array[i] = nextDouble() + add; } return Array; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; int main() { int n; cin >> n; vector<int> a(n); for (long long(i) = 0; (i) < (n); (i)++) cin >> a[i]; long long ans = LLONG_MAX; long long total = 0; long long tmp = 0; for (int i = 0; i < n; ++i) { tmp += a[i]; if (i % 2) { if (tmp > 0) { total += abs(tmp) + 1; tmp = -1; } } else { if (tmp < 0) { total += abs(tmp) + 1; tmp = 1; } } } ans = total; total = 0; tmp = 0; for (int i = 0; i < n; ++i) { tmp += a[i]; if (i % 2 == 0) { if (tmp > 0) { total += abs(tmp) + 1; tmp = -1; } } else { if (tmp < 0) { total += abs(tmp) + 1; tmp = 1; } } } ans = min(total, ans); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] s = [] sign = [] debug_total = [0 for i in range(n)] ans = 0 if a[0]==0: if a[1]<0: a[0]=1 else: a[0]=-1 ans+=1 if a[0]<0: sign.append(-1) else: sign.append(1) total = a[0] debug_total[0]=total op = 0 #print('total_in: ',total) #print('ans_in: ',ans) #print('a : ', a) for i in range(1,n): total+=a[i] if total==0: sign.append(sign[i-1]*-1) total += sign[i-1]*-1 a[i] += sign[i-1]*-1 ans += 1 elif total<0: sign.append(-1) else: sign.append(1) if sign[i]==sign[i-1]: op = abs(total)+1 if total+op==0 or total-op==0: op+=1 if sign[i]==1: total -= op a[i] -= op else: total += op a[i] += op ans += op sign[i] *= -1 debug_total[i] = total #print('==========================') #print('i: ',i) #print('total: ',total) #print('ans: ',ans) #print('a: ',a) #print('total_list: ', debug_total) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vs = vector<string>; const int INF = 1001001001; const int MOD = 1000000007; const long long INFL = (1LL << 60); const double EPS = 1e-9; bool meet(vi a) { bool ret = true; bool pos = (a[0] > 0); int sum = a[0]; for (int i = (1); i < (int)(a.size()); i++) { sum += a[i]; if ((pos && i % 2 && sum >= 0) || (pos && !(i % 2) && sum <= 0) || (!pos && i % 2 && sum <= 0) || (!pos && !(i % 2) && sum >= 0)) { ret = false; break; } } return ret; } uint64_t solve(vi a, uint64_t res) { int sum = a[0]; bool pos = (a[0] >= 0); for (int i = (1); i < (int)(a.size()); i++) { if ((pos && i % 2 && sum + a[i] >= 0) || (!pos && !(i % 2) && sum + a[i] >= 0)) { res += abs(sum + a[i] - (-1)); a[i] = -1 - sum; } else if ((pos && !(i % 2) && sum + a[i] <= 0) || (!pos && i % 2 && sum + a[i] <= 0)) { res += abs(sum + a[i] - 1); a[i] = 1 - sum; } sum += a[i]; } return res; } int main() { int N; cin >> N; vi a(N); for (int i = 0; i < (int)(N); i++) cin >> a[i]; bool flg = meet(a); bool pos = (a[0] >= 0); uint64_t res = 0; uint64_t res1 = solve(a, res); res = 0; if (pos) { res += abs(a[0] - (-1)); a[0] = -1; } else { res += abs(a[0] - 1); a[0] = 1; } uint64_t res2 = solve(a, res); res = min(res1, res2); if (flg) res = 0; cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) as_ = list(map(int, input().split())) ans = 0 sum_ = as_[0] if sum_ == 0 and as_[1] <= 0: sum_ += 1 ans += 1 elif sum_ == 0 and as_[1] < 0: sum_ += 1 ans += 1 else: pass for i in range(1, n): new_sum_ = sum_+as_[i] if sum_ > 0 and new_sum_ >= 0: as_[i] -= (1+new_sum_) ans += 1+new_sum_ sum_ = -1 elif sum_ < 0 and new_sum_ <= 0: as_[i] += (1-new_sum_) ans += 1-new_sum_ sum_ = 1 else: sum_ = new_sum_
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { long long n; cin >> n; long long a[n + 1]; a[0] = 0; long long cnta = 0; long long cntb = 0; long long sum = 0; for (long long i = 0; i < n; i++) { cin >> a[i + 1]; a[i + 1] += a[i]; } for (long long i = 1; i < n + 1; i++) { if (i % 2 == 0) { if (0 <= a[i] + sum) { cnta += (a[i] + sum + 1); sum -= (a[i] + sum + 1); } } else { if (a[i] + sum <= 0) { cnta += (1 - (a[i] + sum)); sum += (1 - (a[i] - sum)); } } } sum = 0; for (long long i = 1; i < n + 1; i++) { if (i % 2 == 0) { if (a[i] + sum <= 0) { cntb += (1 - (a[i] + sum)); sum += (1 - (a[i] - sum)); } } else { if (0 <= a[i] + sum) { cntb += (a[i] + sum + 1); sum -= (a[i] + sum + 1); } } } cout << min(cnta, cntb) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { long long n; cin >> n; long long a[n]; for (long long i = 0; i < n; i++) cin >> a[i]; long long sum = 0, cnt = 0, sum1 = 0, cnt1 = 0; if (a[0] > 0) { sum = a[0]; sum1 = -1; cnt1 += (abs(a[0]) + 1); } else if (a[0] < 0) { sum = 1; cnt = a[0] + 1; sum1 = a[0]; } else { sum = 1, sum1 = -1; cnt = 1, cnt1 = 1; } for (long long i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) sum += a[i]; else { cnt += (abs(sum + a[i]) + 1); sum = (sum < 0 ? 1 : -1); } if (sum1 * (sum1 + a[i]) < 0) sum1 += a[i]; else { cnt1 += (abs(sum1 + a[i]) + 1); sum1 = (sum1 < 0 ? 1 : -1); } } cout << min(cnt1, cnt) << endl; } int main() { cin.sync_with_stdio(0); cin.tie(0); cin.exceptions(cin.failbit); solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)(n); i++) cin >> a.at(i); long long cnt = 0; long long wa = 0; long long wa2 = 0; wa = a.at(0); for (int i = 0; i < n - 1;) { wa2 = wa + a.at(i + 1); if (wa > 0) { if (wa2 < 0) { i++; wa = wa2; } else if (wa2 > 0) { cnt += abs(-1 - wa2); a.at(i + 1) -= abs(-1 - wa2); } else if (wa2 == 0) { cnt += abs(-1 - wa2); a.at(i + 1) -= abs(-1 - wa2); } } else if (wa < 0) { if (wa2 < 0) { cnt += abs(1 - wa2); a.at(i + 1) += abs(1 - wa2); } else if (wa2 > 0) { i++; wa = wa2; } else if (wa2 == 0) { cnt += abs(1 - wa2); a.at(i + 1) += abs(1 - wa2); } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def count_loop(n, old_state, count, a_list, flag): for i in range(1, int(n)): num_state = old_state + int(a_list[i]) if flag == 1: if num_state >= 0: count += num_state + 1 old_state = -1 elif num_state < 0: old_state = num_state flag = -1 elif flag == -1: if num_state <= 0: count += abs(num_state) + 1 old_state = 1 elif num_state > 0: old_state = num_state flag = 1 return count if __name__ == "__main__": n = input() a = input() a_list = a.split(" ") old_state = int(a_list[0]) count = 0 if old_state == 0: c1 = count_loop(n,1,1,a_list,1) c2 = count_loop(n,-1,1,a_list,-1) else: c1 = count_loop(n,old_state,count,a_list,1) c2 = count_loop(n,old_state,count,a_list,-1) print(min(c1,c2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.FileReader; import java.io.FileWriter; import java.util.Arrays; import java.util.Collections; import java.util.ArrayList; import java.util.List; import java.util.HashSet; import java.util.Comparator; import java.util.Set; import java.util.HashMap; import java.util.Map; public class Main { // 標準入力 static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); // 標準入力数値配列用 int static int[] inputval() throws Exception { String[] strarray = br.readLine().trim().split(" "); int[] intarray = new int[strarray.length]; for (int i = 0; i < intarray.length; i++) { intarray[i] = Integer.parseInt(strarray[i]); } return intarray; } /* 標準入力数値配列用 long */ static long[] inputLongArr() throws Exception { String[] strarray = br.readLine().trim().split(" "); long[] longarray = new long[strarray.length]; for (int i = 0; i < longarray.length; i++) { longarray[i] = Long.parseLong(strarray[i]); } return longarray; } // 標準入力数値リスト用 int static List<Integer> inputIntList() throws Exception { List<String> strList = Arrays.asList(br.readLine().trim().split(" ")); List<Integer> intList = new ArrayList<Integer>(); for (String elem : strList){ intList.add(Integer.parseInt(elem)); } return intList; } // 標準入力数値配列用 integer 降順ソート用 static Integer[] inputvalInteger() throws Exception { String[] strarray = br.readLine().trim().split(" "); Integer[] intarray = new Integer[strarray.length]; for (int i = 0; i < intarray.length; i++) { intarray[i] = Integer.parseInt(strarray[i]); } return intarray; } /*標準入力long*/ static long inputLong() throws Exception { return Long.parseLong(br.readLine()); } /*標準入力long*/ static int inputInt() throws Exception { return Integer.parseInt(br.readLine()); } public static void main(String[] args) throws Exception { // write your code here int n = inputInt(); long [] al = inputLongArr(); boolean nextPlusF = al[0] < 0; long sum2; long ans2; if (nextPlusF){ sum2 = 1; ans2 = 1 - (al[0]); }else{ sum2 = -1; ans2 = al[0] + 1; } long ans = 0; long sum = al[0]; for(int i=1;i<n;i++){ sum += al[i]; if(nextPlusF && sum <=0){ ans += 1-sum; sum += ans; }else if ((! nextPlusF) && sum >= 0){ ans += sum +1; sum -= ans; } nextPlusF = !nextPlusF; } nextPlusF = !(al[0] < 0); for(int i=1;i<n;i++){ sum2 += al[i]; if(nextPlusF && sum2 <=0){ ans2 += 1-sum2; sum2 += ans2; }else if ((! nextPlusF) && sum2 >= 0){ ans2 += sum2 +1; sum2 -= ans2; } nextPlusF = !nextPlusF; } System.out.println(Math.min(ans,ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np import copy N = int(input()) a = list(map(int,input().split())) a = np.cumsum(a) ans1 = 0 ans2 = 0 b = copy.copy(a) for i in range(N): if i % 2 == 0: if a[i] > 0: pass else: ans1 += abs(a[i]) + 1 a[i+1:] = list(map(lambda n:n+abs(a[i])+1, a[i+1:])) else: if a[i] < 0: pass else: ans1 += abs(a[i]) + 1 a[i+1:] = list(map(lambda n:n-(abs(a[i])+1), a[i+1:])) for i in range(N): if i % 2 == 1: if b[i] > 0: pass else: ans2 += abs(b[i]) + 1 b[i+1:] = list(map(lambda n:n+abs(b[i])+1, b[i+1:])) else: if b[i] < 0: pass else: ans2 += abs(b[i]) + 1 b[i+1:] = list(map(lambda n:n-(abs(b[i])+1), b[i+1:])) print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vector<int> vec(N); vector<int> sum(N); int error = 0; int ans1 = 0; int ans2 = 0; for (int i = 0; i < N; i++) { cin >> vec[i]; sum[i] = vec[i]; if (i) sum[i] += sum[i - 1]; } for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (sum[i] + error <= 0) { ans1 += abs(sum[i] + error) + 1; error += abs(sum[i] + error) + 1; } } else { if (sum[i] + error >= 0) { ans1 += abs(sum[i] + error) + 1; error -= abs(sum[i] + error) + 1; } } } error = 0; for (int i = 0; i < N; i++) { if (i % 2 == 1) { if (sum[i] + error <= 0) { ans2 += abs(sum[i] + error) + 1; error += abs(sum[i] + error) + 1; } } else { if (sum[i] + error >= 0) { ans2 += abs(sum[i] + error) + 1; error -= abs(sum[i] + error) + 1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ABC59C { class Program { static void Main(string[] args) { int n = int.Parse(Console.ReadLine()); string[] str = Console.ReadLine().Split(' '); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = int.Parse(str[i]); } int x = 0; int f = 0; int sum = 0; if (a[0] < 0) f = 1; if (a[0] == 0) { if (a[1] >= 0) { a[0] = -1; }else { a[0] = 1; } x++; } for(int i = 0; i < n; i++) { sum += a[i]; if (f == 1 && sum >= 0) { x += (sum + 1); f = 0; sum = -1; }else if (f == 0 && sum <= 0) { x += (1 - sum); f = 1; sum = 1; }else { f = 1 - f; } } Console.WriteLine(x); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = pow(10, 9) + 7; long long mod(long long A, long long M) { return (A % M + M) % M; } const long long INF = 1LL << 60; template <class T> bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } long long divCeil(long long A, long long B) { return (A + (B - 1)) / B; } long long myctoi(char C) { return C - '0'; } char myitoc(long long N) { return '0' + N; } signed main() { long long N; cin >> N; vector<long long> A(N); for (long long i = 0; i < N; i++) { cin >> A.at(i); } long long ans0 = 0, sum = 1; for (long long i = 0; i < N; i++) { long long s = sum; sum += A.at(i); if (s > 0 && sum >= 0) { ans0 += 1 + sum; sum = -1; } else if (s < 0 && sum <= 0) { ans0 += 1 - sum; sum = 1; } } long long ans1 = 0; sum = -1; for (long long i = 0; i < N; i++) { long long s = sum; sum += A.at(i); if (s > 0 && sum >= 0) { ans1 += 1 + sum; } else if (s < 0 && sum <= 0) { ans1 += 1 - sum; } } cout << min(ans0, ans1) - 1 << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; int* a = new int[n]; int flg = 0; long long sum = 0; long long cnt = 0; for (int i = 0; i < n; ++i) { cin >> a[i]; if (i == 0) { if (a[0] < 0) flg = 1; else flg = 2; } sum += a[i]; if (flg == 0 && sum != 0) { if (i % 2 == 0 && sum > 0) { flg = 2; cnt = 2 * i - 1; } else if (i % 2 == 0 && sum < 0) { flg = 1; cnt = 2 * i - 1; } else if (i % 2 == 1 && sum > 0) { flg = 1; cnt = 2 * i - 1; } else if (i % 2 == 1 && sum < 0) { flg = 2; cnt = 2 * i - 1; } } if (flg == 1 && i % 2 == 0 && sum >= 0) { while (sum >= 0) { --sum; ++cnt; } } else if (flg == 1 && i % 2 == 1 && sum <= 0) { while (sum <= 0) { ++sum; ++cnt; } } else if (flg == 2 && i % 2 == 0 && sum <= 0) { while (sum <= 0) { ++sum; ++cnt; } } else if (flg == 2 && i % 2 == 1 && sum >= 0) { while (sum >= 0) { --sum; ++cnt; } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans = 0 cnt = [a[0]] for i in range(1,n): cnt.append(cnt[-1]+a[i]) cnt_o = cnt[::2] cnt_e = cnt[1::2] o = sum(cnt_o) e = sum(cnt_e) ans = 0 c = 0 if o >= e: for i in range(n): cnt[i] += c if (i+1) % 2 != 0: if cnt[i] > 0: pass else: ans += abs(cnt[i])+1 c += abs(cnt[i])+1 else: if cnt[i] < 0: pass else: ans += cnt[i]+1 c -= a[i]+1 else: for i in range(n): cnt[i] += c if (i+1) % 2 != 0: if cnt[i] < 0: pass else: ans += cnt[i]+1 c -= cnt[i]+1 else: if cnt[i] > 0: pass else: ans += abs(cnt[i])+1 c += abs(a[i])+1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# input n = int(input()) A = list(map(int, input().split())) # 偶数番目が+ A_even = A S_even = 0 ans_even = 0 for i in range(n): if (S_even + A_even[i]) * ((-1) ** (i - 1)) > 0: S_even += A_even[i] continue ans_even += S_even + A_even[i] + 1 A_even[i] = (-1) ** (i - 1) - S_even S_even = (-1) ** (i - 1) # 奇数番目が+ A_odd = A S_odd = 0 ans_odd = 0 for i in range(n): if (S_odd + A_odd[i]) * ((-1) ** i) > 0: S_odd += A_odd[i] continue ans_odd += S_odd + A_odd[i] + 1 A_odd[i] = (-1) ** i - S_odd S_odd = (-1) ** i ans = min(ans_even, ans_odd) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int n, sum; std::cin >> n >> sum; int a, count; std::cin >> a; sum += a; count = 0; for (int i = 0; i < n - 2; i++) { std::cin >> a; int tmp = sum + a; if (sum * tmp < 0) { sum = tmp; continue; } int next_sum = (-1) * sum / abs(sum); count += abs(next_sum - tmp); sum = next_sum; } std::cout << count << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline N = int(input()) a = list(map(int, input().split())) res = -max(0, ~a[0]) sm = 1 if a[0] > 1: sm = a[0] for i in range(1, N): if sm > 0: res += max(0, a[i] + sm + 1) sm = min(-1, a[i]) else: res += max(0, sm - a[i] + 1) sm = max(1, a[i]) res2 = max(0, a[0] + 1) sm = -1 if a[0] < -1: sm = a[0] for i in range(1, N): if sm > 0: res2 += max(0, a[i] + sm + 1) sm = min(-1, a[i]) else: res2 += max(0, sm - a[i] + 1) sm = max(1, a[i]) print(min(res, res2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; constexpr int sign(int n) { return n < 0 ? -1 : n > 0; } int main() { int N; cin >> N; vi A(N); for (int i = 0, _i = (N); i < _i; ++i) cin >> A[i]; ll sum = A[0], ans = 0; for (int i = 0, _i = (N - 1); i < _i; ++i) { if (sum == 0) { sum = sign(A[i + 1]) * (abs(A[i + 1]) - 1); ++ans; continue; } if (sign(sum) == sign(sum + A[i + 1])) { ans += abs(-sign(sum) - (sum + A[i + 1])); sum = -sign(sum); } else sum += A[i + 1]; } if (sum == 0) ++ans; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long int check(long int sum, long int ans, vector<int> T, int N, bool pre_pm) { for (int i = 0; i < N; i++) { if (pre_pm) { sum += T.at(i); while (0 <= sum) { sum--; ans++; } pre_pm = false; } else { sum += T.at(i); while (sum <= 0) { sum++; ans++; } pre_pm = true; } } return ans; } int main() { int N; vector<int> T; cin >> N; for (int i = 0; i < N; i++) { int tmp; cin >> tmp; T.push_back(tmp); } long int ans = 0; long int sum = 0; bool pre_pm; cout << check(sum, ans, T, N, true) << endl; cout << check(sum, ans, T, N, false) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long seq(int a, vector<long long> b) { long long count = 0; if (0 <= b[0] * a) { if (b[0] == 0) { b[0] = a; count++; } long long s = b[0]; for (int i = 1; i < b.size(); i++) { int k = (1 - 2 * (i % 2)) * a; s += b[i]; if (s * k <= 0) { count += 1 - k * s; s = k; } } } return count; } int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; if (a.at(0) == 0) cout << min(seq(1, a), seq(-1, a)) << endl; else if (a.at(0) > 0) cout << seq(1, a) << endl; else cout << seq(-1, a) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, char *argv[]) { return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL; template <typename T, typename U> inline void amin(T &x, U y) { if (y < x) x = y; } template <typename T, typename U> inline void amax(T &x, U y) { if (x < y) x = y; } signed main() { long long n; cin >> n; vector<long long> a(n); for (long long(i) = 0; (i) < (long long)(n); (i)++) cin >> a[i]; long long sum = 0; long long prev = 0; sum += a[0]; long long ans = 0; if (sum != 0) { for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) { prev = sum; sum += a[i]; if (prev * sum < 0) { continue; } else { if (sum > 0) { ans += sum + 1; sum = -1; } else if (sum < 0) { ans += abs(sum) + 1; sum = 1; } else { ans++; sum = (prev < 0 ? 1 : -1); } } } } else { ans = INF; } sum = 0; prev = 0; long long ans2 = 0; sum += a[0]; if (sum > 0) { ans2 += sum + 1; sum = -1; } else if (sum < 0) { ans2 += abs(sum) + 1; sum = 1; } else { ans2++; sum = 1; } for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) { prev = sum; sum += a[i]; if (prev * sum < 0) { continue; } else { if (sum > 0) { ans2 += sum + 1; sum = -1; } else if (sum < 0) { ans2 += abs(sum) + 1; sum = 1; } else { ans2++; sum = (prev < 0 ? 1 : -1); } } } sum = 0; prev = 0; long long ans3 = 0; sum += a[0]; if (sum > 0) { ans3 += sum + 1; sum = -1; } else if (sum < 0) { ans3 += abs(sum) + 1; sum = 1; } else { ans3++; sum = -1; } for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) { prev = sum; sum += a[i]; if (prev * sum < 0) { continue; } else { if (sum > 0) { ans3 += sum + 1; sum = -1; } else if (sum < 0) { ans3 += abs(sum) + 1; sum = 1; } else { ans3++; sum = (prev < 0 ? 1 : -1); } } } cout << min(ans, min(ans3, ans2)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int num_integer; if (scanf("%d", &num_integer) != 1) { puts("num_integer input error."); return 1; } int integer, sum_1 = 0, sum_2 = 0, num_operation_1 = 0, num_operation_2 = 0; for (int i = 0; i < num_integer; i++) { if (scanf("%d", &integer) != 1) { puts("integer input error."); } if (sum_1 > 0 && (sum_1 + integer) >= 0) { num_operation_1 += sum_1 + integer + 1; sum_1 = -1; } else if (sum_1 < 0 && (sum_1 + integer) <= 0) { num_operation_1 += -(sum_1 + integer) + 1; sum_1 = 1; } else { sum_1 += integer; } if (sum_2 > 0 && (sum_2 + integer) >= 0) { num_operation_2 += sum_2 + integer + 1; sum_2 = -1; } else if (sum_2 < 0 && (sum_2 + integer) <= 0) { num_operation_2 += -(sum_2 + integer) + 1; sum_2 = 1; } else if (i == 0) { num_operation_2 = (integer > 0) ? integer + 1 : -integer + 1; sum_2 = (integer > 0) ? -1 : 1; } else { sum_2 += integer; } } printf("%d", (num_operation_1 < num_operation_2) ? num_operation_1 : num_operation_2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long cnt1 = 0, cnt2 = 0; long long sumv = 0; for (int i = 0; i < n; i++) { sumv += a[i]; if (i % 2 == 0 && sumv < 0) { sumv = 1; cnt1 += abs(sumv) + 1; } else if (i % 2 == 1 && sumv > 0) { sumv = -1; cnt1 += abs(sumv) + 1; } } sumv = 0; for (int i = 0; i < n; i++) { sumv += a[i]; if (i % 2 == 0 && sumv > 0) { sumv = -1; cnt2 += abs(sumv) + 1; } else if (i % 2 == 1 && sumv < 0) { sumv = 1; cnt2 += abs(sumv) + 1; } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i a = gets.chomp.split.map(&:to_i) sum1 = 0 sum2 = 0 ans = 0 for i in 0..n-2 sum1 += a[i] if sum1 == 0 sum1 += 1 ans += 1 end sum2 = sum1 + a[i+1] if sum2 * sum1 >= 0 if sum1 < 0 a[i+1] += 1 - sum2 ans += 1 - sum2 else a[i+1] -= sum2 + 1 ans += sum2 + 1 end end end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int number[100001]; int N; int sum[100001]; int main() { int mul = 0; long long int answer = 0; int fugou = 0; scanf("%d", &N); for (int i = 0; i < N; i++) { scanf("%d", &(number[i])); mul += number[i]; sum[i] = mul; if (i > 0) { if (sum[i - 1] * mul >= 0) { answer += (long long int)abs(mul) + 1; } } } printf("%lld\n", answer); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); int a[n]; for (int i = 0; i < n; i++) scanf(" %d", &a[i]); int S = a[0]; int j = 0; for (int i = 1; i < n; i++) { if (S * (S + a[i]) < 0) { S += a[i]; } else { if (S < 0) { j += 1 - S - a[i]; S = 1; } else { j += S + a[i] + 1; S = -1; } } } printf("%d\n", j); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> data(N); for (int i = 0; i < N; i++) cin >> data[i]; int count = 0; int ans = data[0]; int saisyo; while (ans <= 0) { ans++; count++; } for (int i = 1; i < N; i++) { ans += data[i]; if (i % 2 == 0) { while (ans <= 0) { ans++; count++; } } else { while (ans >= 0) { ans--; count++; } } } saisyo = count; count = 0; ans = data[0]; while (ans >= 0) { ans--; count++; } for (int i = 1; i < N; i++) { ans += data[i]; if (i % 2 != 0) { while (ans <= 0) { ans++; count++; } } else { while (ans >= 0) { ans--; count++; } } } saisyo = min(saisyo, count); cout << saisyo << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 123456; long long a[N]; long long b[N]; long long gh(long long n) { long long h = 0; long long s = a[0]; long long q = 0; if (s > 0) q = 1; else q = 0; for (long long i = 1; i < n; i++) { s += a[i]; if (s == 0) { if (q == 0) { h++; a[i]++; q = 1; } else { h++; a[i]--; q = 0; } } else if (s < 0) { long long foo = abs(s); if (q == 0) { h += (foo + 1); a[i] += (foo + 1); s += (foo + 1); q = 1; } else { q = 0; } } else { long long foo = (s); if (q == 1) { h += (foo + 1); a[i] -= (foo + 1); s -= (foo + 1); q = 0; } else { q = 1; } } } for (long long i = 0; i < n; i++) { a[i] = b[i]; } return h; } signed main() { long long n; scanf("%lld", &n); for (long long i = 0; i < n; i++) { scanf("%lld", &a[i]); b[i] = a[i]; } long long ap1 = gh(n); long long u1 = 123456789; long long u2 = 123456789; long long u3 = 123456789; if (a[0] == 0) { ap1 = 123456789; long long ap2 = 0; a[0] = 1; ap2 += 1; ap2 += gh(n); long long ap3 = 0; a[0] = -1; ap3 += 1; ap3 += gh(n); u1 = min(ap2, ap3); } else if (a[0] < 0) { long long uoo = a[0]; u2 = 0; a[0] = 1; u2 += (1 - uoo); u2 += gh(n); } else if (a[0] > 0) { long long uoo = a[0]; u3 = 0; a[0] = -1; u3 += (uoo + 1); u3 += gh(n); } printf("%lld\n", min(min(u1, u2), min(u3, ap1))); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; const long long n_ = 1e5 + 1000; const long double PI = acos(-1.0); long long gcd(long long a, long long b) { return (a ? gcd(b % a, a) : b); } long long power(long long a, long long n) { long long p = 1; while (n > 0) { if (n % 2) { p = p * a; } n >>= 1; a *= a; } return p; } long long power(long long a, long long n, long long mod) { long long p = 1; while (n > 0) { if (n % 2) { p = p * a; p %= mod; } n >>= 1; a *= a; a %= mod; } return p % mod; } bool vowel(char ch) { if (ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u') return true; else return false; } class UnionFind { private: vector<long long> p, rank, setSize; long long numSets; public: UnionFind(long long N) { setSize.assign(N, 1); numSets = N; rank.assign(N, 0); p.assign(N, 0); for (long long i = 0; i < N; i++) p[i] = i; } long long findSet(long long i) { return (p[i] == i) ? i : (p[i] = findSet(p[i])); } bool isSameSet(long long i, long long j) { return findSet(i) == findSet(j); } void unionSet(long long i, long long j) { if (!isSameSet(i, j)) { numSets--; long long x = findSet(i), y = findSet(j); if (rank[x] > rank[y]) { p[y] = x; setSize[x] += setSize[y]; } else { p[x] = y; setSize[y] += setSize[x]; if (rank[x] == rank[y]) rank[y]++; } } } long long numDisjointSets() { return numSets; } long long sizeOfSet(long long i) { return setSize[findSet(i)]; } }; signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long n; cin >> n; long long arr[n]; for (long long i = 0; i < n; i++) cin >> arr[i]; ; long long sum = 0, ans = 0, sign = 1; if (arr[0] < 0) sign = -1; for (long long i = 0; i < n; i++) { sum += arr[i]; if (sign * sum <= 0) { if (sign == 1) { ans += (1 - sum); sum = 1; } else { ans += (sum + 1); sum = -1; } } sign *= -1; } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <typename T1, typename T2> inline void chmin(T1& a, T2 b) { if (a > b) a = b; } template <typename T1, typename T2> inline void chmax(T1& a, T2 b) { if (a < b) a = b; } using namespace std; std::mt19937 mt((long long)time(0)); long long dx[4] = {0, 1, 0, -1}; long long dy[4] = {1, 0, -1, 0}; using Weight = long long; using Flow = long long; struct Edge { long long src, dst; Weight weight; Flow cap; Edge() : src(0), dst(0), weight(0) {} Edge(long long s, long long d, Weight w) : src(s), dst(d), weight(w) {} }; using Edges = std::vector<Edge>; using Graph = std::vector<Edges>; using Array = std::vector<Weight>; using Matrix = std::vector<Array>; void add_edge(Graph& g, long long a, long long b, Weight w = 1) { g[a].emplace_back(a, b, w); g[b].emplace_back(b, a, w); } void add_arc(Graph& g, long long a, long long b, Weight w = 1) { g[a].emplace_back(a, b, w); } struct uf_tree { std::vector<long long> parent; long long __size; uf_tree(long long size_) : parent(size_, -1), __size(size_) {} void unite(long long x, long long y) { if ((x = find(x)) != (y = find(y))) { if (parent[y] < parent[x]) std::swap(x, y); parent[x] += parent[y]; parent[y] = x; __size--; } } bool is_same(long long x, long long y) { return find(x) == find(y); } long long find(long long x) { return parent[x] < 0 ? x : parent[x] = find(parent[x]); } long long size(long long x) { return -parent[find(x)]; } long long size() { return __size; } }; template <signed M, unsigned T> struct mod_int { constexpr static signed MODULO = M; constexpr static unsigned TABLE_SIZE = T; signed x; mod_int() : x(0) {} mod_int(long long y) : x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {} mod_int(signed y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {} mod_int& operator+=(const mod_int& rhs) { if ((x += rhs.x) >= MODULO) x -= MODULO; return *this; } mod_int& operator-=(const mod_int& rhs) { if ((x += MODULO - rhs.x) >= MODULO) x -= MODULO; return *this; } mod_int& operator*=(const mod_int& rhs) { x = static_cast<signed>(1LL * x * rhs.x % MODULO); return *this; } mod_int& operator/=(const mod_int& rhs) { x = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO); return *this; } mod_int operator-() const { return mod_int(-x); } mod_int operator+(const mod_int& rhs) const { return mod_int(*this) += rhs; } mod_int operator-(const mod_int& rhs) const { return mod_int(*this) -= rhs; } mod_int operator*(const mod_int& rhs) const { return mod_int(*this) *= rhs; } mod_int operator/(const mod_int& rhs) const { return mod_int(*this) /= rhs; } bool operator<(const mod_int& rhs) const { return x < rhs.x; } mod_int inv() const { assert(x != 0); if (x <= static_cast<signed>(TABLE_SIZE)) { if (_inv[1].x == 0) prepare(); return _inv[x]; } else { signed a = x, b = MODULO, u = 1, v = 0, t; while (b) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return mod_int(u); } } mod_int pow(long long t) const { assert(!(x == 0 && t == 0)); mod_int e = *this, res = mod_int(1); for (; t; e *= e, t >>= 1) if (t & 1) res *= e; return res; } mod_int fact() { if (_fact[0].x == 0) prepare(); return _fact[x]; } mod_int inv_fact() { if (_fact[0].x == 0) prepare(); return _inv_fact[x]; } mod_int choose(mod_int y) { assert(y.x <= x); return this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact(); } static mod_int _inv[TABLE_SIZE + 1]; static mod_int _fact[TABLE_SIZE + 1]; static mod_int _inv_fact[TABLE_SIZE + 1]; static void prepare() { _inv[1] = 1; for (long long i = 2; i <= (long long)TABLE_SIZE; ++i) { _inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO; } _fact[0] = 1; for (unsigned i = 1; i <= TABLE_SIZE; ++i) { _fact[i] = _fact[i - 1] * signed(i); } _inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv(); for (long long i = (long long)TABLE_SIZE - 1; i >= 0; --i) { _inv_fact[i] = _inv_fact[i + 1] * (i + 1); } } }; template <signed M, unsigned F> std::ostream& operator<<(std::ostream& os, const mod_int<M, F>& rhs) { return os << rhs.x; } template <signed M, unsigned F> std::istream& operator>>(std::istream& is, mod_int<M, F>& rhs) { long long s; is >> s; rhs = mod_int<M, F>(s); return is; } template <signed M, unsigned F> mod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1]; template <signed M, unsigned F> mod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1]; template <signed M, unsigned F> mod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1]; template <signed M, unsigned F> bool operator==(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) { return lhs.x == rhs.x; } template <long long M, unsigned F> bool operator!=(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) { return !(lhs == rhs); } const signed MF = 1000010; const signed MOD = 1000000007; using mint = mod_int<MOD, MF>; mint binom(long long n, long long r) { return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r); } mint fact(long long n) { return mint(n).fact(); } mint inv_fact(long long n) { return mint(n).inv_fact(); } template <typename T, typename E> struct SegmentTree { typedef function<T(T, T)> F; typedef function<T(T, E)> G; typedef function<E(E, E)> H; typedef function<E(E, long long)> P; long long n; F f; G g; H h; P p; T d1; E d0; vector<T> dat; vector<E> laz; SegmentTree( long long n_, F f, G g, H h, T d1, E d0, vector<T> v = vector<T>(), P p = [](E a, long long b) { return a; }) : f(f), g(g), h(h), d1(d1), d0(d0), p(p) { init(n_); if (n_ == (long long)v.size()) build(n_, v); } void init(long long n_) { n = 1; while (n < n_) n *= 2; dat.clear(); dat.resize(2 * n - 1, d1); laz.clear(); laz.resize(2 * n - 1, d0); } void build(long long n_, vector<T> v) { for (long long i = 0; i < n_; i++) dat[i + n - 1] = v[i]; for (long long i = n - 2; i >= 0; i--) dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]); } inline void eval(long long len, long long k) { if (laz[k] == d0) return; if (k * 2 + 1 < n * 2 - 1) { laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]); laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]); } dat[k] = g(dat[k], p(laz[k], len)); laz[k] = d0; } T update(long long a, long long b, E x, long long k, long long l, long long r) { eval(r - l, k); if (r <= a || b <= l) return dat[k]; if (a <= l && r <= b) { laz[k] = h(laz[k], x); return g(dat[k], p(laz[k], r - l)); } return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2), update(a, b, x, k * 2 + 2, (l + r) / 2, r)); } T update(long long a, long long b, E x) { return update(a, b, x, 0, 0, n); } T query(long long a, long long b, long long k, long long l, long long r) { eval(r - l, k); if (r <= a || b <= l) return d1; if (a <= l && r <= b) return dat[k]; T vl = query(a, b, k * 2 + 1, l, (l + r) / 2); T vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return f(vl, vr); } T query(long long a, long long b) { return query(a, b, 0, 0, n); } }; class compress { public: static const long long MAP = 10000000; map<long long, long long> zip; long long unzip[MAP]; compress(vector<long long>& x) { sort(x.begin(), x.end()); x.erase(unique(x.begin(), x.end()), x.end()); for (long long i = 0; i < x.size(); i++) { zip[x[i]] = i; unzip[i] = x[i]; } } }; unsigned euclidean_gcd(unsigned a, unsigned b) { while (1) { if (a < b) swap(a, b); if (!b) break; a %= b; } return a; } template <class T> struct CumulativeSum2D { vector<vector<T>> data; CumulativeSum2D(long long W, long long H) : data(W + 1, vector<long long>(H + 1, 0)) {} void add(long long x, long long y, T z) { ++x, ++y; if (x >= data.size() || y >= data[0].size()) return; data[x][y] += z; } void build() { for (long long i = 1; i < data.size(); i++) { for (long long j = 1; j < data[i].size(); j++) { data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1]; } } } T query(long long sx, long long sy, long long gx, long long gy) { return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]); } }; long long nC2(long long n) { return n * (n - 1) / 2; } class node { public: long long depth; long long num; node(long long d, long long n) { depth = d; num = n; } }; CumulativeSum2D<long long> sumB(4001, 4001); template <class T> struct CumulativeSum { vector<T> data; CumulativeSum(long long sz) : data(sz, 0){}; void add(long long k, T x) { data[k] += x; } void build() { for (long long i = 1; i < data.size(); i++) { data[i] += data[i - 1]; } } T query(long long k) { if (k < 0) return (0); return (data[min(k, (long long)data.size() - 1)]); } T query(long long left, long long right) { return query(right) - query(left - 1); } }; std::vector<bool> IsPrime; void sieve(size_t max) { if (max + 1 > IsPrime.size()) { IsPrime.resize(max + 1, true); } IsPrime[0] = false; IsPrime[1] = false; for (size_t i = 2; i * i <= max; ++i) if (IsPrime[i]) for (size_t j = 2; i * j <= max; ++j) IsPrime[i * j] = false; } vector<int64_t> divisor(int64_t n) { vector<int64_t> ret; for (int64_t i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if (i * i != n) ret.push_back(n / i); } } sort(begin(ret), end(ret)); return (ret); } long long binary_search(function<bool(long long)> isOk, long long ng, long long ok) { while (abs(ok - ng) > 1) { long long mid = (ok + ng) / 2; if (isOk(mid)) ok = mid; else ng = mid; } return ok; } std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s) { long long n = g.size(); const Weight inf = std::numeric_limits<Weight>::max() / 8; Edges es; for (long long i = 0; i < n; i++) for (auto& e : g[i]) es.emplace_back(e); std::vector<Weight> dist(n, inf); dist[s] = 0; bool negCycle = false; for (long long i = 0;; i++) { bool update = false; for (auto& e : es) { if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) { dist[e.dst] = dist[e.src] + e.weight; update = true; } } if (!update) break; if (i > n) { negCycle = true; break; } } return std::make_pair(dist, !negCycle); } std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s, long long d) { long long n = g.size(); const Weight inf = std::numeric_limits<Weight>::max() / 8; Edges es; for (long long i = 0; i < n; i++) for (auto& e : g[i]) es.emplace_back(e); std::vector<Weight> dist(n, inf); dist[s] = 0; bool negCycle = false; for (long long i = 0; i < n * 2; i++) { bool update = false; for (auto& e : es) { if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) { dist[e.dst] = dist[e.src] + e.weight; update = true; if (e.dst == d && i == n * 2 - 1) negCycle = true; } } if (!update) break; } return std::make_pair(dist, !negCycle); } vector<long long> Manachar(string S) { long long len = S.length(); vector<long long> R(len); long long i = 0, j = 0; while (i < S.size()) { while (i - j >= 0 && i + j < S.size() && S[i - j] == S[i + j]) ++j; R[i] = j; long long k = 1; while (i - k >= 0 && i + k < S.size() && k + R[i - k] < j) R[i + k] = R[i - k], ++k; i += k; j -= k; } return R; } std::vector<long long> tsort(const Graph& g) { long long n = g.size(), k = 0; std::vector<long long> ord(n), in(n); for (auto& es : g) for (auto& e : es) in[e.dst]++; std::queue<long long> q; for (long long i = 0; i < n; ++i) if (in[i] == 0) q.push(i); while (q.size()) { long long v = q.front(); q.pop(); ord[k++] = v; for (auto& e : g[v]) { if (--in[e.dst] == 0) { q.push(e.dst); } } } return *std::max_element(in.begin(), in.end()) == 0 ? ord : std::vector<long long>(); } std::vector<Weight> dijkstra(const Graph& g, long long s) { const Weight INF = std::numeric_limits<Weight>::max() / 8; using state = std::tuple<Weight, long long>; std::priority_queue<state> q; std::vector<Weight> dist(g.size(), INF); dist[s] = 0; q.emplace(0, s); while (q.size()) { Weight d; long long v; std::tie(d, v) = q.top(); q.pop(); d *= -1; if (dist[v] < d) continue; for (auto& e : g[v]) { if (dist[e.dst] > dist[v] + e.weight) { dist[e.dst] = dist[v] + e.weight; q.emplace(-dist[e.dst], e.dst); } } } return dist; } Matrix WarshallFloyd(const Graph& g) { auto const INF = std::numeric_limits<Weight>::max() / 8; long long n = g.size(); Matrix d(n, Array(n, INF)); for (long long i = (0); i < (long long)(n); i++) d[i][i] = 0; for (long long i = (0); i < (long long)(n); i++) for (auto& e : g[i]) d[e.src][e.dst] = std::min(d[e.src][e.dst], e.weight); for (long long k = (0); k < (long long)(n); k++) for (long long i = (0); i < (long long)(n); i++) for (long long j = (0); j < (long long)(n); j++) { if (d[i][k] != INF && d[k][j] != INF) { d[i][j] = std::min(d[i][j], d[i][k] + d[k][j]); } } return d; } const long long BLACK = 1, WHITE = 0; bool isValid(vector<vector<long long>>& mapData, long long gyo, long long retu) { bool f = true; for (long long i = (0); i < (long long)(gyo); i++) { for (long long j = (0); j < (long long)(retu); j++) { long long colorCnt = 0; if (j > 0 && mapData[i][j] == mapData[i][j - 1]) { colorCnt++; } if (i > 0 && mapData[i][j] == mapData[i - 1][j]) { colorCnt++; } if (i < gyo - 1 && mapData[i][j] == mapData[i + 1][j]) { colorCnt++; } if (j < retu - 1 && mapData[i][j] == mapData[i][j + 1]) { colorCnt++; } if (colorCnt > 1) { f = false; } } } return f; } void getNext(long long nowX, long long nowY, long long* pOutX, long long* pOutY, long long gyo, long long retu) { if (nowX == retu - 1) { *pOutY = nowY + 1; *pOutX = 0; return; } *pOutX = nowX + 1; *pOutY = nowY; } void dfs(vector<vector<long long>> mapData, long long nowX, long long nowY, long long gyo, long long retu, long long* outCnt) { if (nowX == retu - 1 && nowY == gyo - 1) { mapData[nowY][nowX] = BLACK; if (isValid(mapData, gyo, retu)) { *outCnt = *outCnt + 1; } mapData[nowY][nowX] = WHITE; if (isValid(mapData, gyo, retu)) { *outCnt = *outCnt + 1; } return; } mapData[nowY][nowX] = BLACK; long long nextX, nextY; getNext(nowX, nowY, &nextX, &nextY, gyo, retu); dfs(mapData, nextX, nextY, gyo, retu, outCnt); mapData[nowY][nowX] = WHITE; getNext(nowX, nowY, &nextX, &nextY, gyo, retu); dfs(mapData, nextX, nextY, gyo, retu, outCnt); } void dec(map<long long, long long>& ma, long long a) { ma[a]--; if (ma[a] == 0) { ma.erase(a); } } long long N; long long solve(long long ans, vector<long long> A, vector<long long> cu) { for (long long i = (0); i < (long long)(N); i++) { if (cu[i] == 0) { ans++; if (i == 0) { if (cu[i + 1] < 0) { cu[i] = 1; } else { cu[i] = -1; } } else { if (cu[i - 1] < 0) { cu[i] = 1; } else { cu[i] = -1; } } } if (i == N - 1) { break; } if (cu[i] < 0 == cu[i + 1] < 0) { if (cu[i + 1] > 0) { ans += cu[i + 1] + 1; cu[i + 1] -= cu[i + 1] + 1; } else { ans += -cu[i + 1] + 1; cu[i + 1] += -cu[i + 1] + 1; } } cu[i + 2] = cu[i + 1] + A[i + 2]; } return ans; } signed main() { cin >> N; vector<long long> A(N + 2), A2; vector<long long> cu(N + 2); long long su = 0; for (long long i = (0); i < (long long)(N); i++) { cin >> A[i]; su += A[i]; cu[i] = su; } A2 = A; long long ans1 = 0, ans2 = 0; ans1 = solve(ans1, A, cu); if (A2[0] < 0) { ans2 = -A2[0] + 1; A2[0] = 1; } else { ans2 = A2[0] + 1; A2[0] = -1; } su = 0; for (long long i = (0); i < (long long)(N); i++) { su += A2[i]; cu[i] = su; } ans2 = solve(ans2, A2, cu); cout << min(ans1, ans2) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#pragma warning disable using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Runtime.Serialization.Formatters.Binary; using System.Text; using System.Text.RegularExpressions; using System.Diagnostics; using System.Numerics; using System.Collections; static class MainClass { public static void Main(string[] args) { var n = Console.ReadLine().ToInt32(); var an = Console.ReadLine().SplittedStringToInt32List(); var sum = 0; var ruisekiwa = new long[n]; ruisekiwa[0] = an[0]; var count = 0l; for (int i = 1; i < n; i++) { var before = ruisekiwa[i - 1] + an[i]; if ((before < 0 && ruisekiwa[i - 1] < 0)) { count += Math.Abs(before) + 1; before = 1; } else if (before > 0 && ruisekiwa[i - 1] > 0) { count += before + 1; before = -1; } ruisekiwa[i] = before; } if (ruisekiwa[n - 1] == 0) count++; Console.WriteLine(count); Console.ReadLine(); //var nm = Console.ReadLine().SplittedStringToInt32List(); //var n = nm[0]; //var m = nm[1]; //InitializeUnionFind(n); //var abs = new List<KeyValuePair<int,int>>(); //for (int i = 0; i < m; i++) //{ // var ab = Console.ReadLine().SplittedStringToInt32List(); // abs.Add(new KeyValuePair<int, int>(ab[0] - 1, ab[1] - 1)); //} //abs.Reverse(); //var ls = new List<int>(); //foreach (var item in abs) //{ // Unite(item.Key, item.Value); // ls.Add(ParentCount); //} //ls.Reverse(); //var before = -1; //var befores = 0; //for (int i = 0; i < m; i++) //{ // if (before != -1) // { // var num = ls[i] - befores; // Console.WriteLine((num * (num - 1))/2 + before); // before = (num * (num - 1)) / 2 + before; // } // else // { // var num = ls[i] - befores; // Console.WriteLine((num * ( num - 1)) / 2); // before = (num * (num - 1)) / 2; // } // befores = ls[i]; //} //Console.ReadLine(); } public static BigInteger[] factors; public static BigInteger[] revFactors; public static void SetFactor(int N) { factors = new BigInteger[N]; factors[0] = 1; revFactors = new BigInteger[N]; for (int i = 1; i < N; i++) { factors[i] = factors[i - 1] * i; factors[i] %= Mod1e9; } revFactors[N - 1] = BigInteger.ModPow(factors[N - 1], Mod1e9 - 2, Mod1e9); for (int i = N - 2; i >= 0; i--) { revFactors[i] = revFactors[i + 1] * (i + 1); revFactors[i] %= Mod1e9; } } public static BigInteger GetCombination(int a, int b) { return a >= b ? (((factors[a] * revFactors[b]) % Mod1e9) * revFactors[a - b]) % Mod1e9 : 0; } public static int ParentCount; public static int[] Parents; public static int[] IfParentsChildrenCount; public static int[] Ranks; public static void InitializeUnionFind(int N) { Parents = new int[N]; Ranks = new int[N]; IfParentsChildrenCount = new int[N]; for (int i = 0; i < N; i++) { Parents[i] = i; Ranks[i] = 0; IfParentsChildrenCount[i] = 1; } ParentCount = N + 1; } public static int Root(int a) { if (Parents[a] == a) { return a; } else { Parents[a] = Root(Parents[a]); return Parents[a]; } } public static bool Same(int a, int b) { return Root(a) == Root(b); } public static void Unite(int a, int b) { var parentA = Root(a); var parentB = Root(b); if (parentA == parentB) return; if (Ranks[parentA] < Ranks[parentB]) { Parents[parentA] = parentB; IfParentsChildrenCount[parentB] += IfParentsChildrenCount[parentA]; ParentCount -= IfParentsChildrenCount[parentA]; IfParentsChildrenCount[parentA] = 0; } else { Parents[parentB] = parentA; if (Ranks[parentA] == Ranks[parentB]) { Ranks[parentA]++; } IfParentsChildrenCount[parentA] += IfParentsChildrenCount[parentB]; ParentCount -= IfParentsChildrenCount[parentB]; IfParentsChildrenCount[parentB] = 0; } } #region ライブラリ public static long ToInt64(this string str) => long.Parse(str); public static int ToInt32(this string str) => int.Parse(str); public static BigInteger ToBigInteger(this string str) => BigInteger.Parse(str); public static List<string> SplittedStringToList(this string str) => str.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries).ToList(); public static List<int> SplittedStringToInt32List(this string str) => str.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries).Select(x => int.Parse(x)).ToList(); public static List<long> SplittedStringToInt64List(this string str) => str.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries).Select(x => long.Parse(x)).ToList(); public static List<BigInteger> SplittedStringToBigInteger(this string str) => str.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries).Select(x => BigInteger.Parse(x)).ToList(); public const int INF = int.MaxValue / 4; public const long LONGINF = long.MaxValue / 2; public const int Mod1e9 = 1000000007; public static void PrintArray(bool[,] array) { for (int i = 0; i < array.GetLength(0); i++) { var sb = new StringBuilder(); for (int j = 0; j < array.GetLength(1); j++) { sb.Append(array[i, j]).Append(" "); } Console.WriteLine(sb.ToString()); } } public static int Manhattan(int x1, int x2, int y1, int y2) { return Math.Abs(x1 - x2) + Math.Abs(y1 - y2); } public static Dictionary<T, int> ToCountedDictionary<T>(this IEnumerable<T> items) { var dic = new Dictionary<T, int>(); foreach (var item in items) { if (dic.ContainsKey(item)) dic[item]++; else dic.Add(item, 1); } return dic; } public static long Sums(IEnumerable<int> list) { var sum = 0l; foreach (var item in list) { sum += item; } return sum; #endregion } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { cin.sync_with_stdio(false); int n; cin >> n; vector<ll> a(n); ll sum = 0; for (int i = 0; i < n; i++) { cin >> a[i]; } ll count = 0; sum = a[0]; for (int i = 1; i < n; i++) { if (sum < 0 && sum + a[i] <= 0) { count += abs(sum) - a[i] + 1; sum = 1; } else if (sum > 0 && sum + a[i] >= 0) { count += abs(sum + a[i] + 1); sum = -1; } else { sum += a[i]; } if (sum == 0) { count += 1; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define forx(i,a,b) for(int i=(a);i<(b);i++) #define rep(j,n) for(int j=0;j<(n);j++) typedef long long ll; int main() { int n,ansa=0,ansb=0,sum=0; cin>>n; bool plus=true; vector<int>t(n); rep(i,n){ int a; cin>>t(i); a=t(i); while(plus&&sum+a<=0){ a++; ansa++; } while(!plus&&sum+a>=0){ a--; ansa++; } sum+=a; plus=!plus; } plus=false; sum=0; rep(i,n){ int a; a=t(i); while(plus&&sum+a>=0){ a++; ansb++; } while(!plus&&sum+a<=0){ a--; ansb++; } sum+=a; plus=!plus; } cout<<min(ansa,ansb)<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9 + 7; const int INF = 100100100; const double PI = 3.14159265358979323846; int main() { int n, a[100001] = {0}; int res = 0; long long sum = 0; cin >> n; for (int i = 0; i < (n); ++i) cin >> a[i]; int notZ = 0; for (int i = 0; i < (n); ++i) { if (a[i] != 0) { notZ = i; break; } } if (notZ > 0) { if (notZ % 2 == 1) { a[0] = -1; ++res; } else if (notZ % 2 == 0) { a[0] = 1; ++res; } } sum = a[0]; for (int i = (1); i < (n); ++i) { int prod = sum * (sum + a[i]); if (prod >= 0) { int newSum = -sum / abs(sum); res += abs(newSum - sum - a[i]); sum = newSum; } else if (prod < 0) { sum += a[i]; } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int *a; int ans = 0; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } int sum = a[0]; for (int i = 1; i < n; i++) { int tmp = sum + a[i]; if (sum < 0 && tmp <= 0) { int add = 1 - tmp; sum = tmp + add; ans += add; } else if (sum > 0 && tmp >= 0) { int add = -1 - tmp; sum = tmp + add; add *= -1; ans += add; } else { sum = tmp; } } cout << ans << endl; delete (a); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { const int N = 100000; int n; long long a[N]; long long sum = 0, ans = 0; bool sign1 = true; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } sum = a[0]; if (sum >= 0) sign1 = true; else sign1 = false; for (int i = 1; i < n; i++) { bool sign2 = true; sum += a[i]; if (sum >= 0) sign2 = true; else sign2 = false; if (sign1 != sign2) { sign1 = sign2; if (sum == 0) { ans++; if (sign1) sum = -1; else sum = 1; } } else { sign1 = !sign2; ans += abs(sum) + 1; if (sign2) sum = -1; else sum = 1; } } cout << ans << endl; return (0); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; int main(int argc, char const *argv[]) { int n; std::cin >> n; std::vector<int> v(n); std::vector<int> sums(2, 0); for (size_t i = 0; i < n; i++) { std::cin >> v[i]; sums[i % 2] += v[i]; } ull ans = 0; if (sums[0] > sums[1] && v[0] <= 0) { ans = ans + abs(v[0]) + 1; v[0] = 1; } else if (sums[0] < sums[1] && v[0] >= 0) { ans = ans + abs(v[0]) + 1; v[0] = -1; } else if (v[0] == 0) { ans += 1; v[0] = 1; } ll now, pre; now = pre = v[0]; for (size_t i = 1; i < n; i++) { now = v[i] + pre; if (pre * now >= 0) { if (pre > 0) { ans = ans + abs(now) + 1; now = -1; } else if (pre < 0) { ans = ans + abs(now) + 1; now = 1; } } pre = now; } std::cout << ans << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } template <class T> int former(const vector<T> &v, T x) { return upper_bound(v.begin(), v.end(), x) - v.begin() - 1; } template <class T> int latter(const vector<T> &v, T x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } const long long LLINF = 1LL << 60; const int INTINF = 1 << 30; const int MAX = 510000; const int MOD = 1000000007; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++) { fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } long long COM(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } struct UnionFind { vector<long long> par; UnionFind(long long n) : par(n, -1) {} void init(long long n) { par.assign(n, -1); } long long root(long long x) { if (par[x] < 0) return x; else return par[x] = root(par[x]); } bool issame(long long x, long long y) { return root(x) == root(y); } bool merge(long long x, long long y) { x = root(x); y = root(y); if (x == y) return false; if (par[x] > par[y]) swap(x, y); par[x] += par[y]; par[y] = x; return true; } long long size(long long x) { return -par[root(x)]; } }; template <typename T> vector<T> dijkstra(int s, vector<vector<pair<int, T> > > &G) { const T INF = numeric_limits<T>::max(); using P = pair<T, int>; int n = G.size(); vector<T> d(n, INF); vector<int> b(n, -1); priority_queue<P, vector<P>, greater<P> > q; d[s] = 0; q.emplace(d[s], s); while (!q.empty()) { P p = q.top(); q.pop(); int v = p.second; if (d[v] < p.first) continue; for (auto &e : G[v]) { int u = e.first; T c = e.second; if (d[u] > d[v] + c) { d[u] = d[v] + c; b[u] = v; q.emplace(d[u], u); } } } return d; } vector<vector<int> > bfs(vector<string> &s, int sy, int sx, char wall, int dir) { int h = s.size(), w = s.front().size(); vector<vector<int> > dp(h, vector<int>(w, -1)); using P = pair<int, int>; queue<P> q; dp[sy][sx] = 0; q.emplace(sy, sx); int dy[] = {1, -1, 0, 0, 1, 1, -1, -1}; int dx[] = {0, 0, 1, -1, 1, -1, 1, -1}; auto in = [&](int y, int x) { return 0 <= y && y < h && 0 <= x && x < w; }; while (!q.empty()) { int y, x; tie(y, x) = q.front(); q.pop(); for (int k = 0; k < dir; k++) { int ny = y + dy[k], nx = x + dx[k]; if (!in(ny, nx) || s[ny][nx] == wall) continue; if (~dp[ny][nx]) continue; dp[ny][nx] = dp[y][x] + 1; q.emplace(ny, nx); } } return dp; } int64_t power(int64_t x, int64_t n, int64_t mod) { int64_t ret = 1; while (n > 0) { if (n & 1) (ret *= x) %= mod; (x *= x) %= mod; n >>= 1; } return ret; } vector<int> sieve_of_eratosthenes(int n) { vector<int> primes(n); for (int i = 2; i < n; ++i) primes[i] = i; for (int i = 2; i * i < n; ++i) if (primes[i]) for (int j = i * i; j < n; j += i) primes[j] = 0; return primes; } std::vector<long long> divisor(long long n) { std::vector<long long> ret; for (long long i = 1; i * i <= n; ++i) { if (n % i == 0) { ret.push_back(i); if (i != 1 && i * i != n) { ret.push_back(n / i); } } } return ret; } const int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1}; const int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; int main(void) { long long n; cin >> n; vector<long long> a(n); for (long long i = 0, i_len = (n); i < i_len; ++i) cin >> a[i]; long long sum = 0; long long count = 0; long long ans = 0; for (long long i = 0, i_len = (n); i < i_len; ++i) { sum += a[i]; if (i % 2 == 0) if (sum < 0) ans += 1 - sum; if (i % 2 != 0) if (sum > 0) ans += sum + 1; } sum = 0; for (long long i = 0, i_len = (n); i < i_len; ++i) { sum += a[i]; if (i % 2 == 0) if (sum > 0) count += sum + 1; if (i % 2 != 0) if (sum < 0) count += 1 - sum; } chmin(ans, count); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using namespace std; int main() { int n; cin >> n; int a[n]; int sum = 0; for (long long i = 0; i < n; i++) { int x; cin >> x; sum += x; a[i] = sum; } int f = (a[0] > 0 ? 1 : -1); int ans = 0; int fix = 0; for (long long i = 0; i < n; i++) { if (f == 1) { if (a[i] + fix <= 0) { ans += 1 - (fix + a[i]); fix += 1 - (fix + a[i]); } f = -1; } else { if (a[i] + fix >= 0) { ans += (fix + a[i]) + 1; fix -= ((fix + a[i]) + 1); } f = 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; namespace ABC059C { class Program { static void Main(string[] args) { int n = Int32.Parse(Console.ReadLine()); string[] bufs = Console.ReadLine().Split(' '); int res = 0; int sum = Int32.Parse(bufs[0]); if (sum == 0) { res++; } for (int i = 1; i < n; i++) { int tmp = sum + Int32.Parse(bufs[i]); if (sum == 0) { if (tmp == 0) { res += 2; } else if (tmp == 1 || tmp == -1) { sum = tmp; res++; } else if (tmp > 1) { sum = tmp - 1; } else { sum = tmp + 1; } } else if (sum > 0) { if (tmp >= 0) { res += tmp + 1; sum = -1; } else { sum = tmp; } } else { if (tmp <= 0) { res += -tmp + 1; sum = 1; } else { sum = tmp; } } } Console.WriteLine(res); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long sumi = 0, val1 = 0; int ne = 0; if (a.at(0) == 0) { while (a.at(ne) == 0) { if (ne == 0) val1++; else val1 += 2; ne++; if (ne == n) break; } } long long val2 = val1; for (int i = ne; i < n; i++) { if (a.at(0) == 0) { if (ne % 2 == 0) sumi = -1; else sumi = 1; } if (i == 0) { sumi = a.at(i); continue; } if (i % 2 == 1) { if (sumi + a.at(i) < 0) sumi += a.at(i); else { val1 += (sumi + a.at(i) + 1); sumi = -1; } } else { if (sumi + a.at(i) > 0) sumi += a.at(i); else { val1 += (abs(sumi + a.at(i)) + 1); sumi = 1; } } } for (int i = ne; i < n; i++) { if (a.at(0) == 0) { if (ne % 2 == 0) sumi = 1; else sumi = -1; } if (i == 0) { sumi = a.at(i); continue; } if (i % 2 == 1) { if (sumi + a.at(i) > 0) sumi += a.at(i); else { val2 += (abs(sumi + a.at(i)) + 1); sumi = 1; } } else { if (sumi + a.at(i) < 0) sumi += a.at(i); else { val2 += (sumi + a.at(i) + 1); sumi = -1; } } } cout << min(val1, val2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <cstdio> #define N 100005 using namespace std; typedef long long ll; ll n, b, a[N]; ll abs(ll p) {return p > 0 ? p : -p;} ll f(ll p) { ll i, s = 0; for (i = 1; i < n; i++) { if (p > 0) { p += a[i]; if (p >= 0) s += p + 1, p = -1; } else { p += a[i]; if (p <= 0) s += -p + 1, p = 1; } } return s; } int main() { ll i, t = 1e19; cin >> n; for (i = 0; i < n; i++) scanf("%lld", &a[i]); if (a[0] > 0) t = f(-1) + a[0] - 1; else t = f(1) - a[0] + 1; cout << min(f(a[0]), t); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { const int N = 100000; int n; long long a[N]; long long sum = 0, ans = 0; bool sign1 = true; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } sum = a[0]; if (sum >= 0) sign1 = true; else sign1 = false; for (int i = 1; i < n; i++) { bool sign2 = true; sum += a[i]; if (sum >= 0) sign2 = true; else sign2 = false; if (sign1 != sign2) { if (sum == 0) { ans++; if (sign1) sum = -1; else sum = 1; } sign1 = sign2; } else { ans += abs(sum) + 1; if (sign2) sum = -1; else sum = 1; sign1 = !sign2; } } cout << ans << endl; return (0); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; unsigned long long func(vector<long long int>& s, vector<int>& hugo, long long int k) { unsigned long long int ret = 0; for (int i = 1; i < n; i++) { if (s[i] == k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret++; k++; } else { hugo[i] = 0; ret++; k--; } } else if (s[i] > k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret += s[i] - k + 1; k += s[i] - k + 1; } else { hugo[i] = 0; } } else { if (hugo[i - 1] == 0) { hugo[i] = 1; } else { hugo[i] = 0; ret += k - s[i] + 1; k -= k - s[i] + 1; } } } return ret; } void solve() { cin >> n; vector<long long int> v(n), sum(n), sum2(n); for (int i = 0; i < n; i++) { cin >> v[i]; if (i == 0) sum[i] = v[i]; else sum[i] = sum[i - 1] + v[i]; } vector<int> hugo(n), hugo2(n); sum2 = sum; unsigned long long int ans; long long int k = 0; if (sum[0] == 0) { hugo[0] = 0; hugo2[0] = 1; ans = min(func(sum, hugo, -1), func(sum2, hugo2, 1)); } else if (sum[0] > 0) { hugo[0] = 0; hugo2[0] = 1; ans = min(func(sum, hugo, 0), func(sum2, hugo2, sum2[0] + 1) + sum2[0] + 1); } else { hugo[0] = 1; hugo2[0] = 0; ans = min(func(sum, hugo, 0), func(sum2, hugo2, sum2[0] - 1) - sum2[0] + 1); } cout << ans << endl; return; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int64_t> a(n); for (int i = 0; i < n; i++) cin >> a.at(i); int64_t ans = 0, s = 0; for (int i = 0; i < n; i++) { if (s > 0) { if (s + a.at(i) >= 0) { ans += (s + a.at(i) - (-1)); s = -1; } else s += a.at(i); } else if (s < 0) { if (s + a.at(i) <= 0) { ans += (1 - (s + a.at(i))); s = 1; } else s += a.at(i); } else s += a.at(i); if (s == 0) { ans++; if (i < n - 1) { for (int j = i + 1; j < n; j++) { if (a.at(j) > 0) { s = -1; break; } else if (a.at(j) < 0) { s = 1; break; } } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100004], temp[100004]; long long solve() { long long ans = 0; for (int i = (2); i <= (int)(n); ++i) { if (a[i - 1] > 0) { if (a[i] + a[i - 1] < 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] + 1 + a[i - 1]); a[i] = -1; } else { if (a[i] + a[i - 1] > 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] - 1 + a[i - 1]); a[i] = 1; } } return ans; } int main() { scanf("%d", &n); for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]); long long ans = 0; if (!a[1]) { a[1] = 1; memcpy(temp, a, sizeof(a)); ans = solve() + 1; memcpy(a, temp, sizeof(temp)); a[1] = -1; ans = min(ans, solve() + 1); } else { memcpy(temp, a, sizeof(a)); ans = solve(); memcpy(a, temp, sizeof(temp)); long long t = abs(a[1]) - 1; if (a[1] > 0) a[1] = -1; else a[1] = 1; ans = min(ans, solve() + t); } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def solve(n, a) (n-1).times{|i|a[i+1]+=a[i]} sum=res=0 (n-1).times do |i| a[i+1] += sum next if a[i]*a[i+1]<0 if a[i+1]==0 res += 1 sum -= a[i]/a[i].abs else res += a[i+1].abs + 1 sum -= a[i+1] + a[i+1]/a[i+1].abs end a[i+1] = -a[i]/a[i].abs end return res end n=gets.to_i a=gets.split.map &:to_i if a[0]!=0 p solve(n, a) else a[0]=1 s1 = 1+solve(n, a.dup) a[0]=-1 s2 = 1+solve(n, a.dup) p [s1, s2].min end