Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = 0; long long cost = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum < 0) { cost += 1 - sum; sum += 1 - sum; } if (i % 2 != 0 && sum > 0) { cost += 1 + sum; sum -= 1 + sum; } } if (sum == 0) { cost++; } const long long even = cost; sum = 0; cost = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum > 0) { cost += 1 + sum; sum -= 1 + sum; } if (i % 2 != 0 && sum < 0) { cost += 1 - sum; sum += 1 - sum; } } if (sum == 0) { cost++; } const long long odd = cost; cout << min(even, odd); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void initvv(vector<vector<T> > &v, int a, int b, const T &t = T()) { v.assign(a, vector<T>(b, t)); } template <class F, class T> void convert(const F &f, T &t) { stringstream ss; ss << f; ss >> t; } int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < int(n); ++i) { cin >> a[i]; } long long sum = 0; long long ans = 0; for (int i = 0; i < int(n); ++i) { long long nextSum = sum + a[i]; if ((i == 0) && (a[i] == 0)) { if (n >= 2) { a[i] = (a[1] > 0) ? -1 : 1; } else { a[i] = 1; } ++ans; } if ((i > 0) && (sum * nextSum >= 0)) { a[i] += (nextSum > 0 ? -1 : 1) * (abs(nextSum) + 1); ans += abs(nextSum) + 1; } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#includ<bits/stdc++.h> using namespace std; int main() { int n; cin>>n; int arr[n]; for(int i=0;i<n;i++) cin>>arr[i]; int sum=arr[0]; int sum1,sum2; int ans1=0,ans2=0; // case 1 if(sum>0) { sum1=sum; sum2=-1; ans1=0; ans2=sum+1; } else if(sum<0) { sum2=sum; sum1=1; ans2=0; ans1=abs(sum)+1; } else { sum1=1; sum2=1; ans2=1; ans1=1; } for(int i=1;i<n;i++) { if(sum1>0) { sum1=sum1+arr[i]; if(sum1<0) continue; else { ans1+=sum1+1; sum1=-1; } } else { sum1=sum1+arr[i]; if(sum1>0) continue; else { ans1+=abs(sum1)+1; sum1=1; } } } // case 2; for(int i=1;i<n;i++) { if(sum2>0) { sum2=sum2+arr[i]; if(sum2<0) continue; else { ans2+=sum2+1; sum2=-1; } } else { sum2=sum2+arr[i]; if(sum2>0) continue; else { ans2+=abs(sum2)+1; sum2=1; } } } if(ans1<ans2) cout<<ans1; else cout<<ans2; cout<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = a[0], kaisu = 0; if (sum == 0) { kaisu++; if (a[1] > 0) { sum = -1; } else { sum = 1; } } for (int i = 1; i < n; i++) { long long presum = sum; sum += a[i]; if (presum > 0) { if (sum >= 0) { kaisu += sum + 1; a[i] = a[i] - sum - 1; sum = -1; } } if (presum < 0) { if (sum <= 0) { kaisu += 1 - sum; sum = 1; } } } cout << kaisu << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) cnt=0 for i in range(1,n): #print(a) now_tmp = sum(a[:i]) next_tmp = now_tmp + a[i] #print(i, now_tmp, next_tmp) # 符号が逆転していればOK かつ 現在までの総和が0でない # 異なる符号を掛けるとマイナスになる if now_tmp * next_tmp <0 and now_tmp !=0: continue else: # 現在の合計がマイナスの場合 if now_tmp < 0: a[i] += -next_tmp+1 cnt +=abs(next_tmp+1) # 現在の合計がプラスの場合 elif now_tmp > 0 : a[i] += -next_tmp-1 cnt +=abs(next_tmp+1) # 現在の合計が0の場合 elif now_tmp == 0 : # 1個前がプラスの場合、 if sum(a[:i-1]) > 0: a[i] += -next_tmp+1 cnt +=abs(next_tmp+1) # 1個前がマイナスの場合 else: a[i] += -next_tmp+1 cnt +=abs(next_tmp+1) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
gets seq = gets.split.map(&:to_i) def foo(seq) cnt = 0 sum = seq.shift seq.each{|a| if sum < 0 if sum + a > 0 sum += a else cnt += 1 - (sum + a) sum = 1 end else if sum + a < 0 sum += a else cnt += 1 + (sum + a) sum = -1 end end # p [a, sum, cnt] } return cnt end if seq[0] != 0 p foo(seq) else seq.shift p [foo([1] + seq), foo([-1] + seq)].min + 1 end
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T, class U> inline void chmin(T &t, U f) { if (t > f) t = f; } template <class T, class U> inline void chmax(T &t, U f) { if (t < f) t = f; } int n; void solve() { cin.tie(0); ios::sync_with_stdio(false); cin >> n; vector<long long> v(n); long long ans1 = 0, ans2 = 0; long long sum = 0; for (int i = (int)(0); i < (int)(n); i++) { cin >> v[i]; } for (int i = (int)(0); i < (int)(n); i++) { sum += v[i]; if (i % 2 == 0) { if (sum < 0) { ans1 += abs(1 - sum); sum = 1; } } else { if (sum > 0) { ans1 += abs(sum + 1); sum = -1; } } } for (int i = (int)(0); i < (int)(n); i++) { sum += v[i]; if (i % 2 == 1) { if (sum < 0) { ans2 += abs(1 - sum); sum = 1; } } else { if (sum > 0) { ans2 += abs(sum + 1); sum = -1; } } } if (ans1 > ans2) { cout << ans2 << endl; } else { cout << ans1 << endl; } } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) s = [ sum(a[0:i+1]) for i in range(n)] s2 = [ s[i]*(-1) for i in range(n)] c1 = 0 for i in range(n): if s[i]*(-1)**i <= 0: c1 = c1 + s[i]*(-1)**(i+1) + 1 s = [s[j] if j <= i-1 else s[j] - (s[i])*(-1)**i + (-1)**i for j in range(n)] c2 = 0 for i in range(n): if s2[i]*(-1)**i <= 0: c2 = c2 + s2[i]*(-1)**(i+1) + 1 s2 = [s2[j] if j <= i-1 else s2[j] - (s2[i])*(-1)**i + (-1)**i for j in range(n)] print(min(c1,c2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int64_t min(int64_t a, int64_t b) { if (a > b) { return b; } else { return a; } } int64_t solve(vector<int> a) { bool nextposi = (a.at(0) < 0); int ans = 0; int sum = a.at(0); for (int i = 1; i < a.size(); i++) { sum += a.at(i); if (nextposi != (sum > 0)) { if (nextposi == 1) { ans += abs(sum - 1); sum = 1; } else { ans += abs(sum + 1); sum = -1; } } nextposi = !nextposi; } return ans; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int64_t ans = 0; if (a.at(0) == 0) { a.at(0) = 1; ans = solve(a); a.at(0) = -1; ans = min(ans, solve(a)) + 1; } else { ans = solve(a); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main(void) { ll n; cin >> n; vector<ll> a(n); for (auto& it : a) cin >> it; ll total = 0; ll ans = 0; for (ll i = 0; i < n; i++) { if (total > 0) { if (total + a[i] >= 0) { ans += abs(-total - 1 - a[i]); a[i] = -total - 1; } } else { if (total + a[i] <= 0) { ans += abs(-total + 1 - a[i]); a[i] = -total + 1; } } total += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
fun main(args: Array<String>) { val n= readLine()!!.toInt() var a = readLine()!!.split(" ").map{it.toInt()} //先頭がプラス var move1=0 var sum1=0 for(i in 0..n-1){ sum1+=a[i] if(i%2==0 && sum1<1){ move1 += 1-sum1 sum1 = 1 } if(i%2==1 && sum1>-1){ move1 += sum1-(-1) sum1 = -1 } } //先頭がマイナス var move2=0 var sum2=0 for(i in 0..n-1){ sum2+=a[i] if(i%2==1 && sum2<1){ move2 += 1-sum2 sum2 = 1 } if(i%2==0 && sum2>-1){ move2 += sum2-(-1) sum2 = -1 } } println(Math.min(move1,move2)) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void chmax(T &a, T b) { if (a < b) a = b; } template <class T> void chmin(T &a, T b) { if (a > b) a = b; } int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; long long sum = a[0]; long long change1 = 0LL; long long change2 = 0LL; for (int i = 1; i < n; i++) { if (i % 2 == 1 && sum + a[i] >= 0) { sum += a[i]; change1 += abs(-1LL - sum); sum = -1LL; } else if (i % 2 == 0 && sum + a[i] <= 0) { sum += a[i]; change1 += abs(1LL - sum); sum = 1LL; } else { sum += a[i]; } } for (int i = 1; i < n; i++) { if (i % 2 == 0 && sum + a[i] >= 0) { sum += a[i]; change2 += abs(-1LL - sum); sum = -1LL; } else if (i % 2 == 1 && sum + a[i] <= 0) { sum += a[i]; change2 += abs(1LL - sum); sum = 1LL; } else { sum += a[i]; } } cout << min(change1, change2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int32_t sgn(int32_t val) { return (val > 0) - (val < 0); } int main() { uint32_t n = 0; std::cin >> n; uint64_t op = 0; int32_t sum = 0; std::cin >> sum; for (size_t i = 1; i < n; i++) { int32_t a_i = 0; std::cin >> a_i; if (sgn(sum) * sgn(sum + a_i) != -1) { int32_t diff = -sgn(sum) - (sum + a_i); a_i += diff; op += std::abs(diff); } sum += a_i; } std::cout << op << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int []a = new int [n]; for(int i = 0; i < n ;i++) { a[i] = sc.nextInt(); } sc.close(); long []sum = new long [n]; int []temp = new int [n]; long count = 0; sum[0] = a[0]; if(a[0] > 0) { temp[0] = 1; } if(a[0] < 0) { temp[0] = -1; } if(a[0] == 0) { if(a[1] >0) { count++; temp[0] = -1; sum[0] = -1; } else { count++; temp[0] = 1; sum[0] = 1; } } for(int i = 1 ; i < n ; i++) { sum[i] +=(long) a[i] + sum[i-1]; if(sum[i] >0) { temp[i] = 1; } if(sum[i] < 0){ temp[i] = -1; } if(temp[i-1] * temp [i] > 0) { count += Math.abs(sum[i]) + 1; sum[i] = temp[i] * -1; temp[i] = temp[i] * -1; } if(temp[i] == 0) { count++; sum[i] = temp[i-1] * -1; temp[i] = (int)sum[i]; } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = map(int, input().split(" ")) s = 0 num = 0 for i, x in enumerate(a): if i == 0: if x == 0: num += 1 for j, y in enumerate(a): if j == n - 1: s = 1 break elif y > 0: s = -1 break elif y < 0: s = 1 break else: s = x else: if s > 0: if s + x < 0: s += x else: num += abs(-s-x-1) s = -1 else: if s + x > 0: s += x else: num += abs(-s-x+1) s = 1 print(num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int keta(int num) { int ans = 0; int rem; for (int i = 4; i >= 0; i--) { rem = pow(10, i); ans += (num / rem); num = num % rem; } return ans; } int main() { int n; cin >> n; vector<int64_t> ar(n); for (int i = 0; i < n; i++) { cin >> ar[i]; } int ans1, ans2 = 0; int cum = 0; for (int i = 0; i < n; i++) { int next = cum + ar[i]; if (i % 2 == 0) { if (next <= 0) { ans1 += abs(next - 1); cum = 1; } else { cum = next; } } else { if (next >= 0) { ans1 += abs(next + 1); cum = -1; } else { cum = next; } } } cum = 0; for (int i = 0; i < n; i++) { int next = cum + ar[i]; if (i % 2 == 0) { if (next >= 0) { ans2 += abs(next + 1); cum = -1; } else { cum = next; } } else { if (next <= 0) { ans2 += abs(next - 1); cum = 1; } else { cum = next; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int num = 0; int N; int M = 0; int A[100000]; cin >> N; for (int i = 0; i < N; ++i) { cin >> A[i]; } for (int i = 0; i < N - 1; ++i) { M = 0; for (int j = 0; j <= i; ++j) { M += A[j]; } if ((M + A[i + 1]) * M >= 0) { break; } if (i == N - 2) { cout << num << endl; return 0; } } { int m = 0; for (int i = 0; i < N; ++i) { if (m * (m + A[i]) >= 0) { int k = -1 * (m + 1); if (m < 0) { k = -1 * (m - 1); } if (i == 0 && A[i] > 0) { k = 1; } num += abs(k - A[i]); A[i] = k; } m += A[i]; } } cout << num << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; #define INF 1e12 #define PB push_back #define PF push_front #define fi first #define se second #define pii pair<int, int> #define pll pair<ll, ll> #define vi vector<int> #define vpi vector<pii> #define vll vector<ll> #define vpl vector<pll> #define vvi vector<vector<int>> #define vvl vector<vector<ll>> #define MX(x) *max_element(all(x)) #define MN(x) *min_element(all(x)) #define ios ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0) #define pr_d(x) cout << fixed << setprecision(15) << x << endl #define ud(c, x) distance(c.begin(), upper_bound(all(c), x)) #define ld(c, x) distance(c.begin(), lower_bound(all(c), x)) #define rep(i, n) for (int i = 0; i < (n); ++i) #define rep2(i, a, b) for (int i = (a); i < (b); ++i) #define rep3(i, n) for (int i = (n - 1); i >= 0; --i) #define rep4(i, a, b) for (int i = (a); i > (b); --i) #define pb push_back #define out(x) cout << x << "\n" bool odd(int i) { return i % 2; } #define all(v) v.begin(), v.end() #define size(x) int(x.size()) int gcd(int a, int b) { return __gcd(a, b); } int lcm(int a, int b) { return a * (b / gcd(a, b)); } void Yes_No(bool f) { if (f) printf("Yes\n"); else printf("No\n"); } void YES_NO(bool f) { if (f) printf("YES\n"); else printf("NO\n"); } template <typename T> void deb1(T x) { cout << x << "\n"; } template <typename T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } return false; } template <typename T> bool chmin(T& a, const T& b) { if (a > b) { a = b; return true; } return false; } //-------------------ここから回答する----------------------- void solve(void) { int n; cin >> n; vll v(n); rep(i, n) cin >> v[i]; int ans = 0; if (v[0] == 0) v[0]++, ans++; ll cta = v[0]; rep2(i, 1, n) { ll x = v[i]; if (cta * (cta + v[i]) < 0) { cta += x; continue; } if (cta > 0) ans += abs(-cta - 1 - x), v[i] = -cta - 1; else ans += abs(-cta + 1 - x), v[i] = -cta + 1; cta += v[i]; } out(ans); } int main(void) { solve(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int sum; cin >> sum; long answer = 0; for (int i = 1; i < n; i++) { int a; cin >> a; long nextSum = sum + a; if ((sum > 0 && nextSum < 0) || (sum < 0 && nextSum > 0)) { sum = nextSum; } else if (nextSum == 0) { sum = sum > 0 ? -1 : 1; answer += 1; } else if (nextSum > 0) { sum = -1; answer += nextSum + 1; } else if (nextSum < 0) { sum = 1; answer += nextSum * -1 + 1; } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int num, i = 1, a; long long sum, ans = 0; bool sig = true; cin >> num >> sum; if (sum < 0) sig = false; for (; i < num; i++) { scanf("%d", &a); if (sum == 0) { if (a >= 0) { sum--; sig = false; } else sum++; ans++; } sum += a; if (sig == true && sum >= 0) { ans += sum + 1; sum = -1; } else if (sig == false && sum <= 0) { ans += (-1) * sum + 1; sum = 1; } sig = !sig; } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = [int(x) for x in input().split()] asum = [a[0]] ansp,ansm,tempp,tempm = 0,0,0,0 for i in range(1,N): A = asum[i-1] + a[i] asum += [A] A1 = A + tempp if A1 == 0: ansp += 1 tempp += ((i%2)*2-1) elif i%2==0 and A1 < 0: ansp += -A1 + 1 tempp += -A1 + 1 elif i%2!=0 and A1 > 0: ansp += A1 + 1 tempp += -A1 - 1 A2 = A + tempm if A2 == 0: ansm += 1 tempm += -((i%2)*2-1) elif i%2!=0 and A2 < 0: ansm += -A2 + 1 tempm += -A2 + 1 elif i%2==0 and A2 > 0: ansm += A2 + 1 tempm += -A2 - 1 print(min(ansp,ansm))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- trial_num = int(input()) number_lists = list(map(int, input().split())) def main(): sum_num = 0 change_num = 0 if(number_lists[0] < 0): for i in range(trial_num): number_lists[i] = -1 * number_lists[i] elif(number_lists[0] == 0): number_lists[0] = 1 change_num += 1 for i in range(trial_num): if(i == 0): sum_num = number_lists[0] else: if(i%2 == 1): if(sum_num + number_lists[i] < 0): sum_num += number_lists[i] else: change_num += abs(sum_num + number_lists[i]) + 1 sum_num = -1 else: if (sum_num + number_lists[i] > 0): sum_num += number_lists[i] else: change_num += abs(sum_num + number_lists[i]) + 1 sum_num = 1 print(change_num) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = int64_t; int dx[] = {1, 0, -1, 0}; int dy[] = {0, 1, 0, -1}; int DX[] = {1, 1, 0, -1, -1, -1, 0, 1}; int DY[] = {0, -1, -1, -1, 0, 1, 1, 1}; int n; ll hoge(ll a[]) { ll ans = 0; int temp = 0; for (int(i) = 0; (i) < (n); (i)++) { if (temp > 0 && temp + a[i] > 0) { ans += abs(-1 - temp - a[i]); temp = -1; } else if (temp < 0 && temp + a[i] < 0) { ans += abs(1 - temp - a[i]); temp = 1; } else if (temp + a[i] == 0) { if (temp > 0) { temp = -1; } else { temp = 1; } ans += 1; } else { temp += a[i]; } } return ans; } void solve() { cin >> n; ll a[n]; for (int(i) = 0; (i) < (n); (i)++) cin >> a[i]; ll ans1 = hoge(a); int temp = 0; if (a[0] > 0) { temp += (a[0] * (-1) - 1); a[0] = -1; } else { temp = (a[0] * (-1) + 1); a[0] = 1; } ll ans2 = hoge(a) + temp; cout << min(ans1, ans2) << endl; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long l1[n + 1]; long long x = 0, s = 0; for (int i = 1; i <= n; i++) { cin >> l1[i]; x += l1[i]; if (i == 0 && l1[i] == 0) x++, s++; if (i >= 2) { if (x - l1[i] <= 0 && x <= 0) { s += abs((-x + l1[i] + 1) - l1[i]); l1[i] = l1[i] - x + 1; x = 1; } else if (x - l1[i] >= 0 && x >= 0) { s += abs(-(x - l1[i] + 1) - l1[i]); l1[i] = -(x - l1[i] + 1); x = -1; } } } cout << s << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int ans1, ans2, sum1, sum2; int n, i; long long int a[100005]; int main() { cin >> n; for (i = 1; i <= n; i++) { cin >> a[i]; } ans1 = 0; ans2 = 0; sum1 = 0; sum2 = 0; if (a[1] >= 0) { sum1 += a[1]; ans2 += a[1] + 1; sum2 += -1; } else { sum1 = 1; ans1 += abs(a[1]) + 1; sum2 += a[1]; } for (i = 2; i <= n; i++) { if (sum1 > 0) { if (a[i] + sum1 >= 0) { ans1 += a[i] + sum1 + 1; sum1 = -1; } else { sum1 += a[i]; } } else { if (a[i] + sum1 <= 0) { ans1 += abs(sum1 + a[i]) + 1; sum1 = 1; } else sum1 += a[i]; } } for (i = 2; i <= n; i++) { if (sum2 > 0) { if (a[i] + sum2 >= 0) { ans2 += a[i] + sum2 + 1; sum2 = -1; } else { sum2 += a[i]; } } else { if (a[i] + sum2 <= 0) { ans2 += abs(sum2 + a[i]) + 1; sum2 = 1; } else sum2 += a[i]; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; struct aaa { aaa() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); }; } aaaaaaa; int MOD = 1e9 + 7; int gcd(int a, int b) { return b ? gcd(b, a % b) : a; } int lcm(int a, int b) { return (a * b) / gcd(a, b); } int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; int N; int main() { cin >> N; vector<int> a(N); for (int i = 0; i < (N); ++i) cin >> a[i]; long ans1 = 0, ans2 = 0, sum = 0; if (a[0] > 0) { sum = a[0]; } else if (a[0] == 0) { sum = 1, ans1++; } else { sum = 1, ans1 += -a[0] + 1; } for (int i = 1; i <= (N - 1); ++i) { if ((sum + a[i]) * sum >= 0) { int k; if (sum > 0) k = -sum - 1; else k = -sum + 1; sum += k; ans1 += abs(k - a[i]); } } sum = 0; if (a[0] < 0) { sum = a[0]; } else if (a[0] == 0) { sum--, ans2++; } else { sum = -1, ans2 += a[0] + 1; } for (int i = 1; i <= (N - 1); ++i) { if ((sum + a[i]) * sum >= 0) { int k; if (sum > 0) k = -sum - 1; else k = -sum + 1; sum += k; ans2 += abs(k - a[i]); } } cout << min(ans1, ans2) << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans = 0 while a[0] == 0: if a[1] > 0: a[0] = -1 elif a[1] < 0: a[0] = 1 a.pop(0) ans += 1 if a[0] < 0: a = list(map(lambda x: x * (-1), a)) product = 0 for i in range(len(a)): product += a[i] if i % 2 == 0: if product <= 0: ans += abs(product) + 1 product = 1 elif i % 2 == 1: if product >= 0: ans += abs(product) + 1 product = -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = input() a_s = [int(x) for x in input().split()] sum_i = 0 manipulate_num = 0 for a in a_s: new_sum_i = sum_i + a # print(f"a:{a}, sum_i:{sum_i}, new_sum_i:{new_sum_i}") if new_sum_i == 0: manipulate_num += 1 if new_sum_i * sum_i > 0: manipulate_num += abs(a)+1 new_sum_i = np.sign(new_sum_i)*(-1) sum_i = new_sum_i # print(f"a:{a}, sum_i:{sum_i}") # print() print(manipulate_num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const long long LLINF = 1LL << 60; int main(void) { ios::sync_with_stdio(false); cin.tie(0); long long int i, n; long long int sum = 0, ans = 0, minans; cin >> n; vector<int> v(n, 0), w(n, 0); for (i = 0; i < n; i++) { cin >> v[i]; } sum = v[0]; w[0] = v[0]; for (i = 1; i < n; i++) { if ((sum < 0 && sum + v[i] > 0) || (sum > 0 && sum + v[i] < 0)) { w[i] = v[i]; sum += w[i]; continue; } if (sum < 0) { ans += abs(-1 * sum + 1 - v[i]); w[i] = -1 * sum + 1; sum += w[i]; if (sum == 0) { w[i]++; sum++; } } else { ans += abs(-1 * sum - 1 - v[i]); w[i] = -1 * sum - 1; sum += w[i]; if (sum == 0) { w[i]--; sum--; } } } minans = ans; ans = 0; w.clear(); sum = -1 * v[0]; w[0] = -1 * v[0]; for (i = 1; i < n; i++) { if ((sum < 0 && sum + v[i] > 0) || (sum > 0 && sum + v[i] < 0)) { w[i] = v[i]; sum += w[i]; continue; } if (sum < 0) { ans += abs(-1 * sum + 1 - v[i]); w[i] = -1 * sum + 1; sum += w[i]; if (sum == 0) { w[i]++; sum++; } } else { ans += abs(-1 * sum - 1 - v[i]); w[i] = -1 * sum - 1; sum += w[i]; if (sum == 0) { w[i]--; sum--; } } } minans = min(ans, minans); cout << minans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = 0, cnt1 = 0, cnt2 = 0; for (int i = 0, s = 1; i < n; i++, s *= -1) { sum += a[i]; if (sum * s <= 0) cnt1 += abs(sum) + 1, sum = s; } for (int i = 0, s = -1; i < n; i++, s *= -1) { sum += a[i]; if (sum * s <= 0) cnt2 += abs(sum) + 1, sum = s; } cout << min(cnt1, cnt2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) # 0 1 2 3 evn odd # kevn + - + - + - # kodd - + - + - + def kf(a,flag): a0=a[0]*flag if a0<=0: kevn=1-a0 sevn=1 elif a0>0: kevn=0 sevn=a0 for i in range(1,n): ai=a[i]*flag if i%2==0: if sevn+ai<=0: kevn=kevn+1-(ai+sevn) sevn=1 elif sevn+ai>0: kevn=kevn sevn=sevn+ai elif i%2==1: if sevn+ai<0: kevn=kevn sevn=sevn+ai elif sevn+ai>=0: kevn=kevn+1+(ai+sevn) sevn=-1 return kevn kevn1=kf(a,1,n) kevn=kf(a,-1,n) kevn=min(kevn,kevn1) print(kevn)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string divide[4] = {"dream", "dreamer", "erase", "eraser"}; int main() { int N, C, K; cin >> N; vector<int> T(N); for (int i = 0; i < N; i++) { cin >> T.at(i); } int sum = 0; int cnt1 = 0; for (int i = 0; i < N; i++) { sum += T.at(i); if (i % 2 == 0) { if (sum <= 0) { cnt1 += -sum + 1; sum = 1; } } else { if (sum >= 0) { cnt1 += sum + 1; sum = -1; } } } int cnt2 = 0; sum = 0; for (int i = 0; i < N; i++) { sum += T.at(i); if (i % 2 == 1) { if (sum <= 0) { cnt2 += -sum + 1; sum = 1; } } else { if (sum >= 0) { cnt2 += sum + 1; sum = -1; } } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long> A(N); vector<long long> B(N); long long count1 = 0; long long count2 = 0; for (int i = 0; i < N; ++i) { cin >> A[i]; } if (A[0] < 0) { B[0] = 1; count1 = abs(A[0]) + 1; } else { B[0] = A[0]; } for (int i = 1; i < N; ++i) { B[i] = A[i] + B[i - 1]; if (i % 2 == 1 && 0 <= B[i]) { count1 += abs(B[i]) + 1; B[i] = -1; } else if (i % 2 == 0 && B[i] <= 0) { count1 += abs(B[i]) + 1; B[i] = 1; } } if (0 < A[0]) { B[0] = -1; count2 = abs(A[0]) + 1; } else { B[0] = A[0]; } for (int i = 1; i < N; ++i) { B[i] = A[i] + B[i - 1]; if (i % 2 == 0 && 0 <= B[i]) { count2 += abs(B[i]) + 1; B[i] = -1; } else if (i % 2 == 1 && B[i] <= 0) { count2 += abs(B[i]) + 1; B[i] = 1; } } cout << min(count1, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { cin.sync_with_stdio(false); int n; cin >> n; vector<ll> a(n); ll sum = 0; int flag = true; for (int i = 0; i < n; i++) { cin >> a[i]; if (sum * (sum + a[i]) > 0) { flag = false; } sum += a[i]; if (sum == 0) { flag = false; } } if (flag) { cout << 0 << endl; return 0; } ll count1 = 0; ll count2 = 0; sum = a[0] + a[1]; if (sum == 0) { count1 += 1; } else if (sum < 0) { count1 += -1 - sum; } else { count1 += sum + 1; } sum = -1; for (int i = 2; i < n; i++) { if (sum < 0 && sum + a[i] < 0) { count1 += abs(sum) - a[i] + 1; sum = 1; } else if (sum > 0 && sum + a[i] > 0) { count1 += abs(sum + a[i] + 1); sum = -1; } else { sum += a[i]; } if (sum == 0) { count1 += 1; if (i % 2) { sum = -1; } else { sum = 1; } } } sum = a[0] + a[1]; if (sum == 0) { count2 += 1; } else if (sum < 0) { count2 += 1 - sum; } else { count2 += sum - 1; } sum = 1; for (int i = 2; i < n; i++) { if (sum < 0 && sum + a[i] < 0) { count2 += abs(sum) - a[i] + 1; sum = 1; } else if (sum > 0 && sum + a[i] > 0) { count2 += abs(sum + a[i] + 1); sum = -1; } else { sum += a[i]; } if (sum == 0) { count2 += 1; if (i % 2) { sum = 1; } else { sum = -1; } } } cout << min(count1, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Text; using System.Linq; using System.Collections.Generic; class Program { const long mod = 1000000007; //public static int[] max; static void Main(string[] args) { char[] cs = new char[] { ' ', ',' }; int val = int.Parse(Console.ReadLine()); int[] vals = parseAry(Console.ReadLine().Split(cs)); //string str = Console.ReadLine(); //string[] strs = Console.ReadLine().Split(cs); //int[] vals = parseAry(Console.ReadLine().Split(cs)); //int n = vals[0]; //string res=""; //int y = vals[0]; //int x = vals[1]; int res = 0; int sum = vals[0]; for (int i = 1; i < vals.Length; i++) { int pre = sum; int cnt; int f = 1; if (sum < 0) { f = -1; } sum += vals[i]; if (( sum * f ) < 0) { //ok } else { if (f == -1) { cnt = Math.Abs(pre + vals[i]); } else { cnt = (pre + vals[i]+1)*-1; } sum += cnt; res += Math.Abs(cnt); if (sum == 0) { sum += f*-1; res++; } } } Console.WriteLine(res); return; } // String[] -----> int[] static int[] parseAry(string[] str) { int[] nums = new int[str.Length]; for (int i = 0; i < str.Length; i++) { nums[i] = int.Parse(str[i]); } return nums; } // String[] -----> long[] static long[] parseAryl(string[] str) { long[] nums = new long[str.Length]; for (int i = 0; i < str.Length; i++) { nums[i] = int.Parse(str[i]); } return nums; } //文字列を1文字ずつString[]に入れる static string[] strAry(String str) { string[] re = new string[str.Length]; for (int i = 0; i < str.Length; i++) { re[i] = str[i].ToString(); } return re; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <algorithm> #include <cstring> #include <string> #include <vector> #include <cmath> #include <cctype> typedef long long ll; using namespace std; int main() { int N; ll res, ans; int count = 0; cin >> N; int a[N]; for (int i = 0; i < N; i++) { cin >> a[i]; } ll sum = 0; for (int i = 1, s = 1; i <= N; i++, s *= -1) { sum += a[i]; if (sum * s <= 0) { res += abs(sum - s); sum = s; } } ll sum = 0; for (int i = 1, s = -1; i <= N; i++, s *= -1) { sum += a[i]; if (sum * s <= 0) { ans = abs(sum - s); sum = s; } } cout << min(res, ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, char const *argv[]) { long long int n, ans = 0, sum = 0; cin >> n; vector<long long int> a(n); for (size_t i = 0; i < n; i++) { cin >> a[i]; if (sum * (sum + a[i]) > 0) { if (sum < 0) { ans += abs(1 - (sum + a[i])); a[i] += abs(1 - (sum + a[i])); } else if (sum > 0) { ans += abs(-1 - (sum + a[i])); a[i] += -1 - (sum + a[i]); } } if (sum + a[i] == 0) { if (sum > 0) a[i]--; else a[i]++; ans++; } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> void showvector(vector<T> v) { for (T x : v) cout << x << " "; cout << "\n"; } template <typename T> void showvector1(vector<T> v) { long long int n = v.size(); for (long long int i = 1; i <= n - 1; i++) cout << v[i] << "\n"; } template <typename T> void showset(set<T> s) { for (T x : s) cout << x << " "; cout << "\n"; } template <class T> void showvectorpair(vector<T> v) { for (auto it = v.begin(); it != v.end(); it++) cout << it->first << " " << it->second << "\n"; cout << "\n"; } template <typename T, typename P> void showmap(map<T, P> m) { for (auto it = m.begin(); it != m.end(); it++) cout << it->first << " " << it->second << "\n"; cout << "\n"; } template <typename T> bool comp(T a, T b) { return (a > b); } template <class T> bool comppair(T a, T b) { if (a.first == b.first) return (a.second > b.second); return (a.first > b.first); } bool sameparity(long long int a, long long int b) { return (a % 2 == b % 2); } bool difparity(long long int a, long long int b) { return !(a % 2 == b % 2); } bool isprime(long long int x) { if (x <= 1) return false; for (long long int i = 2; i <= sqrt(x); i++) { if (x % i == 0) return false; } return true; } bool iseven(long long int x) { return !(x % 2); } bool isodd(long long int x) { return (x % 2); } void vfun() { long long int n, k; cin >> n; vector<long long int> v(n); for (long long int i = 0; i < n; i++) cin >> v[i]; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long int test = 1; while (test--) { long long int n; cin >> n; vector<long long int> v(n); for (long long int i = 0; i < n; i++) cin >> v[i]; long long int sum = v[0], psum = v[0], cnt = 0; if (v[0] == 0) { cnt = 1; if (v[1] > 0) sum = psum = -1; else sum = psum = 1; } for (long long int i = 1; i <= n - 1; i++) { sum += v[i]; if (psum > 0) { if (sum >= 0) { cnt += (sum + 1); sum = -1; } } else { if (sum <= 0) { cnt += (abs(sum) + 1); sum = 1; } } psum = sum; } long long int dcnt = abs(v[0]) + 1; if (v[0] > 0) sum = psum = -1; else sum = psum = 1; for (long long int i = 1; i <= n - 1; i++) { sum += v[i]; if (psum > 0) { if (sum >= 0) { dcnt += (sum + 1); sum = -1; } } else { if (sum <= 0) { dcnt += (abs(sum) + 1); sum = 1; } } psum = sum; } cout << min(dcnt, cnt) << "\n"; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); int a[n]; for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } long long mans = 0, pans = 0; int msub[n], psub[n]; if (a[0] == 0) { pans = 1; mans = 1; psub[0] = 1; msub[0] = -1; } if (a[0] > 0) { psub[0] = a[0]; msub[0] = -1; mans = a[0] + 1; } else { psub[0] = 1; msub[0] = a[0]; pans = 1; } for (int i = 1; i < n; i++) { if (i % 2 == 1 && psub[i - 1] + a[i] >= 0) { pans += psub[i - 1] + a[i] + 1; psub[i] = -1; } else if (i % 2 == 0 && psub[i - 1] + a[i] <= 0) { pans += 1 - (psub[i - 1] + a[i]); psub[i] = 1; } else { psub[i] = psub[i - 1] + a[i]; } if (i % 2 == 1 && msub[i - 1] + a[i] <= 0) { mans += 1 - (msub[i - 1] + a[i]); msub[i] = 1; } else if (i % 2 == 0 && msub[i - 1] + a[i] >= 0) { mans += msub[i - 1] + a[i] + 1; msub[i] = -1; } else { msub[i] = msub[i - 1] + a[i]; } } printf("%lld", mans < pans ? mans : pans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; long long sum; cin >> n >> sum; long long ans = 0; if (sum == 0) { sum = 1; ans = 1; } for (int i = 0; i < n - 1; ++i) { long long a; cin >> a; if ((a + sum) * sum >= 0) { if (sum > 0) { ans += a + sum + 1; sum = -1; } else { ans += -(a + sum) + 1; sum = 1; } } else { sum += a; } } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; long long count1 = 0, count2 = 0; cin >> N; vector<long long> A(N); for (int i = 0; i < N; i++) cin >> A[i]; long long su = A[0]; bool plus = A[0] > 0; for (int i = 1; i < N; i++) { plus = !plus; su += A[i]; if (plus) { if (su <= 0) { count1 += -1 * su + 1; su = 1; } } else { if (su >= 0) { count1 += su + 1; su = -1; } } } su = A[0]; plus = A[0] < 0; for (int i = 1; i < N; i++) { plus = !plus; su += A[i]; if (plus) { if (su <= 0) { count2 += -1 * su + 1; su = 1; } } else { if (su >= 0) { count2 += su + 1; su = -1; } } } cout << min(count1, count2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); vector<int> a1(n); vector<int> a2(n); long long sum1[100010] = {0}; long long sum2[100010] = {0}; for (int i = 0; i < n; i++) { cin >> a[i]; a1[i] = a[i]; a2[i] = a[i]; } int ans1 = 0; int ans2 = 0; for (int i = 0; i < n; i++) { int j = i; while (j >= 0) { sum1[i] += a1[j]; j--; } if (i % 2 == 0 && sum1[i] <= 0) { a1[i] += (1 - sum1[i]); ans1 += (1 - sum1[i]); sum1[i] += (1 - sum1[i]); } else if (i % 2 == 1 && sum1[i] >= 0) { a1[i] -= (sum1[i] + 1); ans1 += (sum1[i] + 1); sum1[i] -= (1 + sum1[i]); } } if (sum1[n - 1] == 0) ans1++; for (int i = 0; i < n; i++) { int j = i; while (j >= 0) { sum2[i] += a2[j]; j--; } if (i % 2 == 0 && sum2[i] >= 0) { a2[i] -= (1 + sum2[i]); ans2 += (sum2[i] + 1); sum2[i] -= (1 + sum2[i]); } else if (i % 2 == 1 && sum2[i] <= 0) { a2[i] += (1 - sum2[i]); ans2 += (1 - sum2[i]); sum2[i] += (1 - sum2[i]); } } if (sum2[n - 1] == 0) ans2++; if (ans1 >= ans2) cout << ans2 << endl; else cout << ans1 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) b = a count0 = 0 memo = 0 for i in range(n): if i % 2 == 0: if a[i] <= 0: count0 += 1 - a[i] memo = 1 - a[i] else: if a[i] >= 0: count0 += a[i] + 1 memo = -(a[i] + 1) if i + 1 < n: a[i+1] = a[i+1] + a[i] + memo count1 = 0 memo = 0 a = b for i in range(n): if i % 2 == 0: if a[i] >= 0: count1 += a[i] + 1 memo = -(a[i] + 1) else: if a[i] <= 0: count1 += 1 - a[i] memo = 1 - a[i] if i + 1 < n: a[i+1] = a[i+1] + a[i] + memo print(min(count0, count1))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1LL << 60; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<int> A(n); vector<int> B(n + 1); vector<int> B2(n + 1); B[0] = 0; B2[0] = 0; for (long long i = 0; i < n; i++) { cin >> A[i]; B[i + 1] = A[i] + B[i]; B2[i + 1] = B[i + 1]; } int sum_p = 0; int pm = 0; for (long long i = 1; i < n + 1; i++) { int del = 0; if (i % 2 && B[i] + pm <= 0) del = abs(B[i] + pm) + 1; if (i % 2 == 0 && B[i] + pm >= 0) del = -(B[i] + pm + 1); pm += del; sum_p += abs(del); } int sum_m = 0; pm = 0; for (long long i = 1; i < n + 1; i++) { int del = 0; if (i % 2 == 0 && B2[i] + pm <= 0) del = abs(B2[i] + pm) + 1; if (i % 2 && B2[i] + pm >= 0) del = -(B2[i] + pm + 1); pm += del; sum_m += abs(del); } cout << min(sum_p, sum_m) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long> a(N); for (int i = 0; i < N; i++) cin >> a[i]; for (int i = 1; i < N; i++) a[i] += a[i - 1]; vector<long long> b(a); int ansp = 0; int n = 0; for (int i = 0; i < N; i++) { if (i % 2) { if (a[i] <= 0) { int c = 1 - a[i]; n += c; ansp += c; } } else { if (a[i] >= 0) { int c = 1 + a[i]; n -= c; ansp += c; } } if (i < N - 1) a[i + 1] += n; } int ansm = 0; n = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (b[i] <= 0) { int c = 1 - b[i]; n += c; ansm += c; } } else { if (b[i] >= 0) { int c = 1 + b[i]; n -= c; ansm += c; } } if (i < N - 1) b[i + 1] += n; } cout << min(ansp, ansm) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; int answer = 0; int sumi; bool flag; cin >> t; vector<int> A(t); cin >> A[0]; sumi = A[0]; if (sumi > 0) { flag = true; } else if (sumi < 0) { flag = false; } else { answer += 1; A[0] += 1; sumi += 1; flag = true; } for (int i = 1; i < t; i++) { cin >> A[i]; sumi += A[i]; if (sumi == 0) { answer += 1; if (flag) { sumi = -1; } else { sumi = 1; } } else if (sumi > 0 == flag) { answer += sumi + 1; if (sumi > 0) { sumi = -1; } else { sumi = 1; } } flag = !flag; } cout << answer << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.IO; using System.Text.RegularExpressions; using System.Diagnostics; //var input = Console.ReadLine().Split().Select(int.Parse).ToArray(); namespace AtCoderSolve { class Solve { const int mod = 1000000007; static void Main(string[] args) { //var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; //Console.SetOut(sw); int N = int.Parse(Console.ReadLine()); var a = Console.ReadLine().Split().Select(long.Parse).ToArray(); long[] sum = new long[N]; long[] ans = new long[2]; long c = 1; for (var j = 0; j < 2; j++) { for (var i = 0; i < N; i++) { if (i == 0) { sum[i] = a[i]; } else { sum[i] = sum[i - 1] + a[i]; } if (sum[i] * c <= 0) { ans[j] += 1 + Math.Abs(sum[i]); sum[i] = c; } c *= -1; } c *= -1; } Console.WriteLine(ans.Min()); //Console.Out.Flush(); } } public class Calculation { } public class Graph { } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int MOD = 1000000007; const long long L_INF = 1LL << 60; const int INF = 2147483647; const double PI = acos(-1); template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> void debug(T v) { for (int i = 0; i < v.size(); ++i) cout << v[i] << " "; cout << endl; } const long long int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}; const long long int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; long long int n; cin >> n; vector<long long int> a(n), s(n + 1); for (int i = 0; i < n; ++i) cin >> a[i]; long long int res = 0; if (a[0] == 0) { if (a[1] > 0) s[1] = -1; else s[1] = 1; res++; } else s[1] = a[0]; for (int i = 1; i < n; ++i) { if (s[i] < 0) { if (a[i] < 0) { res += abs(a[i]) + abs(s[i]) + 1; s[i + 1] = 1; } else { s[i + 1] = s[i] + a[i]; if (s[i + 1] <= 0) { res += abs(s[i + 1]) + 1; s[i + 1] = 1; } } } else { if (a[i] <= 0) { s[i + 1] = s[i] + a[i]; if (s[i + 1] >= 0) { res += s[i + 1] + 1; s[i + 1] = -1; } } else { res += abs(a[i]) + abs(s[i]) + 1; s[i + 1] = -1; } } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def resolve(SL): # L[0]!=0を起点とする cnt = 0 for i in range(len(SL)-1): s0 = SL[i] s1 = SL[i+1] if(s0>0 and s1>=0): SL[(i+1):] = [s-(s1+1) for s in SL[(i+1):]] cnt += (s1+1) elif(s0<0 and s1<=0): SL[(i+1):] = [s+(-s1+1) for s in SL[(i+1):]] cnt += (-s1+1) return cnt def ans(L): # SL = [sum(L[:(i+1)]) for i in range(len(L))] a = L[0] c0,c1=0,0 SL = [] s = 0 for i,l in enumerate(L): s += L[i] SL.append(s) if (a>0): c0 = resolve(SL) c1 = (a+1) + resolve(list(map(lambda x:x-(a+1), SL))) elif (a<0): c0 = resolve(SL) c1 = (-a+1) + resolve(list(map(lambda x:x+(-a+1), SL))) else: c0 = 1 + resolve(list(map(lambda x:x+1, SL))) c1 = 1 + resolve(list(map(lambda x:x-1, SL))) return(min(c0,c1)) N = int(input()) L = [int(x) for x in input().split(' ')] print(ans(L))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n), b(n); for (long long(i) = (0); (i) < (long long)(n); ++(i)) cin >> a[i], b[i] = a[i]; long long sum = a[0]; long long ans = 0; if (sum == 0) sum++, ans++; for (int i = 1; i < n; ++i) { if ((sum > 0 and sum + a[i] < 0) or (sum < 0 and sum + a[i] > 0)) { sum += a[i]; } else { if (sum > 0) { sum += a[i]; for (; sum >= 0; --sum) { ++ans; } } else { sum += a[i]; for (; sum <= 0; ++sum) { ++ans; } } } } long long ans2 = 0; sum = a[0]; if (sum > 0) { for (; sum >= 0; --sum) { ++ans2; } } else { for (; sum <= 0; ++sum) { ++ans2; } } if (sum == 0) sum--, ans2++; for (int i = 1; i < n; ++i) { if ((sum > 0 and sum + a[i] < 0) or (sum < 0 and sum + a[i] > 0)) { sum += a[i]; } else { if (sum > 0) { sum += a[i]; for (; sum >= 0; --sum) { ++ans2; } } else { sum += a[i]; for (; sum <= 0; ++sum) { ++ans2; } } } } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int s[maxn]; int ans[maxn]; int anp[maxn]; int main() { int n, j; cin >> n; long long sum = 0; for (int i = 1; i <= n; i++) { cin >> s[i]; } for (int i = 1; i < n; i++) { ans[i] = ans[i - 1] + s[i]; if (ans[i] > 0) { if (s[i + 1] >= 0) { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } else { if (abs(s[i + 1]) > ans[i]) { } else { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } } } else if (ans[i] == 0) { sum++; } else if (ans[i] < 0) { if (s[i + 1] > 0) { if (abs(ans[i]) < s[i + 1]) { } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } } cout << sum << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
"use strict"; const main = arg => { arg = arg.trim().split("\n"); const N = parseInt(arg[0]); const A = arg[1].split(" ").map(n=>parseInt(n)); let totalSum = A[0]; let answer = 0; for(let i=1; i<N; i++) { if(totalSum >= 0 && totalSum + A[i] >= 0) { let origin = A[i]; A[i] -= totalSum + A[i] + 1; answer += origin + 1; } if(totalSum <= 0 && totalSum + A[i] <= 0) { A[i] += (totalSum + A[i]) + 2; answer += (totalSum + A[i]) + 2; } totalSum += A[i]; } console.log(answer); } main(require('fs').readFileSync('/dev/stdin', 'utf8'));
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = list(map(int,input().split())) cnt=0 sum_a=0 for i in range(n-1): sum_a += a[i] if abs(sum_a) >= abs(a[i+1]) or sum_a*a[i+1]>=0: cnt += abs(-sum_a-np.sign(sum_a) -a[i+1]) a[i+1]=-sum_a-np.sign(sum_a) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } vector<int> b(n); b[0] = a[0]; int ansa = 0, ansb = 0, sum = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (b[i] >= 0) { ansa += 1 + b[i]; b[i] = -1; b[i + 1] = b[i] + a[i + 1]; } else b[i + 1] = b[i] + a[i + 1]; } else { if (b[i] <= 0) { ansa += 1 - b[i]; b[i] = 1; b[i + 1] = b[i] + a[i + 1]; } else b[i + 1] = b[i] + a[i + 1]; } } b[0] = a[0]; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (b[i] <= 0) { ansb += 1 - b[i]; b[i] = 1; b[i + 1] = b[i] + a[i + 1]; } else b[i + 1] = b[i] + a[i + 1]; } else { if (b[i] >= 0) { ansb += 1 + b[i]; b[i] = -1; b[i + 1] = b[i] + a[i + 1]; } else b[i + 1] = b[i] + a[i + 1]; } } int ans = min(ansa, ansb); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int check(long long int a) { if (a > 0) return 1; if (a < 0) return 2; return 0; } int main() { long long int sum, n, i, cnt = 0; cin >> n; long long int x, a[n]; for (i = 0; i < n; i++) cin >> a[i]; sum = a[0]; for (i = 1; i < n; i++) { if (check(sum + a[i]) == check(sum)) { if (sum < 0) { x = 1 - sum; cnt += (x - a[i]); sum = 1; } else { x = -1 - sum; cnt += (a[i] - x); sum = -1; } } else sum += a[i]; if (sum == 0) cnt++; } cout << cnt; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main{ public static void main(String[] args){ Scanner scan = new Scanner(System.in); int n = scan.nextInt(); long[] a_ = new long[n]; for(int i = 0; i < n; i++){ a_[i] = scan.nextLong(); } long[] sum_ = new long[n]; sum_[0] = a_[0]; long count1 = 0; long count2 = 0; //sum_[0] >= 1 if(sum_[0] < 1){ count1 = 1-sum_[0]; }else{ } for(int i = 1; i < n; i++){ sum_[i] = sum_[i-1]+a_[i]; if(i % 2 != 0){ if(sum_[i] <= -1){ //OK }else{ count1 += sum_[i] + 1; sum_[i] = -1; } }else{ if(sum_[i] >= 1){ //OK }else{ count1 += 1 - sum_[i]; sum_[i] = 1; } } } //sum_[0] <= -1 if(sum_[0] > -1){ count2 = sum_[0]+1; }else{ } for(int i = 1; i < n; i++){ sum_[i] = sum_[i-1]+a_[i]; if(i % 2 != 0){ if(sum_[i] >= 1){ //OK }else{ count2 += 1-sum_[i]; sum_[i] = 1; } }else{ if(sum_[i] <= -1){ //OK }else{ count2 += sum_[i]+1; sum_[i] = -1; } } } System.out.println(Math.min(count1, count2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long total = a[0], ans = 0; bool flg1 = false, flg2 = false; if (total != 0) for (int i = 1; i < n; i++) { if (total < 0) { flg1 = false; } else { flg1 = true; } if (flg1) { total += a[i]; if (total >= 0) { ans += total + 1; total = -1; } } else { total += a[i]; if (total <= 0) { ans += abs(total - 1); total = 1; } } } else { total = -1; long long ans1 = 1, ans2 = 1; for (int i = 1; i < n; i++) { if (total < 0) { flg1 = false; } else { flg1 = true; } if (flg1) { total += a[i]; if (total >= 0) { ans1 += total + 1; total = -1; } } else { total += a[i]; if (total <= 0) { ans1 += abs(total - 1); total = 1; } } } total = 1; for (int i = 1; i < n; i++) { if (total < 0) { flg1 = false; } else { flg1 = true; } if (flg1) { total += a[i]; if (total >= 0) { ans2 += total + 1; total = -1; } } else { total += a[i]; if (total <= 0) { ans2 += abs(total - 1); total = 1; } } } ans = min(ans1, ans2); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace AtCoder { class Program { static void Main(string[] args) { int n = int.Parse(Console.ReadLine()); int[] a = new int[n]; int[] sum = new int[n]; string[] lines = Console.ReadLine().Split(' '); for (int i = 0; i < n; i++) { a[i] = int.Parse(lines[i]); } int ans1 = 0; int ans2 = 0; int sign = 1; sum[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (sign > 0) { if (sum[i] >= 0) { ans1 += 1 + sum[i]; sum[i] = -1; } } else { if (sum[i] <= 0) { ans1 += 1 - sum[i]; sum[i] = 1; } } sign = -sign; } sign = -1; sum[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (sign > 0) { if (sum[i] >= 0) { ans2 += 1 + sum[i]; sum[i] = -1; } } else { if (sum[i] <= 0) { ans2 += 1 - sum[i]; sum[i] = 1; } } sign = -sign; } Console.WriteLine(Math.Min(ans1, ans2)); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; long long a[100010]; long long ans = 0; long long cnt = 0; int flag = 1; for (i = 0; i < n; i++) cin >> a[i]; if (a[0] > 0) flag = 1; else if (a[0] < 0) flag = -1; for (i = 0; i < n; i++) if (a[i] != 0) break; if (i != 0) { if (a[i] > 0) { if (i % 2) flag = -1; else flag = 1; } else { if (i % 2) flag = 1; flag = -1; } } cnt = a[0]; for (i = 1; i < n; i++) { cnt += a[i]; if (cnt * flag >= 0) { ans += abs(cnt) + 1; if (flag == -1) { cnt = 1; } else { cnt = -1; } } if (flag == -1) { flag = 1; } else { flag = -1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long int; const ll INF = (1LL << 32); const ll MOD = (ll)1e9 + 7; const double EPS = 1e-9; ll dx[8] = {1, 0, -1, 0, 1, -1, -1, 1}; ll dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; signed main() { ios::sync_with_stdio(false); ll n; cin >> n; vector<ll> a; for (ll i = 0; i < n; i++) { ll x; cin >> x; a.push_back(x); } ll sum = a[0]; ll ans = 0; for (ll i = (1); i < (n); i++) { if (sum > 0 and (sum + a[i]) >= 0) { while (sum + a[i] != -1) { a[i]--; ans++; } } else if (sum < 0 and (sum + a[i]) <= 0) { while (sum + a[i] != 1) { a[i]++; ans++; } } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int i, a, n; long long int sum = 0, bsum = 0, ans = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &a); bsum = sum; sum += a; if (bsum > 0) { if (sum > 0) { do { sum--; ans++; } while (sum >= 0); sum = -1; } if (sum == 0) { ans++; sum = -1; } } if (bsum < 0) { if (sum < 0) { do { sum++; ans++; } while (sum <= 0); sum = 1; } if (sum == 0) { ans++; sum = 1; } } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <vector> #include <algorithm> using namespace std; int main() { int n; cin >> n; vector<int> a(n + 1); for (int i = 1; i <= n; i++) cin >> a[i]; vector<int> a1; a1 = a; long long int sum1 = 0, ans1 = ;; for (int i = 1; i <= n; i++) { sum1 += a1[i]; if (i % 2 == 1 && sum1 <= 0) { int plus = 1 - sum1; sum1 = 1; ans1 += plus; continue; } if (i % 2 == 0 && sum1 >= 0) { int minus = 1 + sum1; sum1 = -1; ans1 += minus; } } vector<int> a2; a2 = a; long long int sum2 = 0, ans2 = 0; for (int i = 1; i <= n; i++) { sum2 += a2[i]; if (i % 2 == 1 && sum2 >= 0) { int minus = 1 + sum2; sum2 = -1; ans2 += minus; continue; } else if (i % 2 == 0 && sum2 <= 0) { int plus = 1 - sum2; sum2 = 1; ans2 += plus; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i ary = gets.split(' ').map(&:to_i) sum = ary[0] cnt = 0 if ary[0] == 0 if ary[1] > 0 sum = -1 else sum = 1 end cnt = 1 end (1...n).each{ |i| if sum < 0 sum += ary[i] if sum <= 0 diff = -sum+1 cnt += diff sum += diff end elsif sum > 0 sum += ary[i] if sum >= 0 diff = sum+1 cnt += diff sum -= diff end end } puts cnt
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; vector<int> v(1e5 + 7); long long solve_pos(int n) { long long sum = v[0]; long long ans = 0; if (sum < 0) sum = 1, ans = abs(v[0]) + 1; for (int i = 1; i < n; i++) { if (sum < 0 && sum + v[i] > 0) sum += v[i]; else if (sum > 0 && sum + v[i] < 0) sum += v[i]; else if (sum < 0 && sum + v[i] <= 0) ans += abs(sum + v[i]) + 1, sum = 1; else if (sum > 0 && sum + v[i] >= 0) ans += abs(sum + v[i]) + 1, sum = -1; } return ans; } long long solve_neg(int n) { long long sum = v[0]; long long ans = 0; if (sum > 0) sum = -1, ans = abs(v[0]) + 1; for (int i = 1; i < n; i++) { if (sum < 0 && sum + v[i] > 0) sum += v[i]; else if (sum > 0 && sum + v[i] < 0) sum += v[i]; else if (sum < 0 && sum + v[i] <= 0) ans += abs(sum + v[i]) + 1, sum = 1; else if (sum > 0 && sum + v[i] >= 0) ans += abs(sum + v[i]) + 1, sum = -1; } return ans; } int main() { int n; cin >> n; for (int i = 0; i < n; i++) cin >> v[i]; long long ans = solve_pos(n); ans = min(ans, solve_neg(n)); cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
a = int(input()) b = list(map(int, input().split())) num = 0 k = b[0] + b[1] if k == 0: if b[0] >= 0: k -= 1 else: k += 1 num += 1 for i in range(a-2): if k > 0: k += b[i+2] while k > -1: k -= 1 num += 1 else: k += b[i+2] while k < 1: k += 1 num += 1 print(num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const long long mod2 = 998244353; const long long INF = 1e18; const long double EPS = 1e-10; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long ans = 0; if (a[0] == 0) { a[0] = 1; for (int i = 0; i < (n); ++i) { if (a[i] != 0) { if (a[i] > 0 && i % 2 == 1) a[i] = -1; if (a[i] < 0 && i % 2 == 0) a[i] = -1; break; } } ans++; } for (int i = 0; i < (n - 1); ++i) { a[i + 1] += a[i]; if (a[i] * a[i + 1] >= 0) { ans += abs(a[i + 1]) + 1; if (a[i + 1] > 0) a[i + 1] = -1; else a[i + 1] = 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans = 0 cumsum = a[0] p = a[0] > 0 for i in range(1, n): if p: if cumsum+a[i] >= 0: ans += cumsum+a[i]+1 cumsum = -1 else: cumsum += a[i] else: if cumsum+a[i] <= 0: ans += 1-(cumsum+a[i]) cumsum = 1 else: cumsum += a[i] if p: p = False else: p = True # print(cumsum) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) sum = 0 A = [0] * n for i, num in enumerate(input().split()): sum += int(num) A[i] = sum print(A) counter_plus = 0 is_plus = True temp = 0 for i in range(n): if is_plus == True: temp += -min(0, A[i] - 1 + temp) print(is_plus, temp) counter_plus += temp else: temp = -max(0, A[i] + 1 + temp) print(is_plus, temp) counter_plus += -temp is_plus = not(is_plus) print() counter_minus = 0 is_plus = False temp = 0 for i in range(n): if is_plus == True: temp += -min(0, A[i] - 1 + temp) print(is_plus, temp) counter_minus += temp else: temp = -max(0, A[i] + 1 + temp) print(is_plus, temp) counter_minus += -temp is_plus = not(is_plus) print(min(counter_plus, counter_minus))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>; using vb = vector<bool>; using vvb = vector<vb>; using mii = map<int, int>; using pqls = priority_queue<long long>; using pqlg = priority_queue<long long, vector<long long>, greater<long long>>; using mll = map<long long, long long>; using pll = pair<long long, long long>; using sll = set<long long>; long long divup(long long a, long long b); long long kaijou(long long i); long long P(long long n, long long k); long long C(long long n, long long k); long long GCD(long long a, long long b); long long LCM(long long a, long long b); bool prime(long long N); double distance(vector<long long> p, vector<long long> q, long long n); void press(vector<long long> &v); void ranking(vector<long long> &v); void erase(vector<long long> &v, long long i); void unique(vector<long long> &v); void printv(vector<long long> v); vector<ll> keta(ll x); long long modpow(long long a, long long n, long long mod); long long modinv(long long a, long long mod); vector<long long> inputv(long long n); vector<long long> yakusuu(int n); map<long long, long long> soinsuu(long long n); vector<vector<long long>> maze(long long i, long long j, vector<string> &s); vector<long long> eratos(long long n); set<long long> eraset(long long n); long long divup(long long a, long long b) { long long x = abs(a); long long y = abs(b); long long z = (x + y - 1) / y; if ((a < 0 && b > 0) || (a > 0 && b < 0)) return -z; else if (a == 0) return 0; else return z; } long long kaijou(long long i) { if (i == 0) return 1; long long j = 1; for (long long k = 1; k <= i; k++) { j *= k; } return j; } long long P(long long n, long long k) { if (n < k) return 0; long long y = 1; for (long long i = 0; i < k; i++) { y *= (n - i); } return y; } long long C(long long n, long long k) { if (n < k) return 0; return P(n, k) / kaijou(k); } long long GCD(long long a, long long b) { if (a < b) swap(a, b); long long d = a % b; if (d == 0) { return b; } return GCD(b, d); } long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; } bool prime(long long N) { if (N == 1) { return false; } if (N < 0) return false; long long p = sqrt(N); for (long long i = 2; i <= p; i++) { if (N % i == 0) { return false; } } return true; } double distance(vector<long long> p, vector<long long> q, long long n) { double x = 0; for (long long i = 0; i < n; i++) { x += pow((p.at(i) - q.at(i)), 2); } return sqrt(x); } void press(vector<long long> &v) { long long n = v.size(); vector<long long> w(n); map<long long, long long> m; for (auto &p : v) { m[p] = 0; } long long i = 0; for (auto &p : m) { p.second = i; i++; } for (long long i = 0; i < n; i++) { w.at(i) = m[v.at(i)]; } v = w; return; } void ranking(vector<long long> &v) { long long n = v.size(); map<long long, long long> m; long long i; for (i = 0; i < n; i++) { m[v.at(i)] = i; } vector<long long> w(n); i = 0; for (auto &p : m) { v.at(i) = p.second; i++; } return; } void erase(vector<long long> &v, long long i) { long long n = v.size(); if (i > n - 1) return; for (long long j = i; j < n - 1; j++) { v.at(j) = v.at(j + 1); } v.pop_back(); return; } void unique(vector<long long> &v) { long long n = v.size(); set<long long> s; long long i = 0; while (i < n) { if (s.count(v.at(i))) { erase(v, i); n--; } else { s.insert(v.at(i)); i++; } } return; } void printv(vector<long long> v) { cout << "{ "; for (auto &p : v) { cout << p << ","; } cout << "}" << endl; } vector<ll> keta(ll x) { if (x == 0) return {0}; ll n = log10(x) + 1; vll w(n, 0); for (ll i = 0; i < n; i++) { ll p; p = x % 10; x = x / 10; w[n - 1 - i] = p; } return w; } long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); } vector<long long> inputv(long long n) { vector<long long> v(n); for (long long i = 0; i < n; i++) { cin >> v[i]; } return v; } vector<long long> yakusuu(long long n) { vector<long long> ret; for (long long i = 1; i <= sqrt(n); ++i) { if (n % i == 0) { ret.push_back(i); if (i * i != n) { ret.push_back(n / i); } } } sort(ret.begin(), ret.end()); return ret; } map<long long, long long> soinsuu(long long n) { map<long long, long long> m; long long p = sqrt(n); while (n % 2 == 0) { n /= 2; if (m.count(2)) { m[2]++; } else { m[2] = 1; } } for (long long i = 3; i * i <= n; i += 2) { while (n % i == 0) { n /= i; if (m.count(i)) { m[i]++; } else { m[i] = 1; } } } if (n != 1) m[n] = 1; return m; } vector<vector<long long>> maze(ll i, ll j, vector<string> &s) { ll h = s.size(); ll w = s[0].size(); queue<vector<long long>> q; vector<vector<long long>> dis(h, vll(w, -1)); q.push({i, j}); dis[i][j] = 0; while (!q.empty()) { auto v = q.front(); q.pop(); if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) { dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] - 1, v[1]}); } if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) { dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] - 1}); } if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) { dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] + 1, v[1]}); } if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) { dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] + 1}); } } return dis; } long long modC(long long n, long long k, long long mod) { if (n < k) return 0; long long p = 1, q = 1; for (long long i = 0; i < k; i++) { p = p * (n - i) % mod; q = q * (i + 1) % mod; } return p * modinv(q, mod) % mod; } long long POW(long long a, long long n) { long long res = 1; while (n > 0) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } vector<long long> eratos(long long n) { if (n < 2) return {}; vll v(n - 1); for (long long i = 0; i < n - 1; i++) { v[i] = i + 2; } ll i = 0; while (i < n - 1) { ll p = v[i]; for (ll j = i + 1; j < n - 1; j++) { if (v[j] % p == 0) { v.erase(v.begin() + j); n--; } } i++; } v.resize(n - 1); return v; } set<long long> eraset(long long n) { set<long long> s; vll v = eratos(n); for (auto &t : v) { s.insert(t); } return s; } vll line(ll x1, ll y1, ll x2, ll y2) { vector<ll> v(3); v[0] = y1 - y2; v[1] = x2 - x1; v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2); return v; } double dis(vll v, ll x, ll y) { double s = sqrt(v[0] * v[0] + v[1] * v[1]); return (double)abs(v[0] * x + v[1] * y + v[2]) / s; } ll const mod = 1e9 + 7; int main() { ll n; cin >> n; auto a = inputv(n); ll l = 0; ll res = 0; for (long long i = 0; i < n; i++) { if (l == 0) { if (a[0] == 0) { for (long long j = 0; j < n; j++) { if (a[j] != 0) { a[0] = a[j] / abs(a[j]); if (j & 1 && j != 0) a[0] *= (-1); break; } } res++; } if (!a[0]) a[0] = 1; l += a[0]; } else if (l < 0) { if (a[i] < -l + 1) { res += -l + 1 - a[i]; a[i] = -l + 1; l = 1; } else { l += a[i]; } } else if (l > 0) { if (a[i] > -l - 1) { res += abs(a[i] - (-l - 1)); a[i] = -l - 1; l = -1; } else { l += a[i]; } } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int posi(long long x) { if (x > 0) return 1; if (x < 0) return -1; return 0; } int main() { int N; cin >> N; vector<long long> a(N); for (auto &i : a) cin >> i; long long ans = 0, tmp = 0; long long sum = a[0]; for (int i = 1; i < N; i++) { if (posi(sum + a[i]) * posi(sum) != -1) { tmp += abs(sum + a[i]) + 1LL; sum = (sum > 0LL) ? -1LL : 1LL; } else sum += a[i]; } ans = tmp; tmp = abs(a[0]) + 1LL; sum = (a[0] > 0) ? -1LL : 1LL; for (int i = 1; i < N; i++) { if (posi(sum + a[i]) * posi(sum) != -1) { tmp += abs(sum + a[i]) + 1LL; sum = (sum > 0LL) ? -1LL : 1LL; } else sum += a[i]; } ans = min(ans, tmp); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <boost/multiprecision/cpp_int.hpp> using namespace std; namespace mp = boost::multiprecision; long int MOD = (int)1e9 + 7; template<typename T> istream& operator>>(istream &s, vector<T> &v) { for (T &t : v) s >> t; return s; } template<typename T> ostream& operator<<(ostream &s, const vector<T> &v) { for (const T &t : v) s << t << endl; return s; } template<typename T> T min(const vector<T>& v) {return *min_element(v.begin(), v.end());} template<typename T> T max(const vector<T>& v) {return *max_element(v.begin(), v.end());} template<typename T> int min_element(vector<T>& v) {return min_element(v.begin(), v.end()) - v.begin();} template<typename T> int max_element(vector<T>& v) {return max_element(v.begin(), v.end()) - v.begin();} template<typename T> void sort(vector<T>& v) {sort(v.begin(), v.end());} template<typename T> void greatersort(vector<T>& v) {sort(v.begin(), v.end(), greater<>());} template<typename T, typename Function> void sort(vector<T>& v, Function func) {sort(v.begin(), v.end(), func);} template<typename T> void rsort(vector<T>& v) {sort(v.rbegin(), v.rend());} template<typename T> void reverse(vector<T>& v) {reverse(v.begin(), v.end());} template<typename T> void unique(vector<T>& v) {v.erase(unique(v.begin(), v.end()), v.end());} template<typename T> void nth_element(vector<T>& v, int n) {nth_element(v.begin(), v.begin() + n, v.end());} template<typename T> bool next_permutation(vector<T>& v) {return next_permutation(v.begin(), v.end());} template<typename T> int find(vector<T>& v, T t) {return find(v.begin(), v.end(), t) - v.begin();} template<typename T> int in(vector<T> v, T t) {return find(v, t) != int(v.size());} template<typename T> int lower_bound(vector<T>& v, T t) {return lower_bound(v.begin(), v.end(), t) - v.begin();} template<typename T> int upper_bound(vector<T>& v, T t) {return upper_bound(v.begin(), v.end(), t) - v.begin();} template<typename T> T accumulate(const vector<T>& v, function<T(T, T)> func = plus<T>()) {return accumulate(v.begin(), v.end(), T(), func);} template<typename T> void adjacent_difference(vector<T>& v) {adjacent_difference(v.begin(), v.end(), v.begin());} template<typename T> void adjacent_difference(vector<T>& v, vector<T>& u) {adjacent_difference(v.begin(), v.end(), u.begin());} template<typename T> vector<T> partial_sum(const vector<T>& v) { vector<T> u(v.size()); partial_sum(v.begin(), v.end(), u.begin()); return u; }\ template<typename T> T inner_product(vector<T>& v, vector<T>& u) {return inner_product(v.begin(), v.end(), u.begin(), T(0));} template<typename T> int count(const vector<T>& v, T t) {return count(v.begin(), v.end(), t);} template<typename T, typename Function> int count_if(const vector<T>& v, Function func) {return count_if(v.begin(), v.end(), func);} template<typename T, typename Function> void remove_if(vector<T>& v, Function func) {v.erase(remove_if(v.begin(), v.end(), func), v.end());} template<typename T, typename Function> bool all_of(vector<T> v, Function func) {return all_of(v.begin(), v.end(), func);} template<typename T, typename Function> bool any_of(vector<T> v, Function func) {return any_of(v.begin(), v.end(), func);} template<typename T, typename Function> bool none_of(vector<T> v, Function func) {return none_of(v.begin(), v.end(), func);} template<typename T> vector<T> subvector(vector<T>& v, int a, int b) {return vector<T>(v.begin() + a, v.begin() + b);} template<typename T> int kinds(const vector<T>& v) {return set<T>(v.begin(), v.end()).size();} template<typename T> map<T, int> count_kinds(const vector<T>& v) { map<T, int> res; for (const auto& i : v) ++res[i]; return res; } template<typename T> void iota(vector<T>& v, T t = 0) {iota(v.begin(), v.end(), t);} template<typename T> bool is_sorted(const vector<T>& v) {return is_sorted(v.begin(), v.end());} int plusVector(vector<int>& v, int n) {int r = 0; for (int i = 0; i < n; ++i) {r += v[i];} return r;} void yesno(bool b) {if (b) {cout << "yes" << endl;} else {cout << "no" << endl;}} void YesNo(bool b) {if (b) {cout << "Yes" << endl;} else {cout << "No" << endl;}} void YESNO(bool b) {if (b) {cout << "YES" << endl;} else {cout << "NO" << endl;}} long addMOD(long a, long b) {return (a + b) % MOD;} long subMOD(long a, long b) {return (a + MOD - b) % MOD;} long mulMOD(long a, long b) {return ((a % MOD) * (b % MOD)) % MOD;} long long invMOD(long long a, long long m) {long long b = m, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;return u;} double PI = 3.1415926535897932384626433832795; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int N; cin >> N; vector<int> a(N); cin >> a; long answer = 0; int temp = a[0]; for (int i = 1; i < N; ++i) { if (temp < 0) { if (temp + a[i] <= 0) { answer += (1 - (temp + a[i])); temp = 1; } else { temp += a[i]; } } else { if (temp + a[i] >= 0) { answer += ((temp + a[i]) + 1); temp = -1; } else { temp += a[i]; } } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def solve(): n = int(input()) a = list(map(int, input().split())) b = [a[i] for i in range(n)] # print(a) # print(b) i = 0 sum = 0 ans = 0 for i in range(n-1): sum += a[i] if sum > 0 and sum+a[i+1] > 0: tmp = -1 - sum ans += abs(tmp - a[i+1]) a[i+1] = tmp elif sum < 0 and sum+a[i+1] < 0: tmp = 1 - sum ans += abs(tmp - a[i+1]) a[i+1] = tmp # print(ans) # print(a) tmp_ans_1 = ans ans = 0 sum = 0 i = 0 if b[0] > 0: ans += abs(-1 - b[0]) b[0] = -1 elif b[0] < 0: ans += abs(1 - b[0]) b[0] = 1 for i in range(n-1): sum += b[i] if sum > 0 and sum+b[i+1] > 0: tmp = -1 - sum ans += abs(tmp - b[i+1]) b[i+1] = tmp elif sum < 0 and sum+b[i+1] < 0: tmp = 1 - sum ans += abs(tmp - b[i+1]) b[i+1] = tmp # print(ans) # print(b) tmp_ans_2 = ans if tmp_ans_1 <= tmp_ans_2: ans = tmp_ans_1 elif tmp_ans_2 < tnp_ans_1: ans = tmp_ans_2 print(ans) if __name__ == "__main__": solve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long INF = 1e18; const double pi = acos(-1.0); int main(void) { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long ans, sum = 0, res1 = 0, res2 = 0; for (int sign = 0; sign < (2); ++sign) { for (int i = 0; i < (n); ++i) { sum += a[i]; if ((i % 2 ^ sign) && sum >= 0) { res1 += sum + 1; sum = -1; } if (!(i % 2 ^ sign) && sum <= 0) { res2 -= sum - 1; sum = 1; } } } ans = min(res1, res2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long solve(long long *a, int n) { long long count = 0; long long calc = 0; int state, pstate; if (a[0] < 0) state = -1; if (a[0] > 0) state = 1; for (int i = 1; i < n; i++) { pstate = state; int tmp = a[i] + calc; if (tmp < 0) state = -1; if (tmp == 0) state = 0; if (tmp > 0) state = 1; if (pstate == state) { if (state == -1) { count += 1 - tmp; calc += 1 - tmp; state = 1; } else if (state == 1) { count += tmp + 1; calc += -1 - tmp; state = -1; } } if (state == 0) { if (pstate == -1) { count += 1; calc += 1; state = 1; } else if (pstate == 1) { count += 1; calc += -1; state = -1; } } } return count; } int main() { int n; long long ans; long long *a; cin >> n; a = new long long[n]; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 1; i < n; i++) a[i] = a[i - 1] + a[i]; if (a[0] == 0) { long long bs, cs; long long *b = new long long[n]; long long *c = new long long[n]; for (int i = 0; i < n; i++) b[i] = a[i] + 1; for (int i = 0; i < n; i++) c[i] = a[i] - 1; bs = solve(b, n) + 1; cs = solve(c, n) + 1; ans = bs < cs ? bs : cs; } else ans = solve(a, n); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; long long prevArraySum = a[0]; long long currentArraySum = a[0]; int res = 0; if (a[0] == 0) { res = 1; prevArraySum = 1; currentArraySum = 1; for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } else { prevArraySum = currentArraySum; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } int res1 = res; res = 1; for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } res = min(res, res1); } else { for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } else { prevArraySum = currentArraySum; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; scanf("%lld", &n); long long a[n]; for (int i = 0; i < n; i++) scanf(" %lld", &a[i]); int S = a[0]; int j = 0; for (int i = 1; i < n; i++) { if (S * (S + a[i]) < 0) { S += a[i]; } else { if (S < 0) { j += 1 - S - a[i]; S = 1; } else { j += S + a[i] + 1; S = -1; } } } printf("%d\n", j); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!/usr/bin/env python3 from itertools import accumulate def main(): n = int(input()) a = list(map(int, input().split())) a = list(accumulate(a)) ans = 10**18 diff = [None, None]# a[0]<0, a[0]>0それぞれの初期コスト for i in range(2): if a[0] * [-1,1][i] < 0: diff[i] = 0 else: diff[i] = [-1,1][i] * (abs(a[0])+1) for j in range(2): ans2 = abs(diff[j]) for i in range(1,n): p = a[i] + diff[j] q = a[i-1] + diff[j] if p * q >= 0: tmp = -q//abs(q) - p ans2 += abs(tmp) diff[j] += tmp ans = min(ans, ans2) print(ans) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) As = list(map(int, input().split())) """ i番目を+1すると、 i+k番目は+(k+1)される 回数を保持しておいて、後で足す? """ from itertools import accumulate acc = list(accumulate(As)) # print(acc) prev = acc[0] ans = 0 cnt = 0 #累積カウント for a in acc[1:]: a += cnt # print(a,"a") if prev * a < 0: prev = a elif prev > 0 and a == 0: cnt -= 1 ans += 1 prev = -1 elif prev < 0 and a == 0: cnt += 1 ans += 1 prev = 1 elif prev > 0 and a > 0: # print("aa") cnt_prev = prev - 1 cnt -= cnt_prev ans += cnt_prev a -= cnt_prev if a < 0: prev = a else: cnt -= (a+1) #上で引いたぶんで消さなくて良い可能性はある ans += (a+1) prev = -1 else: #prev < 0 and a <0 # print("bb") cnt_prev = -1 - prev cnt += cnt_prev ans += cnt_prev a += cnt_prev if a > 0: prev = a else: cnt += (a+1) ans += (a+1) prev = 1 # print(prev,ans,cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100001]; int main() { cin >> n; for (int i = 0; i < n; ++i) { cin >> a[i]; } long long sum = 0; long long change_time = 0; for (int i = 0; i < n; ++i) { bool stop = true; while (stop) { long long next_sum = sum + a[i]; if (next_sum <= 0 && sum < 0) { a[i] += 1; change_time++; } else if (next_sum >= 0 && sum > 0) { a[i] -= 1; change_time++; } else { stop = false; break; } } sum += a[i]; } cout << change_time << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(0); cin.tie(0); long long int ans1, ans2, sum1, sum2; int n, i; long long int a[100005]; cin >> n; for (i = 1; i <= n; i++) { cin >> a[i]; } if (a[1] > 0) { sum1 = a[1]; ans2 = a[1] + 1; sum2 = -1; } else if (a[1] == 0) { sum1 = 1; ans1 = ans2 = 1; sum2 = -1; } else { sum1 = 1; ans1 = abs(a[1]) + 1; sum2 = a[1]; } for (i = 2; i <= n; i++) { if (sum1 > 0) { if (a[i] + sum1 >= 0) { ans1 += a[i] + sum1 + 1; sum1 = -1; } else { sum1 += a[i]; } } else { if (a[i] + sum1 <= 0) { ans1 += abs(sum1 + a[i]) + 1; sum1 = 1; } else { sum1 += a[i]; } } } if (sum1 == 0) { ans1++; } for (i = 2; i <= n; i++) { if (sum2 > 0) { if (a[i] + sum2 >= 0) { ans2 += a[i] + sum2 + 1; sum2 = -1; } else { sum2 += a[i]; } } else { if (a[i] + sum2 <= 0) { ans2 += abs(sum2 + a[i]) + 1; sum2 = 1; } else sum2 += a[i]; } } if (sum2 == 0) { ans2++; } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long prev = a[0]; long long curr; long long res = 0; for (int i = 1; i < (n); ++i) { curr = prev + a[i]; if (curr == 0) { if (prev < 0) curr = 1; else curr = -1; ++res; } if (prev < 0 && curr < 0) { res += 1 - curr; curr = 1; } if (prev > 0 && curr > 0) { res += curr + 1; curr = -1; } prev = curr; } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool debug = false; int main() { int n; long long a[100005]; long long cnt = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0] + a[1]; bool plus; if (sum >= 0) plus = true; else plus = false; for (int i = 2; i < n; i++) { sum += a[i]; if (debug) cout << "sum:" << sum << endl; if (plus) { if (sum >= 0) { cnt += sum + 1; sum = -1; } plus = false; } else { if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } plus = true; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long INF = (1LL << 62); long long N; vector<long long> A, W; long long S[100002] = {INF * (-1)}; int dp[100002] = {0}; void calcDP(int n) { if (n == 1) { if (W[1] != 0) { dp[1] = 0; } else { dp[1] = 1; if (W[2] <= 0) { W[1] = 1; } else { W[1] = -1; } S[1] = W[1]; } return; } else { S[n] = S[n - 1] + W[n]; if (S[n - 1] * S[n] < 0) { dp[n] = dp[n - 1]; } else { dp[n] = dp[n - 1] + abs(0 - S[n - 1] - W[n]) + 1; W[n] = 0 - S[n - 1] - (abs(S[n - 1]) / S[n - 1]); S[n] = S[n - 1] + W[n]; } return; } } int main(int argc, char* argv[]) { cin.tie(0); ios::sync_with_stdio(false); cin >> N; W.push_back(0); S[0] = 0; for (int i = 1; i <= N; i++) { long long a; cin >> a; A.push_back(a); W.push_back(a); if (i == 1) { S[1] = a; } else { S[i] = S[i - 1] + a; } } for (int i = 1; i <= N; i++) { calcDP(i); } printf("%d\n", dp[N]); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n, i, check = 0; long long int a, count = 0, sum = 0; scanf("%d", &n); scanf("%lld", &a); if (a == 0) { sum = 1; count = 1; check = 1; } for (i = 1; i < n; i++) { scanf("%lld", &a); sum += a; if (check == 1 && sum >= 0) { count += (1 + sum); sum = -1; } else if (check == -1 && sum <= 0) { count += (1 - sum); sum = 1; } if (sum >= 0) { check = 1; } else { check = -1; } } printf("%lld", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[1000000]; int min(long long a, long long b) { int t = a; if (b <= t) t = b; return t; } int main() { int n; cin >> n; for (int t = 0; t < n; t++) cin >> a[t]; long long sum = 0LL; long long x = 0LL; for (int t = 0; t < n; t++) { sum += a[t]; if (t % 2 == 1 && sum >= 0) { long long s = sum + 1; sum = -1; x += s; } else if (t % 2 == 0 && sum <= 0) { long long s = 1 - sum; sum = 1; x += s; } } long long positive_x = x; x = 0LL; sum = 0LL; for (int t = 0; t < n; t++) { sum += a[t]; if (t % 2 == 0 && sum >= 0) { long long s = sum + 1; sum = -1; x += s; } else if (t % 2 == 1 && sum <= 0) { long long s = 1 - sum; sum = 1; x += s; } } long long negative_x = x; long long result = min(positive_x, negative_x); cout << result << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long cnt = 0; if (sum == 0) { int ind = 1; for (int i = 0; i < n; i++) { if (a[i] != 0) ind = i; break; } sum = (a[ind] > 0 ? -1 : 1); cnt++; } for (int i = 1; i < n; i++) { long long nsum = sum + a[i]; if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) { sum = nsum; continue; } if (nsum == 0) { sum = (sum > 0 ? -1 : 1); cnt++; } else { if (sum > 0 && nsum > 0) sum = -1; else sum = 1; cnt += abs(nsum) + 1; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int num = 0; int N; int M = 0; int A[100000]; cin >> N; for (int i = 0; i < N; ++i) { cin >> A[i]; } for (int i = 0; i < N - 1; ++i) { M = 0; for (int j = 0; j <= i; ++j) { M += A[j]; } if ((M + A[i + 1]) * M >= 0) { break; } if (i == N - 2) { cout << num << endl; return 0; } } { int m = 0; for (int i = 0; i < N; ++i) { int k = -1 * (m + 1); if (m < 0) { k = -1 * (m - 1); } if (i == 0 && A[i] > 0) { k = 1; } if (m * (m + A[i]) >= 0) { num += abs(k - A[i]); A[i] = k; } m += A[i]; } } { for (int i = 0; i < N; ++i) { cout << A[i]; } cout << endl; } cout << num << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = [int(i) for i in input().split()] sam = a[0] old = sam num = 0 for i in range(1, len(a)): sam += a[i] if sam >= 0 and old > 0: while sam >= 0: sam -= 1 num += 1 elif sam <= 0 and old < 0: while sam <= 0: sam += 1 num += 1 old = sam print(num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int INF = 1e9; using namespace std; int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = 0, ans1 = 0, ans2 = 0; for (long long i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { ans1 += (1 - sum); sum = 1; } else if (i % 2 == 1 && sum >= 0) { ans1 += sum + 1; sum = -1; } } for (long long i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { ans2 += (1 - sum); sum = 1; } else if (i % 2 == 0 && sum >= 0) { ans2 += sum + 1; sum = -1; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; long long a[100010]; int n; long long solve() { long long sum = 0; long long oo = a[0], flag; if (a[0] > 0) flag = 1; else if (a[0] < 0) flag = -1; for (int i = 1; i < n; i++) { oo += a[i]; if (flag == 1) { if (oo >= 0) { sum += oo + 1; oo = -1; } } if (flag == -1) { if (oo <= 0) { sum += 0 - oo + 1; oo = 1; } } flag = -flag; } return sum; } int main() { while (scanf("%d", &n) != EOF) { long long sum; for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); } if (a[0] == 0) { a[0] = 1; long long sum1 = solve(); a[0] = -1; long long sum2 = solve(); sum = min(sum1, sum2) + 1; } else { long long sum1 = solve(); sum = sum1; } printf("%lld\n", sum); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) a = A[0] ans = 0 for i in range(1,n): b = A[i] if a == 0: if b < 0: a = -b-1 ans = a else: a = -b+1 ans = -a if a> 0: if a + b >= 0: ans += abs(-1-a-b) a = -1 else: a += b elif a < 0: if a+b <= 0: ans += abs(1-a-b) a = 1 else: a += b print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1000000007; int main() { int N; cin >> N; vector<int> A(N); for (int i = 0; i < (int)(N); i++) cin >> A[i]; long long sum = A[0], ans = 0; int start_plus = 0; if (sum == 0) ans++; else if (sum < 0) start_plus = 1; for (int i = 1; i < N; i++) { sum += A[i]; if (i % 2 == start_plus) { if (sum > 0) continue; else { ans += 1 - sum; sum = 1; } } else if (i % 2 != start_plus) { if (sum < 0) continue; else { ans += sum + 1; sum = -1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Comparator; import java.util.InputMismatchException; import java.util.NoSuchElementException; public class Main implements Runnable { // クラス名はMain1 PrintWriter out = new PrintWriter(System.out); InputReader sc = new InputReader(System.in); static int mod = (int) (1e9 + 7); //10^9+7 int[] dx = { 1, 0, -1, 0 }, dy = { 0, 1, 0, -1 }; //4 directions public static void main(String[] args) { Thread.setDefaultUncaughtExceptionHandler((t, e) -> System.exit(1)); new Thread(null, new Main(), "", 1024 * 1024 * 1024).start(); // 16MBスタックを確保して実行 } public void run() { try { //String S = sc.next().trim(); int N = sc.nextInt(); long[] A = new long[N]; for (int i = 0; i < N; i++) { //A[i] = sc.nextInt(); A[i] = sc.nextLong(); } long[] wa = new long[N + 1]; for (int i = 1; i <= N; i++) { wa[i] += wa[i - 1] + A[i - 1]; } //out.println(Arrays.toString(wa)); boolean plus = wa[1] > 0 ? true : false; long cntp = 0; long cntm = 0; for (int i = 2; i <= N; i++) { wa[i] += cntp - cntm; if (plus && wa[i] >= 0) { cntm += wa[i] + 1; } else if (!plus && wa[i] <= 0) { cntp += Math.abs(wa[i]) + 1; } plus = !plus; } //out.println(Arrays.toString(wa)); out.println(cntp + cntm); } catch (ArithmeticException ae) { //ae.printStackTrace(); throw new RuntimeException(); } catch (Exception e) { e.printStackTrace(); throw new RuntimeException(); } finally { out.flush(); out.close(); } } class InfoLong implements Comparable<InfoLong> { public long a; public long b; public InfoLong(long a, long b) { this.a = a; this.b = b; } @Override public int compareTo(InfoLong o) { //return this.a - o.a;//昇順 // return o.a - this.a;//降順 //複数項目で並び替え。aの降順、aが同じならbの降順 if (this.a == o.a) { return Long.compare(o.b, this.b); } else { return Long.compare(o.a, this.a); } } } class InfoInt implements Comparable<InfoInt> { public int a; public int b; public InfoInt(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(InfoInt o) { //return this.a - o.a;//昇順 // return o.a - this.a;//降順 //複数項目で並び替え。aの降順、aが同じならbの降順 if (this.a == o.a) { return Integer.compare(o.b, this.b); } else { return Integer.compare(o.a, this.a); } } } //Arrays.sort(Sample,new Comp()); class Comp implements Comparator<InfoLong> { public int compare(InfoLong be, InfoLong af) { return Long.compare(af.a, be.a); } } /** * * @param n * @param m * @return Combinationの数を返す(mod無しなので、大きい値には使用できない桁溢れする) */ long calcCombination(int n, int m) { if (n < m || m < 0) { throw new IllegalArgumentException("引数の値が不正です ( n : " + n + ", m : " + m + ")"); } long c = 1; m = (n - m < m ? n - m : m); for (int ns = n - m + 1, ms = 1; ms <= m; ns++, ms++) { c *= ns; c /= ms; } return c; } /* * 使用するときはModに注意。Global変数を参照 */ public static long comb(long a, long b) { if (a < b) return 0; long res = 1; long inv = pow(fact(Math.min(b, a - b)), mod - 2); for (long i = a; i > a - Math.min(b, a - b); i--) { res *= i; res %= mod; } res *= inv; res %= mod; return res; } public static long pow(long x, long n) { long res = 1; while (n > 0) { if ((n & 1) == 1) { res *= x; res %= mod; } x *= x; x %= mod; n >>= 1; } return res; } public static long fact(long n) { long res = 1; while (n > 0) { res *= n; res %= mod; n--; } return res; } // 高速なScanner static class InputReader { private InputStream in; private byte[] buffer = new byte[1024]; private int curbuf; private int lenbuf; public InputReader(InputStream in) { this.in = in; this.curbuf = this.lenbuf = 0; } public boolean hasNextByte() { if (curbuf >= lenbuf) { curbuf = 0; try { lenbuf = in.read(buffer); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return false; } return true; } private int readByte() { if (hasNextByte()) return buffer[curbuf++]; else return -1; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private void skip() { while (hasNextByte() && isSpaceChar(buffer[curbuf])) curbuf++; } public boolean hasNext() { skip(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[][] nextCharMap(int n, int m) { char[][] map = new char[n][m]; for (int i = 0; i < n; i++) map[i] = next().toCharArray(); return map; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); long long a[n]; for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); } long long mans = 0, pans = 0; long long msub[n], psub[n]; if (a[0] == 0) { pans = 1; mans = 1; psub[0] = 1; msub[0] = -1; } if (a[0] > 0) { psub[0] = a[0]; msub[0] = -1; mans = a[0] + 1; } else if (a[0] < 0) { psub[0] = 1; msub[0] = a[0]; pans = a[0] + 1; } int i; for (i = 1; i < n; i++) { if (i % 2 == 1 && psub[i - 1] + a[i] >= 0) { pans += (psub[i - 1] + a[i] + 1); psub[i] = -1; } else if (i % 2 == 0 && psub[i - 1] + a[i] <= 0) { pans += (1 - (psub[i - 1] + a[i])); psub[i] = 1; } else { psub[i] = (psub[i - 1] + a[i]); } if (i % 2 == 1 && msub[i - 1] + a[i] <= 0) { mans += (1 - (msub[i - 1] + a[i])); msub[i] = 1; } else if (i % 2 == 0 && msub[i - 1] + a[i] >= 0) { mans += (msub[i - 1] + a[i] + 1); msub[i] = -1; } else { msub[i] = (msub[i - 1] + a[i]); } } printf("%lld", mans < pans ? mans : pans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy import sys write = sys.stdout.write n = int(input()) A = list(map(int,input().split())) # +, -, +, ... B = copy.deepcopy(A) #-, +, -, ... sumA = [] sumB = [] cntA = 0 cntB = 0 if A[0] == 0: A[0] += 1 B[0] -= 1 elif A[0] > 0: cntB += (B[0]+1) B[0] = -1 else: cntA += abs(A[0])+1 A[0] = 1 sumA.append(A[0]) sumB.append(B[0]) #write("cntA : " + str(cntA) + " cntB : " + str(cntB) + "\n") for i in range(1, n): tempA = sumA[i-1] + A[i] tempB = sumB[i-1] + B[i] if i%2 == 1: #Aは-, Bは+ if tempA == 0: #A[i] -= 1 cntA += 1 sumA.append(-1) elif tempA > 0: #A[i] -= abs(tempA) + 1 cntA += abs(tempA) + 1 sumA.append(-1) else: sumA.append(tempA) if tempB == 0: #B[i] += 1 cntB += 1 sumB.append(1) elif tempB < 0: #B[i] += abs(tempB) + 1 cntB += abs(tempB) + 1 sumB.append(1) else: sumB.append(tempB) else: #Aは+, Bは- if tempA == 0: cntA += 1 sumA.append(1) elif tempA < 0: cntA += abs(tempA) + 1 sumA.append(1) else: sumA.append(tempA) if tempB == 0: #B[i] -= 1 cntB += 1 sumB.append(-1) elif tempB > 0: #B[i] -= abs(tempB) + 1 cntB += abs(tempB) + 1 sumB.append(-1) else: sumB.append(tempB) #write("cntA : " + str(cntA) + " cntB : " + str(cntB) + "\n") print(str(min(cntA, cntB)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; const ll linf = 1LL << 62; const int inf = 999999; const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, 1, 0, -1}; ll gcd(ll a, ll b) { if (a % b == 0) return b; else gcd(b, a % b); } ll lcm(ll a, ll b) { return (a / gcd(a, b)) * b; } int main() { int n; bool jud; ll ans = 0; vector<ll> v; cin >> n; for (int i = 0; i < n; i++) { ll a; cin >> a; v.push_back(a); } ll a = v[0]; if (a > 0) jud = true; else jud = false; for (int i = 1; i < n; i++) { if (jud) { a += v[i]; if (a < 0) jud = false; else { ans += abs(a) + 1; a -= abs(a) + 1; jud = false; } } else { a += v[i]; if (a > 0) jud = true; else { ans += abs(a) + 1; a += abs(a) + 1; jud = true; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text.RegularExpressions; namespace kyoupuro { class MainClass { public static void Main() { var N = Input.NextLong(); var list = Input.LongList(); // 最初を非ゼロにする if (list[0] == 0) { list[0] = list.SkipWhile(x => x == 0).DefaultIfEmpty(1).First(); } long sum = list[0]; long count = 0; for (int i = 1; i < N; i++) { var nextSum = sum + list[i]; if (sum > 0 && nextSum >= 0) { count += nextSum + 1; sum = -1; } else if (sum < 0 && nextSum <= 0) { count += -nextSum + 1; sum = 1; } else { sum = nextSum; } } Console.WriteLine(count); } } class Input { static IEnumerator<string> enumerator = new string[] { }.AsEnumerable().GetEnumerator(); public static string Line() { return Console.ReadLine(); } public static int NextInt() { while (!enumerator.MoveNext()) { enumerator = StrArr().AsEnumerable().GetEnumerator(); } return int.Parse(enumerator.Current); } public static long NextLong() { while (!enumerator.MoveNext()) { enumerator = StrArr().AsEnumerable().GetEnumerator(); } return long.Parse(enumerator.Current); } public static string[] StrArr() { return Line().Split(' '); } public static List<int> IntList() { return StrArr().Select(int.Parse).ToList(); } public static List<long> LongList() { return StrArr().Select(long.Parse).ToList(); } public static void Skip(int line = 1) { enumerator.Reset(); for (int i = 0; i < line; i++) Console.ReadLine(); } public static void Reset() { enumerator.Reset(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { cin.tie(0); ios::sync_with_stdio(false); int64_t n; cin >> n; vector<int64_t> a(n); for (int64_t i = 0; i < n; i++) cin >> a[i]; int64_t sum1 = 0, cost1 = 0; for (int64_t i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0 && sum1 < 0) sum1 += abs(sum1) + 1, cost1 += abs(sum1) + 1; if (i % 2 == 1 && sum1 > 0) sum1 -= abs(sum1) - 1, cost1 += abs(sum1) + 1; if (sum1 == 0) { if (i % 2 == 0) sum1--, cost1++; if (i % 2 == 1) sum1++, cost1++; } } int64_t sum2 = 0, cost2 = 0; for (int64_t i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0 && sum1 > 0) sum2 -= abs(sum2) - 1, cost2 += abs(sum2) + 1; if (i % 2 == 1 && sum1 < 0) sum2 += abs(sum2) + 1, cost1 += abs(sum2) + 1; if (sum2 == 0) { if (i % 2 == 0) sum2++, cost2++; if (i % 2 == 1) sum2--, cost2++; } } cout << min(cost1, cost2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def examC(): N = I() a = LI() ansC = [] """ if a[0]<0: for i in range(N): a[i] = -a[i] """ for l in range(2): ans = 0 if l==0: if a[0]<0: sumA = 1 ans += (-a[0]+1) else: sumA = a[0] elif l == 1: if a[0]>0: sumA = -1 ans += (a[0]+1) else: sumA = a[0] for i in range(1,N): cur = sumA + a[i] if cur * sumA > 0: if sumA < 0: ans += (-cur + 1) sumA = 1 else: ans += cur + 1 sumA = -1 elif cur == 0: if sumA < 0: ans += 1 sumA = 1 else: ans += 1 sumA = -1 else: sumA = cur ansC.append(ans) print(min(ansC)) import sys import copy import bisect from collections import Counter,defaultdict,deque def I(): return int(sys.stdin.readline()) def LI(): return list(map(int,sys.stdin.readline().split())) def LS(): return sys.stdin.readline().split() def S(): return sys.stdin.readline().strip() mod = 10**9 + 7 inf = float('inf') examC()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) sums = 0 count = 0 count2 = 0 for i in range(len(a)): if i % 2 == 0: pp = a[i] if sums + pp > 0: None else: sums = 1 count = count + 1 - pp - sums else: pp = a[i] if sums + pp < 0: None else: sums = -1 count = count -1 -pp - sums for i in range(len(a)): if i % 2 == 1: pp = a[i] if sums + pp > 0: None else: sums = 1 count2 = count2 + 1 - pp - sums else: pp = a[i] if sums + pp < 0: None else: sums = -1 count2 = count2 -1 -pp - sums print(min(count,count2))