Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) L = [0 for _ in range(n)] L[0] = a[0] for i in range(1, n): L[i] = L[i-1] + a[i] delay = 0 all_over = 0 if a[0] != 0: sign = (a[0] > 0) - (a[0] < 0) for i in range(1, n): L[i] += delay if L[i] <= 0 and sign == -1: delay += 1 - L[i] all_over += 1 - L[i] L[i] = 1 elif L[i] >= 0 and sign == 1: delay -= L[i] + 1 all_over += L[i] + 1 L[i] = -1 sign *= -1 print(all_over)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 100000000; int dx[] = {0, 1, -1, 0, 1, -1, 1, -1}; int dy[] = {1, 0, 0, -1, 1, -1, -1, 1}; int main() { int n; cin >> n; vector<int> v(n + 1, 0), w(n + 1, 0); for (int i = 1; i <= n; i++) cin >> v[i]; int ans = 0; for (int i = 1; i <= n; i++) { w[i] = w[i - 1] + v[i]; if (w[i - 1] > 0 && w[i] > 0) { int tmp = w[i] + 1; ans += tmp; v[i] -= tmp; w[i] = -1; } else if (w[i - 1] < 0 && w[i] < 0) { int tmp = -w[i] + 1; ans += tmp; v[i] += tmp; w[i] = 1; } else if (w[i] == 0 && w[i - 1] < 0) { ans++; v[i]++; w[i]++; } else if (w[i] == 0 && w[i - 1] > 0) { ans++; v[i]--; w[i]--; } } int sum = accumulate(v.begin(), v.end(), 0); if (sum == 0) ans++; cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return 1; } return 0; } using namespace std; int main(void) { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; for (int i = 0; i < (int)(n - 1); i++) a[i + 1] += a[i]; int make_pair = 0, pm = 0; int diff = 0; for (int i = 0; i < (int)(n); i++) { int goal = (i & 1) ? 1 : -1; if (goal * (a[i] + diff) > 0) continue; make_pair += abs(goal - (a[i] + diff)); diff += goal - (a[i] + diff); } diff = 0; for (int i = 0; i < (int)(n); i++) { int goal = (i & 1) ? -1 : 1; if (goal * (a[i] + diff) > 0) continue; pm += abs(goal - (a[i] + diff)); diff += goal - (a[i] + diff); } cout << min(make_pair, pm) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> an(n); for (int i = 0; i < n; ++i) { cin >> an[i]; } int cnt_min = INT_MAX; for (int j = 0; j < 2; ++j) { int sign = j == 0 ? -1 : 1; int accum = an[0]; int cnt = 0; if (accum * sign <= 0) { auto x = sign - accum; accum += x; cnt += abs(x); } for (int i = 1; i < n; ++i) { auto new_accum = accum + an[i]; if (new_accum * accum >= 0) { int x = -sign - new_accum; new_accum += x; cnt += abs(x); } int new_sign = new_accum > 0 ? 1 : -1; accum = new_accum; sign = new_sign; } if (cnt < cnt_min) { cout << endl; cnt_min = cnt; } } cout << cnt_min << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int, input().split())) def f(presum, x, fugo): if (presum+x)*fugo<=0: sa=fugo-presum-x prosum=fugo else: sa=0 prosum=presum+x return sa, prosum out1=0 y=a[0] for i in range(1, n): x, y=f(y, a[i], (-1)**i) out1+=abs(x) out2=0 y=a[0] for i in range(1, n): x, y=f(y, a[i], -(-1)**i) out2+=abs(x) print(min(out1, out2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> void drop(const T &x) { cout << x << endl; exit(0); } void solve() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) cin >> a.at(i); int ans = 0; if (!a.at(0)) { if (a.at(1) > 0) a.at(0)--; if (a.at(1) < 0) a.at(0)++; ans++; } int sum = a.at(0); for (int i = 1; i < n; ++i) { if (sum < 0) { if (sum + a.at(i) <= 0) { while (sum + a.at(i) <= 0) { ++a.at(i); ++ans; } } } else { if (sum + a.at(i) >= 0) { while (sum + a.at(i) >= 0) { --a.at(i); ++ans; } } } sum += a.at(i); } cout << ans << '\n'; return; } signed main() { ios::sync_with_stdio(false); cin.tie(0); int T = 1; while (T--) solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <algorithm> #include <iostream> #include <iomanip> #include <cstring> #include <cstdlib> #include <utility> #include <cstdio> #include <vector> #include <string> #include <queue> #include <stack> #include <cmath> #include <set> #include <map> using ll = long long; using itn = int; using namespace std; int GCD(int a, int b){ return b ? GCD(b, a%b) : a; } int main() { int n; cin >> n; int a[n]; for(int i=0; i<n; i++){ cin >> a[i]; } int asum[n+1]={}; for(int i=0; i<n; i++){ asum[i+1] = asum[i]+a[i]; } int cnt=0; int accSum=0; for(int i=1; i<n; i++){ asum[i+1]+=accSum; if(asum[i+1]*asum[i]>0){ int s=abs(asum[i+1])+1; cnt+=s; asum[i+1]<0 ? accSum+=s : accSum+=-1*s; asum[i+1]<0 ? asum[i+1]=1 : asum[i+1]=-1; }else if(asum[i+1]*asum[i]==0){ cnt+=1; asum[i]<0 ? asum[i+1]=1,accSum+=1 : asum[i+1]=-1,accSum=-1; } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i as = gets.split.map(&:to_i) cnt1 = 0 sum = as[0] n.times.with_index(1) do |_,i| break if as[i].nil? prev = sum < 0 ? "n" : "p" tmp = sum sum += as[i] if prev == "n" if sum == 0 sum += 1 cnt1 += 1 elsif sum < 0 sum = 1 cnt1 += tmp.abs - as[i].abs + 1 end else if sum == 0 sum -= 1 cnt1 += 1 elsif sum > 0 sum = -1 cnt1 += as[i].abs + tmp + 1 end end # p "a: #{as[i]}" # p "sum: #{sum}" # p "cnt: #{cnt1}" # p "--------" end puts cnt1
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 1e9 + 7; const long long longinf = 1LL << 60; const int mx = 100010; const long long mod = 1e9 + 7; int main() { int n; cin >> n; vector<int> a(n); for (int i = (int)(0); i < (int)(n); ++i) { cin >> a[i]; } long long ansa = 0; long long sum = a[0]; bool pm = (a[0] > 0 ? true : false); for (int i = 1; i < n; i++) { sum += a[i]; if (pm) { if (sum >= 0) { ansa += sum + 1; sum = -1; } pm = false; } else { if (sum <= 0) { ansa += abs(sum) + 1; sum = 1; } pm = true; } } long long ansb = abs(a[0]) + 1; sum = (a[0] > 0 ? -1 : 1); pm = (a[0] > 0 ? false : true); for (int i = 1; i < n; i++) { sum += a[i]; if (pm) { if (sum >= 0) { ansb += sum + 1; sum = -1; } pm = false; } else { if (sum <= 0) { ansb += abs(sum) + 1; sum = 1; } pm = true; } } cout << min(ansa, ansb) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using std::cerr; using std::cin; using std::cout; using std::endl; void OutputError(std::string s) { cerr << "\033[93m" << s << "\033[m" << endl; return; } int main(void) { cout << std::fixed << std::setprecision(10); cin.tie(0); std::ios::sync_with_stdio(false); int n; cin >> n; std::vector<int64_t> a(n, 0); for (int i = 0; i < n; i++) { cin >> a[i]; } int64_t cum = 0; bool is_plus = false; int64_t result = 0; if (a[0] > 0) { is_plus = false; } else if (a[0] < 0) { is_plus = true; } else { bool found = false; for (int i = 1; i < n; i++) { if (a[i] > 0) { a[0] = -1; result++; is_plus = true; found = true; break; } else if (a[i] < 0) { a[0] = 1; result++; is_plus = false; found = true; break; } } if (!found) { result = 2 * n - 1; cout << result << endl; exit(0); } } for (int i = 0; i < n; i++) { cum += a[i]; if (is_plus) { if (cum >= 0) { result += cum + 1; cum = -1; is_plus = false; } else { is_plus = false; } } else { if (cum > 0) { is_plus = true; } else { result += (-cum) + 1; cum = 1; is_plus = true; } } } cout << result << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import scala.io.StdIn import scala.annotation.tailrec object Main extends App { val n = StdIn.readInt val a = StdIn.readLine.split(" ").map(_.toInt) val init1 = if(a.head < 0) 1 - a.head else 0 val ans1 = a.tail./:(a.head + init1, init1.abs)((acc,i) => { val (bsum, bcnt) = acc val sum = bsum + i val cnt = if(bsum < 0 && sum < 0) 1 - sum else if(bsum > 0 && sum > 0) -1 - sum else if(sum == 0) if(bsum < 0) 1 else -1 else 0 // println(sum + " " + cnt) (sum+cnt, bcnt+cnt.abs) })._2 val init2 = if(a.head < 0) 0 else -1 - a.head val ans2 = a.tail./:(a.head + init2, init2.abs)((acc,i) => { val (bsum, bcnt) = acc val sum = bsum + i val cnt = if(bsum < 0 && sum < 0) 1 - sum else if(bsum > 0 && sum > 0) -1 - sum else if(sum == 0) if(bsum < 0) 1 else -1 else 0 // println(sum + " " + cnt) (sum+cnt, bcnt+cnt.abs) })._2 println(math.min(ans1,ans2)) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; int sign(long long A) { if (A > 0) return 1; else if (A < 0) return -1; else return 0; } int main(void) { int N; cin >> N; long long ans = 0; long long diff = 0; long long sss; vector<long long> arr; for (int i = 0; i < N; i++) { cin >> sss; arr.push_back(sss); } vector<long long> s(N + 1, 0); for (int i = 0; i < N; i++) s[i + 1] = s[i] + arr[i]; if (s[1] == 0) { diff++; ans++; } long long a = 0, b = 0; for (int i = 1; i <= N - 1; i++) { a = s[i] + diff; b = s[i + 1] + diff; if (sign(a) == sign(b)) { if (sign(a) == 1) { diff += (-1 - b); ans += (1 + b); } else if (sign(a) == -1) { diff += (1 - b); ans += (1 - b); } } if (sign(b) == 0) { if (sign(a) == 1) diff--; else if (sign(a) == -1) diff++; ans++; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
require 'prime' include Math def max(a,b); a > b ? a : b end def min(a,b); a < b ? a : b end def swap(a,b); a, b = b, a end def gif; gets.to_i end def gff; gets.to_f end def gsf; gets.chomp end def gi; gets.split.map(&:to_i) end def gf; gets.split.map(&:to_f) end def gs; gets.chomp.split.map(&:to_s) end def gc; gets.chomp.split('') end def pr(num); num.prime_division end def digit(num); num.to_s.length end def array(s,ini=nil); Array.new(s){ini} end def darray(s1,s2,ini=nil); Array.new(s1){Array.new(s2){ini}} end def rep(num); num.times{|i|yield(i)} end def repl(st,en,n=1); st.step(en,n){|i|yield(i)} end n = gif a = gi sum = [] count = 0 sum << 0 repl 1,a.size do |i| sum << a[i-1]+sum[i-1] if sum[i-1] > 0 if sum[i] >= 0 count += sum[i]+1 sum[i] = -1 end elsif sum[i-1] < 0 if sum[i] <= 0 count += 1-sum[i] sum[i] = 1 end end end puts count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n, a; int i, sum = 0, check = 0; long long int count = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &a); sum += a; if (check == 1 && sum >= 0) { count += (1 + sum); sum = -1; } else if (check == -1 && sum <= 0) { count += (1 - sum); sum = 1; } if (sum > 0) { check = 1; } else { check = -1; } } printf("%lld", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <class T, class S> void cmin(T &a, const S &b) { if (a > b) a = b; } template <class T, class S> void cmax(T &a, const S &b) { if (a < b) a = b; } using namespace std; signed main() { long long int n; cin >> n; vector<long long int> v(n); bool flag = false; for (long long int i = 0; i < n; i++) cin >> v[i]; vector<long long int> sum(n); long long int ans = 0; sum[0] = v[0]; for (long long int i = 0; i < n; i++) sum[i] = v[i]; for (long long int i = 0; i < n; i++) { if (!i) { if (sum[0] > 0) flag = true; else flag = false; continue; } sum[i] += sum[i - 1]; if (flag) { if (sum[i] <= 0) flag = false; else { ans += (abs(sum[i]) + 1); sum[i] = -1; flag = false; } } else { if (sum[i] >= 0) flag = true; else { ans += (abs(sum[i]) + 1); sum[i] = 1; flag = true; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) c = 0 i = 1 k = 1 sum = a[0] if a[0] > 0: while i < n: if i == 2*k-1: sum = sum + a[2*k-1] if sum >= 0: c = c + sum + 1 sum = -1 else: pass i += 1 else: sum = sum + a[2*k] if sum <= 0: c = c - sum + 1 sum = 1 else: pass i += 1 k += 1 print(c) else: while i < n: if i == 2*k-1: sum = sum + a[2*k-1] if sum <= 0: c = c - sum + 1 sum = 1 else: pass i += 1 else: sum = sum + a[2*k] while sum >= 0: c = c + sum + 1 sum = -1 else: pass i += 1 k += 1 print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int operation_even_pos = 0; int operation_odd_pos = 0; long long sum_even_pos = 0; long long sum_odd_pos = 0; for (int i = 0; i < n; i++) { sum_even_pos += a[i]; sum_odd_pos += a[i]; if (!(i % 2) && sum_even_pos <= 0) { operation_even_pos += 1 - sum_even_pos; sum_even_pos = 1; } else if ((i % 2) && sum_even_pos >= 0) { operation_even_pos += sum_even_pos + 1; sum_even_pos = -1; } if (!(i % 2) && sum_odd_pos >= 0) { operation_odd_pos += sum_odd_pos + 1; sum_odd_pos = -1; } else if ((i % 2) && sum_odd_pos <= 0) { operation_odd_pos += 1 - sum_odd_pos; sum_odd_pos = 1; } } cout << min(operation_even_pos, operation_odd_pos) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class Main { int n; int[] as; public static void main(String args[]) { new Main().run(); } void run() { FastReader sc = new FastReader(); n = sc.nextInt(); as = new int[n]; for (int i = 0; i < n; i++) { as[i] = sc.nextInt(); } solve(); } void solve() { long[] sums = new long[n]; sums[0] = as[0]; for (int i = 1; i < n; i++) { sums[i] = sums[i - 1] + as[i]; } long evenCount = 0; long evenChange = 0; long[] sumsForEven = sums.clone(); for (int i = 0; i < n; i++) { sumsForEven[i] += evenChange; if (i % 2 == 0 && sumsForEven[i] <= 0) { evenCount += -sumsForEven[i] + 1; evenChange += -sumsForEven[i] + 1; sumsForEven[i] = 1; } else if (i % 2 == 1 && sumsForEven[i] > 0) { evenCount += sumsForEven[i] + 1; evenChange -= sumsForEven[i] + 1; sumsForEven[i] = -1; } } long oddCount = 0; long oddChange = 0; for (int i = 0; i < n; i++) { sums[i] += oddChange; if (i % 2 == 1 && sums[i] <= 0) { oddCount += -sums[i] + 1; oddChange += -sums[i] + 1; sums[i] = 1; } else if (i % 2 == 0 && sums[i] > 0) { oddCount += sums[i] + 1; oddChange -= sums[i] + 1; sums[i] = -1; } } System.out.println(Math.min(evenCount, oddCount)); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Linq; using System.Collections.Generic; using static System.Console; using System.Text; using System.IO; using static System.Math; using System.Numerics; namespace AtCoder { public class Program { public static void Main(string[] args) { //SetOut(new StreamWriter(OpenStandardOutput()) { AutoFlush = false }); Solve(); //Out.Flush(); Read(); } static void Solve() { var n = Sarray()[0]; var ai = Sarray(); var sum = new long[2] { ai[0], ai[0] }; var cnt = new long[2] { 0, 0 }; if (ai[0] == 0) { sum[0] = 1; sum[1] = -1; cnt[0]=cnt[1] = 1; } for (var c = 0; c < 2; ++c) { for (var i = 1; i < n; ++i) { var preSum = sum[c]; sum[c] += ai[i]; if (sum[c] * preSum < 0) continue; cnt[c] += Abs(preSum + ai[i]) + 1; sum[c] = (0 < preSum) ? -1 : 1; } } WriteLine(Min(cnt[0], cnt[1])); } static long Mod = (long)1e9 + 7; static public long[] Sarray() { return ReadLine().Split().Select(long.Parse).ToArray(); } static public List<long> Slist() { return ReadLine().Split().Select(long.Parse).ToList(); } static public (T1 a, T2 b) Slice<T1, T2>() { var t = ReadLine().Split(); return ( (T1)Convert.ChangeType(t[0], typeof(T1)), (T2)Convert.ChangeType(t[1], typeof(T2))); } static public (T a, T b) Slice2<T>() { var t = ReadLine().Split(); return ( (T)Convert.ChangeType(t[0], typeof(T)), (T)Convert.ChangeType(t[1], typeof(T))); } static public (T a, T b, T c) Slice3<T>() { var t = ReadLine().Split(); return ( (T)Convert.ChangeType(t[0], typeof(T)), (T)Convert.ChangeType(t[1], typeof(T)), (T)Convert.ChangeType(t[2], typeof(T))); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<int> a; int main() { int n; int ans = 0; int prevSum = 0; cin >> n; for (int i = 0; i < n; i++) { int buf; cin >> buf; if (prevSum > 0 && (prevSum + buf) >= 0) { ans += prevSum + buf + 1; prevSum = -1; } else if (prevSum < 0 && (prevSum + buf) <= 0) { ans += -(prevSum + buf) + 1; prevSum = 1; } else { prevSum += buf; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
/* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ class Main { static int result1 = Integer.MAX_VALUE; public static void main (String[] args) throws java.lang.Exception { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.next()); int[] input = new int[n]; int[] result = new int[n]; for(int i = 0; i < n; i++) { input[i] = Integer.parseInt(sc.next()); } counting(input, result, 0, 0, true); counting(input, result, 0, 0, false); System.out.println(result1); } public static void counting(int[] input, int[] result, int count, int index, boolean sign) { if(index > 0) { result[index] = result[index-1] + input[index]; } else { result[index] = input[index]; } if(sign) { if(result[index] <= 0) { count += Math.abs(result[index]) + 1; result[index] = result[index] + Math.abs(result[index]) + 1; } sign = false; } else { if(result[index] >= 0) { count += Math.abs(result[index]) + 1; result[index] = result[index] - Math.abs(result[index]) - 1; } sign = true; } if(index < result.length-1) { counting(input, result, count, index+1, sign); } else { if(result1 > count) { result1 = count; } } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
open Batteries let () = let n,t = Scanf.scanf "%d %d " (fun a b -> a,b) in let t_lst = Array.to_list @@ Array.init n (fun _ -> Scanf.scanf "%d " (fun a -> a)) in let rec aux prev l = match l with | [] -> [] | hd :: tl -> (hd - prev) :: (aux hd tl) in let l = aux 0 t_lst in let res = t + List.fold_left (fun x y -> x + (if y < t then y else t)) 0 l in Printf.printf "%d\n" res
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import itertools def sign(num): if num < 0: return -1 elif num > 0: return 1 else: return 0 N = input() a_i = list(map(int, input().split())) a_sum = [a_i[0]] for i, a in enumerate(a_i[1:]): i += 1 a_sum.append(a_sum[-1]+a) signs = [1, -1] for i, sum_i in enumerate(a_sum): if sum_i != 0: signs[i%2] = sign(sum_i) signs[i%2+1] = -sign(sum_i) break a_sum = 0 changes = 0 for i, a in enumerate(a_i): a_sum += a if sign(a_sum) != signs[i%2]: changes += abs(a_sum) + 1 a_sum = signs[i%2] print(changes) # # for i, sum_i in enumerate(a_sum): # if i == 0: # signs = [sign(sum_i), -sign(sum_i)] # elif sign(sum_i) != signs[i%2]: # a_sum[i:] = [num + (abs(sum_i) + 1) * signs[i%2] for num in a_sum[i:]] # changes += abs(sum_i) + 1 # # print(a_sum) # print(changes)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long ans = 0; long long now; cin >> now; if (now == 0) { now++; ans++; } for (long long(i) = (0); (i) < (n - 1); ++i) { long long tmp; cin >> tmp; if (now > 0) { now += tmp; if (now >= 0) { ans += now + 1; now = -1; } } else { now += tmp; if (now <= 0) { ans -= (now - 1); now = 1; } } cout << now << ' ' << ans << endl; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int a[n], sum[n]; cin >> a[0]; sum[0] = a[0]; long long int ans = 0; for (int i = 1; i < n; i++) cin >> a[i]; if (sum[0] > 0) { for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i & 1) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; } } else { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; } } } } else if (sum[0] < 0) { for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i & 1) { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; } } else { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; } } } } else { long long int ans2 = 1, ans3 = 1; sum[0] = 1; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i & 1) { if (sum[i] >= 0) { ans2 += sum[i] + 1; sum[i] = -1; } } else { if (sum[i] <= 0) { ans2 += 1 - sum[i]; sum[i] = 1; } } } sum[0] = -1; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i & 1) { if (sum[i] <= 0) { ans3 += 1 - sum[i]; sum[i] = 1; } } else { if (sum[i] >= 0) { ans3 += sum[i] + 1; sum[i] = -1; } } } ans = min(ans2, ans3); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!/usr/bin/env python3 from itertools import accumulate def main(): n = int(input()) a = list(map(int, input().split())) #a = list(accumulate(a)) ans = 10**18 diff = [None, None]# a[0]<0, a[0]>0それぞれの初期コスト for i in range(2): if a[0] * [-1,1][i] < 0: diff[i] = 0 else: diff[i] = [-1,1][i] * (abs(a[0])+1) for j in range(2): ans2 = abs(diff[j]) for i in range(1,n): p = a[i] + diff[j] q = a[i-1] + diff[j] if p * q >= 0: tmp = -q//abs(q) - p ans2 += abs(tmp) diff[j] += tmp ans = min(ans, ans2) print(ans) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int MOD = 1000000007; using long long = long long; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } void print(const std::vector<int> &v) { std::for_each(v.begin(), v.end(), [](int x) { std::cout << x << " "; }); std::cout << std::endl; } int main() { int n; cin >> n; vector<long long> a(n); for (long long i = 0; i < (long long)n; i++) { cin >> a[i]; } long long res = (1ll << 60); long long ans = 0LL; long long s = a[0]; for (int i = 1; i < n; i++) { s += a[i]; if (i % 2 == 1) { if (s >= 0) { ans += s + 1; s = -1; } } else { if (s <= 0) { ans += -s + 1; s = 1; } } } res = min(res, ans); ans = 0; s = a[0]; for (int i = 1; i < n; i++) { s += a[i]; if (i % 2 == 0) { if (s >= 0) { ans += s + 1; s = -1; } } else { if (s <= 0) { ans += -s + 1; s = 1; } } } res = min(res, ans); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextInt(); } long count1 = 0; long sum1 = 0; // 最初の和が正 for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0) { while (sum1 <= 0) { sum1++; count1++; } } else { while (sum1 >= 0) { sum1--; count1++; } } } long count2 = 0; long sum2 = 0; // 最初の和が負 for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0) { while (sum2 >= 0) { sum2--; count2++; } } else { while (sum2 <= 0) { sum2++; count2++; } } } long ans = Long.min(count1, count2); System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from sys import stdin import sys import math n = int(input()) a = list(map(int, stdin.readline().rstrip().split())) #print(odd) #print(pair) ## odd count_odd = 0 current_sum = 0 for i in range(len(a)): if i % 2 == 1: if current_sum + a[i] < 1: diff = 1 - (current_sum + a[i]) a[i] += diff count_odd += diff elif i % 2 == 0: if current_sum + a[i] > -1: diff = -1 - (current_sum + a[i]) a[i] += diff count_odd += -1 * diff current_sum += a[i] ## pair count_pair = 0 current_sum = 0 for i in range(len(a)): if i % 2 == 1: if current_sum + a[i] > -1: diff = -1 - (current_sum + a[i]) a[i] += diff count_pair += -1 * diff elif i % 2 == 0: if current_sum + a[i] < 1: diff = 1 - (current_sum + a[i]) a[i] += diff count_pair += diff else: print("error") current_sum += a[i] print(min(count_odd, count_pair))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; const long long N = 3e5 + 10; long long gcd(long long n, long long m) { if (n == 0) return m; else return gcd(m % n, n); } long long a[N]; int32_t main() { long long n; cin >> n; for (long long i = 1; i <= n; i++) { cin >> a[i]; } long long sum = 0; long long ans = 0; for (long long i = 1; i <= n; i++) { sum += a[i]; if (i % 2 == 1) { if (sum < 0) { } else { ans += sum + 1; sum = -1; } } else { if (sum > 0) { } else { ans += abs(sum) + 1; sum = 1; } } } long long ans1 = ans; ans = 0; sum = 0; for (long long i = 1; i <= n; i++) { sum += a[i]; if (i % 2 == 1) { if (sum > 0) continue; else { sum = 1; ans += abs(sum) + 1; } } else { if (sum < 0) { continue; } else { ans += sum + 1; sum = -1; } } } cout << min(ans, ans1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long n; scanf("%ld", &n); long a[n]; for (long i = 0; i < n; i++) scanf(" %ld", &a[i]); long S = a[0]; long j = 0; for (long i = 1; i < n; i++) { if (S * (S + a[i]) < 0) { S += a[i]; } else { if (S < 0) { j += 1 - S - a[i]; S = 1; } else { j += S + a[i] + 1; S = -1; } } } printf("%ld\n", j); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } int ans = 0; if (a[0] >= 0) { int sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } } } else { int sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; struct aaa { aaa() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); }; } aaaaaaa; int MOD = 1e9 + 7; int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } int lcm(int a, int b) { return (a * b) / gcd(a, b); } int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; int N; int main() { cin >> N; vector<int> a(N); for (int i = 0; i < (N); ++i) cin >> a[i]; long ans = 0, sum = 0; if (a[0] != 0) sum = a[0]; else if (a[1] > 0) sum = -1, ans++; else sum = 1, ans++; for (int i = 1; i <= (N - 1); ++i) { if ((sum + a[i]) * sum >= 0) { int k = a[i]; a[i] = (abs(sum) + 1) * (sum / abs(sum)) * (-1); ans += abs(k - a[i]); } sum += a[i]; } cout << ans << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using long long = long long; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const long long INF = 1e9; long long n; vector<long long> a; int main() { cin >> n; a.resize(n); for (long long i = 0; i < (n); ++i) cin >> a[i]; long long sum; long long ans = 0; sum = -1; ans += abs(a[0] - sum); for (long long i = 0; i < (n - 1); ++i) { if (sum < 0) { if (sum + a[i + 1] > 0) { sum += a[i + 1]; continue; } else { ans += 1 - sum - a[i + 1]; sum = 1; } } else { if (sum + a[i + 1] < 0) { sum += a[i + 1]; continue; } else { ans += a[i + 1] + sum + 1; sum = -1; } } } long long ans2 = 0; sum = 1; ans2 += abs(a[0] - sum); for (long long i = 0; i < (n - 1); ++i) { if (sum < 0) { if (sum + a[i + 1] > 0) { sum += a[i + 1]; continue; } else { ans2 += 1 - sum - a[i + 1]; sum = 1; } } else { if (sum + a[i + 1] < 0) { sum += a[i + 1]; continue; } else { ans2 += a[i + 1] + sum + 1; sum = -1; } } } chmin(ans, ans2); long long ans3 = 0; sum = a[0]; for (long long i = 0; i < (n - 1); ++i) { if (sum == 0) continue; if (sum < 0) { if (sum + a[i + 1] > 0) { sum += a[i + 1]; continue; } else { ans3 += 1 - sum - a[i + 1]; sum = 1; } } else { if (sum + a[i + 1] < 0) { sum += a[i + 1]; continue; } else { ans3 += a[i + 1] + sum + 1; sum = -1; } } } chmin(ans, ans3); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sequence(N: int, A: list) -> int: op1, op2 = 0, 0 s1, s2 = 0, 0 for i, a in enumerate(A[1:]): s1, s2 = s1 + a, s2 + a if i % 2: # odd if s1 <= 0: op1 += abs(s1) + 1 s1 += abs(s1) + 1 if s2 >= 0: op2 += abs(s2) + 1 s2 -= abs(s2) + 1 else: # even if s1 >= 0: op1 += abs(s1) + 1 s1 -= abs(s1) + 1 if s2 >= 0: op2 += abs(s2) + 1 s2 += abs(s2) + 1 return min(s1, s2) if __name__ == "__main__": N = int(input()) A = [int(s) for s in input().split()] ans = sequence(N, A) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int d[n]; for (int i = 0; i < n; i++) { cin >> d[i]; } int count = 0; int sum = d[0]; int f = 0; if (d[0] > 0) { f = -1; } if (d[0] < 0) { f = 1; } for (int i = 1; i < n; i++) { sum += d[i]; if (sum == 0) { if (f == 1) { count++; f = -1; sum = 1; continue; } if (f == -1) { count++; f = 1; sum = -1; continue; } } if (sum > 0) { if (f == 1) { f = -1; continue; } if (f == -1) { count += sum + 1; sum = -1; f = 1; continue; } } if (sum < 0) { if (f == -1) { f = 1; continue; } if (f == 1) { count += 1 - sum; sum = 1; f = -1; continue; } } } int ccount = 0; int ssum; int ff = 0; if (d[0] > 0) { ff = 1; ccount = 1 + d[0]; ssum = -1; } if (d[0] < 0) { ff = -1; ccount = 1 - d[0]; ssum = 1; } for (int i = 1; i < n; i++) { sum += d[i]; if (ssum == 0) { if (ff == 1) { ccount++; ff = -1; ssum = 1; continue; } if (ff == -1) { ccount++; ff = 1; ssum = -1; continue; } } if (ssum > 0) { if (f == 1) { ff = -1; continue; } if (ff == -1) { ccount += sum + 1; ssum = -1; ff = 1; continue; } } if (ssum < 0) { if (ff == -1) { ff = 1; continue; } if (ff == 1) { ccount += 1 - sum; ssum = 1; ff = -1; continue; } } } cout << min(count, ccount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ABC59C { class Program { static void Main(string[] args) { int n = int.Parse(Console.ReadLine()); string[] str = Console.ReadLine().Split(' '); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = int.Parse(str[i]); } int x = 0; int y = 0; int f = 0; int sum = 0; for(int i = 0; i < n; i++) { sum += a[i]; if (f == 1 && sum >= 0) { x += (sum + 1); f = 0; sum = -1; }else if (f == 0 && sum <= 0) { x += (1 - sum); f = 1; sum = 1; }else { f = 1 - f; } } f = 1; for (int i = 0; i < n; i++) { sum += a[i]; if (f == 1 && sum >= 0) { y += (sum + 1); f = 0; sum = -1; } else if (f == 0 && sum <= 0) { y += (1 - sum); f = 1; sum = 1; } else { f = 1 - f; } } Console.WriteLine(Math.Min(x,y)); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a_list = [int(i) for i in input().split(' ')] total = [a_list[0]] counter = 0 for a in a_list[1:]: total.append(total[-1] + a) if total[0]==0: total = list(map(lambda n: n-int(total[1]/abs(total[1])), total)) for i in range(1,n): if total[i-1]<0 and total[i]<=0: counter += abs(total[i])+1 total[i:] = list(map(lambda n: n-(total[i])+1, total[i:])) elif total[i-1]>0 and total[i]>=0: counter += abs(total[i])+1 total[i:] = list(map(lambda n: n-(total[i])-1, total[i:])) else: continue print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int INF = (long long int)1e18; int main() { int n; cin >> n; long long int ans = 0; long long int t; cin >> t; for (int i = (0); i < (n - 1); ++i) { int a; cin >> a; if ((t > 0 && t + a >= 0) || (t < 0 && t + a <= 0)) { ans += abs(t + a) + 1; if (t > 0) { t = -1; } else { t = 1; } } else { t += a; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int32_t main() { uint64_t N; cin >> N; int64_t total; cin >> total; int64_t sign = total / abs(total); uint64_t count = 0; for (uint64_t i = 1; i < N; i++) { int64_t val; cin >> val; total += val; sign *= -1; if ((total == 0) || (sign * total < 0)) { count += abs(sign - total); total = sign; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) cnt = 0 x = [] x.append(a[0]) for i in range(n-1): if x[i] > 0: while x[i]+a[i+1] >= 0: cnt += 1 a[i+1] -= 1 x += [x[i] + a[i+1]] else: while x[i]+a[i+1] <= 0: cnt += 1 a[i+1] += 1 x += [x[i] + a[i+1]] print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
use std::io::*; use std::str::FromStr; pub fn read<T: FromStr>() -> T { let stdin = stdin(); let stdin = stdin.lock(); let token: String = stdin .bytes() .map(|c| c.expect("failed to read char") as char) .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect(); token.parse().ok().expect("failed to parse token") } use std::cmp::{max, min}; use std::collections::BTreeMap; fn main() { let n = read::<i64>(); let mut vec_a = vec![]; for i in 0..n { vec_a.push(read::<i64>()); } let mut prev_sum = 0 as i64; let mut ans_plus = 0; let mut prev_sum2 = 0 as i64; let mut ans_minus = 0; // 最初を正にする if vec_a[0] <= 0 { prev_sum = 1; ans_plus = (1 - prev_sum).abs(); } else { prev_sum = vec_a[0]; } // 2こ目以降は流れで for i in 1..vec_a.len() { let b = vec_a[i as usize]; if 0 < prev_sum { if 0 <= prev_sum + b { ans_plus += (1 + prev_sum).abs() + b; prev_sum = -1; } else { prev_sum += b; } } else if prev_sum < 0 { if prev_sum + b <= 0 { ans_plus += (1 - prev_sum).abs() - b; prev_sum = 1; } else { prev_sum += b; } } } // 最初を負にする if 0 <= vec_a[0] { prev_sum2 = -1; ans_minus = (1 + prev_sum2).abs(); } else { prev_sum2 = vec_a[0]; } // 2こ目以降は流れで for i in 1..vec_a.len() { let b = vec_a[i as usize]; if 0 < prev_sum2 { if 0 <= prev_sum2 + b { ans_minus += (1 + prev_sum2).abs() + b; prev_sum2 = -1; } else { prev_sum2 += b; } } else if prev_sum2 < 0 { if prev_sum2 + b <= 0 { ans_minus += (1 - prev_sum2).abs() - b; prev_sum2 = 1; } else { prev_sum2 += b; } } } // println!("plus: {}, minus: {}", ans_minus, ans_plus); println!("{}", min(ans_minus, ans_plus)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T1, class T2> using dict = std::unordered_map<T1, T2>; int main() { int n; cin >> n; int64_t a[n]; for (int i = 0; i < (int)(n); i++) cin >> a[i]; int64_t s = 0; int64_t count1 = 0; int64_t count2 = 0; for (int i = 0; i < (int)(n); i++) { s += a[i]; if (i % 2 == 1 && s <= 0) { count1 += -s + 1; s = 1; } else if (i % 2 == 0 && s >= 0) { count1 += s + 1; s = -1; } } for (int i = 0; i < (int)(n); i++) { s += a[i]; if (i % 2 == 1 && s >= 0) { count2 += s + 1; s = -1; } else if (i % 2 == 0 && s <= 0) { count2 += -s + 1; s = 1; } } cout << min(count1, count2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long MOD = 1e9 + 7; const long LINF = 1e13; const long LLINF = 1e18; template <class T> void Swap(T& r, T& l) { T tmp = r; r = l; l = tmp; } int main() { long n; cin >> n; vector<long> a(n); vector<long> accum(n, 0); for (int i = 0; i < n; ++i) { cin >> a[i]; accum[i] = a[i]; if (i > 0) accum[i] += accum[i - 1]; } vector<long> accumtmp(n, 0); copy(accum.begin(), accum.end(), accumtmp.begin()); for (int i = 0; i < n; ++i) { cerr << accum[i] << endl; } long ans = 0; long count = 0; long tmpcount = 0; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (accumtmp[i] + tmpcount >= 0) { long tmpc = -(-1 - (accumtmp[i] + tmpcount)); count += tmpc; tmpcount -= tmpc; accumtmp[i] = -1; } } else { if (accumtmp[i] + tmpcount <= 0) { long tmpc = 1 - (accumtmp[i] + tmpcount); count += tmpc; tmpcount += tmpc; } } } for (int i = 0; i < n; ++i) { cerr << accumtmp[i] << endl; } ans = count; cerr << "count:" << count << endl; count = 0; cerr << endl; for (int i = 0; i < n; ++i) { cerr << accum[i] << endl; } copy(accum.begin(), accum.end(), accumtmp.begin()); tmpcount = 0; for (int i = 1; i < n; ++i) { long accump = accumtmp[i] + tmpcount; if (i % 2 == 0) { if (accump >= 0) { cerr << "a[i] " << a[i] << endl; long tmpc = -(-1 - accump); count += tmpc; accumtmp[i] = -1; tmpcount -= tmpc; } } else { if (accump <= 0) { cerr << "a[i] " << a[i] << endl; long tmpc = 1 - accump; count += tmpc; tmpcount += tmpc; } } } for (int i = 0; i < n; ++i) { cerr << accumtmp[i] << endl; } cerr << "count:" << count << endl; ans = min(ans, count); cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def main(): import sys input = sys.stdin.readline n = int(input()) a = list(map(int, input().split())) def Chk(a, pos): cnt = 0 tmp = 0 for a in A: tmp += a if pos and tmp < 1: cnt += 1 - tmp tmp = 1 elif not pos and tmp > -1: cnt += 1 + tmp tmp = -1 pos = not pos return cnt print(min(Chk(A, True), Chk(A, False))) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#!/usr/bin/env ruby # n = STDIN.gets.to_i a = STDIN.gets.split(' ').map{|x| x.to_i} s = Array.new(n,0) output = 0 s[0] = a[0] 1.upto(n-1) do |i| s[i] = s[i-1] + a[i] if s[i] == 0 change = 1 s[i] = (s[i-1] > 0) ? -1 : 1 else if (s[i-1] > 0) ^ (s[i] > 0) change = 0 else change = s[i].abs+1 s[i] = (s[i-1] > 0) ? -1: 1 end end output += change end puts output
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD7 = 1000000007; const long long MOD9 = 1000000009; int main() { cin.tie(0); ios::sync_with_stdio(false); long long N; cin >> N; vector<long long> vec(N); for (long long i = 0; i < N; i++) cin >> vec[i]; long long res, partial, distance_0; vector<long long> res_vec; bool flag_before; for (long long n = 0; n < 2; ++n) { res = 0; if (vec[0] == 0) { partial = (n == 0) ? +1 : -1; } else { partial = vec[0]; if (n == 1) break; } flag_before = partial > 0; for (long long i = 1; i < N; ++i) { partial += vec[i]; distance_0 = abs(partial) + 1; if (flag_before) { if (partial >= 0) { res += distance_0; partial -= distance_0; } } else { if (partial <= 0) { res += distance_0; partial += distance_0; } } flag_before = !flag_before; } res_vec.push_back(res); } cout << *min_element(((res_vec)).begin(), ((res_vec)).end()) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def 解(): iN = int(input()) aA = [int(_) for _ in input().split()] iL = len(aA) iStart = 0 if sum(aA[0::2]) < sum(aA[2::2]): iStart = 1 iC = 0 aD = [0]*iL if 0 % 2 == iStart : if aA[0] < 0: aA[0] = 1 iC += -1 * aA[0] + 1 else: if 0 < aA[0] : aA[0] = -1 iC += aA[0] + 1 aD[0] = aA[0] for i in range(1,iL): aD[i] = aD[i-1]+aA[i] if i % 2 == iStart: if aD[i] <= 0: iC += -1*aD[i] +1 aD[i] = 1 else: if aD[i] >= 0: iC += aD[i] +1 aD[i] = -1 print(iC) 解()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.ByteString.Char8 as BC import Data.Maybe (fromJust) main = do n <- readLn :: IO Int (a:as) <- getIntListBC let ans1 = solve a as x = (+1) $ abs a ans2 = if a > 0 then x + solve (a-x) as else x + solve (a+x) as print $ min ans1 ans2 bsToInt :: BC.ByteString -> Int bsToInt = fst . fromJust . BC.readInt getIntListBC :: IO [Int] getIntListBC = map bsToInt . BC.words <$> BC.getLine solve :: Int -> [Int] -> Int solve _ [] = 0 solve s (a:as) | s > 0 = let n = negate $ s + 1 in if n > a then solve (s + a) as else (abs $ a - n) + solve (s + n) as | otherwise = let n = negate $ s - 1 in if n < a then solve (s + a) as else (abs $ n - a) + solve (s + n) as
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; long long count1 = 0, count2 = 0; cin >> N; vector<long long> A(N); for (int i = 0; i < N; i++) cin >> A[i]; long long su = A[0]; for (int i = 1; i < N; i++) { su += A[i]; if (i % 2 == 1) { if (su < 1) { count1 += -1 * su + 1; su = 1; } } else { if (su > -1) { count1 += su + 1; su = -1; } } } su = A[0]; for (int i = 1; i < N; i++) { su += A[i]; if (i % 2 == 0) { if (su < 1) { count2 += -1 * su + 1; su = 1; } } else { if (su > -1) { count2 += su + 1; su = -1; } } } cout << min(count1, count2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = 1 << 29; int main() { int n; cin >> n; vector<ll> a(n), b(n); for (int i = 0; i < int(n); i++) { ll aa; cin >> aa; a[i] = aa; b[i] = aa; } ll countmin = INF; ll count = 0LL; ll temp; if (a[0] <= 0LL) { temp = llabs(a[0]) + 1LL; a[0] += temp; count += temp; } for (int i = (1); i < (n); i++) { a[i] += a[i - 1]; if (i % 2 == 1) { if (a[i] >= 0LL) { temp = llabs(a[i]) + 1LL; a[i] -= temp; count += temp; } } if (i % 2 == 0) { if (a[i] <= 0LL) { temp = llabs(a[i]) + 1LL; a[i] += temp; count += temp; } } } countmin = min(countmin, count); count = 0LL; if (b[0] >= 0) { temp = llabs(b[0]) + 1LL; b[0] -= temp; count += temp; } for (int i = (1); i < (n); i++) { b[i] += b[i - 1]; if (i % 2 == 1) { if (b[i] <= 0LL) { temp = llabs(b[i]) + 1LL; b[i] += temp; count += temp; } } if (i % 2 == 0) { if (b[i] >= 0LL) { temp = llabs(b[i]) + 1LL; b[i] -= temp; count += temp; } } } countmin = min(countmin, count); cout << countmin << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long total = a[0]; long long total2 = a[0]; long long ans = 0; for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans += total + 1; total = -1; } else { ans += -total + 1; total = 1; } } total2 = total; } total = a[0]; total2 = a[0]; long long ans2 = 0; if (total2 > 0) { ans2 += total2 + 1; total2 = -1; } else { ans2 += -total2 + 1; total2 = 1; } total = total2; for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans2 += total + 1; total = -1; } else { ans2 += -total + 1; total = 1; } } total2 = total; } cout << min(ans, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a; cin >> a; long long sum = a; long long cnt = 0; for (int i = 1; i < n; ++i) { cin >> a; int next = sum + a; int c, diff; c = diff = 0; if (sum > 0) { if (next >= 0) { diff = (-1 - sum); a = diff - a; c = diff; } } else { if (next <= 0) { diff = (1 - sum) - a; a += diff; c = diff; } } sum += a; cnt += abs(c); } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<int> sum; int calc_cost(bool ps) { int res, dis; res = dis = 0; vector<int> temp = sum; for (int i = 0; i < temp.size(); ++i) { temp[i] += dis; if (i % 2 == 0) { if (temp[i] == 0) { ++res; if (ps) { ++dis; } else { --dis; } } else if (ps && temp[i] < 0) { res += -temp[i] + 1; dis += -temp[i] + 1; } else if (!ps && temp[i] > 0) { res += temp[i] + 1; dis -= temp[i] + 1; } } else { if (temp[i] == 0) { ++res; if (ps) { --dis; } else { ++dis; } } else if (ps && temp[i] > 0) { res += temp[i] + 1; dis -= temp[i] + 1; } else if (!ps && temp[i] < 0) { res += -temp[i] + 1; dis += -temp[i] + 1; } } } return res; } int main(void) { int n; cin >> n; sum = vector<int>(n, 0); for (int i = 0; i < n; ++i) { int a; cin >> a; if (i == 0) { sum[i] = a; } else { sum[i] += sum[i - 1] + a; } } cout << min(calc_cost(true), calc_cost(false)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}; const int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; using namespace std; int main() { int n; cin >> n; long long a[n]; long long sums[n]; cin >> a[0]; sums[0] = a[0]; for (int i = 1; i < n; ++i) { cin >> a[i]; sums[i] = sums[i - 1] + a[i]; } long long cnt = 0; long long v = 0; long long diff; if (sums[0] * sums[1] >= 0) { if (sums[0] >= 0 && sums[0] < sums[1]) { diff = -1 - sums[0]; sums[0] += diff; v += diff; cnt += abs(diff); } else if (sums[0] < 0 && sums[0] > sums[1]) { diff = 1 - sums[0]; sums[0] += diff; v += diff; cnt += abs(diff); } } for (int i = 1; i < n; i++) { sums[i] += v; if (sums[i - 1] * sums[i] >= 0) { if (sums[i - 1] < 0) { diff = 1 - sums[i]; } else { diff = -1 - sums[i]; } sums[i] += diff; v += diff; cnt += abs(diff); } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
# -*- coding:utf-8 -*- n = int(raw_input()) numlist = (raw_input()).split(' ') count = 0 if (int(numlist[0]) == 0): if (int(numlist[1]) < 0): numlist[0] = -1 else: numlist[0] = 1 sumlist = [int(numlist[0])] for i in range(1, n): sumlist.append(sumlist[i-1] + int(numlist[i])) while (True): if (sumlist[i-1] > 0 and sumlist[i] > 0): #i-1,i番目までのsumがともに正 numlist[i] = int(numlist[i]) - (sumlist[i] + 1) count += sumlist[i] + 1 sumlist[i] = -1 elif (sumlist[i-1] < 0 and sumlist[i] < 0): #i-1,i番目までのsumがともに負 numlist[i] = int(numlist[i]) + ((-1)*sumlist[i] + 1) count += (-1)*sumlist[i] + 1 sumlist[i] = 1 elif (sumlist[i] == 0): #i番目までのsum=0 if (sumlist[i-1] > 0): numlist[i] = int(numlist[i]) - 1 sumlist[i] -= 1 if (sumlist[i-1] < 0): numlist[i] = int(numlist[i]) + 1 sumlist[i] += 1 count += 1 else: break #print numlist #print sumlist print count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long ans = 0, sum = 0, tmp; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; bool sign; sum = a[0]; if (sum == 0) { sum++; ans++; } sum > 0 ? sign = true : sign = false; for (int i = 1; i < n; i++) { tmp = sum + a[i]; if (sign && tmp >= 0) { sum = -1; sign = false; ans += abs(tmp) + 1; } else if (!sign && tmp <= 0) { sum = 1; sign = true; ans += abs(tmp) + 1; } else { sum += a[i]; sign = !sign; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const int MOD = 1e9 + 7; const long long LLINF = 1e18; int main() { int n; cin >> n; long long ruisekiwa; cin >> ruisekiwa; long long ans = 0; if (ruisekiwa != 0) { for (int i = (1); i < (n); i++) { long long a; cin >> a; if (ruisekiwa * (ruisekiwa + a) < 0) { ruisekiwa += a; } else if (ruisekiwa > 0) { ans += (ruisekiwa + a) + 1; ruisekiwa = -1; } else { ans += 1 - (ruisekiwa + a); ruisekiwa = 1; } } } else { long long ans1 = 1; ruisekiwa = 1; for (int i = (1); i < (n); i++) { long long a; cin >> a; if (ruisekiwa * (ruisekiwa + a) < 0) { ruisekiwa += a; } else if (ruisekiwa > 0) { ans1 += (ruisekiwa + a) + 1; ruisekiwa = -1; } else { ans1 += 1 - (ruisekiwa + a); ruisekiwa = 1; } } long long ans2 = 1; ruisekiwa = -1; for (int i = (1); i < (n); i++) { long long a; cin >> a; if (ruisekiwa * (ruisekiwa + a) < 0) { ruisekiwa += a; } else if (ruisekiwa > 0) { ans2 += (ruisekiwa + a) + 1; ruisekiwa = -1; } else { ans2 += 1 - (ruisekiwa + a); ruisekiwa = 1; } } ans = min(ans1, ans2); } cout << (ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long> a(n), sum1(n), sum2(n); cin >> a[0]; sum1[0] = sum2[0] = a[0]; long ans1 = 0, ans2 = 0; for (int i = 1; i < n; i++) { cin >> a[i]; sum1[i] = sum1[i - 1] + a[i]; sum2[i] = sum2[i - 1] + a[i]; if (i % 2 == 0) { if (sum1[i] <= 0) { ans1 += abs(1 - sum1[i]); sum1[i] = 1; } if (sum2[i] >= 0) { ans2 += abs(-1 - sum2[i]); sum2[i] = -1; } } if (i % 2 == 1) { if (sum1[i] >= 0) { ans1 += abs(-1 - sum1[i]); sum1[i] = -1; } if (sum2[i] <= 0) { ans2 += abs(1 - sum2[i]); sum2[i] = 1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) count=0 A=[int(i) for i in input().split()] if A[0]==0: A[0]+=1 count+=1 elif A[0]<0: for i in range(len(A)): A[i]*=(-1) for i in range(1,len(A)): s=sum(A[:i+1]) if i%2==0: if s<=0: A[i]+=1-s count+=1-s else: if s>=0: A[i]-=1+s count+=1+s print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N; vector<int> A; int sum; long long trn; void calcu(int p, char s) { if (p >= N) return; int x = A[p]; if (s == '+') { if (sum + x <= 0) x = 1 - sum; sum += x; trn += abs(A[p] - x); calcu(++p, '-'); } else { if (sum + x > 0) x = -1 - sum; sum += x; trn += abs(A[p] - x); calcu(++p, '+'); } } int main(void) { cin >> N; A.resize(N); for (int i = 0; i < N; ++i) cin >> A[i]; sum = (A[0] >= 0) ? A[0] : 1; trn = (A[0] >= 0) ? 0 : 1 - A[0]; calcu(1, '-'); long long a = trn; sum = (A[0] < 0) ? A[0] : -1; trn = (A[0] < 0) ? 0 : 1 + A[0]; calcu(1, '+'); long long b = trn; long long ans = (a < b) ? a : b; cout << ans << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { long long int i, a, n; long long int sum = 0, bsum = 0, ans = 0; scanf("%lld", &n); for (i = 0; i < n; i++) { scanf("%lld", &a); bsum = sum; sum += a; if (bsum > 0) { if (sum > 0) { do { sum--; ans++; } while (sum >= 0); sum = -1; } if (sum == 0) { ans++; sum = -1; } } if (bsum < 0) { if (sum < 0) { do { sum++; ans++; } while (sum <= 0); sum = 1; } if (sum == 0) { ans++; sum = 1; } } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int ddx[8] = {0, 1, 1, 1, 0, -1, -1, -1}; const int ddy[8] = {1, 1, 0, -1, -1, -1, 0, 1}; const int dx[4] = {0, 1, 0, -1}; const int dy[4] = {1, 0, -1, 0}; static const int NIL = -1; int n; void printArray(int array[], int n) { for (int i = (0); i < (n); ++i) { if (i) cout << " "; cout << array[i]; } cout << endl; } int sequence(int* a, bool sign) { int sum = 0, cnt = 0; for (int i = (0); i < (n); ++i) { sum += a[i]; if (sign) { if (sum > -1) { int rem = abs(-1 - sum); cnt += rem; sum = -1; } sign = false; } else { if (sum < 1) { int rem = abs(1 - sum); cnt += rem; sum = 1; } sign = true; } } return cnt; } int main(int argc, char const* argv[]) { cin.tie(0); ios::sync_with_stdio(false); cin >> n; int a[n]; for (int i = (0); i < (n); ++i) cin >> a[i]; int pos = sequence(a, true); int neg = sequence(a, false); cout << min(pos, neg) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int N[100000]; cin >> n; for (int i = 0; i < n; i++) { cin >> N[i]; } int ans = 0; if (N[0] == 0) { if (N[1] >= 0) { N[0] = -1; } if (N[1] < 0) { N[0] = 1; } } int sum = N[0]; if (N[0] > 0) { for (int i = 1; i < n; i++) { sum = sum + N[i]; if (i % 2 == 0 && sum <= 0) { N[i] = N[i] - sum + 1; ans = ans - sum + 1; sum = 1; } if (i % 2 == 1 && sum >= 0) { N[i] = N[i] - sum - 1; ans = ans + sum + 1; sum = -1; } } } if (N[0] < 0) { for (int i = 1; i < n; i++) { sum = sum + N[i]; if (i % 2 == 0 && sum >= 0) { N[i] = N[i] - sum - 1; ans = ans + sum + 1; sum = -1; } if (i % 2 == 1 && sum <= 0) { N[i] = N[i] - sum + 1; ans = ans - sum + 1; sum = 1; } } } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100004]; int main() { scanf("%d", &n); for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]); long long ans = 0; printf("1000000000000000\n"); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; vector<long long> a; enum State { Plus, Minus, Zero }; State GetState(long long sum) { State state; if (sum > 0) state = Plus; else if (sum == 0) state = Zero; else state = Minus; return state; } unsigned long long Count(State initialState) { unsigned long long count = 0; vector<long long> b = a; State state = GetState(b[0]); if (state == Zero) { if (initialState != Zero) { if (initialState == Plus) b[0] = 1; else if (initialState == Minus) b[0] = -1; count++; } } long long sum = b[0]; for (int i = 1; i < n; i++) { State nextState = GetState(sum + b[i]); switch (nextState) { case Plus: if (state == Plus) { long long bf_a = b[i]; b[i] = -1 - sum; count += abs(b[i] - bf_a); nextState = Minus; } break; case Minus: if (state == Minus) { long long bf_a = b[i]; b[i] = 1 - sum; count += abs(b[i] - bf_a); nextState = Plus; } break; case Zero: if (state == Plus) { long long bf_a = b[i]; b[i] = -1 - sum; count += abs(b[i] - bf_a); nextState = Minus; } else if (state == Minus) { long long bf_a = b[i]; b[i] = 1 - sum; count += abs(b[i] - bf_a); nextState = Plus; } default: break; } sum += b[i]; state = nextState; } if (sum == 0) count++; return count; } int main() { cin >> n; a.resize(n); for (int i = 0; i < n; i++) cin >> a[i]; unsigned long long pCount = Count(Plus); unsigned long long mCount = Count(Minus); unsigned long long zCount = Count(Zero); unsigned long long temp = pCount < mCount ? pCount : mCount; unsigned long long ans = temp < zCount ? temp : zCount; cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count = 0 if a[0] >= 0: sym = True else: sym = False for i in range(1, n): if sym: while sum(a[0:i+1]) >= 0: a[i] -= 1 count += 1 sym = False else: while sum(a[0:i+1]) <= 0: a[i] += 1 count += 1 sym = True print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } int main() { cin.tie(0); ios::sync_with_stdio(false); long long N; cin >> N; long long a[N]; long long sum = 0, cnt = 0; long long minv = 9223372036854775807; for (long long i = 0; i < N; i++) cin >> a[i]; for (long long j = 0; j < 2; j++) { cnt = 0; sum = 0; for (long long i = 0; i < N; i++) { if (j == 0 && i == 0) { if (a[i] < 0) { sum = 1; cnt += abs(a[i]) + 1; } else sum += a[i]; continue; } else if (j == 1 && i == 0) { if (a[i] > 0) { sum = -1; cnt += a[i] + 1; } else sum += a[i]; continue; } if (sum > 0 && sum + a[i] > 0) { if (a[i] < 0) cnt += sum + a[i] + 1; else cnt += abs(sum + a[i]) + 1; sum = -1; } else if (sum < 0 && sum + a[i] < 0) { if (a[i] > 0) cnt += abs(sum) - a[i] + 1; else cnt += abs(sum + a[i]) + 1; sum = 1; } else if (sum + a[i] == 0) { if (a[i] >= 0) { sum++; cnt++; } else { sum--; cnt++; } } else sum += a[i]; } minv = min(minv, cnt); } cout << minv << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long a[100000]; long n; long long s[100000]; long long ans = 0; scanf("%ld", &n); for (long i = 0; i < n; i++) { scanf("%lld", &a[i]); } s[0] = a[0]; for (long i = 1; i < n; i++) { s[i] = s[i - 1] + a[i]; if ((s[i - 1] > 0 && s[i] < 0) || (s[i - 1] < 0 && s[i] > 0)) { continue; } else { ans += abs((-s[i - 1] / abs(s[i - 1])) - s[i - 1] - a[i]); s[i] = -s[i - 1] / abs(s[i - 1]); } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using std::cin; using std::cout; using std::endl; using std::string; using std::vector; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < (N); ++i) { cin >> a[i]; } long long count = 0; if (a[0] == 0) { a[0]++; count++; } long long sum = 0; for (int i = 0; i < (N - 1); ++i) { sum += a[i]; long long next_sum = sum + a[i + 1]; if ((sum < 0 && next_sum > 0) || (sum > 0 && next_sum < 0)) { } else { if (sum < 0) { count += 1 - next_sum; a[i + 1] += 1 - next_sum; } else { count += next_sum + 1; a[i + 1] -= (next_sum + 1); } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, temp; vector<int> a; scanf("%d", &N); int start = 0; bool v = false; for (int i = 0; i < N; i++) { scanf("%d", &temp); if (temp == 0) { if (!v) { start += 1; } } else if (!v) v = true; a.push_back(temp); } long long int sum = 0, cnt = 0; if (start != 0) { cnt = 2 * (start - 1) + 1; if (a[start] > 0) { if (a[start] > 1) { sum = a[start] - 1; } else { sum = 1; cnt += 1; } } else { if (a[start] < -1) { sum = a[start] + 1; } else { sum = -1; cnt += 1; } } } else { sum = a[start]; } start++; for (size_t i = start; i != a.size(); i++) { if (sum + a[i] == 0) { if (sum > 0) { sum = -1; } else { sum = 1; } cnt += 1; continue; } if (sum + a[i] > 0 && sum > 0) { cnt += sum + a[i] + 1; sum = -1; } else if (sum + a[i] < 0 && sum < 0) { cnt += 1 - sum - a[i]; sum = 1; } else { sum += a[i]; } } if (sum == 0) cnt += 1; printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.Vector.Unboxed as VU import qualified Data.ByteString.Char8 as B import Data.Char solve :: VU.Vector Int -> Int -> Int solve vec n = minimum $ map fst [f, g] where t = VU.take 2 vec d = VU.drop 2 vec f = VU.foldl' step (fst $ init t) d g = VU.foldl' step (snd $ init t) d init :: VU.Vector Int -> ((Int, Int), (Int, Int)) init vec | a + b == 0 = ((1, 1), (1, negate 1)) | a + b > 0 = ((0, a + b), (1 + a + b, negate 1)) | otherwise = ((0, a + b), (abs (1 - (a + b)), 1)) where a = VU.head vec b = VU.last vec step :: (Int, Int) -> Int -> (Int, Int) step (res, acc) x | acc + x == 0 = (res + 1, negate (signum acc)) | (signum acc) /= signum (acc + x) = (res, acc + x) | otherwise = let aim = negate $ signum acc y = aim - (acc + x) in (res + abs y, aim) main = do n <- readLn :: IO Int as <- VU.unfoldrN n (B.readInt . B.dropWhile isSpace) <$> B.getLine print $ solve as n
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int, input().split())) sum_now=a[0] sum_before=-a[0] count=0 for i in range(n): while sum_now*sum_before>=0: if sum_before==0: sum_now=-a[1]/abs(a[1]) count+=1 else: sum_now=sum_now-sum_before/abs(sum_before) count+=1 if i!=n-1: sum_before=sum_now sum_now=sum_now+a[i+1] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int *a; int ans = 0; cin >> n; a = new int[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } int sum = 0; int opr1 = 0, opr2 = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { int add = abs(sum) + 1; sum = 1; opr1 += add; } else if (i % 2 == 0 && sum >= 0) { int add = abs(sum) + 1; sum = -1; opr1 += add; } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { int add = abs(sum) + 1; sum = 1; opr2 += add; } else if (i % 2 == 1 && sum >= 0) { int add = abs(sum) + 1; sum = -1; opr2 += add; } } ans = min(opr1, opr2); cout << ans << endl; delete (a); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; int a[N]; int sum = 0, cnt = 0; for (long long i = 0; i < N; i++) { cin >> a[i]; if (i == 0) { sum += a[i]; continue; } if (sum * (sum + a[i]) > 0) { cnt += abs(sum + a[i]) + 1; if (sum > 0) sum = -1; else sum = 1; } else if (sum + a[i] == 0) { cnt++; if (sum > 0) sum--; else sum++; } else sum += a[i]; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = list(map(int,input().split())) S = [0]*N S[0] = a[0] for i in range(1,N): S[i] = S[i-1] + a[i] count = [0]*N num = [0]*2 for i in range(2): value = 0 for j in range(N): if (S[j]+value)*((-1)**(i+j)) <= 0: num[i] += abs(S[j] + value - (-1)**(i+j)) value += (-1)**(i+j) - (S[j]-value) #print(i,num,value) #print(S) print(min(num))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MaxN = 2e5 + 5; int box[MaxN]; int n; long long solve1() { long long sum = box[1]; long long res = 0; if (sum == 0) { sum = 1; res = 1; } for (int i = 2; i <= n; i++) { long long temp = box[i] + sum; if (temp * box[i] >= 0) { res += abs(temp) + 1; if (sum > 0) sum = -1; else sum = 1; } else sum = temp; } return res; } long long solve2() { long long sum = box[1]; long long res = 0; if (sum == 0) { sum = -1; res = 1; } for (int i = 2; i <= n; i++) { long long temp = box[i] + sum; if (temp * sum >= 0) { res += abs(temp) + 1; if (sum > 0) sum = -1; else sum = 1; } else sum = temp; } return res; } int main() { while (~scanf("%d", &n)) { for (int i = 1; i <= n; i++) scanf("%d", &box[i]); long long ans = 1LL << 60; ans = min(ans, solve1()); ans = min(ans, solve2()); printf("%lld\n", ans); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) def count(s): ans = 0 for i, a in enumerate(A): if i == 0: continue if s < 0: if 1-s-a >= 0: ans += 1-s-a s = 1 else: s += a elif s > 0: if s+a+1 >= 0: ans += s+a+1 s = -1 else: s += a return ans b = A[0] ans1 = count(b) if b > 0: ans2 = count(-1)+b+1 elif b < 0: ans2 = count(1)+1-b print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) s = list(map(int,input().split())) temp = s[0] cand1 = 0 for i in range(1,n): temp += s[i] if i%2 == 0:#正になってほしい if temp <= 0: cand1 += abs(temp-1) temp = 1 else:#負になって欲しい if temp >= 0: cand1 += abs(temp+1) temp = -1 temp = s[0] cand2 = 0 for i in range(1,n): temp += s[i] if i%2 == 0: if temp >= 0: cand2 += abs(temp+1) temp = -1 else: if temp <= 0: cand2 += abs(temp-1) temp = 1 print(min(cand2,cand1))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) lis=[] now=0 for num in a: now+=num lis.append(now) ans=10**10 cnt=0 sm=0 for i in range(len(lis)): if i%2==0: if lis[i]+sm >= 0: add = lis[i]+sm+1 cnt+= add sm=-add else: if lis[i]+sm <= 0: add = abs(1-lis[i]-sm) cnt+= add sm=add ans=min(ans,cnt) cnt=0 sm=0 for i in range(len(lis)): if i%2==1: if lis[i]+sm >= 0: add = lis[i]+sm+1 cnt+= add sm=-add else: if lis[i]+sm <= 0: add = abs(1-lis[i]-sm) cnt+= add sm=add ans=min(ans,cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 100010, mod = 1e9 + 7; int n, a[N]; long long s[N]; int check(int a, int b) { if (a < 0 && b > 0 || a > 0 && b < 0) return 0; else if (b < 0) return 1; else return -1; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d", a + i); s[i] = s[i - 1] + a[i]; } long long res = 0, t = 0; for (int i = 2; i <= n; i++) { s[i] += t; int v = check(s[i], s[i - 1]); if (!v) continue; t = v - s[i]; s[i] = v; res += abs(t); } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; bool hugou; long long sum; long long ans; int main() { cin >> n; for (int i = 0; i < n; i++) { long long a; cin >> a; if (i == 0) { if (a > 0) hugou = true; sum += a; } else { if (hugou && sum + a >= 0) { ans += sum + a + 1; sum = -1; hugou = false; } else if (!hugou && sum + a <= 0) { ans += 1 - sum - a; sum = 1; hugou = true; } else if (hugou && sum + a < 0) { sum += a; hugou = false; } else if (!hugou && sum + a > 0) { sum += a; hugou = true; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.IOException; import java.util.StringTokenizer; public class Main { public static void main(String[] args) { try { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); StringTokenizer str = new StringTokenizer(br.readLine(), " "); int sum = Integer.parseInt(str.nextToken()); int flg; int count = 0; if( sum > 0) flg = 1; else flg = -1; for(int i = 0; i < n-1; i++){ int tmp = 0; sum += Integer.parseInt(str.nextToken()); if(flg == 1){ //次は負 if(sum >= 0){ tmp = (sum + 1); sum = -1; } flg = -1; } else{ //次は正 if(sum <= 0){ tmp = 1+ (-sum); sum = 1; } flg = 1; } //System.out.print(tmp+" "); count += tmp; } System.out.println(count); } catch (IOException e) { System.out.println("error"); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <algorithm> #include <string> #include <math.h> #include <bitset> #include <vector> #include <queue> #include <map> #define i64 int64_t #define ff(ii,nn,mm) for(int ii=nn;ii<mm;ii++) #define sort(vvv) sort(vvv.begin(),vvv.end()) #define rvs(vvv) reverse(vvv.begin(),vvv.end()) int inf = 1000000007; using namespace std; int main() { int n; cin >> n; vector<int> data(n); int ans = 0; ff(i, 0, n) { cin >> data.at(i); } vector<int> data2 = data; i64 sum = data.at(0); i64 sump = sum; ff(i, 1, n) { sump += data.at(i); if (sum * sump >= 0) { int c = sump; if (c < 0)c *= -1; c++; ans += c; if (sump > 0) { data.at(i) -= c; sump -= c; } else { data.at(i) += c; sump += c; } } sum += data.at(i); } i64 ans2 = 0; i64 sum = data2.at(0)*-1; i64 sump = sum; ff(i, 1, n) { sump += data2.at(i); if (sum * sump >= 0) { int c = sump; if (c < 0)c *= -1; c++; ans2 += c; if (sump > 0) { data2.at(i) -= c; sump -= c; } else { data2.at(i) += c; sump += c; } } sum += data2.at(i); } if (ans > ans2) { cout << ans << endl; } else { cout << ans2 << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; namespace AtCoderBeginnerContest { public class Program { public static void Main(string[] args) { // C var n = long.Parse(Console.ReadLine()); var a = Console.ReadLine().Split(' ').Select(x => long.Parse(x)).ToArray(); long sum = a[0]; long count = 0; for (int i = 1; i < n; i++) { // 差し引き0になってしまうとき if (i != n - 1 && sum + a[i] == 0) { if (i < n - 1) { if (a[i + 1] > 0) sum = -1; else sum = 1; count++; } } // sumとsum+a[i]の符号が違うとき else if ((sum > 0 && sum+a[i] < 0) || (sum < 0 && sum + a[i] > 0)) { sum = sum + a[i]; } // sumとsum+a[i]の符号が同じとき else { if (Math.Abs(sum + a[i]) > Math.Abs(sum)) { count += Math.Abs(sum) + 1; sum = sum > 0 ? sum = -1 + a[i] : sum = 1 + a[i]; } else { count += Math.Abs(sum+a[i]) + 1; sum = sum > 0 ? sum = -1 : sum = 1; } } } Console.WriteLine(count); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) nums = list(map(int, input().split())) sum_n = 0 before = 0 ans = 10*14 for n in [-1, 1]: cnt = 0 before = n sum_n = nums[0] if sum_n * before >= 0: if before > 0: sum_n = -1 else: sum_n = 1 cnt += abs(sum_n - before) before = sum_n for num in nums[1:]: sum_n += num if before * sum_n >= 0: if before > 0: cnt += abs(-1-sum_n) sum_n = -1 else: cnt += abs(1-sum_n) sum_n = 1 before = sum_n ans = min(ans, cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys stdin = sys.stdin def li(): return [int(x) for x in stdin.readline().split()] def li_(): return [int(x)-1 for x in stdin.readline().split()] def lf(): return [float(x) for x in stdin.readline().split()] def ls(): return stdin.readline().split() def ns(): return stdin.readline().rstrip() def lc(): return list(ns()) def ni(): return int(ns()) def nf(): return float(ns()) n = ni() a = li() # 正→負→正→... cur = a[0] ans_pn = 0 if cur <= 0: ans_pn = abs(a[0])+1 for i in range(1,n): cur += a[i] if i%2 == 0 and cur <= 0: ans_pn += abs(cur)+1 cur = 1 elif i%2 == 1 and cur >= 0: ans_pn += abs(cur)+1 cur = -1 # 負→正→負... cur = a[0] ans_np = 0 if cur >= 0: ans_np = abs(a[0])+1 for i in range(1,n): cur += a[i] if i%2 == 0 and cur >= 0: ans_np += abs(cur)+1 cur = -1 elif i%2 == 1 and cur <= 0: ans_np += abs(cur)+1 cur = 1 print(min(ans_np, ans_pn))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# # Written by NoKnowledgeGG @YlePhan # ('ω') # #import math #mod = 10**9+7 #import itertools #import fractions #import numpy as np #mod = 10**4 + 7 """def kiri(n,m): r_ = n / m if (r_ - (n // m)) > 0: return (n//m) + 1 else: return (n//m)""" """ n! mod m 階乗 mod = 1e9 + 7 N = 10000000 fac = [0] * N def ini(): fac[0] = 1 % mod for i in range(1,N): fac[i] = fac[i-1] * i % mod""" """mod = 1e9+7 N = 10000000 pw = [0] * N def ini(c): pw[0] = 1 % mod for i in range(1,N): pw[i] = pw[i-1] * c % mod""" """ def YEILD(): yield 'one' yield 'two' yield 'three' generator = YEILD() print(next(generator)) print(next(generator)) print(next(generator)) """ """def gcd_(a,b): if b == 0:#結局はc,0の最大公約数はcなのに return a return gcd_(a,a % b) # a = p * b + q""" """def extgcd(a,b,x,y): d = a if b!=0: d = extgcd(b,a%b,y,x) y -= (a//b) * x print(x,y) else: x = 1 y = 0 return d""" def readInts(): return list(map(int,input().split())) mod = 10**9 + 7 def main(): n = int(input()) A = readInts() Cost = 0 # 符号 positive? #po_ = True # 変わったか変わってないか ANS = [0] * (n) if A[0] > 0: pri_po = True elif A[0] == 0: pri_po = True A[0] += 1 Cost += 1 else: pri_po = False ANS[0] = A[0] for i in range(1,n): #print(ANS[i-1],pri_po,Cost) if ANS[i-1] + A[i] > 0 and pri_po == True: pri_po = False Cost += abs(-1 - (ANS[i-1] + A[i])) #print(abs(-1 - (ANS[i-1] + A[i]))) A[i] -= abs(-1 - (ANS[i-1] + A[i])) #print('Hi^^',A[i]) ANS[i] = ANS[i-1] + A[i] elif ANS[i-1] + A[i] == 0 and pri_po == False: pri_po = True Cost += 1 A[i] += 1 ANS[i] = ANS[i-1] + A[i] elif ANS[i-1] + A[i] == 0 and pri_po == True: pri_po = False Cost += 1 A[i] -= 1 ANS[i] = ANS[i-1] + A[i] elif ANS[i-1] + A[i] > 0 and pri_po == False: pri_po = True ANS[i] = ANS[i-1] + A[i] elif ANS[i-1] + A[i] < 0 and pri_po == True: pri_po = False ANS[i] = ANS[i-1] + A[i] elif ANS[i-1] + A[i] < 0 and pri_po == False: pri_po = True Cost += 1 - (ANS[i-1] + A[i]) A[i] += 1 - (ANS[i-1] + A[i]) ANS[i] = ANS[i-1] + A[i] else: pass print(Cost) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MAX = 100005; int main() { long long n; long long tmp; long long ans1{0}; long long ans2{0}; cin >> n; long long A[MAX], B[MAX]; long long cum_sum = 0; for (long long i = 0; i < n; i++) { cin >> tmp; cum_sum += tmp; A[i] = cum_sum; B[i] = cum_sum; } tmp = 0; if (A[0] <= 0) { tmp = -A[0] + 1; ans1 += tmp; for (long long i = 0; i < n; i++) { A[i] += tmp; } } for (long long i = 0; i < n - 1; i++) { if (A[i] > 0) { if (A[i + 1] >= 0) { tmp = (A[i + 1] + 1); ans1 += tmp; for (long long j = i + 1; j < n; j++) A[j] -= tmp; } } else if (A[i] < 0) { if (A[i + 1] <= 0) { tmp = (-A[i + 1] + 1); ans1 += tmp; for (long long j = i + 1; j < n; j++) A[j] += tmp; } } } tmp = 0; if (B[0] >= 0) { tmp = B[0] + 1; ans2 += tmp; for (long long i = 0; i < n; i++) { A[i] -= tmp; } } for (long long i = 0; i < n - 1; i++) { if (B[i] > 0) { if (B[i + 1] >= 0) { tmp = (B[i + 1] + 1); ans2 += tmp; for (long long j = i + 1; j < n; j++) B[j] -= tmp; } } else if (B[i] < 0) { if (B[i + 1] <= 0) { tmp = (-B[i + 1] + 1); ans2 += tmp; for (long long j = i + 1; j < n; j++) B[j] += tmp; } } } long long ans = (ans1 > ans2 ? ans2 : ans1); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; public class Hello { public static void Main() { var n = int.Parse(Console.ReadLine().Trim()); string[] line = Console.ReadLine().Trim().Split(' '); var a = Array.ConvertAll(line, long.Parse); Console.WriteLine(Math.Min(culc0m(a), culc0p(a))); } public static long culc0m(long[] a) { var count = 0L; var sum = a[0]; if (sum >= 0) { count += -sum + 1; sum = -1; } for (int i = 1; i < a.Length; i++) { if (i % 2 == 1) { if (sum + a[i] > 0) sum += a[i]; else { count += -(sum + a[i]) + 1; sum = 1; } } else { if (sum + a[i] < 0) sum += a[i]; else { count += (sum + a[i]) + 1; sum = -1; } } } return count; } public static long culc0p(long[] a) { var count = 0L; var sum = a[0]; if (sum <= 0) { count += -sum + 1; sum = 1; } for (int i = 1; i < a.Length; i++) { if (i % 2 == 1) { if (sum + a[i] < 0) sum += a[i]; else { count += (sum + a[i]) + 1; sum = -1; } } else { if (sum + a[i] > 0) sum += a[i]; else { count += -(sum + a[i]) + 1; sum = 1; } } } return count; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split(" "))) def solve(s1, s2): "if start == true, assume the first of the sum is positive." res = 0 sum = 0 for i in range(n): sum += a[i] if sum <= 0 and i % 2 == s1: res += abs(sum) + 1 sum = 1 elif sum >= 0 and i % 2 == s2: res += abs(sum) + 1 sum = -1 return res print(min(solve(0, 1), solve(1, 2)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "math" "os" "strconv" ) const pi = math.Pi var mod int = pow(10, 9) + 7 var Umod uint64 = 1000000007 var ans int64 func main() { reader.Split(bufio.ScanWords) n, _ := strconv.Atoi(read()) a := make([]int, n) for i := 0; i < n; i++ { a[i], _ = strconv.Atoi(read()) } sum := make([]int64, n) sum[0] = int64(a[0]) for i := 1; i < n; i++ { sum[i] += int64(a[i]) + sum[i-1] if (0 <= sum[i-1] && 0 <= sum[i]) || (sum[i-1] <= 0 && sum[i] <= 0) { // NGパターン if sum[i] < 0 { ans += 1 - sum[i] sum[i] = 1 } else { ans += sum[i] + 1 sum[i] = -1 } } } fmt.Println(ans) } /* ---------------------------------------- */ var reader = bufio.NewScanner(os.Stdin) func read() string { reader.Scan() return reader.Text() } func lcm(x, y int) int { return (x / gcd(x, y)) * y } func gcd(x, y int) int { if x%y == 0 { return y } else { r := x % y return gcd(y, r) } } var fac [1000000]int var finv [1000000]int var inv [1000000]int func combination_init() { fac[0], fac[1] = 1, 1 finv[0], finv[1] = 1, 1 inv[1] = 1 // invは a^(-1) mod p // pをaで割ることを考える // p/a*(a) + p%a = p // p/a*(a) + p%a = 0 (mod p) // -p%a = p/a*(a) (mod p) // -p%a *a^(-1)= p/a (mod p) // a^(-1)= p/a * (-p%a)^(-1) (mod p) // a^(-1) = for i := 2; i < 1000000; i++ { fac[i] = fac[i-1] * i % mod inv[i] = mod - inv[mod%i]*(mod/i)%mod finv[i] = finv[i-1] * inv[i] % mod } } func combination(x, y int) int { if x < y { return 0 } if fac[0] != 1 { combination_init() } return fac[x] * (finv[y] * finv[x-y] % mod) % mod //return fac[x] / (fac[y] * fac[x-y]) } func permutation(x, y int) int { if x < y { return 0 } if fac[0] != 1 { combination_init() } return fac[x] * (finv[x-y] % mod) % mod //return fac[x] / fac[x-y] } func max(x ...int) int { var res int = x[0] for i := 1; i < len(x); i++ { res = int(math.Max(float64(x[i]), float64(res))) } return res } func min(x ...int) int { var res int = x[0] for i := 1; i < len(x); i++ { res = int(math.Min(float64(x[i]), float64(res))) } return res } func pow(x, y int) int { return int(math.Pow(float64(x), float64(y))) } func abs(x int) int { return int(math.Abs(float64(x))) } func floor(x int) int { return int(math.Floor(float64(x))) } func ceil(x int) int { return int(math.Ceil(float64(x))) } type SortBy [][]int func (a SortBy) Len() int { return len(a) } func (a SortBy) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a SortBy) Less(i, j int) bool { return a[i][0] < a[j][0] } type PriorityQueue []int func (h PriorityQueue) Len() int { return len(h) } func (h PriorityQueue) Less(i, j int) bool { return h[i] < h[j] } func (h PriorityQueue) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *PriorityQueue) Push(x interface{}) { *h = append(*h, x.(int)) } func (h *PriorityQueue) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; long long a[100005]; cin >> n; for (long long i = 0; i < n; i++) cin >> a[i]; long long nCount = 0, sum = a[0]; bool isPositive; if (a[0] == 0) { nCount++; sum++; isPositive = true; } else if (a[0] > 0) { isPositive = true; } else { isPositive = false; } for (long long i = 1; i < n; i++) { if (isPositive) { if ((a[i] + sum) < 0) { sum += a[i]; } else { nCount += abs(a[i] + sum) + 1; sum = -1; } isPositive = !isPositive; } else { if ((a[i] + sum) > 0) { sum += a[i]; } else { nCount += abs(a[i] + sum) + 1; sum = 1; } isPositive = !isPositive; } } cout << nCount << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!usr/bin/env python3 from collections import defaultdict from heapq import heappush, heappop import sys import math import bisect import random def LI(): return list(map(int, sys.stdin.readline().split())) def I(): return int(sys.stdin.readline()) def LS():return list(map(list, sys.stdin.readline().split())) def S(): return list(sys.stdin.readline())[:-1] def IR(n): l = [None for i in range(n)] for i in range(n):l[i] = I() return l def LIR(n): l = [None for i in range(n)] for i in range(n):l[i] = LI() return l def SR(n): l = [None for i in range(n)] for i in range(n):l[i] = S() return l def LSR(n): l = [None for i in range(n)] for i in range(n):l[i] = SR() return l mod = 1000000007 #A #B #C n = I() a = LI() ans = 0 k = a[0] for i in range(1,n): if k*(k+a[i]) >= 0: if k < 0: ans += abs(1-k-a[i]) a[i] = 1-k k = 1 else: ans += abs(-1-k-a[i]) a[i] = -1-k k = -1 else: k += a[i] print(ans) #D #E #F #G #H #I #J #K #L #M #N #O #P #Q #R #S #T
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np N = int(input()) A = list(map(int, input().split())) res_plus = np.cumsum(A) res_minus = np.cumsum(A) ans_plus = 0 ans_minus = 0 tmp_tmp = 0 # 奇数項を正とする for i in range(N): res_plus[i] += tmp_tmp if i % 2 == 0: # 奇数項 if res_plus[i] > 0: pass else: tmp = 1 - res_plus[i] ans_plus += tmp tmp_tmp += tmp else: # 偶数項 if res_plus[i] < 0: pass else: tmp = res_plus[i] + 1 ans_plus += tmp tmp_tmp -= tmp tmp_tmp = 0 # 奇数項を負とする for i in range(N): res_minus[i] += tmp_tmp if i % 2 == 0: # 奇数項 if res_minus[i] < 0: pass else: tmp = res_minus[i] + 1 ans_minus += tmp tmp_tmp -= tmp else: # 偶数項 if res_minus[i] > 0: pass else: tmp = 1 - res_minus[i] ans_minus += tmp tmp_tmp += tmp ##print(ans_minus, ans_plus) print(min(ans_plus, ans_minus))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> vec; for (int i = 0; i < n; i++) { int aux; cin >> aux; vec.push_back(aux); } int sumA = 0; int sumB = 0; int auxA = vec[0]; int auxB; if (auxA > 0) { auxB = -1; sumB += auxA + 1; } else if (auxA < 0) { auxB = 1; sumB += abs(auxA) + 1; } else { auxA = 0; auxB = 0; sumA++; sumB++; } int sumAuxA = auxA; int sumAuxB = auxB; for (int i = 1; i < n; i++) { if (sumAuxA > 0) { sumAuxA += vec[i]; sumAuxB += vec[i]; if (sumAuxA >= 0) { sumA += sumAuxA + 1; sumAuxA = -1; } if (sumAuxB <= 0) { sumB += abs(sumAuxB) + 1; sumAuxB = 1; } } else { sumAuxA += vec[i]; sumAuxB += vec[i]; if (sumAuxA <= 0) { sumA += abs(sumAuxA) + 1; sumAuxA = 1; } if (sumAuxB >= 0) { sumB += sumAuxB + 1; sumAuxB = -1; } } } cout << min(sumA, sumB); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n, c = 0; cin >> n; long long int sum[n]; long long int a[n]; for (long long int i = 0; i < n; i++) cin >> a[i]; if (a[0] == 0) { a[0]++; c++; } sum[0] = a[0]; long long int e = a[0] / abs(a[0]); for (long long int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (sum[i - 1] * sum[i] >= 0) { c += abs(sum[i] - pow(-1, i) * e); sum[i] = pow(-1, i) * e; } } cout << c << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i=0; i<N; i++) { cin >> a.at(i); } int ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0; for (int i=0; i<N; i++) { sum1 += a.at(i); if (i%2 == 0 && sum <= 0) { ans1 += 1-sum; //sumは負 sum1 = 1; } else if (i%2 != 0 && sum >= 0) { ans1 += sum+1; sum1 = -1; } } for (int i=0; i<N; i++) { sum2 += a.at(i); if (i%2 == 0 && sum >= 0) { ans2 += sum+1; sum2 = -1; } else if (i%2 != 0 && sum <= 0) { ans2 += 1-sum; sum2 = 1; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int MOD = 1000000007; using long long = long long; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } void print(const std::vector<int> &v) { std::for_each(v.begin(), v.end(), [](int x) { std::cout << x << " "; }); std::cout << std::endl; } int main() { int n; cin >> n; vector<long long> a(n); for (long long i = 0; i < (long long)n; i++) { cin >> a[i]; } int ans = 0; if (a[0] > 0) { int s = a[0]; for (int i = 1; i < n; i++) { s += a[i]; if (i % 2 == 1) { if (s > 0) { ans += s + 1; s = -1; } } else { if (s < 0) { ans += -s + 1; s = 1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const int MOD = 1e9 + 7; const long long LINF = 1e18; long long n; vector<long long> a; long long count(long long sum) { long long cnt = 0; for (long long i = 1; i < n; ++i) { if (sum > 0) { sum += a[i]; if (sum >= 0) { cnt += abs(sum) + 1; sum = -1; } } else { sum += a[i]; if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } } } return cnt; } int main() { cin >> n; long long ans = LINF; a.resize(n); for (long long i = 0; i < n; ++i) { cin >> a[i]; } if (a[0] == 0) { ans = min(ans, count((long long)1) + 1); ans = min(ans, count((long long)-1) + 1); } else { ans = min(ans, count(a[0])); } cout << ans << endl; }