Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a_list = list(map(int, input().split())) total = 0 count = 0 pos_or_neg = True # True = +, False = - if sum(a_list) >= 0: if n % 2 == 0: pos_or_neg = False else: pos_or_neg = True else: if n % 2 == 0: pos_or_neg = True else: pos_or_neg = False for a in a_list: total += a if pos_or_neg: if total <= 0: count += -total + 1 total += -total + 1 pos_or_neg = False else: if total >= 0: count += total + 1 total -= total + 1 pos_or_neg = True print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections; using System.Collections.Generic; using System.IO; using System.Linq; namespace C { public class Program { static void Main(string[] args) { var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; Console.SetOut(sw); Solve(); Console.Out.Flush(); } public static void Solve() { var N = int.Parse(Console.ReadLine()); var A = Console.ReadLine().Trim().Split(' ').Select(int.Parse).ToArray(); var answer = (long)1e18; var t = 1; for (var k = 0; k < 2; k++) { t ^= 1; var step = 0; var sum = 0; var prev = t == 0; for (var i = 0; i < N; i++) { sum += A[i]; if (sum == 0) { step++; sum += prev ? -1 : 1; } if (prev == (sum > 0)) { step += Math.Abs(sum) + 1; sum = prev ? -1 : 1; } prev = sum > 0; } answer = Math.Min(answer, step); } Console.WriteLine(answer); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> long long sign(long long n) { if (n > 0) return 1; else if (n < 0) return -1; return 0; } long long myabs(long long n) { return (n > 0) ? n : (-n); } long long calc(long long *a, int n, long long bias, long long cost) { int i; assert(a[0] != 0); long long sum = a[0]; long long sum_eval_prev = sum + bias; for (i = 1; i < n; i++) { sum += a[i]; long long sum_eval = sum + bias; if (sign(sum_eval_prev) == sign(sum_eval) || sign(sum_eval) == 0) { bias += -1 * sign(sum_eval_prev) - sum_eval; cost += myabs(-1 * sign(sum_eval_prev) - sum_eval); } sum_eval_prev = sum + bias; } return cost; } int main(void) { int n; scanf("%d\n", &n); long long a[n]; int i; for (i = 0; i < n; i++) { scanf("%lld ", &a[i]); } long long ret; if (a[0] == 0) { long long r0, r1; a[0] = 1; r0 = calc(a, n, 0, 1); a[0] = -1; r1 = calc(a, n, 0, 1); if (r0 < r1) ret = r0; else ret = 1; } else { ret = calc(a, n, 0, 0); } printf("%lld\n", ret); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) *A, = map(int,input().split()) ans1 = 0 S = A[0] if S <= 0: S = 1 ans1 = abs(S)+1 for a in A[1:]: S1 = S+a if S1*S >= 0: ans1 += abs(S1)+1 S1 = -S//abs(S) S = S1 ans2 = 0 S = A[0] if S >= 0: S = -1 ans2 = abn(S)+1 for a in A[1:]: S1 = S+a if S1*S >= 0: ans2 += abs(S1)+1 S1 = -S//abs(S) S = S1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; for(int i = 0; i < n; i++) { a[i] = sc.nextLong(); } long sum = a[0]; long x = 0; if(a[0] == 0) { if(a[1] >= 0) { sum = -1; x++; } else { sum = 1; x++; } } long count = 0; for(int i = 1; i < n; i++) { if((sum < 0 && sum + a[i] <= 0) || (sum > 0 && sum + a[i] >= 0)) { if(sum < 0) { count = -sum - a[i] + 1; } else { count = -sum - a[i] - 1; } } sum += a[i] + count; x += Math.abs(count); count = 0; } System.out.println(x); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long res1 = 0, sum1 = a[0], res2 = 0, sum2 = a[0]; for (int i = 1; i < n; i++) { if (i % 2 == 0) { if (sum1 > 0) { sum1 += a[i]; continue; } res1 += 1 - sum1; sum1 = 1; } else { if (sum1 < 0) { sum1 += a[i]; continue; } res1 += sum1 + 1; sum1 = -1; } } for (int i = 1; i < n; i++) { if (i % 2 == 0) { if (sum2 > 0) { sum2 += a[i]; continue; } res2 += 1 - sum2; sum2 = 1; } else { if (sum2 < 0) { sum2 += a[i]; continue; } res2 += sum2 + 1; sum2 = -1; } } cout << min(res1, res2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[100001] = {0}; for (int i = 0; i < n; i++) cin >> a[i]; bool sign = true; if (a[0] <= 0) sign = false; long long res = 0, sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (sign) { if (sum <= 0) { res += 1 - sum; sum = 1; } sign = false; } else { if (sum >= 0) { res += 1 + sum; sum = -1; } sign = true; } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } uint64_t min_ans = INT64_MAX; for (int s = -1; s < 2; s += 2) { uint64_t ans = 0; uint64_t sum = 0; int sign; for (int i = 1, sign = s; i < n; ++i, sign *= -1) { sum += a[i]; if (sign * sum <= 0) { ans += abs(sign - sum); sum = sign; } } min_ans = min(min_ans, ans); } cout << min_ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string flag; vector<int> a; int str; long long str_sum = 0, str_nsum = 0; int num; long long co = 0; int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> num; for (int i = 0; i < num; i++) { cin >> str; a.push_back(str); } if (a[0] > 0) { flag = "up"; } else if (a[0] < 0) { flag = "down"; } else { if (a[1] >= 0) { flag = "down"; co++; } else { flag = "up"; co++; } } str_sum = a[0]; for (int i = 1; i < num; i++) { str_sum += a[i]; if (flag == "up" && str_sum >= 0) { co += str_sum + 1; str_sum -= str_sum + 1; } else if (flag == "down" && str_sum <= 0) { co += 0 - str_sum + 1; str_sum += 0 - str_sum + 1; } if (str_sum > 0) { flag = "up"; } else if (str_sum < 0) { flag = "down"; } } cout << co << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, -1, 0, 0}; int dy[4] = {0, 0, 1, -1}; int main() { std::ios::sync_with_stdio(false); std::cin.tie(0); int n; cin >> n; long long int b[100001]; for (int i = 0; i < (n); i++) { long long int l; cin >> l; b[i] = l; } for (int i = 0; i < (n); i++) b[i + 1] += b[i]; long long int sm = 0; for (int i = 1; i < n; i++) { if (b[i - 1] * b[i] < 0) continue; int target = (b[i - 1] > 0) ? -1 : 1; sm += abs(b[i] - target); long long int dif = -b[i] + target; for (int j = i; j < n; j++) { b[j] += dif; } } cout << (sm) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum[n]; sum[0] = a[0]; long long ans = 0; if (sum[0] == 0) { ans = 1; for (int i = 0; i < n; i++) { if (a[i] != 0) { sum[0] = abs(a[i]) / a[i] * pow(-1, (i % 2)); } } } for (int i = 1; i <= (int)(n - 1); i++) { long long t = sum[i - 1] + a[i]; if (t == 0) { ans += 1; sum[i] = -abs(sum[i - 1]) / sum[i - 1]; } else if (abs(t) / t != abs(sum[i - 1]) / sum[i - 1]) { sum[i] = t; continue; } else { ans += abs(t) + 1; sum[i] = -abs(t) / t; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
n = int(raw_input()) a = map(int, raw_input().split()) count = 0 if a[0] == 0: count += 1 if 0 < a[1]: a[0] = 1 else: a[0] = -1 SUM = a[0] for i in range(1, n - 1): SUM_next = SUM + a[i - 1] if 0 <= SUM * SUM_next: if 0 < SUM: a[i] -= (SUM_next + 1) count += (SUM_next + 1) else: a[i] += (-SUM_next + 1) count += (-SUM_next + 1) SUM = SUM_next print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = 1LL << 60; int main() { ll n; cin >> n; ll a[n]; for (ll i = 0; i < n; i++) { cin >> a[i]; } ll sum = a[0]; ll ans = 0; for (ll i = 1; i < n; i++) { ll tmp_sum = sum + a[i]; if (sum > 0) { while (tmp_sum >= 0) { --tmp_sum; ++ans; } } else if (sum < 0) { while (tmp_sum <= 0) { ++tmp_sum; ++ans; } } sum = tmp_sum; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; unsigned long long func(vector<long long int>& s, vector<int>& hugo, long long int k) { unsigned long long int ret = 0; for (int i = 1; i < n; i++) { if (s[i] == k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret++; k--; } else { hugo[i] = 0; ret++; k++; } } else if (s[i] > k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret += s[i] - k + 1; k += s[i] - k + 1; } else { hugo[i] = 0; } } else { if (hugo[i - 1] == 0) { hugo[i] = 1; } else { hugo[i] = 0; ret += k - s[i] + 1; k -= k - s[i] + 1; } } } return ret; } void solve() { cin >> n; vector<long long int> v(n), sum(n), sum2(n); for (int i = 0; i < n; i++) { cin >> v[i]; if (i == 0) sum[i] = v[i]; else sum[i] = sum[i - 1] + v[i]; } vector<int> hugo(n); sum2 = sum; unsigned long long int ans; if (sum[0] == 0) { vector<int> hugo2(n); hugo[0] = 0; ans = min(func(sum, hugo, -1), func(sum2, hugo2, 1)); } else if (sum[0] > 0) { hugo[0] = 0; ans = func(sum, hugo, 0); } else { hugo[0] = 1; ans = func(sum, hugo, 0); } cout << ans << endl; return; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int , input().split())) res=[0]*n res[0]=a[0] c=0 for i in range(1,n): res[i]=res[i-1]+a[i] for i in range(1,n): s=sum(a[:i]) if s*sum(a[:i+1])>=0: c+=abs(a[i]+s)+1 if s>0: a[i]=-s-1 else: a[i]=-s+1 print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <class T, class S> void cmin(T &a, const S &b) { if (a > b) a = b; } template <class T, class S> void cmax(T &a, const S &b) { if (a < b) a = b; } using namespace std; signed main() { long long int n; cin >> n; vector<long long int> v(n), sum(n); for (long long int i = 0; i < n; i++) cin >> v[i]; bool flag = false; long long int ans = 0; for (long long int i = 0; i < n; i++) { if (i == 0) { sum[0] = v[0]; if (v[i] > 0) flag = true; if (v[i] < 0) flag = false; else { ans++; flag = true; sum[i] = 1; } continue; } sum[i] = v[i] + sum[i - 1]; if (flag) { if (sum[i] < 0) flag = false; else if (sum[i] > 0) { ans += abs(sum[i]) + 1; sum[i] = -1; } else { ans++; sum[i] = -1; } flag = false; } else { if (sum[i] > 0) flag = true; else if (sum[i] <= 0) { ans += abs(sum[i]) + 1; sum[i] = 1; } flag = true; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, count = 0; cin >> n; long long a, first; cin >> first; long long sum = first, pre_sum; for (int i = 1; i < n; ++i) { cin >> a; if (first == 0) { if (a >= 0) first--; else first++; sum = first; count++; } pre_sum = sum; sum += a; if (sum * pre_sum >= 0) { count += (abs(sum) + 1); if (pre_sum < 0) sum += (abs(sum) + 1); else sum -= (abs(sum) + 1); } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.ByteString.Char8 as C import Data.List main = C.interact $ put . sol . get get = unfoldr (C.readInt . C.dropWhile (==' ')) . last . C.lines put = C.pack . show sol (a:as) = fst $ foldl' f (0,a) as f (c,s) b | s*s'<0 = (c,s') | s>0 = (c+1+abs s',-1) | s<0 = (c+1+abs s',1) where s' = s+b
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> data(N); for (int i = 0; i < N; i++) { cin >> data[i]; } int count_odd, count_even; count_odd = 0; count_even = 0; int sum_odd = 0; int sum_even = 0; for (int i = 0; i < N; i++) { sum_even += data[i]; if (i % 2 == 0) { if (sum_even >= 0) { count_even += (sum_even + 1); sum_even = -1; } } else { if (sum_even <= 0) { count_even -= (sum_even - 1); sum_even = 1; } } } for (int i = 0; i < N; i++) { sum_odd += data[i]; if (i % 2 == 0) { if (sum_odd <= 0) { count_odd -= (sum_odd - 1); sum_odd = 1; } } else { if (sum_odd >= 0) { count_odd += (sum_odd + 1); sum_odd = 1; } } } cout << min(count_even, count_odd) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) b = a #1 = plus cp = 0 cm = 0 sumscp = 0 sumscm = 0 for i in range(len(a)): if i % 2 == 0: while sumscp + a[i] < 1: a[i] = a[i] + 1 cp = cp + 1 sumscp = sumscp + a[i] else: while sums + a[i] > -1: a[i] = a[i] - 1 cp = cp + 1 sumscp = sumscp + a[i] for i in range(len(b)): if i % 2 == 0: while sumscm + b[i] > -1: b[i] = b[i] - 1 cm = cm + 1 sumscm = sumscm + b[i] else: while sumscm + a[i] < 1: b[i] = b[i] + 1 cm = cm + 1 sumscm = sumscm + b[i] print(min(cp,cm))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template <typename T> bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } const long long mod = 1e9 + 7; const int inf = 1 << 30; const long long lnf = 1ll << 60; int main() { int n; cin >> n; vector<long long> a(n); vector<long long> s(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; s[0] = a[0]; for (int i = 0; i < (int)(n - 1); i++) { s[i + 1] = a[i + 1] + s[i]; } int b = -1; bool p = 1; for (int i = 0; i < (int)(n); i++) { if (s[i] == 0) { b = i; if (i + 1 < n && s[i + 1] < 0) p = 0; } } if (b == n - 1) { cout << 1 + 2 * (n - 1) << endl; return 0; } long long add = 0; if (b != -1) { if ((b + 1) % 2 == 0 && s[b + 1] < 0 || (b + 1) % 2 == 1 && s[b + 1] > 0) add = -1; else add = 1; } long long ans = abs(add); long long newadd = 0; for (int i = 0; i < (int)(n - 1); i++) { if ((s[i] + add) * (s[i + 1] + add) >= 0) { if (s[i] + add < 0) newadd = 1 - (s[i + 1] + add); else newadd = (-1) - (s[i + 1] + add); add += newadd; ans += abs(newadd); } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main{ public static void main(String args[]){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; long[] s = new long[n]; for(int i = 0; i < n; i++){ a[i] = sc.nextLong(); if(i == 0){ s[0] = a[0]; } else { s[i] = s[i-1]+a[i]; } } sc.close(); long cnt1 = 0; long cnt2 = 0; long diff1 = 0; long diff2 = 0; for(int i = 0; i < n; i++){ if(i%2 == 0){ if(s[i]+diff1 <= 0){ cnt1 += 1-s[i]-diff1; diff1 += 1-s[i]; } } else { if(s[i]+diff1 >= 0){ cnt1 += s[i] + diff1 + 1; diff1 += -1-s[i]; } } } for(int i = 0; i < n; i++){ if(i%2 == 0){ if(s[i]+diff2 >= 0){ cnt2 += s[i] + diff2 + 1; diff2 += -1-s[i]; } } else { if(s[i]+diff2 <= 0){ cnt2 += 1-s[i]-diff2; diff2 += 1-s[i]; } } } System.out.println(Math.min(cnt1, cnt2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int sum = 0, ans1 = 0, ans2 = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 != 0) { if (sum <= 0) { ans1 += abs(1 - sum); sum = 1; } } else { if (sum >= 0) { ans1 += abs((-1) - sum); sum = -1; } } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { ans2 += abs(1 - sum); sum = 1; } } else { if (sum >= 0) { ans2 += abs((-1) - sum); sum = -1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner((System.in)); int N = sc.nextInt(); int[] n = new int[N + 1]; // 入力値を設定 for (int i = 0; i < N; i++) { n[i] = sc.nextInt(); } int s = n[0]; int m = 0; for (int i = 1; i <= N; i++) { while (Math.signum(s) != Math.pow(-1, i % 2)) { if (Math.pow(-1, i % 2) > 0) { s++; } else { s--; } m++; } s += n[i]; } if (m == 0) { sc.close(); return; } s = n[0]; int p = 0; for (int i = 1; i <= N; i++) { while (Math.signum(s) != Math.pow(-1, (i + 1) % 2)) { if (Math.pow(-1, (i + 1) % 2) > 0) { s++; } else { s--; } p++; } s += n[i]; } if (m > p) { System.out.print(p); } else { System.out.print(m); } sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[1009]; int b[1009]; int main() { int n, hh, sum = 0; while (~scanf("%d", &n)) { int s = 0; for (int g = 0; g < n; g++) { scanf("%d", &a[g]); s += a[g]; b[g] = s; } int i; for (i = 1; i < n; i++) { if (b[i] > 0 && b[i - 1] > 0 || b[i] < 0 && b[i - 1] < 0 || b[i] == 0) { hh = abs(b[i]) + 1; if (b[i] < 0) { int x = abs(b[i] + 1); for (int j = i; j < n; j++) { b[j] = b[j] + x; } } else if (b[i] > 0) { int y = abs(b[i] + 1); for (int t = i; t < n; t++) { b[t] = b[t] - y; } } else if (b[i] == 0) { if (b[i - 1] > 0) { int c = 1; for (int t = i; t < n; t++) { b[t] = b[t] - c; } } if (b[i - 1] < 0) { int c = 1; for (int t = i; t < n; t++) { b[t] = b[t] + c; } } } sum += hh; } } printf("%d\n", sum); sum = 0; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, p_m = 0, m_p = 0; cin >> n; int a[n], b[n], c[n]; for (int i = 0; i < n; i++) cin >> a[i]; if (a[0] == 0) { b[0] = 1; c[0] = 1; } if (0 <= a[0]) { if (a[0] == 0) { a[0] = 1; p_m++; } int s = a[0]; for (int i = 1; i < n; i++) { int k = 1 - 2 * (i % 2); s += a[i]; if (s * k <= 0) { p_m += 1 - k * s; s = k; } } if (a[0] != 0) { cout << p_m << endl; return 0; } } if (a[0] <= 0) { if (a[0] == 0) { a[0] = -1; m_p++; } int s = a[0]; for (int i = 1; i < n; i++) { int k = 2 * (i % 2) - 1; s += a[i]; if (s * k <= 0) { m_p += 1 - k * s; s = k; } } if (a[0] != 0) { cout << m_p << endl; return 0; } } cout << min(p_m, m_p) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from sys import stdin if __name__ == "__main__": _in = [_.rstrip() for _ in stdin.readlines()] n = int(_in[0]) # type:int a_arr = list(map(int,_in[1].split(' '))) # type:list(int) # vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv cnt = 0 sum_ = 0 for i in range(0,n): if i==0: if a_arr[0]==0: while a_arr[i]==0: i+=1 else: if a_arr[i]>0: sum_ = (-1)**i cnt += 1 else: sum_ = (-1)**(i+1) cnt += 1 else: sum_ = a_arr[i] else: if sum_<0: if sum_+a_arr[i]<=0: cnt += 1-(sum_+a_arr[i]) sum_ = 1 else: sum_ = sum_+a_arr[i] else: if sum_+a_arr[i]>=0: cnt += 1+(sum_+a_arr[i]) sum_ = -1 else: sum_ = sum_+a_arr[i] # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Linq; class Program { static void Main(string[] args) { int n = int.Parse(Console.ReadLine()); int[] an = Console.ReadLine().Split(' ').Select(e => int.Parse(e)).ToArray(); long sum = 0; long cs1 = 0; int t = 1; for (int i = 0; i < n; i++) { sum += an[i]; if (sum * t <= 0) { int tmp = Math.Abs(sum - t); sum = t; cs1 += tmp; } t *= -1; } long cs2 = 0; t = -1; sum = 0; for (int i = 0; i < n; i++) { sum += an[i]; if (sum * t <= 0) { int tmp = Math.Abs(sum - t); sum = t; cs2 += tmp; } t *= -1; } Console.WriteLine(Math.Min(cs1, cs2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long n; scanf("%d", &n); long long a[n]; for (int i = 0; i < n; i++) scanf(" %d", &a[i]); int S = a[0]; int j = 0; for (int i = 1; i < n; i++) { if (S * (S + a[i]) < 0) { S += a[i]; } else { if (S < 0) { j += 1 - S - a[i]; S = 1; } else { j += S + a[i] + 1; S = -1; } } } printf("%d\n", j); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; int cnt_a0pos = 0, cnt_a0neg = 0; long int a[100000]; long int sum[100000] = {0}; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = 0; i < n; i++) { if (i == 0) sum[i] = a[i]; else sum[i] = sum[i - 1] + a[i]; if (i % 2 == 0) { if (sum[i] <= 0) { cnt_a0pos += abs(sum[i]) + 1; sum[i] = 1; } } if (i % 2 == 1) { if (sum[i] >= 0) { cnt_a0pos += abs(sum[i]) + 1; sum[i] = -1; } } } for (int i = 0; i < n; i++) { if (i == 0) sum[i] = a[i]; else sum[i] = sum[i - 1] + a[i]; if (i % 2 == 0) { if (sum[i] >= 0) { cnt_a0neg += abs(sum[i]) + 1; sum[i] = -1; } } if (i % 2 == 1) { if (sum[i] <= 0) { cnt_a0neg += abs(sum[i]) + 1; sum[i] = 1; } } } cout << min(cnt_a0pos, cnt_a0neg) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long num_seq[100005]; int main() { int N; cin >> N; for (int i = 0; i < N; i++) cin >> num_seq[i]; long long min_count = 1 << 30, sub_count = 0, count = 0; for (int i = 0; i < N; i++) { if (i == 0) { if (num_seq[i] <= 0) { count += 1 - num_seq[i]; sub_count = 1; } else sub_count += num_seq[i]; } else { if (i % 2 == 0) { if (num_seq[i] + sub_count <= 0) { if (num_seq[i] + sub_count == 0) count++; else count += 1 - (num_seq[i] + sub_count); sub_count = 1; } else sub_count += num_seq[i]; } else { if (num_seq[i] + sub_count >= 0) { if (num_seq[i] + sub_count == 0) count++; else count += 1 + (num_seq[i] + sub_count); sub_count = -1; } else sub_count += num_seq[i]; } } } if (min_count > count) min_count = count; count = 0; sub_count = 0; for (int i = 0; i < N; i++) { if (i == 0) { if (num_seq[i] >= 0) { if (num_seq[i] == 0) count++; else count += 1 + num_seq[i]; sub_count = -1; } else sub_count += num_seq[i]; } else { if (i % 2 == 0) { if (num_seq[i] + sub_count >= 0) { if (num_seq[i] + sub_count == 0) count++; else count += 1 + (num_seq[i] + sub_count); sub_count = -1; } else sub_count += num_seq[i]; } else { if (num_seq[i] + sub_count <= 0) { if (num_seq[i] + sub_count == 0) count++; else count += 1 - (num_seq[i] + sub_count); sub_count = 1; } else sub_count += num_seq[i]; } } } if (min_count > count) min_count = count; cout << min_count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N; vector<int> a; int main() { cin >> N; a.resize(N); for (int i = 0; i < (N); i++) { cin >> a[i]; } int sum = a[0]; int ans = 0; for (int i = (1); i < (N); i++) { int b; if (sum > 0) { b = sum * -1 - 1; if (b < a[i]) { ans += a[i] - b; a[i] = b; } } else { b = sum * -1 + 1; if (b > a[i]) { ans += b - a[i]; a[i] = b; } } sum += a[i]; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; using vvi = vector<vi>; using vll = vector<ll>; using pii = pair<int, int>; using tiii = tuple<int, int, int>; const int mod = 1000000007; const double EPS = 1e-9; const int INF = 1 << 30; const ll INFLL = 1LL << 60; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } int main() { int n; cin >> n; vll a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; ll ans = 0; ll sum = 0; for (int i = (0); i < (n); ++i) { if (sum * (sum + a[i]) >= 0) { if (sum < 0) { ans += 1 - (sum + a[i]); a[i] += 1 - (sum + a[i]); } else if (sum > 0) { ans += -(-1 - (sum + a[i])); a[i] += -1 - (sum + a[i]); } } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; long long sum1 = 0, sum2 = 0; long long ans1 = 0, ans2 = 0; for (int i = 0; i < N; ++i) { long long t; cin >> t; if (i == 0) { if (t == 0) { sum1 = 1; ans1 = 1; sum2 = -1; ans2 = 1; } else { sum1 = t; sum2 = t > 0 ? -1 : 1; ans2 += t + 1; } } else { if (sum1 < 0 && sum1 + t <= 0) { ans1 += 1 - sum1 - t; sum1 = 1; } else if (sum1 > 0 && sum1 + t >= 0) { ans1 += abs(-1 - sum1 - t); sum1 = -1; } else { sum1 += t; } if (sum2 < 0 && sum2 + t <= 0) { ans2 += 1 - sum2 - t; sum2 = 1; } else if (sum2 > 0 && sum2 + t >= 0) { ans2 += abs(-1 - sum2 - t); sum2 = -1; } else { sum2 += t; } } } cout << min(ans1, ans2) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; class C { public: int sgn(long long int val) { if (val == 0) { return 0; } if (val < 0) { return -1; } return 1; } void solve(std::istream& in, std::ostream& out) { ios::sync_with_stdio(false); int n; in >> n; vector<long long int> a(n), p(n); for (int i = 0; i < n; ++i) { in >> a[i]; } long long int steps = 0; long long int steps2 = 0; if (a[0] == 0) { a[0] = 1; ++steps; } p[0] = a[0]; for (int i = 0; i < n - 1; ++i) { p[i + 1] = p[i] + a[i + 1]; if (sgn(p[i]) != -sgn(p[i + 1])) { steps += abs(p[i + 1]) + 1; p[i + 1] = -sgn(p[i]); } } steps2 = abs(a[0]) + 1; p[0] = -sgn(p[0]); for (int i = 0; i < n - 1; ++i) { p[i + 1] = p[i] + a[i + 1]; if (sgn(p[i]) != -sgn(p[i + 1])) { steps2 += abs(p[i + 1]) + 1; p[i + 1] = -sgn(p[i]); } } steps = min(steps, steps2); out << steps << endl; } }; int main() { C solver; std::istream& in(std::cin); std::ostream& out(std::cout); solver.solve(in, out); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.IO; using System.Collections.Generic; using System.Linq; using System.Numerics; namespace FertiLib.Contest.C { static class Program { public static void Solve(Scanner cin) { int n = cin.ReadInt(); var a = cin.ReadIntArray(n); int ansa = 0; var sum = new int[n]; bool isPositiveBefore = true; for (int i = 0; i < n; i++) { if (i == 0) sum[0] = a[0]; else sum[i] = sum[i - 1] + a[i]; if (isPositiveBefore) { if (sum[i] >= 0) { ansa += sum[i] + 1; sum[i] = -1; } } else { if (sum[i] <= 0) { ansa += 1 - sum[i]; sum[i] = 1; } } isPositiveBefore = !isPositiveBefore; } sum = new int[n]; isPositiveBefore = false; int ansb = 0; for (int i = 0; i < n; i++) { if (i == 0) sum[0] = a[0]; else sum[i] = sum[i - 1] + a[i]; if (isPositiveBefore) { if (sum[i] >= 0) { ansb += sum[i] + 1; sum[i] = -1; } } else { if (sum[i] <= 0) { ansb += 1 - sum[i]; sum[i] = 1; } } isPositiveBefore = !isPositiveBefore; } Console.WriteLine(Math.Min(ansa, ansb)); } public static void Main(string[] args) { var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; Console.SetOut(sw); var cin = new Scanner(); Solve(cin); Console.Out.Flush(); } public static void YESNO(bool condition) => Console.WriteLine(condition ? "YES" : "NO"); public static void YesNo(bool condition) => Console.WriteLine(condition ? "Yes" : "No"); public static void yesno(bool condition) => Console.WriteLine(condition ? "yes" : "no"); public static bool Chmax<T>(ref T a, T b) where T : IComparable<T> { if (a.CompareTo(b) >= 0) return false; a = b; return true; } public static bool Chmin<T>(ref T a, T b) where T : IComparable<T> { if (a.CompareTo(b) <= 0) return false; a = b; return true; } } static class Util { public static string Join<T>(this IEnumerable<T> x, string separator = "") => string.Join(separator, x); } class Scanner { string[] s; int i; char[] separator = new char[] { ' ' }; public Scanner() { s = new string[0]; i = 0; } public string Read() => ReadString(); public string ReadString() { if (i < s.Length) return s[i++]; string st = Console.ReadLine(); while (st == "") st = Console.ReadLine(); s = st.Split(separator, StringSplitOptions.RemoveEmptyEntries); if (s.Length == 0) return ReadString(); i = 0; return s[i++]; } public string[] ReadStringArray(int N) { string[] Array = new string[N]; for (int i = 0; i < N; i++) { Array[i] = ReadString(); } return Array; } public int ReadInt() { return int.Parse(ReadString()); } public int[] ReadIntArray(int N, int add = 0) { int[] Array = new int[N]; for (int i = 0; i < N; i++) { Array[i] = ReadInt() + add; } return Array; } public long ReadLong() { return long.Parse(ReadString()); } public long[] ReadLongArray(int N, long add = 0) { long[] Array = new long[N]; for (int i = 0; i < N; i++) { Array[i] = ReadLong() + add; } return Array; } public double ReadDouble() { return double.Parse(ReadString()); } public double[] ReadDoubleArray(int N, double add = 0) { double[] Array = new double[N]; for (int i = 0; i < N; i++) { Array[i] = ReadDouble() + add; } return Array; } public T1 ReadValue<T1>() => (T1)Convert.ChangeType(ReadString(), typeof(T1)); public (T1, T2) ReadValue<T1, T2>() { var inputs = ReadStringArray(2); var v1 = (T1)Convert.ChangeType(inputs[0], typeof(T1)); var v2 = (T2)Convert.ChangeType(inputs[1], typeof(T2)); return (v1, v2); } public (T1, T2, T3) ReadValue<T1, T2, T3>() { var inputs = ReadStringArray(3); var v1 = (T1)Convert.ChangeType(inputs[0], typeof(T1)); var v2 = (T2)Convert.ChangeType(inputs[1], typeof(T2)); var v3 = (T3)Convert.ChangeType(inputs[2], typeof(T3)); return (v1, v2, v3); } public (T1, T2, T3, T4) ReadValue<T1, T2, T3, T4>() { var inputs = ReadStringArray(4); var v1 = (T1)Convert.ChangeType(inputs[0], typeof(T1)); var v2 = (T2)Convert.ChangeType(inputs[1], typeof(T2)); var v3 = (T3)Convert.ChangeType(inputs[2], typeof(T3)); var v4 = (T4)Convert.ChangeType(inputs[3], typeof(T4)); return (v1, v2, v3, v4); } public (T1, T2, T3, T4, T5) ReadValue<T1, T2, T3, T4, T5>() { var inputs = ReadStringArray(5); var v1 = (T1)Convert.ChangeType(inputs[0], typeof(T1)); var v2 = (T2)Convert.ChangeType(inputs[1], typeof(T2)); var v3 = (T3)Convert.ChangeType(inputs[2], typeof(T3)); var v4 = (T4)Convert.ChangeType(inputs[3], typeof(T4)); var v5 = (T5)Convert.ChangeType(inputs[4], typeof(T5)); return (v1, v2, v3, v4, v5); } public (T1, T2, T3, T4, T5, T6) ReadValue<T1, T2, T3, T4, T5, T6>() { var inputs = ReadStringArray(6); var v1 = (T1)Convert.ChangeType(inputs[0], typeof(T1)); var v2 = (T2)Convert.ChangeType(inputs[1], typeof(T2)); var v3 = (T3)Convert.ChangeType(inputs[2], typeof(T3)); var v4 = (T4)Convert.ChangeType(inputs[3], typeof(T4)); var v5 = (T5)Convert.ChangeType(inputs[4], typeof(T5)); var v6 = (T6)Convert.ChangeType(inputs[5], typeof(T6)); return (v1, v2, v3, v4, v5, v6); } public (T1, T2, T3, T4, T5, T6, T7) ReadValue<T1, T2, T3, T4, T5, T6, T7>() { var inputs = ReadStringArray(7); var v1 = (T1)Convert.ChangeType(inputs[0], typeof(T1)); var v2 = (T2)Convert.ChangeType(inputs[1], typeof(T2)); var v3 = (T3)Convert.ChangeType(inputs[2], typeof(T3)); var v4 = (T4)Convert.ChangeType(inputs[3], typeof(T4)); var v5 = (T5)Convert.ChangeType(inputs[4], typeof(T5)); var v6 = (T6)Convert.ChangeType(inputs[5], typeof(T6)); var v7 = (T7)Convert.ChangeType(inputs[6], typeof(T7)); return (v1, v2, v3, v4, v5, v6, v7); } public T1[] ReadValueArray<T1>(int N) { var v1 = new T1[N]; for (int i = 0; i < N; i++) { v1[i] = ReadValue<T1>(); } return v1; } public (T1[], T2[]) ReadValueArray<T1, T2>(int N) { var (v1, v2) = (new T1[N], new T2[N]); for (int i = 0; i < N; i++) { var (t1, t2) = ReadValue<T1, T2>(); v1[i] = t1; v2[i] = t2; } return (v1, v2); } public (T1[], T2[], T3[]) ReadValueArray<T1, T2, T3>(int N) { var (v1, v2, v3) = (new T1[N], new T2[N], new T3[N]); for (int i = 0; i < N; i++) { var (t1, t2, t3) = ReadValue<T1, T2, T3>(); v1[i] = t1; v2[i] = t2; v3[i] = t3; } return (v1, v2, v3); } public (T1[], T2[], T3[], T4[]) ReadValueArray<T1, T2, T3, T4>(int N) { var (v1, v2, v3, v4) = (new T1[N], new T2[N], new T3[N], new T4[N]); for (int i = 0; i < N; i++) { var (t1, t2, t3, t4) = ReadValue<T1, T2, T3, T4>(); v1[i] = t1; v2[i] = t2; v3[i] = t3; v4[i] = t4; } return (v1, v2, v3, v4); } public (T1[], T2[], T3[], T4[], T5[]) ReadValueArray<T1, T2, T3, T4, T5>(int N) { var (v1, v2, v3, v4, v5) = (new T1[N], new T2[N], new T3[N], new T4[N], new T5[N]); for (int i = 0; i < N; i++) { var (t1, t2, t3, t4, t5) = ReadValue<T1, T2, T3, T4, T5>(); v1[i] = t1; v2[i] = t2; v3[i] = t3; v4[i] = t4; v5[i] = t5; } return (v1, v2, v3, v4, v5); } public (T1[], T2[], T3[], T4[], T5[], T6[]) ReadValueArray<T1, T2, T3, T4, T5, T6>(int N) { var (v1, v2, v3, v4, v5, v6) = (new T1[N], new T2[N], new T3[N], new T4[N], new T5[N], new T6[N]); for (int i = 0; i < N; i++) { var (t1, t2, t3, t4, t5, t6) = ReadValue<T1, T2, T3, T4, T5, T6>(); v1[i] = t1; v2[i] = t2; v3[i] = t3; v4[i] = t4; v5[i] = t5; v6[i] = t6; } return (v1, v2, v3, v4, v5, v6); } public (T1[], T2[], T3[], T4[], T5[], T6[], T7[]) ReadValueArray<T1, T2, T3, T4, T5, T6, T7>(int N) { var (v1, v2, v3, v4, v5, v6, v7) = (new T1[N], new T2[N], new T3[N], new T4[N], new T5[N], new T6[N], new T7[N]); for (int i = 0; i < N; i++) { var (t1, t2, t3, t4, t5, t6, t7) = ReadValue<T1, T2, T3, T4, T5, T6, T7>(); v1[i] = t1; v2[i] = t2; v3[i] = t3; v4[i] = t4; v5[i] = t5; v6[i] = t6; v7[i] = t7; } return (v1, v2, v3, v4, v5, v6, v7); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; const int MAX_N = int(1e5); long long n, a[MAX_N], dp[MAX_N], dp1[MAX_N]; void solve() { long long even_plus = 0, even_minus = 0; long long diffs = 0; for (long long i = 0; i < (long long)(n); i++) { long long diff = 0; dp1[i] += diffs; if (i % 2 == 0 && dp1[i] < 0) { diff = 1 - dp1[i]; diffs += diff; dp1[i] = 1; } else if (i % 2 != 0 && dp1[i] >= 0) { diff = -1 - dp1[i]; diffs += diff; dp1[i] = -1; } even_plus += abs(diff); } diffs = 0; for (long long i = 0; i < (long long)(n); i++) { long long diff = 0; dp[i] += diffs; if (i % 2 == 0 && dp[i] >= 0) { diff = -1 - dp[i]; diffs += diff; dp[i] = -1; } else if (i % 2 != 0 && dp[i] < 0) { diff = 1 - dp[i]; diffs += diff; dp[i] = 1; } even_minus += abs(diff); } cout << (even_minus < even_plus ? even_minus : even_plus) << endl; } int main() { cin >> n; for (long long i = 0; i < (long long)(n); i++) { cin >> a[i]; if (i == 0) dp[0] = a[0]; else dp[i] = dp[i - 1] + a[i]; } memcpy(dp1, dp, sizeof(dp)); solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100010] = {}; long long calc(long long *, long long); long long get_sign(long long); int main() { long long n, ans; cin >> n; for (long long i = 0; i < n; i++) { cin >> a[i]; } ans = calc(a, n); cout << ans << endl; return 0; } long long calc(long long *a, long long n) { long long cnt = 0; long long sign = 0; long long tmp; if (a[0] > 0) { sign = 1; } tmp = a[0]; for (long long i = 0; i < n - 1; i++) { tmp = tmp + a[i + 1]; if (sign == 1) { if (tmp >= 0) { cnt += tmp + 1; tmp = -1; } } else { if (tmp <= 0) { cnt += (-1 * tmp) + 1; tmp = 1; } } sign = get_sign(tmp); } return cnt; } long long get_sign(long long tmp) { if (tmp < 0) return 0; else return 1; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace AtCoder { class Code3 { static void Main(string[] args) { string s1 = Console.ReadLine(); string s2 = Console.ReadLine(); Console.WriteLine(funcMain(s1,s2)); } static private string funcMain(string arg1, string arg2) { long ret = 0; long ret1 = 0; long ret2 = 0; long sum = 0; for(int i = 0; i <= 1; i++) // 0はそのまま、1は逆符号 { sum = ret = 0; foreach (string buf in arg2.Split()) { if (sum == 0) { sum = long.Parse(buf); if (i == 1) { if (sum >= 0) { ret += sum + 1; sum = -1; } else { ret += (sum * -1) + 1; sum = 1; } } } else { if (sum > 0) { sum += long.Parse(buf); if (sum >= 0) { ret += sum + 1; sum = -1; } } else { sum += long.Parse(buf); if (sum <= 0) { ret += (sum * -1) + 1; sum = 1; } } } } if (i == 0) ret1 = ret; else ret2 = ret; } if (ret1 >= ret2) ret = ret2; else ret = ret1; return ret.ToString(); } static private void test() { string arg1, arg2; arg1 = "4"; arg2 = "1 -3 1 0"; Console.WriteLine("4" == funcMain(arg1, arg2)); arg1 = "5"; arg2 = "3 -6 4 -5 7"; Console.WriteLine("0" == funcMain(arg1, arg2)); arg1 = "6"; arg2 = "-1 4 3 2 -5 4"; Console.WriteLine("8" == funcMain(arg1, arg2)); arg1 = "6"; arg2 = "-1 -2 -3 -4 -5 -6"; Console.WriteLine("16" == funcMain(arg1, arg2)); arg1 = "3"; arg2 = "1 10 -100"; Console.WriteLine("2" == funcMain(arg1, arg2)); Console.ReadKey(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#!/usr/bin/env ruby n = STDIN.gets.chomp.to_i array = STDIN.gets.chomp.split(' ').map(&:to_i) ans = 0 sum = 0 array.each_with_index do |a, i| if i == 0 sum = a next end if sum >= 0 if sum + a < 0 sum += a else ans += (-1 - (sum + a)).abs sum = -1 end else # sumがマイナス if sum + a > 0 sum += a else ans += (1 - (sum + a)).abs sum = 1 end end #puts "#{i}: sum = #{sum}, ans = #{ans}" end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<ll, ll>; const ll MOD = 1000000007; int main() { ll N, sum = 0, ans = 0; cin >> N; vector<ll> A(N); for (long long i = 0; i < (N); ++i) cin >> A.at(i); if (A.at(0) == 0) { A.at(0) = 1; ans++; for (long long i = 0; i < (N); ++i) { if (i == 0) { sum += A.at(i); continue; } if (sum > 0) { if (sum + A.at(i) < 0) { sum += A.at(i); } else { ans += sum + A.at(i) + 1; sum = -1; } } else { if (sum + A.at(i) > 0) { sum += A.at(i); } else { ans += 1 - (sum + A.at(i)); sum = 1; } } } A.at(0) = -1; ll ans1 = 1; sum = 0; for (long long i = 0; i < (N); ++i) { if (i == 0) { sum += A.at(i); continue; } if (sum > 0) { if (sum + A.at(i) < 0) { sum += A.at(i); } else { ans1 += sum + A.at(i) + 1; sum = -1; } } else { if (sum + A.at(i) > 0) { sum += A.at(i); } else { ans1 += 1 - (sum + A.at(i)); sum = 1; } } } cout << min(ans, ans1) << endl; return 0; } for (long long i = 0; i < (N); ++i) { if (i == 0) { sum += A.at(i); continue; } if (sum > 0) { if (sum + A.at(i) < 0) { sum += A.at(i); } else { ans += sum + A.at(i) + 1; sum = -1; } } else { if (sum + A.at(i) > 0) { sum += A.at(i); } else { ans += 1 - (sum + A.at(i)); sum = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int ans1 = 0; int ans2 = 0; int sum1 = 0; int sum2 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; sum2 += a[i]; if (i % 2 == 0) { if (sum1 > 0) { } else { ans1 += abs(sum1) + 1; sum1 = 1; } if (sum2 < 0) { } else { ans2 += abs(sum2) + 1; sum2 = -1; } } else { if (sum1 < 0) { } else { ans1 += abs(sum1) + 1; sum1 = -1; } if (sum2 > 0) { } else { ans2 += abs(sum2) + 1; sum2 = 1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# # Written by NoKnowledgeGG @YlePhan # ('ω') # #import math #mod = 10**9+7 #import itertools #import fractions #import numpy as np #mod = 10**4 + 7 """def kiri(n,m): r_ = n / m if (r_ - (n // m)) > 0: return (n//m) + 1 else: return (n//m)""" """ n! mod m 階乗 mod = 1e9 + 7 N = 10000000 fac = [0] * N def ini(): fac[0] = 1 % mod for i in range(1,N): fac[i] = fac[i-1] * i % mod""" """mod = 1e9+7 N = 10000000 pw = [0] * N def ini(c): pw[0] = 1 % mod for i in range(1,N): pw[i] = pw[i-1] * c % mod""" """ def YEILD(): yield 'one' yield 'two' yield 'three' generator = YEILD() print(next(generator)) print(next(generator)) print(next(generator)) """ """def gcd_(a,b): if b == 0:#結局はc,0の最大公約数はcなのに return a return gcd_(a,a % b) # a = p * b + q""" """def extgcd(a,b,x,y): d = a if b!=0: d = extgcd(b,a%b,y,x) y -= (a//b) * x print(x,y) else: x = 1 y = 0 return d""" def readInts(): return list(map(int,input().split())) mod = 10**9 + 7 def main(): n = int(input()) A = readInts() # 符号 positive? #po_ = True # 変わったか変わってないか if A[0] >= 0: # if positive po_ = True else: # negative po_ = False Cost = 0 ANS = [0] * (n+1) ANS[0] = A[0] #print(ANS[0]) for i in range(1,n): #print(sum(A[:i+1]),A[i],po_) if ANS[i-1]+A[i] >= 0 and not po_: # sumがpositiveで前がnegativeだった po_ = True # positiveに ANS[i] = ANS[i-1] + A[i] # 3 if ANS[i-1]+A[i] == 0: ANS[i] = 1 Cost += 1 # これで終わり elif ANS[i-1]+A[i] >= 0 and po_: # posi : posi ? # 負にしなければならない Cost += abs(-1 - (ANS[i-1]+A[i])) # 先にこれやれ A[i] += -1 - (ANS[i-1] + A[i]) # -4 ANS[i] = ANS[i-1] + A[i] po_ = False elif ANS[i-1]+A[i] < 0 and not po_: #nega : nega # -1 はここ # print(A[i]) Cost += abs(1 - (ANS[i-1]+A[i])) # 先にこれやれ A[i] += 1 - (ANS[i-1] + A[i]) ANS[i] = ANS[i-1] + A[i] po_ = True else: # nega: pos po_ = False ANS[i] = ANS[i-1] + A[i] if ANS[i-1]+A[i] == 0: ANS[i] = -1 Cost +=1 #print(A[i]) #print(ANS[i]) print(Cost) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1001001001; const long long LINF = 1e18; const string endstr = "\n"; template <typename T> T gcd(T a, T b) { return (a == 0) ? b : gcd(b % a, a); } template <typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; } bool p_comp_fs(const pair<int, int> p1, const pair<int, int> p2) { return p1.first < p2.first; }; bool p_comp_fg(const pair<int, int> p1, const pair<int, int> p2) { return p1.first > p2.first; }; bool p_comp_ss(const pair<int, int> p1, const pair<int, int> p2) { return p1.second < p2.second; }; bool p_comp_sg(const pair<int, int> p1, const pair<int, int> p2) { return p1.second > p2.second; }; template <typename T> vector<T> uniquen(vector<T> vec) { vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } int main() { long long N, s = 0; cin >> N; vector<long long> as(N, 0); for (long long i = 0; i < N; i++) { long long a; cin >> a; s += a; as[i] = s; } long long ret = 0, mv = 0; for (long long i = (1); i < N; i++) { if ((as[i] + mv) * (as[i - 1] + mv) >= 0) { long long a_pre = as[i - 1] + mv; long long t_mv = a_pre > 0 ? -(as[i] + mv + 1) : 1 - (as[i] + mv); mv += t_mv; ret += abs(t_mv); } } cout << ret << endstr; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <typename T1, typename T2> inline void chmin(T1& a, T2 b) { if (a > b) a = b; } template <typename T1, typename T2> inline void chmax(T1& a, T2 b) { if (a < b) a = b; } using namespace std; std::mt19937 mt((long long)time(0)); long long dx[4] = {0, 1, 0, -1}; long long dy[4] = {1, 0, -1, 0}; using Weight = long long; using Flow = long long; struct Edge { long long src, dst; Weight weight; Flow cap; Edge() : src(0), dst(0), weight(0) {} Edge(long long s, long long d, Weight w) : src(s), dst(d), weight(w) {} }; using Edges = std::vector<Edge>; using Graph = std::vector<Edges>; using Array = std::vector<Weight>; using Matrix = std::vector<Array>; void add_edge(Graph& g, long long a, long long b, Weight w = 1) { g[a].emplace_back(a, b, w); g[b].emplace_back(b, a, w); } void add_arc(Graph& g, long long a, long long b, Weight w = 1) { g[a].emplace_back(a, b, w); } struct uf_tree { std::vector<long long> parent; long long __size; uf_tree(long long size_) : parent(size_, -1), __size(size_) {} void unite(long long x, long long y) { if ((x = find(x)) != (y = find(y))) { if (parent[y] < parent[x]) std::swap(x, y); parent[x] += parent[y]; parent[y] = x; __size--; } } bool is_same(long long x, long long y) { return find(x) == find(y); } long long find(long long x) { return parent[x] < 0 ? x : parent[x] = find(parent[x]); } long long size(long long x) { return -parent[find(x)]; } long long size() { return __size; } }; template <signed M, unsigned T> struct mod_int { constexpr static signed MODULO = M; constexpr static unsigned TABLE_SIZE = T; signed x; mod_int() : x(0) {} mod_int(long long y) : x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {} mod_int(signed y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {} mod_int& operator+=(const mod_int& rhs) { if ((x += rhs.x) >= MODULO) x -= MODULO; return *this; } mod_int& operator-=(const mod_int& rhs) { if ((x += MODULO - rhs.x) >= MODULO) x -= MODULO; return *this; } mod_int& operator*=(const mod_int& rhs) { x = static_cast<signed>(1LL * x * rhs.x % MODULO); return *this; } mod_int& operator/=(const mod_int& rhs) { x = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO); return *this; } mod_int operator-() const { return mod_int(-x); } mod_int operator+(const mod_int& rhs) const { return mod_int(*this) += rhs; } mod_int operator-(const mod_int& rhs) const { return mod_int(*this) -= rhs; } mod_int operator*(const mod_int& rhs) const { return mod_int(*this) *= rhs; } mod_int operator/(const mod_int& rhs) const { return mod_int(*this) /= rhs; } bool operator<(const mod_int& rhs) const { return x < rhs.x; } mod_int inv() const { assert(x != 0); if (x <= static_cast<signed>(TABLE_SIZE)) { if (_inv[1].x == 0) prepare(); return _inv[x]; } else { signed a = x, b = MODULO, u = 1, v = 0, t; while (b) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return mod_int(u); } } mod_int pow(long long t) const { assert(!(x == 0 && t == 0)); mod_int e = *this, res = mod_int(1); for (; t; e *= e, t >>= 1) if (t & 1) res *= e; return res; } mod_int fact() { if (_fact[0].x == 0) prepare(); return _fact[x]; } mod_int inv_fact() { if (_fact[0].x == 0) prepare(); return _inv_fact[x]; } mod_int choose(mod_int y) { assert(y.x <= x); return this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact(); } static mod_int _inv[TABLE_SIZE + 1]; static mod_int _fact[TABLE_SIZE + 1]; static mod_int _inv_fact[TABLE_SIZE + 1]; static void prepare() { _inv[1] = 1; for (long long i = 2; i <= (long long)TABLE_SIZE; ++i) { _inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO; } _fact[0] = 1; for (unsigned i = 1; i <= TABLE_SIZE; ++i) { _fact[i] = _fact[i - 1] * signed(i); } _inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv(); for (long long i = (long long)TABLE_SIZE - 1; i >= 0; --i) { _inv_fact[i] = _inv_fact[i + 1] * (i + 1); } } }; template <signed M, unsigned F> std::ostream& operator<<(std::ostream& os, const mod_int<M, F>& rhs) { return os << rhs.x; } template <signed M, unsigned F> std::istream& operator>>(std::istream& is, mod_int<M, F>& rhs) { long long s; is >> s; rhs = mod_int<M, F>(s); return is; } template <signed M, unsigned F> mod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1]; template <signed M, unsigned F> mod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1]; template <signed M, unsigned F> mod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1]; template <signed M, unsigned F> bool operator==(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) { return lhs.x == rhs.x; } template <long long M, unsigned F> bool operator!=(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) { return !(lhs == rhs); } const signed MF = 1000010; const signed MOD = 1000000007; using mint = mod_int<MOD, MF>; mint binom(long long n, long long r) { return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r); } mint fact(long long n) { return mint(n).fact(); } mint inv_fact(long long n) { return mint(n).inv_fact(); } template <typename T, typename E> struct SegmentTree { typedef function<T(T, T)> F; typedef function<T(T, E)> G; typedef function<E(E, E)> H; typedef function<E(E, long long)> P; long long n; F f; G g; H h; P p; T d1; E d0; vector<T> dat; vector<E> laz; SegmentTree( long long n_, F f, G g, H h, T d1, E d0, vector<T> v = vector<T>(), P p = [](E a, long long b) { return a; }) : f(f), g(g), h(h), d1(d1), d0(d0), p(p) { init(n_); if (n_ == (long long)v.size()) build(n_, v); } void init(long long n_) { n = 1; while (n < n_) n *= 2; dat.clear(); dat.resize(2 * n - 1, d1); laz.clear(); laz.resize(2 * n - 1, d0); } void build(long long n_, vector<T> v) { for (long long i = 0; i < n_; i++) dat[i + n - 1] = v[i]; for (long long i = n - 2; i >= 0; i--) dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]); } inline void eval(long long len, long long k) { if (laz[k] == d0) return; if (k * 2 + 1 < n * 2 - 1) { laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]); laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]); } dat[k] = g(dat[k], p(laz[k], len)); laz[k] = d0; } T update(long long a, long long b, E x, long long k, long long l, long long r) { eval(r - l, k); if (r <= a || b <= l) return dat[k]; if (a <= l && r <= b) { laz[k] = h(laz[k], x); return g(dat[k], p(laz[k], r - l)); } return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2), update(a, b, x, k * 2 + 2, (l + r) / 2, r)); } T update(long long a, long long b, E x) { return update(a, b, x, 0, 0, n); } T query(long long a, long long b, long long k, long long l, long long r) { eval(r - l, k); if (r <= a || b <= l) return d1; if (a <= l && r <= b) return dat[k]; T vl = query(a, b, k * 2 + 1, l, (l + r) / 2); T vr = query(a, b, k * 2 + 2, (l + r) / 2, r); return f(vl, vr); } T query(long long a, long long b) { return query(a, b, 0, 0, n); } }; class compress { public: static const long long MAP = 10000000; map<long long, long long> zip; long long unzip[MAP]; compress(vector<long long>& x) { sort(x.begin(), x.end()); x.erase(unique(x.begin(), x.end()), x.end()); for (long long i = 0; i < x.size(); i++) { zip[x[i]] = i; unzip[i] = x[i]; } } }; unsigned euclidean_gcd(unsigned a, unsigned b) { while (1) { if (a < b) swap(a, b); if (!b) break; a %= b; } return a; } template <class T> struct CumulativeSum2D { vector<vector<T>> data; CumulativeSum2D(long long W, long long H) : data(W + 1, vector<long long>(H + 1, 0)) {} void add(long long x, long long y, T z) { ++x, ++y; if (x >= data.size() || y >= data[0].size()) return; data[x][y] += z; } void build() { for (long long i = 1; i < data.size(); i++) { for (long long j = 1; j < data[i].size(); j++) { data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1]; } } } T query(long long sx, long long sy, long long gx, long long gy) { return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]); } }; long long nC2(long long n) { return n * (n - 1) / 2; } class node { public: long long depth; long long num; node(long long d, long long n) { depth = d; num = n; } }; CumulativeSum2D<long long> sumB(4001, 4001); template <class T> struct CumulativeSum { vector<T> data; CumulativeSum(long long sz) : data(sz, 0){}; void add(long long k, T x) { data[k] += x; } void build() { for (long long i = 1; i < data.size(); i++) { data[i] += data[i - 1]; } } T query(long long k) { if (k < 0) return (0); return (data[min(k, (long long)data.size() - 1)]); } T query(long long left, long long right) { return query(right) - query(left - 1); } }; std::vector<bool> IsPrime; void sieve(size_t max) { if (max + 1 > IsPrime.size()) { IsPrime.resize(max + 1, true); } IsPrime[0] = false; IsPrime[1] = false; for (size_t i = 2; i * i <= max; ++i) if (IsPrime[i]) for (size_t j = 2; i * j <= max; ++j) IsPrime[i * j] = false; } vector<int64_t> divisor(int64_t n) { vector<int64_t> ret; for (int64_t i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if (i * i != n) ret.push_back(n / i); } } sort(begin(ret), end(ret)); return (ret); } long long binary_search(function<bool(long long)> isOk, long long ng, long long ok) { while (abs(ok - ng) > 1) { long long mid = (ok + ng) / 2; if (isOk(mid)) ok = mid; else ng = mid; } return ok; } std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s) { long long n = g.size(); const Weight inf = std::numeric_limits<Weight>::max() / 8; Edges es; for (long long i = 0; i < n; i++) for (auto& e : g[i]) es.emplace_back(e); std::vector<Weight> dist(n, inf); dist[s] = 0; bool negCycle = false; for (long long i = 0;; i++) { bool update = false; for (auto& e : es) { if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) { dist[e.dst] = dist[e.src] + e.weight; update = true; } } if (!update) break; if (i > n) { negCycle = true; break; } } return std::make_pair(dist, !negCycle); } std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s, long long d) { long long n = g.size(); const Weight inf = std::numeric_limits<Weight>::max() / 8; Edges es; for (long long i = 0; i < n; i++) for (auto& e : g[i]) es.emplace_back(e); std::vector<Weight> dist(n, inf); dist[s] = 0; bool negCycle = false; for (long long i = 0; i < n * 2; i++) { bool update = false; for (auto& e : es) { if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) { dist[e.dst] = dist[e.src] + e.weight; update = true; if (e.dst == d && i == n * 2 - 1) negCycle = true; } } if (!update) break; } return std::make_pair(dist, !negCycle); } vector<long long> Manachar(string S) { long long len = S.length(); vector<long long> R(len); long long i = 0, j = 0; while (i < S.size()) { while (i - j >= 0 && i + j < S.size() && S[i - j] == S[i + j]) ++j; R[i] = j; long long k = 1; while (i - k >= 0 && i + k < S.size() && k + R[i - k] < j) R[i + k] = R[i - k], ++k; i += k; j -= k; } return R; } std::vector<long long> tsort(const Graph& g) { long long n = g.size(), k = 0; std::vector<long long> ord(n), in(n); for (auto& es : g) for (auto& e : es) in[e.dst]++; std::queue<long long> q; for (long long i = 0; i < n; ++i) if (in[i] == 0) q.push(i); while (q.size()) { long long v = q.front(); q.pop(); ord[k++] = v; for (auto& e : g[v]) { if (--in[e.dst] == 0) { q.push(e.dst); } } } return *std::max_element(in.begin(), in.end()) == 0 ? ord : std::vector<long long>(); } std::vector<Weight> dijkstra(const Graph& g, long long s) { const Weight INF = std::numeric_limits<Weight>::max() / 8; using state = std::tuple<Weight, long long>; std::priority_queue<state> q; std::vector<Weight> dist(g.size(), INF); dist[s] = 0; q.emplace(0, s); while (q.size()) { Weight d; long long v; std::tie(d, v) = q.top(); q.pop(); d *= -1; if (dist[v] < d) continue; for (auto& e : g[v]) { if (dist[e.dst] > dist[v] + e.weight) { dist[e.dst] = dist[v] + e.weight; q.emplace(-dist[e.dst], e.dst); } } } return dist; } Matrix WarshallFloyd(const Graph& g) { auto const INF = std::numeric_limits<Weight>::max() / 8; long long n = g.size(); Matrix d(n, Array(n, INF)); for (long long i = (0); i < (long long)(n); i++) d[i][i] = 0; for (long long i = (0); i < (long long)(n); i++) for (auto& e : g[i]) d[e.src][e.dst] = std::min(d[e.src][e.dst], e.weight); for (long long k = (0); k < (long long)(n); k++) for (long long i = (0); i < (long long)(n); i++) for (long long j = (0); j < (long long)(n); j++) { if (d[i][k] != INF && d[k][j] != INF) { d[i][j] = std::min(d[i][j], d[i][k] + d[k][j]); } } return d; } const long long BLACK = 1, WHITE = 0; bool isValid(vector<vector<long long>>& mapData, long long gyo, long long retu) { bool f = true; for (long long i = (0); i < (long long)(gyo); i++) { for (long long j = (0); j < (long long)(retu); j++) { long long colorCnt = 0; if (j > 0 && mapData[i][j] == mapData[i][j - 1]) { colorCnt++; } if (i > 0 && mapData[i][j] == mapData[i - 1][j]) { colorCnt++; } if (i < gyo - 1 && mapData[i][j] == mapData[i + 1][j]) { colorCnt++; } if (j < retu - 1 && mapData[i][j] == mapData[i][j + 1]) { colorCnt++; } if (colorCnt > 1) { f = false; } } } return f; } void getNext(long long nowX, long long nowY, long long* pOutX, long long* pOutY, long long gyo, long long retu) { if (nowX == retu - 1) { *pOutY = nowY + 1; *pOutX = 0; return; } *pOutX = nowX + 1; *pOutY = nowY; } void dfs(vector<vector<long long>> mapData, long long nowX, long long nowY, long long gyo, long long retu, long long* outCnt) { if (nowX == retu - 1 && nowY == gyo - 1) { mapData[nowY][nowX] = BLACK; if (isValid(mapData, gyo, retu)) { *outCnt = *outCnt + 1; } mapData[nowY][nowX] = WHITE; if (isValid(mapData, gyo, retu)) { *outCnt = *outCnt + 1; } return; } mapData[nowY][nowX] = BLACK; long long nextX, nextY; getNext(nowX, nowY, &nextX, &nextY, gyo, retu); dfs(mapData, nextX, nextY, gyo, retu, outCnt); mapData[nowY][nowX] = WHITE; getNext(nowX, nowY, &nextX, &nextY, gyo, retu); dfs(mapData, nextX, nextY, gyo, retu, outCnt); } void dec(map<long long, long long>& ma, long long a) { ma[a]--; if (ma[a] == 0) { ma.erase(a); } } long long N; long long solve(long long ans, vector<long long> A, vector<long long> cu) { for (long long i = (0); i < (long long)(N); i++) { if (cu[i] == 0) { ans++; if (i == 0) { if (cu[i + 1] < 0) { cu[i] = 1; } else { cu[i] = -1; } } else { if (cu[i - 1] < 0) { cu[i] = 1; } else { cu[i] = -1; } } } if (i == N - 1) { break; } if (cu[i] < 0 == cu[i + 1] < 0) { if (cu[i + 1] > 0) { ans += cu[i + 1] + 1; cu[i + 1] -= cu[i + 1] + 1; } else { ans += -cu[i + 1] + 1; cu[i + 1] += -cu[i + 1] + 1; } } cu[i + 2] = cu[i + 1] + A[i + 2]; } return ans; } signed main() { cin >> N; vector<long long> A(N + 2); vector<long long> cu(N + 2); long long su = 0; for (long long i = (0); i < (long long)(N); i++) { cin >> A[i]; su += A[i]; cu[i] = su; } long long ans1 = 0, ans2 = 0; ans1 = solve(ans1, A, cu); if (A[0] < 0) { ans2 = -A[0] + 1; A[0] = 1; } else { ans2 = A[0] + 1; A[0] = -1; } su = 0; for (long long i = (0); i < (long long)(N); i++) { su += A[i]; cu[i] = su; } ans2 = solve(ans2, A, cu); cout << min(ans1, ans2) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { ll N = 0; cin >> N; vector<ll> A(N, 0); for (ll i = 0; i < N; i++) { cin >> A.at(i); } ll ans = 0; vector<ll> sum(N, 0); sum.at(0) = A.at(0); ll ansa = abs(A.at(0) + (abs(A.at(0)) / A.at(0))); vector<ll> suma(N, 0); suma.at(0) = -1 * (abs(A.at(0)) / A.at(0)); for (size_t i = 1; i < N; i++) { sum.at(i) = sum.at(i - 1) + A.at(i); if (sum.at(i) * sum.at(i - 1) < 0) { continue; } else { ans += abs(sum.at(i) + (abs(A.at(i - 1)) / A.at(i - 1))); sum.at(i) = -1 * (abs(A.at(i - 1)) / A.at(i - 1)); } } for (size_t i = 1; i < N; i++) { suma.at(i) = suma.at(i - 1) + A.at(i); if (suma.at(i) * suma.at(i - 1) < 0) { continue; } else { ansa += abs(suma.at(i) + (abs(A.at(i - 1)) / A.at(i - 1))); suma.at(i) = -1 * (abs(A.at(i - 1)) / A.at(i - 1)); } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
main :: IO () main = do _ <- readLn :: IO Int (a0:as) <- (map read . words) <$> getLine print $ solve (0, a0, as) solve :: (Int, Int, [Int]) -> Int solve (x, 0, 0:as) = min (solve (x+1, 1, as)) (solve (x+1, -1, as)) solve (x, _, []) = x solve (x, s, a0:as) = solve (x+k, s + a0 + k, as) where m = - sign s k = if s * a0 > 0 then m - (s + a0) else 0 sign :: Int -> Int sign x = x `div` abs x
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using R = double; const ll inf = 1LL << 50; const ll MOD = 1e9 + 7; int main() { int n; cin >> n; vector<int> v(n); for (int i = 0; i < n; ++i) cin >> v[i]; for (int i = 1; i < n; ++i) v[i] += v[i - 1]; int ans1 = 0; int all = 0; bool fl = 0; for (int i = 0; i < n; ++i) { if (fl == 0 && v[i] + all <= 0) { ans1 += 1 - (v[i] + all); all += 1 - (v[i] + all); fl = 1; } else if (fl == 1 && v[i] + all >= 0) { ans1 += 1 + (v[i] + all); all += -1 - (v[i] + all); fl = 0; } else if (fl == 1) { fl = 0; } else { fl = 1; } } int ans2 = 0; all = 0; fl = 1; for (int i = 0; i < n; ++i) { if (fl == 0 && v[i] + all <= 0) { ans2 += 1 - (v[i] + all); all += 1 - (v[i] + all); fl = 1; } else if (fl == 1 && v[i] + all >= 0) { ans2 += 1 + (v[i] + all); all += -1 - (v[i] + all); fl = 0; } else if (fl == 1) { fl = 0; } else { fl = 1; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int d[n]; for (int i = 0; i < n; i++) { cin >> d[i]; } int count = 0; int sum = d[0]; int f = 0; if (d[0] > 0) { f = -1; } if (d[0] < 0) { f = 1; } for (int i = 1; i < n; i++) { sum += d[i]; if (sum > 0) { if (f == 1) { f = -1; continue; } if (f == -1) { count += sum + 1; sum = -1; f = 1; continue; } } if (sum < 0) { if (f == -1) { f = 1; continue; } if (f == 1) { count += 1 - sum; sum = 1; f = -1; continue; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; vector<long long> a; int main() { cin >> n; a.resize(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = a[0]; long long cost = 0; for (int i = 1; i < n; i++) { if ((sum < 0 && sum + a[i] > 0) || (sum > 0 && sum + a[i] < 0)) { sum += a[i]; } else { if (sum > 0) { cost += abs(sum + a[i] - (-1)); sum = -1; } else { cost += abs(sum + a[i] - 1); sum = 1; } } } cout << cost << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { ll acc; ll N; vector<ll> A; cin >> N; for (ll i = 0; i < N; i++) { ll tmp; cin >> tmp; A.push_back(tmp); } ll ans_pos = 0; acc = A[0]; if (acc == 0) { acc = 1; ans_pos += 1; } for (ll i = 1; i < N; i++) { ll next = acc + A[i]; if (acc * next >= 0) { ans_pos += abs(next) + 1; next = -1 * (acc / abs(acc)); } acc = next; } ll ans_neg = 0; acc = A[0]; if (acc == 0) { acc = 1; ans_neg += 1; } for (ll i = 1; i < N; i++) { ll next = acc + A[i]; if (acc * next >= 0) { ans_neg += abs(next) + 1; next = -1 * (acc / abs(acc)); } acc = next; } ll ans = min(ans_pos, ans_neg); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long f(int a[], int n, bool plus) { long long ans = 0; int sum = a[0]; if (sum == 0) { ans++; if (plus) { sum++; } else { sum--; } } else { plus = (sum > 0); } for (int i = 1; i < n; i++) { sum += a[i]; if ((plus && sum < 0) || (!plus && sum > 0)) { plus = !plus; continue; } if (plus) { ans += (sum + 1); sum = -1; } else { ans += (-sum + 1); sum = 1; } plus = !plus; } return ans; } int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long ans1 = f(a, n, true); long long ans2 = f(a, n, false); cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(x) for x in input().split()] seq_sum = a[0] times = 0 for i in range(1, n): if seq_sum > 0 and seq_sum + a[i] >= 0: times += seq_sum + a[i] + 1 seq_sum = -1 elif seq_sum < 0 and seq_sum + a[i] <= 0: times += abs(seq_sum + a[i]) + 1 seq_sum = 1 else: seq_sum += a[i] print(times)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] count = 0 if a[0] == 0: for i in range(n): if a[i] != 0: if a[i] % 2 == 0: a[0] = a[i]//abs(a[i]) else: a[0] = -a[i]//abs(a[i]) count = 1 break if not(count): a[0] = 1 count += 1 s = [0]*n s[0] = a[0] for i in range(1,n): s[i] = s[i-1] + a[i] if s[i] == 0: tmp = -s[i-1]//abs(s[i-1]) s[i] += tmp count += abs(tmp) elif s[i] * s[i-1] > 0: tmp = (-s[i]) + (-s[i]//abs(s[i])) s[i] += tmp count += abs(tmp) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); unsigned long op = 0; for (int i = 0; i < n; i++) { cin >> a[i]; } if (a[0] == 0) { for (int i = 1; i < n; i++) { if (a[i] == 0) { continue; } else if (a[i] > 0) { if (i % 2 == 0) { a[0] = 1; } else { a[0] = -1; } op = 1; break; } else { if (i % 2 == 0) { a[0] = -1; } else { a[0] = 1; } op = 1; break; } } } long sum = a[0]; for (int i = 1; i < n; i++) { if (sum > 0) { if (sum + a[i] >= 0) { op += abs(-1 - sum - a[i]); sum = -1; } else { sum += a[i]; } } else { if (sum + a[i] <= 0) { op += abs(1 - sum - a[i]); sum = 1; } else { sum += a[i]; } } } cout << op << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; int sum[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } sum[0] = a[0]; int count = 0; for (int i = 0; i < n - 1; i++) { sum[i + 1] = sum[i] + a[i + 1]; if (sum[0] == 0) { if (a[1] > 0) { sum[0]--; a[0]--; count++; } if (a[1] < 0) { sum[0]++; a[0]++; count++; } } if (sum[i] > 0) { while (sum[i + 1] >= 0) { sum[i + 1]--; a[i + 1]--; count++; } } if (sum[i] < 0) { while (sum[i + 1] <= 0) { sum[i + 1]++; a[i + 1]++; count++; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, type = 1; long long count = 0; long long a[100009]; cin >> N; cin >> a[0]; if (a[0] == 0) { a[0] = 1; count++; } else if (a[0] < 0) type = -1; long long sum = a[0]; for (int i = 1; i < N; i++) { cin >> a[i]; sum += a[i]; type = -type; if (sum == 0) { sum += type; count++; } else if ((sum > 0) && (type == -1)) { count += sum + 1; sum = -1; } else if ((sum < 0) && (type == 1)) { count += -sum + 1; sum = 1; } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long int check(long int sum, long int ans, vector<int> T, int N, bool pre_pm) { for (int i = 1; i < N; i++) { if (pre_pm) { sum += T.at(i); while (0 <= sum) { sum--; ans++; } pre_pm = false; } else { sum += T.at(i); while (sum <= 0) { sum++; ans++; } pre_pm = true; } } return ans; } int main() { int N; vector<int> T; cin >> N; for (int i = 0; i < N; i++) { int tmp; cin >> tmp; T.push_back(tmp); } long int ans = 0; long int sum = 0; bool pre_pm; sum = T.at(0); if (0 <= sum) { pre_pm = true; long int tmp1, tmp2; if (!sum) { sum++; ans++; tmp1 = check(sum, ans, T, N, pre_pm); } pre_pm = false; tmp2 = check(-1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } else { pre_pm = false; long int tmp1 = check(sum, ans, T, N, pre_pm); pre_pm = true; long int tmp2 = check(1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<signed long long> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } signed long long ans = 0; if (a[0] == 0) { signed long long tmp = 0; for (int i = 0; i < n; ++i) { if (a[i] != 0) { if ((a[i] > 0 && i % 2 == 0) || (a[i] < 0 && i % 2 == 1)) { ++ans; a[0] = 1; break; } else { ++ans; a[0] = -1; break; } } else { if (i == n - 1) { ++ans; a[0] = 1; } } } } if (a[0] > 0) { signed long long sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } } } else { signed long long sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) cnt=0 for i in range(1,n): # 条件満たすまでループ for _ in range(3): print(a) now_tmp = sum(a[:i]) next_tmp = sum(a[:i+1]) print(i, now_tmp, next_tmp) # 符号が逆転していればOK かつ 現在までの総和が0でない # 異なる符号を掛けるとマイナスになる if now_tmp * next_tmp <0 and now_tmp !=0: break else: # 現在の合計がマイナスの場合 if now_tmp < 0: a[i] += -next_tmp+1 cnt +=abs(next_tmp+1) # 現在の合計がプラスの場合 elif now_tmp > 0 : a[i] += -next_tmp-1 cnt +=abs(next_tmp+1) # 現在の合計が0の場合 elif now_tmp == 0 : # 1個前がプラスの場合、 if sum(a[:i-1]) > 0: a[i] += -next_tmp+1 cnt +=abs(next_tmp+1) # 1個前がマイナスの場合 else: a[i] += -next_tmp+1 cnt +=abs(next_tmp+1) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct __ { __() { ios_base::Init i; ios_base::sync_with_stdio(0); cin.tie(0); } } __; int main() { int n; cin >> n; vector<long long> v(n); for (int i = 0; i < n; ++i) { cin >> v[i]; if (i) { v[i] = v[i] + v[i - 1]; } } vector<long long> a = v; int ans = 0; int curr = 0; for (int i = 0; i < n; ++i) { v[i] = curr + v[i]; if (i % 2 == 0 && v[i] <= 0) { curr += abs(v[i]) + 1; ans += abs(v[i]) + 1; } if (i % 2 == 1 && v[i] >= 0) { curr -= v[i] + 1; ans += v[i] + 1; } } v = a; int ans2 = ans; ans = 0; curr = 0; for (int i = 0; i < n; ++i) { v[i] = curr + v[i]; if (i % 2 == 1 && v[i] <= 0) { curr += abs(v[i]) + 1; ans += abs(v[i]) + 1; } if (i % 2 == 0 && v[i] >= 0) { curr -= v[i] + 1; ans += v[i] + 1; } } cout << min(ans, ans2); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace AtCoder { class Code3 { static void Main(string[] args) { string s1 = Console.ReadLine(); string s2 = Console.ReadLine(); Console.WriteLine(funcMain(s1,s2)); } static private string funcMain(string arg1, string arg2) { int ret = 0; int sum = 0; foreach (string buf in arg2.Split()) { if (sum == 0) sum = int.Parse(buf); else { if (sum > 0) { sum += int.Parse(buf); if (sum >= 0) { ret += sum + 1; sum = -1; } } else { sum += int.Parse(buf); if (sum <= 0) { ret += (sum * -1) + 1; // 絶対値の関数探すのがめんどくさかった sum = 1; } } } } return ret.ToString(); } static private void test() { string arg1, arg2; arg1 = "4"; arg2 = "1 -3 1 0"; Console.WriteLine("4" == funcMain(arg1, arg2)); arg1 = "5"; arg2 = "3 -6 4 -5 7"; Console.WriteLine("0" == funcMain(arg1, arg2)); arg1 = "6"; arg2 = "-1 4 3 2 -5 4"; Console.WriteLine("8" == funcMain(arg1, arg2)); Console.ReadKey(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys def input(): return sys.stdin.readline().strip() def mapint(): return map(int, input().split()) sys.setrecursionlimit(10**9) N = int(input()) As = list(mapint()) cum = As.pop(0) if not cum==0: cum2 = cum ans = 0 for a in As: if cum*(cum+a)>=0: ans += abs(cum+a)+1 cum = -1 if cum>0 else 1 else: cum += a ans2 = abs(cum2)+1 cum2 = 1 if cum2<0 else -1 for a in As: if cum2*(cum2+a)>=0: ans2 += abs(cum2+a)+1 cum2 = -1 if cum2>0 else 1 else: cum2 += a print(min(ans, ans2)) else: cum2 = -1 ans = 1 for a in As: if cum*(cum+a)>=0: ans += abs(cum+a)+1 cum = -1 if cum>0 else 1 else: cum += a ans2 = 1 cum2 = 1 for a in As: if cum2*(cum2+a)>=0: ans2 += abs(cum2+a)+1 cum2 = -1 if cum2>0 else 1 else: cum2 += a print(min(ans, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long solve(vector<long> A) { long res = 0; long sum = A[0]; for (int i = 1; i < A.size(); i++) { if (sum > 0) { sum += A[i]; while (sum >= 0) { res++; sum--; } } else if (sum < 0) { sum += A[i]; while (sum <= 0) { res++; sum++; } } } return res; } int main() { int N; cin >> N; vector<long> A(N); for (int i = 0; i < N; i++) { cin >> A[i]; } long res; if (A[0] != 0) { res = solve(A); cout << res << endl; } else { long res_first_plus = 1, res_first_minus = 1; A[0] = 1; res_first_plus += solve(A); A[0] = -1; res_first_minus += solve(A); res = min(res_first_plus, res_first_minus); cout << res << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int inf = 1000000007; using namespace std; int main() { int n; cin >> n; vector<int> data(n); int ans = 0; for (int i = 0; i < n; i++) { cin >> data.at(i); } int64_t sum = data.at(0); int64_t sump = sum; for (int i = 1; i < n; i++) { sump += data.at(i); if (sum * sump > 0) { int c = sump; if (c < 0) c *= -1; c++; ans += c; if (sump > 0) { data.at(i) -= c; sump -= c; } else { data.at(i) += c; sump += c; } } sum += data.at(i); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 1000000007; long long sum = 0; long long tmp = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum >= 0) { tmp += sum + 1; sum = -1; } else if (i % 2 == 1 && sum <= 0) { tmp += 1 - sum; sum = 1; } } ans = min(ans, tmp); tmp = 0; sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { tmp += 1 - sum; sum = 1; } else if (i % 2 == 1 && sum >= 0) { tmp += 1 + sum; sum = -1; } } ans = min(ans, tmp); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] ans = 0 tmp = a[0] if a[0] == 0: tmp = 1 ans += 1 for i in range(1,n): #print(tmp,ans) if tmp > 0: if tmp + a[i] >= 0: ans += tmp + a[i] + 1 tmp = -1 else: tmp += a[i] else: if tmp + a[i] <= 0: ans += abs(tmp + a[i]) + 1 tmp = 1 else: tmp += a[i] #print(ans) ans2 = 0 if a[0] > 0: ans2 += a[0]+1 tmp = -1 elif a[0] < 0: ans2 += -a[0]+1 else: tmp = -1 ans2 += 1 for i in range(1,n): #print(tmp,ans) if tmp > 0: if tmp + a[i] >= 0: ans2 += tmp + a[i] + 1 tmp = -1 else: tmp += a[i] else: if tmp + a[i] <= 0: ans2 += abs(tmp + a[i]) + 1 tmp = 1 else: tmp += a[i] print(min(ans,ans2)) exit() ans2 = 0 tmp = -a[0] ans2 += abs(a[0])*2 for i in range(1,n): #print(tmp,ans) if tmp > 0: if tmp + a[i] >= 0: ans2 += tmp + a[i] + 1 tmp = -1 else: tmp += a[i] else: if tmp + a[i] <= 0: ans2 += abs(tmp + a[i]) + 1 tmp = 1 else: tmp += a[i] print(min(ans,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using i64 = long long; using P = pair<i64, i64>; int main() { i64 n; cin >> n; vector<i64> a(n); for (int i = 0; i < n; ++i) cin >> a[i]; i64 ans = 0; if (a[0] == 0) { for (int i = 1; i < n; ++i) { if (a[i] == 0) continue; if (a[i] > 0) { if (i % 2 == 0) a[0]++; else a[0]--; } else { if (i % 2 == 0) a[0]--; else a[0]++; } ++ans; } if (a[0] == 0) a[0] = 1; } i64 wa = a[0]; for (int i = 1; i < n; ++i) { if (wa > 0) { if (wa + a[i] >= 0) { ans += wa + a[i] + 1; a[i] -= wa + a[i] + 1; } } else { if (wa + a[i] <= 0) { ans += -1 * (wa + a[i]) + 1; a[i] += -1 * (wa + a[i]) + 1; } } wa += a[i]; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input=sys.stdin.readline input = open(sys.argv[1], "r").readline def main(): N = int(input()) A = list(map(int, input().split())) tmp = A.copy() mi = -1 for j in range(2): A = tmp.copy() s = 0 n = 0 if j == 0: # 偶数番目までの和が正 ⇒ A[0] を負にする if A[0] > 0: n += abs(A[0] +1) A[0] = -1 else: # 奇数番目までの和が正 ⇒ A[0] を正にする if A[0] < 0: n += abs(A[0] -1) A[0] = 1 s = A[0] # print(A) for i in range(1,N): if s * (s+A[i]) >= 0: if s < 0: n += abs(-s+1 -A[i]) A[i] = -s+1 else: n += abs(-s-1 -A[i]) A[i] = -s-1 s += A[i] if mi == -1: mi = n else: mi = min(mi, n) print(mi) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import Control.Applicative import Data.List main = do _ <- getLine as <- getLine >>= return . map read . words :: IO [Integer] print $ sum $ zipWith (\a b -> abs (a-b)) as (f 0 as) where f _ [] = [] f sum (x:xs) | sum < 0 = if sum + x > 0 then x : f (sum+x) xs else (1-sum) : f 1 xs | sum > 0 = if sum + x < 0 then x : f (sum+x) xs else (-1-sum) : f (-1) xs | sum == 0 = x : f x xs
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Text; class Program { static int n; static int[] a; public static void Main(string[] args) { n = Input.NextInt(); a = Input.LineInt(); int minmove = int.MaxValue; minmove = Calc(a); for (int i = 0; i < a.Length; i++) { a[i] = -a[i]; } minmove = Math.Min(minmove, Calc(a)); Console.WriteLine(minmove); } private static int Calc(int[] a) { checked { int curr = 0; int move = 0; for (int i = 0; i < a.Length; i++) { int dif = 0; switch (i % 2) { case 0: { var newc = curr + a[i]; dif = newc <= 0 ? 1 - newc : 0; } break; case 1: { var newc = curr + a[i]; dif = newc >= 0 ? -1 - newc : 0; } break; } curr += a[i] + dif; move += Math.Abs(dif); } return move; } } } public static class Input { private static Queue<string> q = new Queue<string>(); private static void Confirm() { if (q.Count == 0) foreach (var s in Console.ReadLine().Split(' ')) q.Enqueue(s); } public static int NextInt() { Confirm(); return int.Parse(q.Dequeue()); } public static long NextLong() { Confirm(); return long.Parse(q.Dequeue()); } public static string NextString() { Confirm(); return q.Dequeue(); } public static double NextDouble() { Confirm(); return double.Parse(q.Dequeue()); } public static int[] LineInt() { return Console.ReadLine().Split(' ').Select(int.Parse).ToArray(); } public static long[] LineLong() { return Console.ReadLine().Split(' ').Select(long.Parse).ToArray(); } public static string[] LineString() { return Console.ReadLine().Split(' ').ToArray(); } public static double[] LineDouble() { return Console.ReadLine().Split(' ').Select(double.Parse).ToArray(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<ll, ll>; const ll MOD = 1000000007; int main() { ll N, sum = 0, ans = 0; cin >> N; vector<ll> A(N); for (long long i = 0; i < (N); ++i) cin >> A.at(i); for (long long i = 0; i < (N); ++i) { if (i == 0) { if (A.at(i) > 0) { sum += A.at(i); continue; } else { sum = 1; ans += 1 - A.at(i); continue; } } if (sum > 0) { if (sum + A.at(i) < 0) { sum += A.at(i); } else { ans += sum + A.at(i) + 1; sum = -1; } } else { if (sum + A.at(i) > 0) { sum += A.at(i); } else { ans += 1 - (sum + A.at(i)); sum = 1; } } } ll ans1 = 0; sum = 0; for (long long i = 0; i < (N); ++i) { if (i == 0) { if (A.at(i) < 0) { sum += A.at(i); continue; } else { sum = -1; ans += 1 + A.at(i); continue; } } if (sum > 0) { if (sum + A.at(i) < 0) { sum += A.at(i); } else { ans1 += sum + A.at(i) + 1; sum = -1; } } else { if (sum + A.at(i) > 0) { sum += A.at(i); } else { ans1 += 1 - (sum + A.at(i)); sum = 1; } } } cout << min(ans, ans1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def op(pos, n, a): if pos: S = 1 if a[0] == 0 else a[0] else: S = -1 if a[0] == 0 else a[0] count = 1 if a[0] == 0 else 0 for i in a[1:]: if S * (S + i) > 0: count += abs(S + i) + 1 S = -1 if S > 0 else 1 elif S + i == 0: count += 1 S = -1 if S > 0 else 1 else: S += i return count def main(): n = int(input()) a = list(map(int, input().split())) c1 = op(True, n, a) c2 = op(False, n, a) print(min(c1, c2)) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #define IO(i, o) freopen(i, "r", stdin), freopen(o, "w", stdout) using namespace std; using namespace __gnu_pbds; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> indexed_set; mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); int n, a[100000]; int main(){ //IO("input.txt", "output.txt"); ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; for(int i = 0; i < n; i++) cin >> a[i]; long long sum = 0, mn = INT_MAX; for(int i = 0; i < n; i++){ sum += a[i]; if(i % 2 == 0 && sum <= 0) mn += 1 - sum, sum = 1; else if(i % 2 == 1 && sum >= 0) mn += 1 + sum, sum = -1; } sum = 0; long long cnt = 0; for(int i = 0; i < n; i++){ sum += a[i]; if(i % 2 == 0 && sum >= 0) cnt += 1 + sum, sum = -1; else if(i % 2 == 1 && sum <= 0) cnt += 1 - sum, sum = 1; } mn = min(mn, cnt); cout << mn << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N, A[100000]; int main() { scanf("%d", &N); for (int i = 0; i < N; i++) scanf("%d", &A[i]); long long cnt = 0, sum = A[0]; if (sum == 0) sum++; for (int i = 1; i < N; i++) { long long prev = sum; sum += A[i]; if (sum < 0 && prev < 0) cnt += sum + 1, sum = 1; else if (sum > 0 && prev > 0) cnt += sum + 1, sum = -1; else if (sum == 0) cnt++, sum = 1; } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; long long int a[n]; for (long long int i = 0; i < n; i++) { cin >> a[i]; }; bool is_plus; if (a[0] > 0) { is_plus = true; } else if (a[0] < 0) { is_plus = false; } else { long long int x = -1; for (long long int i = 1; i < n; i++) { if (a[i] != 0) { x = i; break; } } if (x == -1) { a[0]++; is_plus = true; } else { if (x % 2 == 1) { a[0] = -1; is_plus = false; } else { a[0] = 1; is_plus = true; } } } long long int sum = a[0]; long long int ans = 0; is_plus = !is_plus; for (long long int i = 1; i < n; i++) { sum += a[i]; if (is_plus) { if (sum <= 0) { ans += (-sum) + 1; sum = 1; } } else { if (sum >= 0) { ans += sum + 1; sum = -1; } } is_plus = !is_plus; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> vector; long long temp; for(int i=0; i<n; i++) { cin >> temp; vector.push_back(temp); } long long answer1=0; long long answer2=0; long long sum1=0; long long sum2=0; for(int i=0; i<n; i++) { if(i == 0) { sum1 = vector[0]; //初項 } else if(sum1 < 0) { if(sum1 + vector[i] > 0){ //和の符号がデフォルトで異なるとき // answer -> そのまま sum1 += vector[i]; } else { answer1 += abs((-1)*sum1+1 - vector[i]); // vector[i] -> -sum1+1 までincrimentすると和は1 sum1 = 1; } } else { if(sum1 + vector[i] < 0) { //answer->そのまま sum1 += vector[i]; } else { answer1 += abs((-1)*sum1-1 - vector[i]); // vector[i] -> -sum1-1 までincrimentすると和は-1 sum1 = -1; } } } for(int i=0; i<n; i++) { if(i==0) { if(vector[0] > 0) { sum2 = -1; answer2 += abs(-1-vector[0]); } else { sum2 = 1; answer2 += abs(1-vector[0]); } } } else if(sum2 < 0) { if(sum2 + vector[i] > 0){ //和の符号がデフォルトで異なるとき // answer-> そのまま sum2 += vector[i]; } else { answer2 += abs((-1)*sum2+1 - vector[i]); // vector[i] -> -sum1+1 までincrimentすると和は1 sum2 = 1; } } else { if(sum2 + vector[i] < 0) { //answer->そのまま sum2 += vector[i]; } else { answer2 += abs((-1)*sum2-1 - vector[i]); // vector[i] -> -sum1-1 までincrimentすると和は-1 sum2 = -1; } } cout << min(answer1,answer2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
a = list(map(int,input().split())) if a[0] > 0: f = 1 else: f = -1 m = a[0] cnt = 0 for i in range(1, n): f *= -1 m += a[i] if f == 1: if m > 0: continue else: cnt += f-m m += f-m else: if m < 0: continue else: cnt += m-f m += f-m print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int main() { int n; cin>>n; long int arr[n]; for(int i=0;i<n;i++) cin>>arr[i]; long int sum=arr[0]; long int ans=0; for(int i=1;i<n;i++0 { if(sum<0) { sum=sum+arr[i]; if(sum>0) continue; else { ans+=abs(sum)+1; sum=1; } } else if { sum+=arr[i]; if(sum<0) continue; else { ans+=sum+1; sum=-1; } } } cout<<ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = input() a_s = [int(x) for x in input().split()] sum_i = 0 manipulate_num = 0 for a in a_s: new_sum_i = sum_i + a # print(f"a:{a}, sum_i:{sum_i}, tmp_sum_i:{new_sum_i}") if new_sum_i == 0: manipulate_num += 1 new_sum_i = 1 if new_sum_i * sum_i > 0: new_sum_i = np.sign(new_sum_i)*(-1) manipulate_num += abs(a - (new_sum_i - sum_i)) sum_i = new_sum_i # print(f"a:{a}, new_sum_i:{sum_i}, num:{manipulate_num}") # print() print(manipulate_num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC target("avx") using namespace std; const int cm = 1 << 17; char cn[cm], *ci = cn + cm, ct; inline char getcha() { if (ci - cn == cm) { fread_unlocked(cn, 1, cm, stdin); ci = cn; } return *ci++; } inline int getint() { int A = 0; int pn = 1; if (ci - cn + 16 > cm) { if ((ct = getcha()) == '-') { pn = -1; ct = getcha(); } A = ct - '0'; while ((ct = getcha()) >= '0') A = A * 10 + ct - '0'; ; return pn * A; } else { if ((ct = *ci++) == '-') { pn = -1; ct = *ci++; } A = ct - '0'; while ((ct = *ci++) >= '0') A = A * 10 + ct - '0'; ; return pn * A; } } int main() { int N = getint(); int s1 = 0; long long kotae1 = 0; int s2 = 0; long long kotae2 = 0; int a = 0; for (int i = 0; i < (N / 2); i++) { a = getint(); s1 += a; s2 += a; if (s1 <= 0) { kotae1 += 1 - s1; s1 = 1; } if (s2 >= 0) { kotae2 += s2 + 1; s2 = -1; } a = getint(); s1 += a; s2 += a; if (s2 <= 0) { kotae2 += 1 - s2; s2 = 1; } if (s1 >= 0) { kotae1 += s1 + 1; s1 = -1; } } if (N & 1) { a = getint(); s1 += a; s2 += a; if (s1 <= 0) { kotae1 += 1 - s1; s1 = 1; } if (s2 >= 0) { kotae2 += s2 + 1; s2 = -1; } } printf("%d", min(kotae1, kotae2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; int main(int argc, char const *argv[]) { int n; std::cin >> n; std::vector<int> v(n); std::vector<ll> sums(2, 0); for (size_t i = 0; i < n; i++) { std::cin >> v[i]; sums[i % 2] += v[i]; } ull ans = 0; if (sums[0] > sums[1] && v[0] <= 0) { ans = ans + abs(v[0]) + 1; v[0] = 1; } else if (sums[0] < sums[1] && v[0] >= 0) { ans = ans + abs(v[0]) + 1; v[0] = -1; } else if (v[0] == 0) { ans += 1; v[0] = 1; } ll now, pre; now = pre = v[0]; for (size_t i = 1; i < n; i++) { now = v[i] + pre; if (pre * now >= 0) { if (pre > 0) { ans = ans + abs(now) + 1; now = -1; } else if (pre < 0) { ans = ans + abs(now) + 1; now = 1; } } pre = now; } std::cout << ans << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long cost = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (a[i] <= 0) cost += 1 - a[i]; } else { if (a[i] >= 0) cost += a[i] + 1; } } long long cost2 = 0; for (int i = 0; i < n; i++) { if (i % 2 != 0) { if (a[i] <= 0) cost2 += 1 - a[i]; } else { if (a[i] >= 0) cost2 += a[i] + 1; } } cout << min(cost, cost2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n; cin >> n; ll a[n]; for (int i = 0; i < n; i++) cin >> a[i]; ll ans = 4e18; if (a[0] < 0) for (int i = 0; i < n; i++) a[i] *= -1; ll sum = a[0], now = 0; for (int i = 0; i < n - 1; i++) { if (i % 2) { if (sum + a[i + 1] <= 0) { now += 1 - (sum + a[i + 1]); sum = 1; } else { sum += a[i + 1]; } } else { if (sum + a[i + 1] >= 0) { now += sum + a[i + 1] + 1; sum = -1; } else { sum += a[i + 1]; } } } ans = min(ans, now); sum = -1, now = a[0] + 1; for (int i = 0; i < n - 1; i++) { if (i % 2 == 0) { if (sum + a[i + 1] <= 0) { now += 1 - a[i + 1] - sum; sum = 1; } else { sum += a[i + 1]; } } else { if (sum + a[i + 1] >= 0) { now += sum + a[i + 1] + 1; sum = -1; } else { sum += a[i + 1]; } } } ans = min(ans, now); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n][2]; for (int i = 0; i < n; i++) { cin >> a[i][0]; a[i][1] = a[i][0]; } int sum = 0; int res[2]; for (int check = 0; check < 2; check++) { sum = 0; if (check) { if (a[0][check] > 0) { int temp = -1 - a[0][check]; a[0][check] += temp; res[check] += temp * -1; } else if (a[0][check] < 0) { int temp = 1 - a[0][check]; a[0][check] += temp; res[check] += temp; } if (a[0][check] == 0) { if (!check) { a[0][check]++; } else { a[0][check]--; } res[check]++; } } for (int i = 0; i < n - 1; i++) { sum += a[i][check]; if (sum * (sum + a[i + 1][check]) >= 0) { if (sum > 0) { int temp = -1 - sum - a[i + 1][check]; a[i + 1][check] += temp; res[check] += temp * -1; } else { int temp = 1 - sum - a[i + 1][check]; a[i + 1][check] += temp; res[check] += temp; } } } } cout << min(res[0], res[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long int sum = 0, in, ans = 0; cin >> n >> sum; for (int i = 1; i < n; i++) { cin >> in; if (sum * in < 0 && abs(sum) < abs(in)) { sum += in; continue; } else if (sum * in < 0) { ans += abs(sum) - abs(in) + 1; if (sum > 0) sum = -1; else sum = 1; continue; } ans += abs(sum) + abs(in) + 1; if (sum < 0) { sum = 1; } else { sum = -1; } } if (sum == 0) ans++; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int,input().split())) ans = 0 s = A[0] if s > 0: flag = 1 elif s < 0: flag = -1 elif A[1] < 0: flag = 1 ans += 1 else: flag = -1 ans += 1 for i in range(1,N): s += A[i] if flag == 1 and s >= 0: ans += s + 1 s = -1 elif flag == -1 and s <= 0: ans += 1 - s s = 1 flag *= -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import std.stdio, std.algorithm, std.conv, std.array, std.string; long check(long op, long sum, long[] as) { foreach (a; as) { if (sum < 0) { if ((sum + a) <= 0) { op += (1 - (sum + a)); sum = 1; } else { sum += a; } } else { if ((sum + a) >= 0) { op += sum + a + 1; sum = -1; } else { sum += a; } } } return op; } void main() { readln; auto as = readln.chomp.split(" ").map!(to!long).array; auto op1 = check(0, as[0], as[1..$]); auto op2 = check((as[0] - 1).abs, 1, as[1..$]); auto op3 = check((as[0] + 1).abs, -1, as[1..$]); writeln(min(op1, op2, op3)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <string> using namespace std; int main(){ int n,i,c=0; cin >> n; int a[n],s[2]; //入力 for (i=0;i<n;i++){ cin >> a[i]; } //操作 s[0] = a[0],s[1]=0; for (i=1;i<n;i++){ s[1] = s[0]+a[i]; if (s[0]*s[1] >=0){//符号一致(または0)していたら符号を一致させない方向へ動かす for (;s[0]*s[1]>=0;){ if (s[0]>0) s[1] -=1; else s[1] +=1; c += 1;//カウントを増やす } } s[0] = s[1]; // cout <<"Sum=" <<s[0]<<endl; } cout <<c<<; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int sum1 = 0, ans1 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0) { if (sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } } else { if (sum1 <= 0) { ans1 += abs(sum1) + 1; sum1 = 1; } } } int sum2 = 0, ans2 = 0; for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0) { if (sum2 <= 0) { ans2 += abs(sum2) + 1; sum2 = 1; } } else { if (sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int M[100][100]; int color[100]; const int ddx[8] = {0, 1, 1, 1, 0, -1, -1, -1}; const int ddy[8] = {1, 1, 0, -1, -1, -1, 0, 1}; const int dx[4] = {0, 1, 0, -1}; const int dy[4] = {-1, 0, 1, 0}; static const int NIL = -1; int n; void printArray(int *array, int); void printDimention(vector<vector<int> >); int main(int argc, char const *argv[]) { cin.tie(0); ios::sync_with_stdio(false); cin >> n; int a[n]; for (int i = (0); i < (n); ++i) cin >> a[i]; bool flg = true; int tmp = 0; int d; int res1 = 0; for (int i = (0); i < (n); ++i) { tmp += a[i]; if (flg) { if (tmp <= 0) { d = 1 - tmp; res1 += d; tmp = 1; } flg = false; } else { if (tmp >= 0) { d = 1 + tmp; res1 += d; tmp = -1; } flg = true; } } flg = false; tmp = 0; int res2 = 0; for (int i = (0); i < (n); ++i) { tmp += a[i]; if (flg) { if (tmp <= 0) { d = 1 - tmp; res2 += d; tmp = 1; } flg = false; } else { if (tmp >= 0) { d = 1 + tmp; res2 += d; tmp = -1; } flg = true; } } cout << min(res1, res2) << endl; } void printArray(int array[], int n) { for (int i = (0); i < (n); ++i) { if (i) cout << " "; cout << array[i]; } cout << endl; } void printDimention(vector<vector<int> > &dv) { for (int i = (0); i < ((int)dv.size()); ++i) { for (int j = (0); j < ((int)dv[i].size()); ++j) { if (j) cout << " "; cout << dv[i][j]; } cout << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- n = int(input()) a = [int(n) for n in input().split()] count_a = 0 count_b = 0 nowsum = a[0] if nowsum != 0: for n in range(1, n): if nowsum * (nowsum + a[n]) >= 0: count_a += abs(nowsum + a[n]) + 1 if nowsum < 0: nowsum = 1 else: nowsum = -1 else: nowsum += a[n] print(count_a) else: a[0] = 1 count_a += 1 nowsum = 1 for n in range(1, n): if nowsum * (nowsum + a[n]) >= 0: count_a += abs(nowsum + a[n]) + 1 if nowsum < 0: nowsum = 1 else: nowsum = -1 else: nowsum += a[n] a[0] = -1 count_b += 1 nowsum = -1 for n in range(1, n): if nowsum * (nowsum + a[n]) >= 0: count_b += abs(nowsum + a[n]) + 1 if nowsum < 0: nowsum = 1 else: nowsum = -1 else: nowsum += a[n] print(min(count_a, count_b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using int64 = long long; int64 max(int64 a, int64 b) { if (b > a) return b; else return a; } int64 min(int64 a, int64 b) { if (b < a) return b; else return a; } signed main() { int64 N; cin >> N; vector<int64> a(N); int64 sum1 = 0, sum2 = 0; int64 res1 = 0, res2 = 0; for (int64 i = 0; i < N; i++) { cin >> a[i]; sum1 += a[i]; sum2 += a[i]; if (i % 2 == 0) { if (sum1 <= 0) { res1 += abs(sum1) + 1; sum1 = 1; } if (sum2 > 0) { res2 += abs(sum2) + 1; sum2 = -1; } } else { if (sum1 > 0) { res1 += abs(sum1) + 1; sum1 = -1; } if (sum2 <= 0) { res2 += abs(sum2) + 1; sum2 = 1; } } } cout << min(res1, res2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long s1, s2, c1, c2, a; for (int i = 1; i <= n; i++) { cin >> a; s1 += a; s2 += a; if (i % 2) { if (s1 <= 0) c1 += 1 - s1, s1 = 1; if (s2 >= 0) c2 += 1 + s2, s2 = -1; } else { if (s1 >= 0) c1 += 1 + s1, s1 = -1; if (s2 <= 0) c2 += 1 - s2, s2 = 1; } } cout << min(c1, c2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long> List(n); for (int i = 0; i < n; i++) { cin >> List.at(i); } int cnt = 0; long Sign = 0; for (int i = 0; i < n; i++) { if (Sign == 0) { if (List.at(i) > 0) { Sign = List.at(i); } else if (List.at(i) < 0) { Sign = List.at(i); } continue; } if (Sign > 0) { if (Sign + List.at(i) >= 0) { cnt += abs(Sign + List.at(i)) + 1; Sign = -1; } else { Sign += List.at(i); } continue; } if (Sign < 0) { if (List.at(i) + Sign <= 0) { cnt += abs(Sign + List.at(i)) + 1; Sign = 1; } else { Sign += List.at(i); } continue; } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long INF = 1e18; const double pi = acos(-1.0); int main(void) { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long ans = 0; for (int i = 0; i < (n); ++i) { if (i + 1 < n && a[i] < 0) { while (i + 1 < n && a[i] + a[i + 1] <= 0) { a[i + 1]++; ans++; } } else if (i + 1 < n && a[i] > 0) { while (i + 1 < n && a[i] + a[i + 1] >= 0) { a[i + 1]--; ans++; } } a[i + 1] += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, -1, 0, 0}; int dy[4] = {0, 0, 1, -1}; int main() { std::ios::sync_with_stdio(false); std::cin.tie(0); int n; cin >> n; int a[100000]; for (int i = 0; i < (n); i++) { cin >> a[i]; } long long int sm = 0; for (int i = 1; i < n; i++) { long long int b = 0; for (int j = 0; j < (i); j++) b += a[j]; if (b * a[i] < 0 && abs(a[i]) > abs(b)) continue; long long int t = (b > 0) ? -b - 1 : -b + 1; sm += abs(t - a[i]); a[i] = t; } cout << (sm) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = [int(i) for i in input().split()] a = [int(i) for i in input().split()] total = 0 fugo = 0 count = 0 for i in a: if(fugo == 0): total = i if(total > 0): fugo = 1 else: fugo = -1 continue total += i if(fugo > 0): fugo = -1 if(total >= 0): while(total>=0): count += 1 total -= 1 elif(fugo < 0): fugo = 1 if(total <= 0): while(total<=0): count += 1 total += 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, i; cin >> n; long long a[100010]; long long ans = 0; long long cnt = 0; int flag = 1; for (i = 0; i < n; i++) cin >> a[i]; if (a[0] > 0) flag = 1; else if (a[0] < 0) flag = -1; for (i = 1; i < n; i++) if (a[i] != 0) break; if (a[i] > 0) { if (i % 2) flag = -1; else flag = 1; } else { if (i % 2) flag = 1; flag = -1; } cnt = a[0]; for (i = 1; i < n; i++) { cnt += a[i]; if (cnt * flag >= 0) { ans += abs(cnt) + 1; if (flag == -1) { cnt = 1; } else { cnt = -1; } } if (flag == -1) { flag = 1; } else { flag = -1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); long long X, Y; cin >> X >> Y; if ((X + Y <= 1) || (X == 1 && Y == 1)) cout << "Brown" << endl; else if ((X + Y) % 2 == 0) { if (((X + Y) / 2) % 2 == 0) cout << "Alice" << endl; else cout << "Brown" << endl; } else { X++; if (((X + Y) / 2) % 2 == 0) cout << "Brown" << endl; else cout << "Alice" << endl; } return 0; }