Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <vector> #include <algorithm> #include <numeric> #include <string> #include <string.h> #include <bitset> #include <map> #include <climits> using namespace std; int main() { int n; cin >> n; vector<int> an(n); for (int i = 0; i < n; ++i) { cin >> an[i]; } int cnt_min = INT_MAX; for (int j = 0; j < 2; ++j) { int sign = j == 0 ? -1 : 1; int accum = an[0]; int cnt = 0; if (accum * sign <= 0) { // accum + x = sign auto x = sign - accum; accum += x; cnt += abs(x); } for (int i = 1; i < n; ++i) { auto new_accum = accum + an[i]; if (new_accum * accum >= 0) { // new_accum + x = sign int x = -sign - new_accum; new_accum += x; cnt += abs(x); an[i] += x; } int new_sign = new_accum > 0 ? 1 : -1; accum = new_accum; assert(new_sign == -sign); sign = new_sign; } if (cnt < cnt_min) { cnt_min = cnt; } } cout << cnt_min << endl; // int accum = 0; // int sign = 0; // bool non_zero = true; // int cnt = 0; // for (int i = 0; i < n; ++i) // { // auto new_accum = accum + an[i]; // if (i == 0) // { // if (new_accum == 0) // { // int next_sign = an[1] > 0 ? 1 : -1; // new_accum -= next_sign; // ++cnt; // an[0] = -next_sign; // } // accum = new_accum; // sign = accum > 0 ? 1 : -1; // } // else // { // if (new_accum * accum >= 0) // { // // new_accum + x = sign // // 2 + x = (-1) , x=-3 // int x = -sign - new_accum; // new_accum += x; // cnt += abs(x); // an[i] += x; // } // int new_sign = new_accum > 0 ? 1 : -1; // accum = new_accum; // assert(new_sign == -sign); // sign = new_sign; // } // } // cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; ll INF = LLONG_MAX; using vc = vector<char>; using vi = vector<int>; int main() { ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); ll I, O, T, J, L, S, Z; cin >> I >> O >> T >> J >> L >> S >> Z; ll ans = 0; ans += O; if (I % 2 == 1 && J % 2 == 1 && L % 2 == 0) { ans += 3; --I; --J; --L; } ans += I / 2 * 2; ans += J / 2 * 2; ans += L / 2 * 2; cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N; cin >> N; vector<int> A(N); for (long long i = 0; i < N; i++) cin >> A.at(i); bool flag; bool flag2 = false; for (long long i = 0; i < N; i++) { if (A.at(i) > 0) { flag = true; flag2 = true; break; } else if (A.at(i) < 0) { flag = false; flag2 = true; break; } } if (!flag2) { cout << 0 << endl; return 0; } long long ans = 0; long long total = A.at(0); for (long long i = 0; i < N - 1; i++) { long long count = 0; if (flag) { if (total + A.at(i + 1) >= 0) { count = -1 - total - A.at(i + 1); ans += abs(count); A.at(i + 1) = A.at(i + 1) + count; } total += A.at(i + 1); flag = false; } else if (!flag) { if (total + A.at(i + 1) <= 0) { count = 1 - total - A.at(i + 1); ans += abs(count); A.at(i + 1) = A.at(i + 1) + count; } total += A.at(i + 1); flag = true; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, count = 0; cin >> n; vector<long long> v(n), ans(n); for (size_t i = 0; i < n; i++) { cin >> v[i]; } for (size_t i = 0; i < n; i++) { if (i == 0) { ans[i] = v[i]; } else { if (ans[i - 1] < 0 && ans[i - 1] + v[i] > 0 || ans[i - 1] > 0 && ans[i - 1] + v[i] < 0) { ans[i] = ans[i - 1] + v[i]; } else if (ans[i - 1] + v[i] == 0) { if (ans[i - 1] < 0) { count++; ans[i] = 1; } else { count++; ans[i] = -1; } } else { count += abs(ans[i - 1] + v[i]) + 1; if (ans[i - 1] + v[i] < 0) { ans[i] = 1; } else if (ans[i - 1] + v[i] > 0) { ans[i] = -1; } } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; ++i) cin >> a[i]; int sign = (a[0] > 0) - (a[0] < 0); int s = a[0]; int ans = 0; for (int i = 1; i < n; ++i) { while (abs(a[i]) <= abs(s)) { ++ans; a[i] -= sign; } s += a[i]; sign *= -1; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) s1 = [] s2 = [] for i in range(n): s1.append(sum(a[:i+1])) s2.append(sum(a[:i+1])) ans1 = 0 #偶数インデックスが正 for i in range(n): if i % 2 == 0: if s1[i] <= 0: x = abs(s1[i]) + 1 ans1 += x for j in range(i, n): s1[j] += x else: continue else: if s1[i] >= 0: x = abs(s1[i]) + 1 ans1 += x for j in range(i,n): s1[j] -= x ans2 = 0 #偶数インデックスが負 for i in range(n): if i % 2 == 1: if s2[i] <= 0: x = abs(s2[i]) + 1 ans2 += x for j in range(i, n): s2[j] += x else: continue else: if s2[i] >= 0: x = abs(s2[i]) + 1 ans2 += x for j in range(i,n): s2[j] -= x print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, ci, counter1, counter2; bool isPositive; cin >> n; vector<long long> a(n); for (int(i) = (0); (i) <= (n - 1); ++(i)) cin >> a[i]; ci = a[0]; counter1 = counter2 = 0; isPositive = true; for (int(i) = (1); (i) <= (n - 1); ++(i)) { if (ci == 0) { ci += 1; ++counter1; } ci += a[i]; if (isPositive && ci > 0) { counter1 += abs(ci) + 1; ci -= abs(ci) + 1; } else if (!isPositive && ci < 0) { counter1 += abs(ci) + 1; ci += abs(ci) + 1; } else if (ci == 0) { if (isPositive) { --ci; ++counter1; } else { ++ci; ++counter1; } } isPositive = !isPositive; } ci = a[0]; isPositive = false; for (int(i) = (1); (i) <= (n - 1); ++(i)) { if (ci == 0) { ci -= 1; ++counter2; } ci += a[i]; if (isPositive && ci > 0) { counter2 += abs(ci) + 1; ci -= abs(ci) + 1; } else if (!isPositive && ci < 0) { counter2 += abs(ci) + 1; ci += abs(ci) + 1; } else if (ci == 0) { if (isPositive) { --ci; ++counter2; } else { ++ci; ++counter2; } } isPositive = !isPositive; } cout << min(counter1, counter2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long seq(vector<long long> &a, long long sum, int beg, long long count) { long long prev; while (beg < a.size()) { prev = sum; sum += a[beg]; if ((sum ^ prev) >= 0LL || sum == 0LL) { if (prev > 0) { count += sum + 1; sum = -1; } else { count += 1 - sum; sum = 1; } } beg++; } return count; } int main(int argc, char *argv[]) { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long res; if (a[0] == 0) res = max(seq(a, 1, 1, 1), seq(a, -1, 1, 1)); else res = seq(a, a[0], 1, 0); std::cout << res << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } int signs[2] = {-1, 1}; long long cnt[2] = {0, 0}; for (int i = 0; i < 2; i++) { long long sum = 0; int sign = signs[i]; for (int j = 0; j < n; j++) { sum += a[j]; cout << sum << "->"; if (sum == 0) { sum += sign; cnt[i]++; } else if (sum * sign < 0) { cnt[i] = cnt[i] + abs(sum) + 1; sum = sum + sum * (-1) + sign; } cout << sum << " " << cnt[i] << endl; sign *= -1; } cout << endl; } cout << (cnt[0] < cnt[1] ? cnt[0] : cnt[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) sm=A[0] cnt=0 if A[0]>0: for i in range(1,N): sm+=A[i] if i%2==1: if sm>=0: cnt+=sm+1 sm=-1 else: if sm<=0: cnt+=sm*-1+1 sm=1 elif A[0]<0: for i in range(1,N): sm+=A[i] if i%2==1: if sm<=0: cnt+=sm*-1+1 sm=1 else: if sm>=0: cnt+=sm+1 sm=-1 elif A[0]==0: a=0 for i in range(1,N): if A[i]==0: a=i else: break if A[a+1]>0: sm=-1 for i in range(a+1,N): sm+=A[i] if i%2==1: if sm>=0: cnt+=sm+1 sm=-1 else: if sm<=0: cnt+=sm*-1+1 sm=1 cnt+=2*a+1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np dummyn = int(input()) a = list(map(int, input().split())) b = [] for i in range(len(a)): b.append(sum(a[:i+1])) b_np = np.array(b) ans = 0 for i in range(len(b_np)-1): if b_np[i] * b_np[i+1] >= 0 and b_np[i] <= 0 and b_np[i] <= b_np[i+1]: ans += (1 - b_np[i+1]) b_np[i+1:] += (1 - b_np[i+1]) elif b_np[i] * b_np[i+1] >= 0 and b_np[i] < 0 and b_np[i] > b_np[i+1]: ans += (1 - b_np[i]) b_np[i:] += (1 - b_np[i]) elif b_np[i] * b_np[i+1] >= 0 and b_np[i] >= 0 and b_np[i] >= b_np[i+1]: ans += (b_np[i+1] + 1) b_np[i+1:] -= (b_np[i+1] + 1) elif b_np[i] * b_np[i+1] >= 0 and b_np[i] > 0 and b_np[i] < b_np[i+1]: ans += (b_np[i] + 1) b_np[i:] -= (b_np[i] + 1) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count = 0 sum_ = 0 for i in range(n): if sum_ * (sum_+a[i]) >=0 and i!=0: if sum_ > 0: count += sum_+a[i]+1 a[i] = -sum_-1 elif sum_ < 0: count += abs(sum_+a[i])+1 a[i] = -sum_+1 sum_ += a[i] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { long long int n, i, a[100000], sum, count = 0, flag = 0; scanf("%lld", &n); for (i = 0; i < n; i++) { scanf("%lld", &a[i]); if (a[0] == 0 && a[i] != 0 && flag == 0) flag = i; } if (flag != 0) { if ((a[flag] > 0 && flag % 2 == 0) || (a[flag] < 0 && flag % 2 == 1)) a[0] = 1; else a[0] = -1; count++; } for (i = 0; i < n; i++) { if (i == 0) sum = a[0]; else { if (sum > 0 && sum + a[i] >= 0) { count += 1 + sum + a[i]; a[i] = -1 * sum - 1; sum = -1; } else if (sum < 0 && sum + a[i] <= 0) { count += 1 - sum - a[i]; a[i] = -1 * sum + 1; sum = 1; } else if (sum + a[i] == 0) { if (sum > 0) a[i]--; else if (sum < 0) a[i]++; count++; sum += a[i]; } else sum += a[i]; } } printf("%lld\n", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = map(int, input().split()) sum_b = 0 cnt_b = 0 sum_c = 0 cnt_c = 0 for i,a in enumerate(A): sum_b += a if (sum_b > 0) != ((i % 2) > 0): cnt_b += abs(sum_b) + 1 sum_b = 1 if ((i % 2) > 0) else -1 sum_c += a if (sum_c >= 0) == ((i % 2) > 0): cnt_c += abs(sum_c) + 1 sum_c = -1 if ((i % 2) > 0) else 1 print(min(cnt_b, cnt_c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long sum[220220]; int main() { int n; while (~scanf("%d", &n)) { long long x; memset(sum, 0, sizeof(sum)); for (int i = 1; i <= n; i++) { scanf("%lld", &x); sum[i] = sum[i - 1] + x; } for (int i = 1; i <= n; i++) printf("sum[%d] is %lld\n", i, sum[i]); int cnt = 0; for (int i = 1; i < n; i++) { if (sum[i] == 0 || sum[i] + cnt == sum[i + 1]) cnt++; } if (sum[n] + cnt == 0) cnt++; printf("%d\n", cnt); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using st = string; using db = double; using vll = vector<long long>; using vvll = vector<vll>; using vst = vector<st>; using vchar = vector<char>; ll mod = 1000000007; int main() { ll n; cin >> n; vll a(n); for (auto& i : a) cin >> i; vll a1 = a, a2 = a; ll ans1 = 0, ans2 = 0; ll pointer = 0; ll sum = 0; while (pointer < n) { sum += a1.at(pointer); if (pointer % 2 == 0) { if (sum > 0) pointer++; else { ans1 += -1 * sum + 1; a1.at(pointer) += -1 * sum + 1; sum += -1 * sum + 1; pointer++; } } else { if (sum < 0) pointer++; else { ans1 += sum + 1; a1.at(pointer) -= sum + 1; sum += sum + 1; pointer++; } } } pointer = 0, sum = 0; while (pointer < n) { sum += a2.at(pointer); if (pointer % 2 == 1) { if (sum > 0) pointer++; else { ans2 += -1 * sum + 1; a2.at(pointer) += -1 * sum + 1; sum += -1 * sum + 1; pointer++; } } else { if (sum < 0) pointer++; else { ans2 += sum + 1; a2.at(pointer) -= sum + 1; sum += sum + 1; pointer++; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = (1e+9) + 7; const long long INF = (long long)1000000007 * 1000000007; const long double eps = 1e-11; const long double pi = acos(-1.0); int dp[500001][4]; int main() { int n; cin >> n; long long a[100000]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = 0; bool f = true; long long cnt = 0; if (a[0] != 0) { if (a[0] < 0) f = false; sum = a[0]; for (int i = 1; i <= n - 1; i++) { sum += a[i]; if (f) { if (sum >= 0) { cnt += sum + (long long)1; sum = -1; } f = !f; } else { if (sum <= 0) { cnt += (long long)1 - sum; sum = 1; } f = !f; } } cout << cnt << endl; } else { long long mi = INF; cnt = 1; sum = 1; for (int i = 1; i <= n - 1; i++) { sum += a[i]; if (f) { if (sum >= 0) { cnt += sum + (long long)1; sum = -1; } f = !f; } else { if (sum <= 0) { cnt += (long long)1 - sum; sum = 1; } f = !f; } } mi = min(mi, cnt); cnt = 1; sum = -1; f = false; for (int i = 1; i <= n - 1; i++) { sum += a[i]; if (f) { if (sum >= 0) { cnt += sum + (long long)1; sum = -1; } f = !f; } else { if (sum <= 0) { cnt += (long long)1 - sum; sum = 1; } f = !f; } } mi = min(mi, cnt); cout << mi << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long int check(long int sum, long int ans, vector<int> T, int N, bool pre_pm) { for (int i = 0; i < N; i++) { if (pre_pm) { sum += T.at(i); if (0 <= sum) { ans += abs(sum + 1); sum -= abs(sum + 1); } pre_pm = false; } else { sum += T.at(i); if (sum <= 0) { ans += abs(sum + 1); sum += abs(sum + 1); } pre_pm = true; } } return ans; } int main() { int N; vector<int> T; cin >> N; for (int i = 0; i < N; i++) { int tmp; cin >> tmp; T.push_back(tmp); } long int ans = 0; long int sum = 0; bool pre_pm; cout << min(check(sum, ans, T, N, true), check(sum, ans, T, N, false)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100010]; int main() { int n; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } int count = 0; int c; int ans1 = 0; int old_a; for (int i = 0; i < n; i++) { c = count + a[i]; if (count > 0 && c >= 0) { ans1 += c - (-1); a[i] -= c - (-1); c = count + a[i]; if (c == 0) { a[i]--; } } else if (count < 0 && c <= 0) { ans1 += 1 - c; a[i] += 1 - c; c = count + a[i]; if (c == 0) { a[i]++; } } count += a[i]; } cout << ans1 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int LINF = 2000000000000000000ll; const int INF = 1000000100; const long long int MOD = 1e9 + 7; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; int ans = INF; int ans_t, total, sign; for (int i = 0; i < (2); ++i) { ans_t = 0; total = 0; if (i == 0) sign = true; else sign = false; for (int i = 0; i < (n); ++i) { total += a[i]; if (sign) { while (total >= 0) { total--; ans_t++; } } else { while (total <= 0) { total++; ans_t++; } } sign = 1 - sign; } ans = min(ans, ans_t); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> long long a[100000 + 100], b[100000 + 100]; int main() { int n; long long cnt = 0; scanf("%d", &n); scanf("%lld", &a[1]); b[1] = a[1]; for (int i = 2; i <= n; i++) { scanf("%lld", &a[i]); if (b[i - 1] < 0) { if (b[i - 1] + a[i] > 0) b[i] = b[i - 1] + a[i]; else { b[i] = 1; cnt += 1 - a[i] - b[i - 1]; } } else if (b[i - 1] > 0) { if (b[i - 1] + a[i] < 0) b[i] = b[i - 1] + a[i]; else { b[i] = -1; cnt += b[i - 1] + a[i] + 1; } } } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100004]; int main() { scanf("%d", &n); for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]); long long ans = 0; if (!a[1]) { ++ans; if (a[2] > 0) a[1] = -1; else a[1] = 1; } for (int i = (2); i <= (int)(n); ++i) { if (a[i - 1] > 0) { if (a[i] + a[i - 1] < 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] + 1 + a[i - 1]); a[i] = -1; } else { if (a[i] + a[i - 1] > 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] - 1 + a[i - 1]); a[i] = 1; } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < (int)(n); i++) cin >> a[i]; int res1 = 0, res2 = 0; int sum1 = 0, sum2 = 0; for (int i = 0; i < (int)(n); i++) { sum1 += a[i]; if (i % 2 == 1 && sum1 <= 0) { res1 += (1 - sum1); sum1 = 1; } else if (i % 2 == 0 && sum1 >= 0) { res1 += (1 + sum1); sum1 = -1; } } for (int i = 0; i < (int)(n); i++) { sum2 += a[i]; if (i % 2 == 1 && sum2 >= 0) { res2 += (1 + sum2); sum2 = -1; } else if (i % 2 == 0 && sum2 <= 0) { res2 += (1 - sum2); sum2 = 1; } } cout << min(res1, res2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans = 0 for i in range(n): if i == 0: if a[i] == 0: f = "+" a[i] = 1 elif a[0] > 0: f = "+" elif a[0] < 0: f = "-" else: if f == "+": if a[i] + sum(a[:i]) > 0: c = -1 - sum(a[:i]) ans += abs(c - a[i]) a[i] = c f = "-" else: if a[i] + sum(a[:i]) == 0: a[i] -= 1 ans += 1 f = "-" elif f == "-": if a[i] + sum(a[:i]) < 0: c = 1 - sum(a[:i]) ans += abs(c - a[i]) a[i] = c f = "+" else: if a[i] + sum(a[:i]) == 0: a[i] += 1 ans += 1 f = "+" #print(a) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 2e18; const long long MOD = 1e9 + 7; long long N; long long a[100010]; long long Calc() { long long ret = 0; long long sum = a[0]; long long preSum; for (long long i = 1; i < N; i++) { preSum = sum; sum += a[i]; if (sum == 0 || ((preSum < 0) ^ (sum > 0))) { if (preSum > 0) { ret += abs(-1 - sum); sum = -1; } else { ret += abs(1 - sum); sum = 1; } } } return ret; } int main() { cin >> N; for (long long i = 0; i < N; i++) cin >> a[i]; if (a[0] == 0) { a[0] = 1; long long tmp = Calc(); a[0] = -1; cout << min(tmp, Calc()) << endl; return 0; } cout << Calc() << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) src = list(map(int,input().split())) cum1 = cum2 = src[0] ans1 = ans2 = 0 for i,a in enumerate(src[1:]): cum1 += a cum2 += a if i%2: if cum1 >= 0: ans1 += cum1+1 cum1 = -1 if cum2 <= 0: ans2 += 1-cum2 cum2 = 1 else: if cum1 <= 0: ans1 += 1-cum1 cum1 = 1 if cum2 >= 0: ans2 += cum2+1 cum2 = -1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = (long long int)(1 << 30) - 1; const long long int INFl = (long long int)9223372036854775807; const int MAX = 10000; const long long int MOD = (long long int)1e9 + 7; long long int gcd(long long int a, long long int b) { return b ? gcd(b, a % b) : a; } long long int lcm(long long int a, long long int b) { return a / gcd(a, b) * b; } int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; int n; int a[100100]; int b[100100]; long long int sum[100100]; long long int sumb[100100]; int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; b[i] = a[i]; } sum[0] = a[0]; sumb[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; sumb[i] = sum[i]; } long long int ansa = 0, ansb = 0; long long int ta = 0; for (int i = 0; i < n; i++) { sum[i] += ta; if (i % 2 == 0) { if (sum[i] <= 0) { int t = -1 * sum[i] + 1; ta = t; ansa += abs(t); } } else { if (sum[i] >= 0) { int t = sum[i] + 1; ta -= t; ansa += abs(t); } } } ta = 0; for (int i = 0; i < n; i++) { sumb[i] += ta; if (i % 2 == 1) { if (sumb[i] <= 0) { int t = -1 * sumb[i] + 1; ta = t; ansb += abs(t); } } else { if (sumb[i] >= 0) { int t = sumb[i] + 1; ta -= t; ansb += abs(t); } } } cout << ((ansa) < (ansb) ? (ansa) : (ansb)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100010]; int main() { int n, i, j, k; long long s, x, y, s1, s2; while (scanf("%d", &n) != EOF) { for (i = 0; i < n; i++) scanf("%lld", &a[i]); if (a[0] != 0) { s = 0; x = a[0]; for (i = 1; i < n; i++) { y = x; x = x + a[i]; if (x < 0 && y > 0) continue; if (y < 0 && x > 0) continue; if (y < 0) { s = s - x + 1; x = 1; } else if (y > 0) { s = s + x + 1; x = -1; } } printf("%lld\n", s); continue; } else { s1 = 1; x = 1; for (i = 1; i < n; i++) { y = x; x = x + a[i]; if (x < 0 && y > 0) continue; if (y < 0 && x > 0) continue; if (y < 0) { s1 = s1 - x + 1; x = 1; } else if (y > 0) { s1 = s1 + x + 1; x = -1; } } s2 = 1; x = -1; for (i = 1; i < n; i++) { y = x; x = x + a[i]; if (x < 0 && y > 0) continue; if (y < 0 && x > 0) continue; if (y < 0) { s2 = s2 - x + 1; x = 1; } else if (y > 0) { s2 = s2 + x + 1; x = -1; } } s = min(s1, s2); printf("%lld\n", s); continue; } } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int ans = 0; int sum = 0; for (int i = 0; i < n; i++) { if (i == 0) { sum = a[i]; continue; } if (sum > 0) { if (sum + a[i] >= 0) { while (sum + a[i] > -1) { a[i]--; ans++; } } } else { if (sum + a[i] <= 0) { while (sum + a[i] < 1) { a[i]++; ans++; } } } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; public class Main { static InputStream is; static PrintWriter out; static String INPUT = ""; static void solve() { int n = ni(); int[] a = na(n); int[] sum = new int[n]; sum[0] = a[0]; int total = 0; for (int i = 1; i < n; i++) { int cur = a[i]; if (sum[i - 1] < 0) { if (cur + sum[i - 1] > 0) { sum[i] = cur + sum[i - 1]; } else { total += 1 - (cur + sum[i - 1]); sum[i] = 1; } } else { if (cur + sum[i - 1] >= 0) { total += (cur + sum[i - 1]) + 1; sum[i] = -1; } else { sum[i] = cur + sum[i - 1]; } } } System.out.println(total); } public static void main(String[] args) throws Exception { long S = System.currentTimeMillis(); is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); solve(); out.flush(); long G = System.currentTimeMillis(); tr(G-S+"ms"); } private static boolean eof() { if(lenbuf == -1)return true; int lptr = ptrbuf; while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false; try { is.mark(1000); while(true){ int b = is.read(); if(b == -1){ is.reset(); return true; }else if(!isSpaceChar(b)){ is.reset(); return false; } } } catch (IOException e) { return true; } } private static byte[] inbuf = new byte[1024]; static int lenbuf = 0, ptrbuf = 0; private static int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private static double nd() { return Double.parseDouble(ns()); } private static char nc() { return (char)skip(); } private static String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private static char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private static char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private static int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private static int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private static long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private static void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import scala.io.StdIn import scala.annotation.tailrec object Main extends App { val n = StdIn.readInt val a = StdIn.readLine.split(" ").map(_.toInt) val init1 = if(a.head < 0) 1 - a.head else 0 val ans1 = a.tail./:(a.head + init1, init1.abs)((acc,i) => { val (bsum, bcnt) = acc val sum = bsum + i val cnt = if(bsum < 0 && sum < 0) 1 - sum else if(bsum >= 0 && sum >= 0) -1 - sum else if(sum == 0) if(bsum < 0) 1 else -1 else 0 // println(sum + " " + cnt) (sum+cnt, bcnt+cnt.abs) })._2 val init2 = if(a.head < 0) 0 else -1 - a.head val ans2 = a.tail./:(a.head + init2, init2.abs)((acc,i) => { val (bsum, bcnt) = acc val sum = bsum + i val cnt = if(bsum < 0 && sum < 0) 1 - sum else if(bsum >= 0 && sum >= 0) -1 - sum else if(sum == 0) if(bsum < 0) 1 else -1 else 0 // println(sum + " " + cnt) (sum+cnt, bcnt+cnt.abs) })._2 println(math.min(ans1,ans2)) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int keta(int num) { int ans = 0; int rem; for (int i = 4; i >= 0; i--) { rem = pow(10, i); ans += (num / rem); num = num % rem; } return ans; } int main() { int n; cin >> n; vector<int64_t> ar(n); for (int i = 0; i < n; i++) { cin >> ar[i]; } int ans = 0; int cum = ar[0]; for (int i = 1; i < n; i++) { int next = cum + ar[i]; if (cum > 0 && next >= 0) { ans += abs(next - (-1)); cum = -1; } else if (cum < 0 && next <= 0) { ans += abs(next - 1); cum = 1; } else { cum = next; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
{-# OPTIONS_GHC -O2 -funbox-strict-fields #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} {-# OPTIONS_GHC -fno-warn-missing-signatures #-} {-# OPTIONS_GHC -fno-warn-unused-binds #-} {-# OPTIONS_GHC -fno-warn-incomplete-patterns #-} {-# OPTIONS_GHC -fno-warn-name-shadowing #-} {-# LANGUAGE OverloadedStrings #-} -- {-# LANGUAGE FlexibleContexts #-} -- {-# LANGUAGE MultiWayIf #-} -- {-# LANGUAGE BangPatterns #-} -- {-# LANGUAGE ViewPatterns #-} -- {-# LANGUAGE TupleSections #-} import System.IO hiding (char8) import Control.Applicative import Control.Monad import Data.List import Data.Tuple import Data.Int import Data.Char import Data.Function (on) import Data.Ord (comparing) import Data.Monoid (mappend) import Data.Array -- import Data.Array.Unboxed -- import Data.Array.IArray -- import Data.Array.ST -- import Data.Array.MArray -- import Data.Array.Unsafe -- import Data.Array.Base(unsafeRead, unsafeWrite) -- import Data.Array.IO import Data.Ix import Data.Maybe -- import Data.Monoid hiding ((<>)) import qualified Data.ByteString.Char8 as BS import qualified Data.ByteString.Lazy.Char8 as BL import Data.ByteString.Builder -- import Data.Graph -- import Data.Vector.Unboxed ((//), (++), (!), (!?)) -- import qualified Data.Vector.Unboxed as U -- import Data.IntSet (IntSet) -- import qualified Data.IntSet as IntSet -- import Data.IntMap.Strict (IntMap) -- import qualified Data.IntMap.Strict as IntMap -- import Data.Sequence ((|>), (<|), (><),ViewR(..), ViewL(..), Seq) -- import qualified Data.Sequence as Seq -- import Data.Foldable (toList, minimumBy) -- import Debug.Trace main = solve <$ getInt1 <*> getIntegers >>= print solve = solve' 0 0 . scanl (+) 0 where solve' _ ans [_] = ans solve' acc ans (x:x2:xs) | x2+acc == 0 = solve' (acc-signum x) (ans+1) (x2+acc-signum x:xs) | signum x == signum (x2+acc) = solve' (acc+d) (ans+abs d) (x2+acc+d:xs) | otherwise = solve' acc ans (x2+acc:xs) where d = - signum (x2+acc) * (abs (x2+acc) + 1) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- getIntegers :: IO [Integer] getIntegers = readIntegers <$> BS.getLine getInt1 :: IO Int getInt1 = readInt1 <$> BS.getLine getInt2 :: IO (Int, Int) getInt2 = readInt2 <$> BS.getLine getInt3 :: IO (Int, Int, Int) getInt3 = readInt3 <$> BS.getLine getInts :: IO [Int] getInts = readInts <$> BS.getLine getIntN :: Int -> IO [Int] getIntN n = map readInt1 <$> replicateM n BS.getLine format :: Show a => Maybe a -> IO () format Nothing = putStrLn "NO" format (Just a) = putStrLn "YES" >> print a -- [1,2,3] -> 1 2 3 putInts :: [Int] -> IO () -- putInts [] = return () -- putInts xs = BL.putStrLn . toLazyByteString . foldl1 mappend . intersperse (char8 ' ') $ map intDec xs putInts = putStrLn . unwords . map show readInt1 :: BS.ByteString -> Int readInt1 = fst . fromJust . BS.readInt readInt2 :: BS.ByteString -> (Int,Int) readInt2 = toTuple . readInts readInt3 :: BS.ByteString -> (Int,Int,Int) readInt3 = toTriple . readInts readInts :: BS.ByteString -> [Int] readInts = map readInt1 . BS.words readInt641 :: BS.ByteString -> Int64 readInt641 = fromIntegral . fst . fromJust . BS.readInteger readInt642 :: BS.ByteString -> (Int64,Int64) readInt642 = toTuple . readInt64s readInt643 :: BS.ByteString -> (Int64,Int64,Int64) readInt643 = toTriple . readInt64s readInt64s :: BS.ByteString -> [Int64] readInt64s = map readInt641 . BS.words readInteger1 :: BS.ByteString -> Integer readInteger1 = fst . fromJust . BS.readInteger readInteger2 :: BS.ByteString -> (Integer,Integer) readInteger2 = toTuple . readIntegers readInteger3 :: BS.ByteString -> (Integer,Integer,Integer) readInteger3 = toTriple . readIntegers readIntegers :: BS.ByteString -> [Integer] readIntegers = map readInteger1 . BS.words toTuple :: [a] -> (a, a) toTuple [x, y] = (x, y) toTriple :: [a] -> (a, a, a) toTriple [x, y, z] =(x, y, z) fromTuple :: (a, a) -> [a] fromTuple (x, y) = [x, y] fromTriple :: (a, a, a) -> [a] fromTriple (x, y, z) = [x, y, z] -- if not applying, use "id" applyTuple :: (a -> a') -> (b -> b') -> (a, b) -> (a', b') applyTuple f g (x, y) = (f x, g y) applyTriple :: (a -> a') -> (b -> b') -> (c -> c') -> (a, b, c) -> (a', b', c') applyTriple f g h (x, y, z) = (f x, g y, h z) -- @since 4.8.0.0 sortOn' :: Ord b => (a -> b) -> [a] -> [a] sortOn' f = map snd . sortBy (comparing fst) . map (\x -> let y = f x in y `seq` (y, x))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long N = 123456; long long a[N]; signed main() { long long n; scanf("%lld", &n); for (long long i = 0; i < n; i++) { scanf("%lld", &a[i]); } long long h = 0; long long s = a[0]; long long q = 0; if (s > 0) q = 1; else q = 0; for (long long i = 1; i < n; i++) { s += a[i]; if (s == 0) { if (q == 0) { h++; a[i]++; q = 1; } else { h++; a[i]--; q = 1; } } else if (s < 0) { long long foo = abs(s); if (q == 0) { h += (foo + 1); a[i] += (foo + 1); s += (foo + 1); q = 1; } else { q = 0; } } else { long long foo = (s); if (q == 1) { h += (foo + 1); a[i] -= (foo + 1); s -= (foo + 1); q = 0; } else { q = 1; } } } printf("%lld\n", h); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); long long a[n]; for (int i = 0; i < n; i++) scanf("%lld", a + i); long long initial_plus = ((-1 - a[0]) > (0) ? (-1 - a[0]) : (0)); long long initial_minus = ((1 + a[0]) > (0) ? (1 + a[0]) : (0)); long long sum = 0; sum = a[0] + initial_plus; for (int i = 1; i < n; i++) { if ((sum + a[i]) * sum >= 0ll) { if (sum < 0ll) { initial_plus += 1 - sum - a[i]; sum = 1; } else { initial_plus += sum + a[i] + 1; sum = -1; } } else { sum += a[i]; } } sum = a[0] - initial_minus; for (int i = 1; i < n; i++) { if ((sum + a[i]) * sum >= 0ll) { if (sum < 0ll) { initial_minus += 1 - sum - a[i]; sum = 1; } else { initial_minus += sum + a[i] + 1; sum = -1; } } else { sum += a[i]; } } printf("%lld\n", ((initial_plus) > (initial_minus) ? (initial_minus) : (initial_plus))); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import itertools def main(): N = int(input()) A = tuple(map(int, input().split())) a = list(itertools.accumulate(A)) even, odd = 0, 0 for i, v in enumerate(a): if i % 2: odd += v else: even += v if even > odd: func = (plus, minus) else: func = (minus, plus) cnt = 0 add_ = 0 for i, v in enumerate(a): ret = func[i%2](v + add_) add_ += ret cnt += abs(ret) print(cnt) def plus(n): if n <= 0: x = 1 - n return x else: return 0 def minus(n): if n >= 0: x = -1 - n return x else: return 0 main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef vector<vector<int> > vii; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)n; i++) cin >> a[i]; long long sum = a[0], op_cnt = 0, op_cnt1 = 0, op_cnt2 = 0; for (int i = (int)1; i < (int)n; i++) { if (sum < 0 && sum + a[i] <= 0) { op_cnt += (0 - sum - a[i]) + 1; sum = 1; } else if (sum >= 0 && sum + a[i] >= 0) { op_cnt += sum + a[i] + 1; sum = -1; } else sum += a[i]; } sum = 1; op_cnt1 += abs(a[0] - 1); for (int i = (int)1; i < (int)n; i++) { if (sum < 0 && sum + a[i] <= 0) { op_cnt1 += (0 - sum - a[i]) + 1; sum = 1; } else if (sum >= 0 && sum + a[i] >= 0) { op_cnt1 += sum + a[i] + 1; sum = -1; } else sum += a[i]; } sum = -1; op_cnt2 = abs(a[0] + 1); for (int i = (int)1; i < (int)n; i++) { if (sum < 0 && sum + a[i] <= 0) { op_cnt2 += (0 - sum - a[i]) + 1; sum = 1; } else if (sum >= 0 && sum + a[i] >= 0) { op_cnt2 += sum + a[i] + 1; sum = -1; } else sum += a[i]; } cout << min(op_cnt, min(op_cnt1, op_cnt2)) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j; vector<int> a; int sum, count, count2; cin >> n; a.resize(n); for (int i = 0; i < n; i++) { cin >> a[i]; } count = 0; count2 = 0; sum = 0; if (a[0] <= 0) { sum = 1; count += abs(a[0]) + 1; } else { sum = a[0]; } for (int i = 0; i < n - 1; i++) { if (sum + a[i + 1] == 0) { count++; if (sum < 0) sum = 1; else sum = -1; } else if (sum < 0 && (sum + a[i + 1]) < 0) { j = 1 - sum; count += j - a[i + 1]; sum = 1; } else if (sum > 0 && (sum + a[i + 1]) > 0) { j = -1 - sum; count += abs(j - a[i + 1]); sum = -1; } else { sum += a[i + 1]; } } if (a[0] >= 0) { sum = -1; count2 += abs(a[0]) + 1; } else { sum = a[0]; } for (int i = 0; i < n - 1; i++) { if (sum + a[i + 1] == 0) { count2++; if (sum < 0) sum = 1; else sum = -1; } else if (sum < 0 && (sum + a[i + 1]) < 0) { j = 1 - sum; count2 += j - a[i + 1]; sum = 1; } else if (sum > 0 && (sum + a[i + 1]) > 0) { j = -1 - sum; count2 += abs(j - a[i + 1]); sum = -1; } else { sum += a[i + 1]; } } cout << min(count, count2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long long sum; cin >> sum; long long delta = 0; for (int i = 1; i < N; ++i) { long long temp; cin >> temp; if (sum > 0 && sum + temp >= 0) { delta += sum + temp + 1; sum = -1; } else if (sum < 0 && sum + temp <= 0) { delta += 1 - (sum + temp); sum = 1; } else { sum += temp; } } cout << delta; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] change = 0 for i in range(1, n): val = 0 tempsum = sum + a[i] if sum < 0 and tempsum <= 0: val = 1 - tempsum if sum > 0 and tempsum >= 0: val = -1 - tempsum if sum == 0 and a[i] > 0: val = -1 if sum == 0 and a[i] < 0: val = 1 sum = tempsum + val change += abs(val) print(change)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.next()); ArrayList<Integer> a = new ArrayList<>(); for(int i=0; i<n; i++){ a.add(Integer.parseInt(sc.next())); } int ans1 = 0; int sum1 = 0; int sign1 = 1; for(int i=0; i<n; i++){ sum1 += a.get(i); if (sum1 * sign1 <= 0){ ans1 += Math.abs(sum1) + 1; sum1 = sign1; } sign1 *= -1; } int ans2 = 0; int sum2 = 0; int sign2 = -1; for(int i=0; i<n; i++){ sum2 += a.get(i); if (sum2 * sign2 <= 0){ ans2 += Math.abs(sum2) + 1; sum2 = sign2; } sign2 *= -1; } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i as = gets.split(' ').map { |e| e.to_i } x = 0 bs = [] as.each { |e| x += e bs << x } # p bs memo = 0 ans = 0 for i in (1..(n - 1)) a, b = bs[i - 1], bs[i] b += memo if a >= 0 && b >= 0 d = b + 1 memo -= d ans += d elsif a <= 0 && b <= 0 d = -1 * b + 1 memo += d ans += d end end ans += 1 if bs[n-1] == 0 puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long> L(N); for (int i = 0; i < N; i++) { cin >> L.at(i); } long long v = 0, res = 0, le = 0; bool change_flag = true; for (int i = 0; i < N; i++) { if (i == 0) { v = L.at(i); } else { if (v > 0 && v + L.at(i) >= 0) { le = -1 - v - L.at(i); L.at(i) -= abs(le); v += L.at(i); res += -le; le = 0; } else if (v < 0 && v + L.at(i) <= 0) { le = 1 - v - L.at(i); L.at(i) += abs(le); v += L.at(i); res += le; le = 0; } else { v += L.at(i); } } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) cnt1,cnt2,sm1,sm2=0,0,0,0 for i,val in enumerate(a):#+ sm1+=val if i%2 ==0: if sm1<1: cnt1+=1-sm1 sm1=1 else: if sm1>-1: cnt1+=1+sm1 sm1=-1 for i,val in enumerate(a):#- sm2+=val if i%2 ==0: if sm2>-1: cnt2+=1+sm2 sm2=-1 else: if sm2<1: cnt2+=1-sm2 sm2=1 print(min(cnt1,cnt2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long up = 0; long long down = 0; long long cu = 0; long long cd = 0; for (int i = 0; i < n; i++) { long long t; cin >> t; cu += t; cd += t; if (i % 2 == 0 && cu <= 0) { up += abs(cu - 1); cu = 1; } else if (i % 2 == 1 && cu > 0) { up += abs(cu + 1); cu = -1; } if (i % 2 == 1 && cd <= 0) { down += abs(cd - 1); cd = 1; } else if (i % 2 == 0 && cd > 0) { down += abs(cd + 1); cd = -1; } } cout << min(up, down) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100000]; long long sum[100000]; bool eqsig(long long a, long long b) { if (a < 0 && b > 0) return true; if (a > 0 && b < 0) return true; return false; } int solve() { int ans = 0; for (int i = 0; i < n - 1; i++) { sum[i + 1] = sum[i] + a[i + 1]; if (eqsig(sum[i], sum[i + 1])) continue; if (sum[i] < 0) { ans -= (sum[i + 1] - 1); sum[i + 1] = 1; } if (sum[i] > 0) { ans += (sum[i + 1] + 1); sum[i + 1] = -1; } } return ans; } int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; sum[0] = a[0]; int aa, bb; if (a[0] == 0) { sum[0] = 1; aa = solve() + 1; sum[0] = -1; bb = solve() + 1; } else if (a[0] > 0) { aa = solve(); sum[0] = -1; bb = solve() + a[0] + 1; } else if (a[0] < 0) { aa = solve(); sum[0] = 1; bb = solve() - (a[0] - 1); } cout << min(aa, bb) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int N; std::vector<long long int> A; bool bxor(bool a, bool b) { return !a != !b; } long long int solve(bool f) { long long int sum = 0; long long int ans = 0; for (long i = 0; i < (N); ++i) { sum += A[i]; if (!bxor(bxor(f, i % 2 == 0), sum > 0)) { long long int dist = bxor(f, i % 2 == 0) ? (-1) : 1; if (sum == 0) { ans += 1; sum = dist; } else if (dist != (sum / std::abs(sum))) { ans += std::abs(sum - dist); sum = dist; } } } return ans; } int main() { std::cin >> N; A.resize(N); for (long i = 0; i < (N); ++i) { std::cin >> A[i]; } std::cout << std::min(solve(true), solve(false)) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int LG = 21; const int FN = 400005; const long long MOD = 1e9 + 7; const long long INF = 1e9; const long long INFLL = 1e18; using namespace std; int cx[4] = {-1, 0, 1, 0}; int cy[4] = {0, -1, 0, 1}; long long inq(long long x, long long y) { if (!y) return 1 % MOD; long long l = inq(x, y / 2); if (y % 2) return l * l % MOD * x % MOD; return l * l % MOD; } long long rev(long long x) { return inq(x, MOD - 2); } bool __precomputed_combinatorics = 0; vector<long long> __fact, __ufact, __rev; void __precompute_combinatorics() { __precomputed_combinatorics = 1; __fact.resize(FN); __ufact.resize(FN); __rev.resize(FN); __rev[1] = 1; for (int i = 2; i < FN; i++) __rev[i] = MOD - __rev[MOD % i] * (MOD / i) % MOD; __fact[0] = 1, __ufact[0] = 1; for (int i = 1; i < FN; i++) __fact[i] = __fact[i - 1] * i % MOD, __ufact[i] = __ufact[i - 1] * __rev[i] % MOD; } long long fact(int x) { if (!__precomputed_combinatorics) __precompute_combinatorics(); return __fact[x]; } long long cnk(int n, int k) { if (k < 0 || k > n) return 0; if (!__precomputed_combinatorics) __precompute_combinatorics(); return __fact[n] * __ufact[n - k] % MOD * __ufact[k] % MOD; } int Root(int x, vector<int> &root) { if (x == root[x]) return x; return root[x] = Root(root[x], root); } void Merge(int v, int u, vector<int> &root, vector<int> &sz) { v = Root(v, root), u = Root(u, root); if (v == u) return; if (sz[v] < sz[u]) { sz[u] += sz[v]; root[v] = u; } else { sz[v] += sz[u]; root[u] = v; } } int ok(int x, int n) { return 0 <= x && x < n; } const int N = 400000; signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long n; cin >> n; vector<int> a(n); for (int(i) = 0; (i) != (n); (i)++) cin >> a[i]; long long p = 0, cur; long long r1 = 0, r2 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { cur = p + a[i]; if (cur <= 0) r1 += abs(1 - cur), cur = 1; } else { cur = p + a[i]; if (cur >= 0) r1 += abs(cur + 1), cur = 1; } p = cur; } p = 0; for (int i = 0; i < n; i++) { if (i % 2 == 1) { cur = p + a[i]; if (cur <= 0) r2 += abs(1 - cur), cur = 1; } else { cur = p + a[i]; if (cur >= 0) r2 += abs(cur + 1), cur = 1; } p = cur; } cout << min(r1, r2); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> void drop(const T &x) { cout << x << endl; exit(0); } void solve() { int n; cin >> n; int a; vector<int> sum(2), cnt(2); for (int i = 0; i < n; ++i) { cin >> a; for (int j : {0, 1}) { sum[j] += a; int d = 1 - (i + j) % 2 * 2; if (sum[j] * d <= 0) { cnt[j] += abs(d - sum[j]); sum[j] = d; } } } cout << min(cnt[0], cnt[1]) << '\n'; return; } signed main() { ios::sync_with_stdio(false); cin.tie(0); int T = 1; while (T--) solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); int n; cin >> n; int a[100010]; for (int i = 0; i < n; ++i) cin >> a[i]; int cur1 = 0; int cur2 = 0; int ans1 = 0; int ans2 = 0; for (int i = 0; i < n; ++i) { cur1 += a[i]; if (i % 2 == 0) { if (cur1 <= 0) { ans1 = ans1 - cur1 + 1; cur1 = 1; } } if (i % 2 == 1) { if (cur1 >= 0) { ans1 = ans1 + cur1 + 1; cur1 = -1; } } } for (int i = 0; i < n; ++i) { cur2 += a[i]; if (i % 2 == 1) { if (cur2 <= 0) { ans2 = ans2 - cur2 + 1; cur2 = 1; } } if (i % 2 == 0) { if (cur2 >= 0) { ans2 = ans2 + cur2 + 1; cur2 = -1; } } cout << cur2 << endl; } cout << ans1 << ' ' << ans2 << endl; cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) L = np.array([int(i) for i in input().split()]) count = 0 s = L[0] #if L[0] == 0: # if L[1] > 0: # L[0] = -1 # else: # L[0] = 1 # count += 1 print(L) loopnum = n//2 if n%2 == 0: loopnum -= 1 #+-+-... for i in range(loopnum): s = s + L[2*i+1] if s >= 0: subt = s + 1 count += subt s = s - subt s = s + L[2*i+2] if s <= 0: subt = s - 1 count -= subt s = s - subt if n%2 == 0: s = s + L[-1] if s >= 0: subt = s + 1 count += subt cand1 = count count = 0 s = L[0] #-+-+... for i in range(loopnum): s = s + L[2*i+1] if s <= 0: subt = s - 1 count -= subt s = s - subt s = s + L[2*i+2] if s >= 0: subt = s + 1 count += subt s = s - subt if n%2 == 0: s = s + L[-1] if s <= 0: subt = s - 1 count -= subt cand2 = count #print(cand1) #print(cand2) print(min(cand1,cand2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) cnt=0 for i in range(1,n): # 条件満たすまでループ for _ in range(3): #print(a) now_tmp = sum(a[:i]) next_tmp = sum(a[:i+1]) #print(i, now_tmp, next_tmp) # 符号が逆転していればOK かつ 現在までの総和が0でない # 異なる符号を掛けるとマイナスになる if now_tmp * next_tmp <0 and now_tmp !=0: break else: # 現在の合計がマイナスの場合 if now_tmp < 0: a[i] += next_tmp+1 cnt +=abs(next_tmp+1) # 現在の合計がプラスの場合 elif now_tmp > 0 : a[i] += -next_tmp-1 cnt +=abs(next_tmp+1) # 現在の合計が0の場合 elif now_tmp == 0 : # 1個前がプラスの場合、 if sum(a[:i-1]) > 0: a[i] += -next_tmp+1 cnt +=abs(next_tmp+1) # 1個前がマイナスの場合 else: a[i] += next_tmp+1 cnt +=abs(next_tmp+1) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int a[100001]; int main() { int cul; int ans = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } cul = a[0]; for (int i = 1; i < n; i++) { if (cul > 0) { while ((a[i] + cul) >= 0) { ans++; a[i]--; } cul += a[i]; } else { while ((a[i] + cul) <= 0) { ans++; a[i]++; } cul += a[i]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) { cin >> a.at(i); } int ans1 = 0, ans2 = 0, sum = 0; for (int i = 0; i < N; i++) { sum += a.at(i); if (i % 2 == 0 && sum <= 0) { ans1 += 1 - sum; sum = 1; } else if (i % 2 == 1 && sum >= 0) { ans1 += sum + 1; sum = -1; } } sum = 0; for (int i = 0; i < N; i++) { sum += a.at(i); if (i % 2 == 0 && sum >= 0) { ans2 += sum + 1; sum = -1; } else if (i % 2 == 1 && sum <= 0) { ans2 += 1 - sum; sum = 1; } } int ans = min(ans1, ans2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def c(ints): for i in range(len(ints)): if ints[i] != 0: sig = 1 if ints[i] > 0 else -1 sig_ = -sig total = ints[i] total_ = -sig mov = i mov_ = abs(total) + 1 if i > 0: mov += 1 + i - 1 mov_ += 2 + i - 1 j = i break if i == len(ints) - 1: return i * 2 + 1 for i_ in ints[j+1:]: tmp = total + i_ tmp_ = total_ + i_ if tmp == 0: mov +=1 tmp = -sig elif sig * tmp > 0: mov += abs(tmp) + 1 tmp = -sig if tmp_ == 0: mov_ +=1 tmp_ = -sig_ elif sig_ * tmp_ > 0: mov_ += abs(tmp_) + 1 tmp_ = -sig_ sig *= -1 total = tmp sig_ *= -1 total_ = tmp_ return min(mov, mov_) _ = input() inp = input() inp = inp.split(' ') inp = [int(i_) for i_ in inp] print(c(inp))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#C N = int(input()) A = list(map(int,input().split())) SUM = 0 ans = 0 flag = 0 #0+,1- for i in range(N): if i == 0: SUM = A[i] if SUM == 0: SUM+=1 ans+=1 elif SUM < 0: flag = 1 else: SUM += A[i] if flag == 0: if SUM >= 0: ans += SUM+1 SUM = -1 flag = 1 else: if SUM <= 0: ans += 1-SUM SUM = 1 flag = 0 #print(ans,SUM) MIN = ans ans = 0 flag = 1 #0+,1- for i in range(N): if i == 0: SUM = A[i] if SUM == 0: SUM-=1 ans+=1 elif SUM > 0: flag = 0 else: SUM += A[i] if flag == 0: if SUM >= 0: ans += SUM+1 SUM = -1 flag = 1 else: if SUM <= 0: ans += 1-SUM SUM = 1 flag = 0 #print(ans,SUM) ans = min(MIN,ans) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int MOD = 1000000007; using long long = long long; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } void print(const std::vector<int> &v) { std::for_each(v.begin(), v.end(), [](int x) { std::cout << x << " "; }); std::cout << std::endl; } int main() { int n; cin >> n; vector<long long> a(n); for (long long i = 0; i < (long long)n; i++) { cin >> a[i]; } long long res = (1ll << 60); long long ans = 0LL; if (a[0] >= 0) { long long s = a[0]; for (int i = 1; i < n; i++) { s += a[i]; if (i % 2 == 1) { if (s >= 0) { ans += s + 1; s = -1; } } else { if (s <= 0) { ans += -s + 1; s = 1; } } } res = min(res, ans); } else if (a[0] <= 0) { ans = 0; long long s = a[0]; for (int i = 1; i < n; i++) { s += a[i]; if (i % 2 == 0) { if (s >= 0) { ans += s + 1; s = -1; } } else { if (s <= 0) { ans += -s + 1; s = 1; } } } res = min(res, ans); } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] count = 0 if a[0] == 0: if a[1] > 0: sum -= 1 count += 1 elif a[1] < 0: sum += 1 count += 1 for i in range(1, n): tmp = sum sum += a[i] while tmp > 0 and sum >= 0: sum -= 1 count += 1 while tmp < 0 and sum <= 0: sum += 1 count += 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys from itertools import accumulate read = sys.stdin.read readline = sys.stdin.readline readlines = sys.stdin.readlines sys.setrecursionlimit(10 ** 9) INF = 1 << 60 MOD = 1000000007 def solve(A): ans = 0 s = A[0] for a in A[1:]: prev, s = s, s + a if prev > 0 and s >= 0: ans += s + 1 s = -1 if prev < 0 and s <= 0: ans += -s + 1 s = 1 return ans def main(): N, *A = map(int, read().split()) a0 = A[0] ans1 = 0 if A[0] <= 0: ans1 = -A[0] + 1 A[0] = 1 ans1 = solve(A) A[0] = a0 ans2 = 0 if A[0] >= 0: ans2 = A[0] + 1 A[0] = -1 ans2 += solve(A) print(min(ans1, ans2)) return if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<int> a(n); cin >> a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; a[i] += a[i - 1]; } if (a[0] < 0) { for (int i = 0; i < n; i++) { a[i] *= -1; } } int ans = 0, def = 0; if (a[0] == 0) { ans++; def++; } for (int i = 1; i < n; i++) { if (i % 2 == 0 && a[i] + def <= 0) { ans += 1 - (a[i] + def); def += 1 - (a[i] + def); } else if (i % 2 == 1 && a[i] + def >= 0) { ans += a[i] + def + 1; def -= a[i] + def + 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000], b[100001]; int main() { long long n; cin >> n; for (long long i = 0; i < n; i++) { cin >> a[i]; b[i] += a[i]; b[i + 1] = b[i]; } long long sum = 0, sum2 = 0; if (b[0] == 0) { int i = 0; while (b[i] == 0 && i < n) i++; if (i % 2 == 0) { b[0] = 1; sum2 = 1; } else { b[0] = -1; sum2 = -1; } sum++; } for (long long i = 1; i < n; i++) { b[i] += sum2; if (b[i] == 0) { if (b[i - 1] > 0) { sum2--; sum++; b[i] = -1; } else { sum2++; sum++; b[i] = 1; } } else { if (b[i - 1] > 0 && b[i] > 0) { sum2 -= (b[i] + 1); sum += (b[i] + 1); b[i] = -1; } else if (b[i] < 0 && b[i - 1] < 0) { sum2 += (0 - b[i] + 1); sum += (0 - b[i] + 1); b[i] = 1; } } } cout << sum << endl; cin >> n; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int ans = 0; int sum = 0; for (int i = 0; i < n; i++) { if (i == 0) { sum = a[i]; continue; } if (sum > 0) { if (sum + a[i] >= 0) { ans += sum + a[i] + 1; a[i] -= sum + a[i] + 1; } } else { if (sum + a[i] <= 0) { ans -= sum + a[i] - 1; a[i] -= sum + a[i] - 1; } } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long ans = 0; for (int i = 1; i < n; i++) { long long sum1 = sum + a[i]; if (sum1 == 0 || sum / abs(sum) == sum1 / abs(sum1)) { ans += abs(sum1 + sum / abs(sum)); sum1 = sum / abs(sum) * -1; } sum = sum1; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=list(map(int,input().split())) s=l[0] c=0 if not s: s+=1 c+=1 for i in l[1:]: if (s+i)*s>=0: b=s s=s//abs(s)*(-1) c+=abs((b+i)-s) else: s+=i print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using static System.Console; using static System.Convert; class Program { static void Main(string[] args) { var length = ToInt32(ReadLine()); var nums = Array.ConvertAll(ReadLine().Split(' '), long.Parse); var r = 0; var sum = nums[0]; if (sum == 0) { sum++; r++; } var result = GetResult(nums, sum,length)+r; var result2 = GetResult(nums,-sum,length)+r; WriteLine(Math.Min(result,result2)); } private static long GetResult(long[] nums,long sum,int length) { long result = 0; var lastSum = sum; for (var i = 1; i < length; i++) { sum += nums[i]; while (!IsDifferentSign(lastSum, sum) || sum == 0) { if (!IsDifferentSign(lastSum, sum)) { result += Math.Abs(sum) + 1; sum = lastSum > 0 ? -1 : 1; } if (sum == 0) { sum = lastSum > 0 ? --sum : ++sum; result++; } } lastSum = sum; } return result; } private static bool IsDifferentSign(long lastSum,long sum) { return (lastSum > 0 && sum < 0) || (lastSum < 0 && sum > 0); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>; using vb = vector<bool>; using vvb = vector<vb>; using mii = map<int, int>; using pqls = priority_queue<long long>; using pqlg = priority_queue<long long, vector<long long>, greater<long long>>; using mll = map<long long, long long>; using pll = pair<long long, long long>; using sll = set<long long>; long long divup(long long a, long long b); long long kaijou(long long i); long long P(long long n, long long k); long long C(long long n, long long k); long long GCD(long long a, long long b); long long LCM(long long a, long long b); bool prime(long long N); double distance(vector<long long> p, vector<long long> q, long long n); void press(vector<long long> &v); void ranking(vector<long long> &v); void erase(vector<long long> &v, long long i); void unique(vector<long long> &v); void printv(vector<long long> v); vector<ll> keta(ll x); long long modpow(long long a, long long n, long long mod); long long modinv(long long a, long long mod); vector<long long> inputv(long long n); vector<long long> yakusuu(int n); map<long long, long long> soinsuu(long long n); vector<vector<long long>> maze(long long i, long long j, vector<string> &s); vector<long long> eratos(long long n); set<long long> eraset(long long n); long long divup(long long a, long long b) { long long x = abs(a); long long y = abs(b); long long z = (x + y - 1) / y; if ((a < 0 && b > 0) || (a > 0 && b < 0)) return -z; else if (a == 0) return 0; else return z; } long long kaijou(long long i) { if (i == 0) return 1; long long j = 1; for (long long k = 1; k <= i; k++) { j *= k; } return j; } long long P(long long n, long long k) { if (n < k) return 0; long long y = 1; for (long long i = 0; i < k; i++) { y *= (n - i); } return y; } long long C(long long n, long long k) { if (n < k) return 0; return P(n, k) / kaijou(k); } long long GCD(long long a, long long b) { if (a < b) swap(a, b); long long d = a % b; if (d == 0) { return b; } return GCD(b, d); } long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; } bool prime(long long N) { if (N == 1) { return false; } if (N < 0) return false; long long p = sqrt(N); for (long long i = 2; i <= p; i++) { if (N % i == 0) { return false; } } return true; } double distance(vector<long long> p, vector<long long> q, long long n) { double x = 0; for (long long i = 0; i < n; i++) { x += pow((p.at(i) - q.at(i)), 2); } return sqrt(x); } void press(vector<long long> &v) { long long n = v.size(); vector<long long> w(n); map<long long, long long> m; for (auto &p : v) { m[p] = 0; } long long i = 0; for (auto &p : m) { p.second = i; i++; } for (long long i = 0; i < n; i++) { w.at(i) = m[v.at(i)]; } v = w; return; } void ranking(vector<long long> &v) { long long n = v.size(); map<long long, long long> m; long long i; for (i = 0; i < n; i++) { m[v.at(i)] = i; } vector<long long> w(n); i = 0; for (auto &p : m) { v.at(i) = p.second; i++; } return; } void erase(vector<long long> &v, long long i) { long long n = v.size(); if (i > n - 1) return; for (long long j = i; j < n - 1; j++) { v.at(j) = v.at(j + 1); } v.pop_back(); return; } void unique(vector<long long> &v) { long long n = v.size(); set<long long> s; long long i = 0; while (i < n) { if (s.count(v.at(i))) { erase(v, i); n--; } else { s.insert(v.at(i)); i++; } } return; } void printv(vector<long long> v) { cout << "{ "; for (auto &p : v) { cout << p << ","; } cout << "}" << endl; } vector<ll> keta(ll x) { if (x == 0) return {0}; ll n = log10(x) + 1; vll w(n, 0); for (ll i = 0; i < n; i++) { ll p; p = x % 10; x = x / 10; w[n - 1 - i] = p; } return w; } long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); } vector<long long> inputv(long long n) { vector<long long> v(n); for (long long i = 0; i < n; i++) { cin >> v[i]; } return v; } vector<long long> yakusuu(long long n) { vector<long long> ret; for (long long i = 1; i <= sqrt(n); ++i) { if (n % i == 0) { ret.push_back(i); if (i * i != n) { ret.push_back(n / i); } } } sort(ret.begin(), ret.end()); return ret; } map<long long, long long> soinsuu(long long n) { map<long long, long long> m; long long p = sqrt(n); while (n % 2 == 0) { n /= 2; if (m.count(2)) { m[2]++; } else { m[2] = 1; } } for (long long i = 3; i * i <= n; i += 2) { while (n % i == 0) { n /= i; if (m.count(i)) { m[i]++; } else { m[i] = 1; } } } if (n != 1) m[n] = 1; return m; } vector<vector<long long>> maze(ll i, ll j, vector<string> &s) { ll h = s.size(); ll w = s[0].size(); queue<vector<long long>> q; vector<vector<long long>> dis(h, vll(w, -1)); q.push({i, j}); dis[i][j] = 0; while (!q.empty()) { auto v = q.front(); q.pop(); if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) { dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] - 1, v[1]}); } if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) { dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] - 1}); } if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) { dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] + 1, v[1]}); } if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) { dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] + 1}); } } return dis; } long long modC(long long n, long long k, long long mod) { if (n < k) return 0; long long p = 1, q = 1; for (long long i = 0; i < k; i++) { p = p * (n - i) % mod; q = q * (i + 1) % mod; } return p * modinv(q, mod) % mod; } long long POW(long long a, long long n) { long long res = 1; while (n > 0) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } vector<long long> eratos(long long n) { if (n < 2) return {}; vll v(n - 1); for (long long i = 0; i < n - 1; i++) { v[i] = i + 2; } ll i = 0; while (i < n - 1) { ll p = v[i]; for (ll j = i + 1; j < n - 1; j++) { if (v[j] % p == 0) { v.erase(v.begin() + j); n--; } } i++; } v.resize(n - 1); return v; } set<long long> eraset(long long n) { set<long long> s; vll v = eratos(n); for (auto &t : v) { s.insert(t); } return s; } vll line(ll x1, ll y1, ll x2, ll y2) { vector<ll> v(3); v[0] = y1 - y2; v[1] = x2 - x1; v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2); return v; } double dis(vll v, ll x, ll y) { double s = sqrt(v[0] * v[0] + v[1] * v[1]); return (double)abs(v[0] * x + v[1] * y + v[2]) / s; } ll const mod = 1e9 + 7; int main() { ll n; cin >> n; auto a = inputv(n); auto b = a; ll l = 0; ll res = 0; for (long long i = 0; i < n; i++) { if (l == 0) { if (a[0] == 0) { for (long long j = 0; j < n; j++) { if (a[j] != 0) { a[0] = a[j] / abs(a[j]); if (j % 1) a[0] *= (-1); res++; break; } } } if (!a[0]) { a[0] = 1; res++; } l += a[0]; } else if (l < 0) { if (a[i] < -l + 1) { res += -l + 1 - a[i]; a[i] = -l + 1; l = 1; } else { l += a[i]; } } else if (l > 0) { if (a[i] > -l - 1) { res += abs(a[i] - (-l - 1)); a[i] = -l - 1; l = -1; } else { l += a[i]; } } } a = b; ll L = 0; ll res2 = 0; for (long long i = 0; i < n; i++) { if (L == 0) { if (a[0] == 0) { for (long long j = 0; j < n; j++) { if (a[j] != 0) { a[0] = a[j] / abs(a[j]); if (j % 1) a[0] *= (-1); res2++; break; } } } if (!a[0]) { a[0] = 1; res2++; } L += a[0]; L *= (-1); L = L / abs(L); } else if (L < 0) { if (a[i] < -L + 1) { res2 += -L + 1 - a[i]; a[i] = -L + 1; L = 1; } else { L += a[i]; } } else if (L > 0) { if (a[i] > -L - 1) { res2 += abs(a[i] - (-L - 1)); a[i] = -L - 1; L = -1; } else { L += a[i]; } } } cout << min(res, res2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) import sys sum=a[0] cnt=0 if a[0]==0: sum+=1 cnt+=1 for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<0: cnt+=(1-z) sum=1 else: if a[i-1]>0: sum=-1 cnt+=1 elif a[i-1]<0: sum=1 cnt+=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z cnt_plus=cnt sum=-1 cnt=1 for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<0: cnt+=(1-z) sum=1 else: if a[i-1]>0: sum=-1 cnt+=1 elif a[i-1]<0: sum=1 cnt+=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z cnt_sbst=cnt print(min(cnt_plus,cnt_sbst)) sys.exit() for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<0: cnt+=(1-z) sum=1 else: if a[i-1]>0: sum=-1 cnt+=1 elif a[i-1]<0: sum=1 cnt+=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z print(cnt) # 6 # 0 0 -1 3 5 0
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("-O3") using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); } const int inf = INT_MAX / 2; const long long infl = 1LL << 60; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } enum PosiNega { POSITIVE = 0, NEGATIVE = 1 }; int solve(int N, int *a, PosiNega odd_posinega) { int ans = 0; int sum = 0; PosiNega posi_nega = odd_posinega; for (int i = 0; i < N; i++) { sum += a[i]; if (POSITIVE == posi_nega) { if (0 >= sum) { ans += 1 - sum; sum = 1; } posi_nega = NEGATIVE; } else { if (0 <= sum) { ans += 1 + sum; sum = -1; } posi_nega = POSITIVE; } } return ans; } void _main() { int N; cin >> N; int a[N]; for (int i = 0; i < N; i++) cin >> a[i]; int candidate1 = solve(N, a, POSITIVE); int candidate2 = solve(N, a, NEGATIVE); int ans = (candidate1 < candidate2) ? candidate1 : candidate2; cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int64_t n; int64_t i; int64_t sum; bool default_flag; bool plus_flag, minus_flag; int64_t ope_count; cin >> n; vector<int64_t> a(n); for (i = 0; i < n; i++) { cin >> a.at(i); } sum = 0; ope_count = 0; default_flag = true; plus_flag = false; minus_flag = false; for (i = 0; i < n; i++) { sum += a.at(i); if (default_flag == true) { default_flag = false; if (sum > 0) { plus_flag = true; } else if (sum < 0) { minus_flag = true; } else if (sum == 0) { ope_count++; if (a.at(i + 1) <= 0) { sum++; plus_flag = true; } else if (a.at(i + 1) > 0) { sum--; minus_flag = true; } } } else if (plus_flag == true) { while (sum >= 0) { ope_count++; sum--; } plus_flag = false; minus_flag = true; } else if (minus_flag == true) { while (sum <= 0) { ope_count++; sum++; } plus_flag = true; minus_flag = false; } } cout << ope_count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) i = input() i = i.split() for item in range(len(i)): i[item] = int(i[item]) if i[0] > 0: signN = 'neg' else: signN = 'pos' signM = None tot = 0 count = 0 for x in range(len(i)): tot += i[x] if tot > 0: signM = 'pos' elif tot < 0: signM = 'neg' elif tot == 0: signM = 'z' if signN != signM and signM != 'z': signN = signM elif signN == 'pos' and signM == 'pos': count += (tot + 1) tot -= tot tot -= 1 signM = 'neg' elif signN == 'neg' and signM == 'neg': count -= (tot - 1) tot = 1 signM = 'pos' if tot == 0: count += 1 if signN == 'neg': tot += 1 signM = 'pos' elif signN == 'pos': tot -= 1 signM = 'neg' signN = signM print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> int main(){ int n,chk; long long ans=0; scanf("%d %d",&n,&m); vector<int> a(n); for (auto&e:a) scanf("%d"&e); chk=a[0]; for (int i=1;i<n;i++) { if (i%2) { chk+=a[i]; if (chk>=0) { ans+=chk+1; chk=-1; } } else { chk+=a[i]; if (chk<=0) { ans+=-1*chk+1; chk=1; } } } print("%lld",ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100005]; int pos[100005]; int neg[100005]; int main() { int n, sp, sn, addp, addn; sp = 0; sn = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; pos[i] = pos[max(i - 1, 0)] + a[i]; neg[i] = neg[max(i - 1, 0)] + a[i]; if (i % 2 == 0) { if (pos[i] <= 0) { sp += abs(pos[i]) + 1; pos[i] = 1; } if (neg[i] >= 0) { sn += abs(neg[i]) + 1; neg[i] = -1; } } else { if (pos[i] >= 0) { sp += abs(pos[i]) + 1; pos[i] = -1; } if (neg[i] <= 0) { sn += abs(neg[i]) + 1; neg[i] = 1; } } } cout << min(sn, sp); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
/* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ class Main { public static void main (String[] args) throws java.lang.Exception { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] input = new int[n]; int[] result = new int[n]; int even = 0; int odd = 0; boolean sign = true; //正=true, 負=false for(int i = 0; i < n; i++) { input[i] = sc.nextInt(); if(i % 2 == 0) { even += input[i]; } else { odd += input[i]; } } if(even > odd) { sign = true; } else { sign = false; } //System.out.println(Arrays.toString(input)); //System.out.println(sign + ""); //System.out.println(counting(input, result, 0, 0, sign)); counting(input, result, 0, 0, sign); } public static void counting(int[] input, int[] result, int count, int index, boolean sign) { if(index > 0) { result[index] = result[index - 1] + input[index]; } else { result[index] = input[index]; } if(sign) { if(result[index] <= 0) { count += Math.abs(result[index]) + 1; result[index] = result[index] + Math.abs(result[index]) + 1; } sign = false; } else { if(result[index] >= 0) { count += Math.abs(result[index]) + 1; result[index] = result[index] - Math.abs(result[index]) - 1; } sign = true; } if(index < result.length - 1) { counting(input, result, count, index+1, sign); } else { System.out.println(count); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; enum State { Plus, Minus, Zero }; State GetState(long long sum) { State state; if (sum > 0) state = Plus; else if (sum == 0) state = Zero; else state = Minus; return state; } int main() { int n; cin >> n; vector<long long> a(n); cin >> a[0]; unsigned long long count = 0; State state = GetState(a[0]); if (state == Zero) { a[0] = 1; state = Plus; count++; } long long sum = a[0]; for (int i = 1; i < n; i++) { cin >> a[i]; State nextState = GetState(sum + a[i]); switch (nextState) { case Plus: if (state == Plus) { long long bf_a = a[i]; a[i] = -1 - sum; count += abs(a[i] - bf_a); nextState = Minus; } break; case Minus: if (state == Minus) { long long bf_a = a[i]; a[i] = 1 - sum; count += abs(a[i] - bf_a); nextState = Plus; } break; case Zero: if (state == Plus) { long long bf_a = a[i]; a[i] = -1 - sum; count += abs(a[i] - bf_a); nextState = Minus; } else if (state == Minus) { long long bf_a = a[i]; a[i] = 1 - sum; count += abs(a[i] - bf_a); nextState = Plus; } default: break; } sum += a[i]; state = nextState; } if (sum == 0) count++; cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = list(map(int, input().split())) cum_a = [0 for _ in range(n)] cum_a[0] = a[0] for i in range(n-1): cum_a[i+1] = cum_a[i] + a[i+1] cum_a = np.array(cum_a) count = 0 flag = 0 diff = 0 def r_flag(n): if n > 0: return 1 elif n < 0: return -1 else: return 0 flag = r_flag(cum_a[0]) for i in range(1, len(cum_a)): tmp_flag = r_flag(cum_a[i]) if tmp_flag * flag == -1: flag = tmp_flag elif tmp_flag * flag == 1: if tmp_flag == 1: count += abs(-1-(cum_a[i])) diff += -1-(cum_a[i]+diff) cum_a[i:] += diff flag = -1 else: count += abs(1-(cum_a[i])) diff += 1-(cum_a[i]+diff) cum_a[i:] += diff flag = 1 else: try: next_flag = r_flag(cum_a[i+1]-diff) if next_flag == 1: diff -= 1 cum_a[i:] -= 1 count += 1 else: diff += 1 cum_a[i:] += 1 count += 1 except: diff += 1 count += 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a_p = list(map(int,input().split())) a_n = a_p #positive if a[0] <= 0: counter_p = 0 for i in range(n): print(a_p,counter_p) sum_ai = sum(a_p[:i+1]) if i % 2 == 0: if sum_ai <= 0: a_p[i] += -sum_ai + 1 counter_p += -sum_ai + 1 else: if sum_ai >= 0: a_p[i] += -sum_ai - 1 counter_p += sum_ai + 1 print(counter_p) else: #negative counter_n = 0 for i in range(n): print(a_n,counter_n) sum_ai = sum(a_n[:i+1]) if i % 2 == 1: if sum_ai <= 0: a_n[i] += -sum_ai + 1 counter_n += -sum_ai + 1 else: if sum_ai >= 0: a_n[i] += -sum_ai - 1 counter_n += sum_ai + 1 print(counter_n) print(min(counter_n,counter_p))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long chk1, chk2, ans1 = 0, ans2 = 0; scanf("%d", &n); vector<int> a(n); for (auto& e : a) scanf("%d", &e); chk1 = a[0]; chk2 = a[0]; for (int i = 1; i < n; i++) { if (i % 2) { chk1 += a[i]; chk2 += a[i]; if (chk1 >= 0) { ans1 += chk1 + 1; chk1 = -1; } if (chk2 <= 0) { ans2 += -1 * chk2 + 1; chk2 = 1; } } else { chk1 += a[i]; chk2 += a[i]; if (chk1 <= 0) { ans1 += -1 * chk1 + 1; chk1 = 1; } if (chk2 >= 0) { ans2 += chk2 + 1; chk2 - 1; } } } if (ans1 >= 0 && ans2 >= 0) printf("%lld\n", min(ans1, ans2)); else if (ans1 >= 0) printf("%lld\n", ans1); else if (ans2 >= 0) printf("%lld\n", ans2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; int* a = new int[n]; bool flg = false; long long sum = 0; long long cnt = 0; for (int i = 0; i < n; ++i) { cin >> a[i]; if (i == 0) { if (a[0] <= 0) flg = false; else flg = true; } sum += a[i]; if (flg == false && i % 2 == 0 && sum >= 0) { while (sum >= 0) { --sum; ++cnt; } } else if (flg == false && i % 2 == 1 && sum <= 0) { while (sum <= 0) { ++sum; ++cnt; } } else if (flg == true && i % 2 == 0 && sum <= 0) { while (sum <= 0) { ++sum; ++cnt; } } else if (flg == true && i % 2 == 1 && sum >= 0) { while (sum >= 0) { --sum; ++cnt; } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "math" "os" "strconv" ) const pi = math.Pi var mod int = pow(10, 9) + 7 var Umod uint64 = 1000000007 var ans int64 func main() { reader.Split(bufio.ScanWords) n, _ := strconv.Atoi(read()) a := make([]int, n) for i := 0; i < n; i++ { a[i], _ = strconv.Atoi(read()) } sum := make([]int64, n) sum[0] = int64(a[0]) for i := 1; i < n; i++ { sum[i] += int64(a[i]) + sum[i-1] if 0 < sum[i-1] && 0 <= sum[i] { // NGパターン ans += sum[i] + 1 sum[i] = -1 } else if sum[i-1] < 0 && sum[i] <= 0 { // NGパターン ans += 1 - sum[i] sum[i] = 1 } } fmt.Println(ans) } /* ---------------------------------------- */ var reader = bufio.NewScanner(os.Stdin) func read() string { reader.Scan() return reader.Text() } func lcm(x, y int) int { return (x / gcd(x, y)) * y } func gcd(x, y int) int { if x%y == 0 { return y } else { r := x % y return gcd(y, r) } } var fac [1000000]int var finv [1000000]int var inv [1000000]int func combination_init() { fac[0], fac[1] = 1, 1 finv[0], finv[1] = 1, 1 inv[1] = 1 // invは a^(-1) mod p // pをaで割ることを考える // p/a*(a) + p%a = p // p/a*(a) + p%a = 0 (mod p) // -p%a = p/a*(a) (mod p) // -p%a *a^(-1)= p/a (mod p) // a^(-1)= p/a * (-p%a)^(-1) (mod p) // a^(-1) = for i := 2; i < 1000000; i++ { fac[i] = fac[i-1] * i % mod inv[i] = mod - inv[mod%i]*(mod/i)%mod finv[i] = finv[i-1] * inv[i] % mod } } func combination(x, y int) int { if x < y { return 0 } if fac[0] != 1 { combination_init() } return fac[x] * (finv[y] * finv[x-y] % mod) % mod //return fac[x] / (fac[y] * fac[x-y]) } func permutation(x, y int) int { if x < y { return 0 } if fac[0] != 1 { combination_init() } return fac[x] * (finv[x-y] % mod) % mod //return fac[x] / fac[x-y] } func max(x ...int) int { var res int = x[0] for i := 1; i < len(x); i++ { res = int(math.Max(float64(x[i]), float64(res))) } return res } func min(x ...int) int { var res int = x[0] for i := 1; i < len(x); i++ { res = int(math.Min(float64(x[i]), float64(res))) } return res } func pow(x, y int) int { return int(math.Pow(float64(x), float64(y))) } func abs(x int) int { return int(math.Abs(float64(x))) } func floor(x int) int { return int(math.Floor(float64(x))) } func ceil(x int) int { return int(math.Ceil(float64(x))) } type SortBy [][]int func (a SortBy) Len() int { return len(a) } func (a SortBy) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a SortBy) Less(i, j int) bool { return a[i][0] < a[j][0] } type PriorityQueue []int func (h PriorityQueue) Len() int { return len(h) } func (h PriorityQueue) Less(i, j int) bool { return h[i] < h[j] } func (h PriorityQueue) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *PriorityQueue) Push(x interface{}) { *h = append(*h, x.(int)) } func (h *PriorityQueue) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- """ Created on Sat Sep 8 15:51:53 2018 @author: maezawa """ def f(n, a0, cnt, sa, sign): a = a0[:] if a[0] == 0: a[0] = 1 cnt += 1 if sign == -1: a[0] = -a[0] cnt += 2*abs(a[0]) for i in range(n-1): sa += a[i] na = -sa//abs(sa)*(abs(sa)+1) if abs(a[i+1]) > abs(na) and a[i+1]*na > 0: continue else: cnt += abs(na-a[i+1]) a[i+1] = na return cnt n = int(input()) a = list(map(int, input().split())) sa = 0 cnt = 0 cnt0 = f(n, a, 0, 0, -1) cnt1 = f(n, a, 0, 0, 1) cnt = min([cnt0,cnt1]) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; long long unsigned int cnt, cnt1, cnt2 = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { cnt1 += abs(1 - A[i]); } else { cnt1 += abs(-1 - A[i]); } } for (int i = 0; i < N; i++) { if (i % 2 == 1) { cnt2 += abs(1 - A[i]); } else { cnt2 += abs(-1 - A[i]); } } cnt = min(cnt1, cnt2); cout << cnt; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
gets xs = gets.split(' ').map(&:to_i) def flip_sign(v) v > 0 ? -1 : 1 end puts xs.inject([0,0]){|r,v| sum = r.first count = r.last sign = sum > 0 if sum == 0 sum = v else sum += v if sign == (sum > 0) count += sum.abs + 1 sum = flip_sign(sum) end end [sum, count] }.last
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) cnt_1 = 0 base = 0 #奇数番目が正 for i in range(n): if ((base + a[i] >= 0) and (i % 2 == 1)) or ((base + a[i] <= 0) and (i % 2 == 0)): cnt_1 += (1 + abs(base + a[i])) base += (1 + abs(base + a[i])) * (-1) ** i #調整後のa[0]~a[i]の和 else: base += a[i] #調整後のa[0]~a[i]の和 cnt_2 = 0 base = 0 for i in range(n): if ((base + a[i] <= 0) and (i % 2 == 1)) or ((base + a[i] >= 0) and (i % 2 == 0)): #奇数番目が負 cnt_2 += (1 + abs(base + a[i])) base -= (1 + abs(base + a[i])) * (-1) ** i #調整後のa[0]~a[i]の和 else: base += a[i] #調整後のa[0]~a[i]の和 print(min(cnt_1, cnt_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = (long long)1 << 60; int main() { int N; cin >> N; int a[N]; for (int i = 0; i < (int)(N); i++) { cin >> a[i]; } int ans = 0; int sum = 0; for (int i = 0; i < (int)(N); i++) { sum += a[i]; if (sum == 0) { if (a[i] > 0) { a[i]++; sum++; ans++; } else { a[i]--; sum--; ans++; } } } sum = 0; for (int i = 0; i < (int)(N - 1); i++) { sum += a[i]; if (sum * (sum + a[i + 1]) > 0) { if (sum + a[i + 1] < 0) { a[i + 1] += abs(1 - (sum + a[i + 1])); ans += abs(1 - (sum + a[i + 1])); } else { a[i + 1] += abs(-1 - (sum + a[i + 1])); ans += abs(-1 - (sum + a[i + 1])); } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = [int(x) for x in input().split()] A = a[0] asum = [A] if A == 0: ansp,ansm,tempp,tempm = 1,1,1,-1 elif A < 0: ansp,ansm,tempp,tempm = -A + 1, 0, -A + 1, 0 else: ansp,ansm,tempp,tempm = 0, A2 + 1, 0, -A2 - 1 for i in range(1,N): A = asum[i-1] + a[i] asum += [A] A1 = A + tempp if A1 == 0: ansp += 1 tempp += ((i%2)*2-1) elif i%2==0 and A1 < 0: ansp += -A1 + 1 tempp += -A1 + 1 elif i%2!=0 and A1 > 0: ansp += A1 + 1 tempp += -A1 - 1 A2 = A + tempm if A2 == 0: ansm += 1 tempm += -((i%2)*2-1) elif i%2!=0 and A2 < 0: ansm += -A2 + 1 tempm += -A2 + 1 elif i%2==0 and A2 > 0: ansm += A2 + 1 tempm += -A2 - 1 print(min(ansp,ansm))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int a[100010]; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } int sa = 0, ans0 = 0, ans1 = 0; for (int i = 0; i < n; i++) { sa += a[i]; if (i % 2 == 0) { if (sa >= 0) { ans0 += sa - (-1); sa = -1; } } else { if (sa <= 0) { ans0 += 1 - sa; sa = 1; } } } sa = 0; for (int i = 0; i < n; i++) { sa += a[i]; if (i % 2 == 1) { if (sa >= 0) { ans1 += sa - (-1); sa = -1; } } else { if (sa <= 1) { ans1 += 1 - sa; sa = 1; } } } cout << min(ans0, ans1) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> void showvector(vector<T> v) { for (T x : v) cout << x << " "; cout << "\n"; } template <typename T> void showvector1(vector<T> v) { long long int n = v.size(); for (long long int i = 1; i <= n - 1; i++) cout << v[i] << "\n"; } template <typename T> void showset(set<T> s) { for (T x : s) cout << x << " "; cout << "\n"; } template <class T> void showvectorpair(vector<T> v) { for (auto it = v.begin(); it != v.end(); it++) cout << it->first << " " << it->second << "\n"; cout << "\n"; } template <typename T, typename P> void showmap(map<T, P> m) { for (auto it = m.begin(); it != m.end(); it++) cout << it->first << " " << it->second << "\n"; cout << "\n"; } template <typename T> bool comp(T a, T b) { return (a > b); } template <class T> bool comppair(T a, T b) { if (a.first == b.first) return (a.second > b.second); return (a.first > b.first); } bool sameparity(long long int a, long long int b) { return (a % 2 == b % 2); } bool difparity(long long int a, long long int b) { return !(a % 2 == b % 2); } bool isprime(long long int x) { if (x <= 1) return false; for (long long int i = 2; i <= sqrt(x); i++) { if (x % i == 0) return false; } return true; } bool iseven(long long int x) { return !(x % 2); } bool isodd(long long int x) { return (x % 2); } void vfun() { long long int n, k; cin >> n; vector<long long int> v(n); for (long long int i = 0; i < n; i++) cin >> v[i]; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long int test = 1; while (test--) { long long int n; cin >> n; vector<long long int> v(n); for (long long int i = 0; i < n; i++) cin >> v[i]; long long int sum = v[0], psum = v[0], cnt = 0; if (v[0] == 0) { cnt = 1; if (v[1] > 0) sum = psum = -1; else sum = psum = 1; } for (long long int i = 1; i <= n - 1; i++) { sum += v[i]; if (psum > 0) { if (sum >= 0) { cnt += (sum + 1); sum = -1; } } else { if (sum <= 0) { cnt += (abs(sum) + 1); sum = 1; } } psum = sum; } cout << cnt << "\n"; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; class Program{ static int n; static long ans; static int[] s; static void Main(){ n=int.Parse(Console.ReadLine()); s=Array.ConvertAll(Console.ReadLine().Split(),int.Parse); if(s[0]==0){s[0]=fu(1);ans++;} for(int i=1;i<n;i++){ s[i]+=s[i-1]; if(s[i]==0){s[i]=-Math.Sign(s[i-1]);ans++;} else if(Math.Sign(s[i])==Math.Sign(s[i-1])){ ans+=Math.Abs(s[i])+1; s[i]=-Math.Sign(s[i]); } } Console.WriteLine("{0}",ans); } static int fu(int z){ if(z==n){return 1;} else if(s[z]==0){s[z]=fu(z+1);ans++;} return s[z]<0?1:-1; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 100010; int n; long long a[MAXN]; long long s[MAXN]; void solve() { s[0] = a[0]; for (int i = 1; i < n; i++) { s[i] = s[i - 1] + a[i]; } long long cnt = 0; long long carry = 0; for (int i = 1; i < n; i++) { if ((s[i] + carry) * s[i - 1] >= 0) { cnt += abs(s[i] + carry) + 1; if (s[i - 1] < 0) { carry += abs(s[i]) + 1; s[i] = 1; } else { carry -= abs(s[i]) + 1; s[i] = -1; } } else { s[i] += carry; } } cout << cnt << endl; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } solve(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n = 0; cin >> n; int* all = new int[n]; for (int i = 0; i < n; i++) cin >> all[i]; int ans = 0; int sum = 0; int last = 0; if (all[0] > 0) last = -1; else if (all[0] < 0) last = 1; else { last = -1; all[0] = 1; ans++; } for (int i = 0; i < n; i++) { sum += all[i]; if (last == 1) { if (sum >= 0) { ans += sum + 1; sum = -1; } last = -1; } else if (last == -1) { if (sum <= 0) { ans += -1 * sum + 1; sum = 1; } last = 1; } } cout << ans; system("pause"); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) numbers = list(map(int, input().split())) counter = 0 sum_i_n = 0 sum_i_n_1 = numbers[0] for i in range(len(numbers) - 1): # sum_i_n = sum(numbers[:i + 1]) # sum_i_n_1 = sum(numbers[:i + 2]) sum_i_n += numbers[i] sum_i_n_1 += numbers[i + 1] if sum_i_n == 0: numbers[i] += 1 sum_i_n += 1 sum_i_n_1 += 1 counter += 1 if sum_i_n * sum_i_n_1 > 0: sub = abs(sum_i_n_1) + 1 counter += sub if sum_i_n_1 > 0: numbers[i + 1] -= sub sum_i_n_1 -= sub else: numbers[i + 1] += sub sum_i_n_1 += sub if sum(numbers) == 0: counter += 1 print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000]; int n; void solve() { long long ans = 0; long long sum0 = a[0]; long long sum1; for (int i = 1; i < n; i++) { sum1 = sum0 + a[i]; if (sum1 * sum0 < 0) { } else if (sum1 * sum0 > 0) { ans += abs(sum1) + 1; sum1 = -1 * sum1 / abs(sum1); } else { ans++; sum1 = -1 * sum0 / abs(sum0); } sum0 = sum1; } cout << ans << endl; return; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) import numpy as np na1 = np.array(a).cumsum() na2 = np.array(a).cumsum() cnt1 = 0 hoge1 = 0 cnt2 = 0 hoge2 = 0 for i in range(1, n): na1[i] += hoge1 na2[i] += hoge2 if(i % 2 == 0 and na1[i] <= 0): delta1 = abs(na1[i]) + 1 cnt1 = cnt1 + delta1 hoge1 += delta1 elif(i % 2 == 1 and na1[i] >= 0): delta1 = abs(na1[i]) + 1 cnt1 = cnt1 + delta1 hoge1 -= delta1 if(i % 2 == 1 and na2[i] <= 0): delta2 = abs(na2[i]) + 1 cnt2 = cnt2 + delta2 hoge2 += delta2 elif(i % 2 == 0 and na2[i] >= 0): delta2 = abs(na2[i]) + 1 cnt2 = cnt2 + delta2 hoge2 -= delta2 else: na1[i] print(min([cnt1,cnt2]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int in(void) { int i; scanf("%d", &i); return i; } long long llin(void) { long long i; scanf("%lld", &i); return i; } void chin(char s[]) { scanf("%s", s); } void print(int a) { printf("%d\n", a); } void llprint(long long a) { printf("%lld\n", a); } void print2(int a, int b) { printf("%d %d\n", a, b); } long long max(long long a, long long b) { return a > b ? a : b; } long long min(long long a, long long b) { return a < b ? a : b; } int main(void) { long long n = llin(), a[100000], i, ans = 0, sum = 0; for (i = 0; i < n; i++) { a[i] = llin(); } for (i = 0; i < n; i++) { sum += a[i]; if (sum == 0) { if (sum - a[i] < 0) { sum = 1; ans++; } else if (sum - a[i] > 0) { sum = -1; ans++; } else if (a[i + 1] > 0) { sum = -1; ans++; } else { sum = 1; ans++; } } else if (sum - a[i] < 0 && sum < 0) { ans += fabs(1 - sum); sum = 1; } else if (sum - a[i] > 0 && sum > 0) { ans += fabs(1 + sum); sum = -1; } } llprint(ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const int INF = (1 << 30) - 1; const long long LINF = (1LL << 62) - 1; const int dx[] = {-1, 0, 1, 0}; const int dy[] = {0, 1, 0, -1}; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } signed main() { ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; vector<int> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; int num = max(a[0], 1), ans = max(0, 1 - a[0]); for (int i = 1; i < n; i++) { if (i % 2) { ans += max(num + a[i] + 1, 0); num = min(-1, num + a[i]); } else { ans += max(1 - (num + a[i]), 0); num = max(1, num + a[i]); } } num = min(a[0], -1); int cnt = max(0, a[0] + 1); for (int i = 1; i < n; i++) { if (i % 2) { cnt += max(1 - (num + a[i]), 0); num = max(1, num + a[i]); } else { cnt += max(num + a[i] + 1, 0); num = min(-1, num + a[i]); } } chmin(ans, cnt); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int flag[100005], k[100005]; long long a[100005], sum[100005], ans, b[100005], tot[100005], ant; int main() { int m = 0; scanf("%d", &n); scanf("%lld", &a[1]); b[1] = a[1]; sum[1] = a[1]; tot[1] = sum[1]; if (sum[1] > 0) flag[1] = 1; if (sum[1] < 0) flag[1] = 0; if (sum[1] == 0) m = 1; if (m == 0) { for (int i = 2; i <= n; i++) { scanf("%lld", &a[i]); sum[i] = a[i] + sum[i - 1]; if (sum[i] > 0) flag[i] = 1; if (sum[i] < 0) flag[i] = 0; if (flag[i - 1] == 1) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; flag[i] = 0; } } else { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; flag[i] = 1; } } } printf("%lld\n", ans); } else { ans = 1; flag[1] = 0; for (int i = 2; i <= n; i++) { scanf("%lld", &a[i]); b[i] = a[i]; sum[i] = a[i] + sum[i - 1]; if (sum[i] > 0) flag[i] = 1; if (sum[i] < 0) flag[i] = 0; if (flag[i - 1] == 1) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; flag[i] = 0; } } else if (flag[i - 1] == 0) { if (sum[i] <= 0) { ans += 1 - sum[i]; sum[i] = 1; flag[i] = 1; } } } k[1] = 1; ant = 1; for (int i = 2; i <= n; i++) { tot[i] = b[i] + tot[i - 1]; if (tot[i] > 0) k[i] = 1; if (tot[i] < 0) k[i] = 0; if (k[i - 1] == 1) { if (tot[i] >= 0) { ant += tot[i] + 1; tot[i] = -1; k[i] = 0; } } else if (k[i - 1] == 0) { if (tot[i] <= 0) { ant += 1 - tot[i]; tot[i] = 1; k[i] = 1; } } } printf("%lld\n", min(ant, ans)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int a, sum[1000000], cnt[2] = {}, b, n; scanf("%d", &n); scanf("%d", &a); sum[0] = a; for (int i = 1; i < n; i++) { scanf("%d", &a); sum[i] = sum[i - 1] + a; } b = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && sum[i] + b >= 0) { cnt[0] += sum[i] + b + 1; b -= sum[i] + b + 1; } else if (i % 2 == 1 && sum[i] + b <= 0) { cnt[0] -= sum[i] + b; cnt[0]++; b += 1 - (sum[i] + b); } } b = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && sum[i] + b <= 0) { cnt[1] -= sum[i] + b; cnt[1]++; b += 1 - (sum[i] + b); } else if (i % 2 == 1 && sum[i] + b >= 0) { cnt[1] += sum[i] + b + 1; b -= sum[i] + b + 1; } } if (cnt[0] < cnt[1]) printf("%d\n", cnt[0]); else printf("%d\n", cnt[1]); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#!/usr/bin/env ruby # n = STDIN.gets.to_i a = STDIN.gets.split(' ').map{|x| x.to_i} s = Array.new(n,0) output = 0 if a[0] == 0 output += 1 s[0] = (a[1] > 0) ? -1 : 1 else s[0] = a[0] end 1.upto(n-1) do |i| s[i] = s[i-1] + a[i] if s[i] == 0 change = 1 s[i] = (s[i-1] > 0) ? -1 : 1 else if (s[i-1] > 0) ^ (s[i] > 0) change = 0 else change = s[i].abs+1 s[i] = (s[i-1] > 0) ? -1: 1 end end output += change end puts output
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- # 整数の入力 n=int(input()) a=input().split() counter=0 S=int(a[0]) # 出力 for i in range(1,n): if S<0 and S+int(a[i])<=0: counter+=-S-int(a[i])+1 a[i]=-S+1 elif S>0 and S+int(a[i])>=0: counter+=S+int(a[i])+1 a[i]=-S-1 S+=int(a[i]) print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) nList = list(map(int,input().split())) gokei = nList[0] count = 0 for i in range(1,n): gokei_tmp =gokei+ nList[i] if (gokei < 0 and gokei_tmp > 0) or (gokei > 0 and gokei_tmp < 0): gokei = gokei_tmp else: count += abs(gokei_tmp) gokei_tmp -= gokei_tmp if gokei > 0: gokei_tmp -= 1 else: gokei_tmp += 1 count += 1 gokei = gokei_tmp print(count)