Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) b=list(map(int,input().split())) a=b[:] condition='' cnt=0 wa=0 for i in range(n): wa+=a[i] if i == 0: if a[i]>0: condition='minus' else: condition='plus' elif condition == 'plus': condition='minus' if wa<=0: cnt+=abs(wa)+1 a[i]+=abs(wa)+1 wa+=abs(wa)+1 elif condition == 'minus': condition='plus' if wa>=0: cnt+=abs(wa)+1 a[i]-=abs(wa)+1 wa-=abs(wa)+1 cnt1=cnt a=b[:] condition='' cnt=0 wa=0 for i in range(n): wa+=a[i] if i == 0: a[i]=a[i]/abs(a[i])*(-1) cnt+=abs(a[i])+1 wa=a[i] if a[i]>0: condition='minus' else: condition='plus' elif condition == 'plus': condition='minus' if wa<=0: cnt+=abs(wa)+1 a[i]+=abs(wa)+1 wa+=abs(wa)+1 elif condition == 'minus': condition='plus' if wa>=0: cnt+=abs(wa)+1 a[i]-=abs(wa)+1 wa-=abs(wa)+1 cnt2=cnt print(min(cnt1,cnt2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; class Program { static void Main(string[] args) { int n = int.Parse(Console.ReadLine()); string[] A = Console.ReadLine().Split(); int sum = int.Parse(A[0]); int sign = Math.Sign(sum); int ans = 0; for (int i = 1; i < n; ++i) { int a = int.Parse(A[i]); sign *= -1; if (sign * Math.Sign(a + sum) > 0) { sum += a; } else { ans += Math.Abs((Math.Abs(sum) + 1) * sign - a); sum = sign; } } Console.WriteLine(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> v; v.reserve(n); for (int i = 0; i < n; ++i) { int tmp; cin >> tmp; v.push_back(tmp); } int case1 = 0; int pre = 0; for (int i = 0; i < n; ++i) { const auto k = pre + v[i]; if (i % 2) { if (k >= 0) { case1 += k + 1; pre = -1; } else { pre = k; } } else { if (k <= 0) { case1 += 1 - k; pre = 1; } else { pre = k; } } } int case2 = 0; pre = 0; for (int i = 0; i < n; ++i) { const auto k = pre + v[i]; if (i % 2 == 0) { if (k >= 0) { case2 += k + 1; pre = -1; } else { pre = k; } } else { if (k <= 0) { case2 += 1 - k; pre = 1; } else { pre = k; } } } cout << min(case1, case2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def c(ints): for i in range(len(ints)): if ints[i] != 0: sig = 1 if ints[i] > 0 else -1 sig_ = -sig total = ints[i] total_ = -sig mov = i mov_ = abs(total) + 1 if i > 0: mov += 1 mov_ += 2 j = i break if i == len(ints) - 1: return i + 1 for i_ in ints[j+1:]: tmp = total + i_ tmp_ = total_ + i_ if tmp == 0: mov +=1 tmp = -sig elif sig * tmp > 0: mov += abs(tmp) + 1 tmp = -sig if tmp_ == 0: mov_ +=1 tmp_ = -sig_ elif sig_ * tmp_ > 0: mov_ += abs(tmp_) + 1 tmp_ = -sig_ sig *= -1 total = tmp sig_ *= -1 total_ = tmp_ return min(mov, mov_) _ = input() inp = input() inp = inp.split(' ') inp = [int(i_) for i_ in inp] print(c(inp))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long sub_mod(long long a, long long b, long long x) { long long tmp = (a - b) % x; if (tmp < 0) tmp += x; return tmp; } long long gcd(long long a, long long b) { if (b == 0) return a; else return gcd(b, a % b); } int dx[] = {0, 1, 0, -1}; int dy[] = {-1, 0, 1, 0}; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<int> nums(n, 0); for (int i = 0; i < n; ++i) { cin >> nums[i]; } int sum = nums[0], ans = 0; for (int i = 1; i < n; ++i) { if ((sum > 0 && sum + nums[i] < 0) || (sum < 0 && sum + nums[i] > 0)) { } else if (sum > 0) { ans += abs(sum + nums[i] + 1); nums[i] -= ans; } else { ans += abs(sum + nums[i] - 1); nums[i] += ans; } sum += nums[i]; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; /*int check(vector<int> a){ int time = 0; int pre_sum = a.at(0); int n = a.size(); if(a.at(0)<0){ for(int i = 1; i<n; i++){ int sum = pre_sum + a.at(i); if(i%2==1 && sum <= 0){ time += abs(sum-1); sum = 1; }else if (i%2==0 && sum >=0){ time += abs(sum+1); sum = -1; } pre_sum = sum; } }else if(a.at(0)>0){ for(int i = 1; i<n; i++){ int sum = pre_sum + a.at(i); if(i%2==0 && sum <= 0){ time += abs(sum-1); sum = 1; }else if(i%2==1 && sum >=0){ time += abs(sum+1); sum = -1; } pre_sum = sum; } } return time; } int zerocheck(vector<int> a){ a.at(0) = 1; int time1 = check(a)+1; a.at(0) = -1; int time2 = check(a)+1; int time = min(time1, time2); return time; } int main(){ int n; cin >> n; int time = 0; vector<int> a(n); for(auto& x:a){ cin >> x; } if(a.at(0) == 0){ time = zerocheck(a); }else{ time = check(a); } cout << time << endl; }*/ int main(){ int n; cin >> n; vector<int> a(n); for(auto& x: a){ cin >> x; } int sum1 = 0; int sum2 = 0; int time1 = 0; int time2 = 0; for(int i =0;i<n;i++){ sum1 += a.at(i); sum2 += a.at(i); if(i%2 == 0){ if(sum1<=0){ time1 += sum1*(-1)+1; sum1 = 1; } if(sum2>=0){ time2 += sum2+1; sum2 = -1; } } if(i%2==1){ if(sum1>=0){ time1 += sum1+1: sum1 = -1; } if(sum2<=0){ time2 += sum2*(-1)+1; sum2 = 1; } } } cout << min(time1, time2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100000]; int getTotal(int n, int dir) { int total{}, sum{}; for (int i{0}; i < n; ++i) { sum += a[i]; if (dir > 0 && sum <= 0) { total += -sum + 1; sum = 1; } else if (dir < 0 && sum >= 0) { total += sum + 1; sum = -1; } dir *= -1; } return total; } int main() { int n; scanf("%d", &n); for (int i{0}; i < n; ++i) scanf("%d", &a[i]); int try1 = getTotal(n, 1); int try2 = getTotal(n, -1); printf("%d\n", ((try1) < (try2) ? (try1) : (try2))); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long a[100000] = {0}; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } long long tmp[2] = {-1, 1}; long long ans = 0LL; long long sum = a[0]; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) > 0) { if (sum > 0) { ans += abs(sum + a[i] - tmp[0]); sum = tmp[0]; } else if (sum < 0) { ans += abs(sum + a[i] - tmp[1]); sum = tmp[1]; } } else if (sum + a[i] == 0) { if (sum > 0) { ans += 1; sum = tmp[0]; } else if (sum < 0) { ans += 1; sum = tmp[1]; } } else { sum += a[i]; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); int a[n]; for (int i = 0; i < n; i++) scanf(" %d", &a[i]); int S = a[0]; int j = 0; for (int i = 1; i < n; i++) { if (S * (S + a[i]) < 0) { S += a[i]; } else if (S + a[i] == 0) { j += 1; if (S > 0) S = -1; else if (S < 0) S = 1; } else { j += abs(S + a[i]) + 1; if (S < 0) S = 1; else if (S > 0) S = -1; } } printf("%d\n", j); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a_list = list(map(int,input().split())) def greeed(sum_a,now_a,next_a,count): if now_a >= 0 and next_a >= 0: next_a = -1 count += next_a + 1 elif now_a < 0 and next_a <0: next_a = 0 count += next_a if sum_a + next_a ==0: if next_a >=0: next_a += 1 count += 1 else : next_a = next_a -1 count+= 1 return count count = 0 if a_list[0] ==0: if a_list[1]>=0: a_list = -1 count+= 1 else : a_list = 1 count +=1 sum_a = a_list[0] for i in range(0,n-1): now_a = a_list[i] next_a = a_list[i + 1] count = greeed(sum_a,now_a,next_a,count) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = (1ll << 60); const long long MOD = (long long)1e9 + 7; signed main() { long long n; long long aa[100001]; long long a[100001]; cin >> n; for (long long i = 0; i < n; i++) { cin >> aa[i]; a[i] = aa[i]; } long long mn = INF; { long long cnt; long long sum; if (a[0] > 0) { cnt = 0; } else { cnt = 1 - a[0]; a[0] = 1; } sum = 0; for (long long i = 1; i < n; i++) { if (i % 2 == 0) { if (sum + a[i - 1] + a[i] <= 0) { cnt += 1 - sum - a[i - 1] - a[i]; a[i - 1] = 1 - sum - a[i]; } } else { if (sum + a[i - 1] + a[i] >= 0) { cnt += sum + a[i - 1] + a[i] + 1; a[i - 1] = -1 - sum - a[i]; } } sum += a[i - 1]; } mn = min(mn, cnt); } for (long long i = 0; i < n; i++) a[i] = aa[i]; { long long cnt; long long sum; if (a[0] < 0) { cnt = 0; } else { cnt = a[0] + 1; a[0] = -1; } sum = 0; for (long long i = 1; i < n; i++) { if (i % 2 == 0) { if (sum + a[i - 1] + a[i] >= 0) { cnt += sum + a[i - 1] + a[i] + 1; a[i - 1] = -1 - sum - a[i]; } } else { if (sum + a[i - 1] + a[i] <= 0) { cnt += 1 + sum + a[i - 1] + a[i]; a[i - 1] = 1 - sum - a[i]; } } sum += a[i - 1]; } mn = min(mn, cnt); } cout << mn << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> void showvector(vector<T> v) { for (T x : v) cout << x << " "; cout << "\n"; } template <typename T> void showvector1(vector<T> v) { long long int n = v.size(); for (long long int i = 1; i <= n - 1; i++) cout << v[i] << "\n"; } template <typename T> void showset(set<T> s) { for (T x : s) cout << x << " "; cout << "\n"; } template <class T> void showvectorpair(vector<T> v) { for (auto it = v.begin(); it != v.end(); it++) cout << it->first << " " << it->second << "\n"; cout << "\n"; } template <typename T, typename P> void showmap(map<T, P> m) { for (auto it = m.begin(); it != m.end(); it++) cout << it->first << " " << it->second << "\n"; cout << "\n"; } template <typename T> bool comp(T a, T b) { return (a > b); } template <class T> bool comppair(T a, T b) { if (a.first == b.first) return (a.second > b.second); return (a.first > b.first); } bool sameparity(long long int a, long long int b) { return (a % 2 == b % 2); } bool difparity(long long int a, long long int b) { return !(a % 2 == b % 2); } bool isprime(long long int x) { if (x <= 1) return false; for (long long int i = 2; i <= sqrt(x); i++) { if (x % i == 0) return false; } return true; } bool iseven(long long int x) { return !(x % 2); } bool isodd(long long int x) { return (x % 2); } void vfun() { long long int n, k; cin >> n; vector<long long int> v(n); for (long long int i = 0; i < n; i++) cin >> v[i]; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long int test = 1; while (test--) { long long int n; cin >> n; vector<long long int> v(n); for (long long int i = 0; i < n; i++) cin >> v[i]; long long int sum = v[0], psum = v[0], cnt = 0; if (v[0] == 0) { cnt = 1; if (v[1] > 0) sum = psum = -1; else sum = psum = 1; } for (long long int i = 1; i <= n - 1; i++) { sum += v[i]; if (psum > 0) { if (sum >= 0) { cnt += sum + 1; sum = -1; } } else { if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } } psum = sum; } cout << cnt << "\n"; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) now_a = a[0] r, tmp, count = 0, 0, 0 # for i in range(1, n): # tmp = t + a[i] # if t < 0 and tmp < 0: # r = 1 - tmp # elif t > 0 and tmp > 0: # r = -tmp - 1 # elif tmp == 0: # if t < 0: # r = 1 - t - a[i] # else: # r = -1 - t - a[i] # else: # r = 0 # print(t,tmp, r) # count += abs(r) # t = tmp + r # print(t) # print(count) ''' True = positive False = negative ''' sign = True if now_a < 0: sign = False for i in range(1, n): next_a = now_a + a[i] if sign: if next_a >= 0: count += next_a + 1 now_a = -1 else: now_a = next_a sign = False else: if next_a <= 0: count += abs(next_a) + 1 now_a = 1 else: now_a = next_a sign = True print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int,input().split())) a = [A,A] res = [0,0] sum = 0 for check in range(2): sum = 0 if a[check][0] == 0: if check == 0: a[0][0] += 1 else: a[1][0] -= 1 res[check] += 1 if check == 1: if a[1][0] > 0: temp = -1 - a[1][0] a[1][0] += temp res[1] += temp * -1 elif a[1][0] < 0: temp = 1 - a[1][0] a[1][0] += temp res[1] += temp for i in range(n-1): sum += a[check][i] if sum * (sum + a[check][i+1]) >= 0: if sum > 0: temp = -1 - sum - a[check][i+1] a[check][i+1] += temp res[check] += temp * -1 else: temp = 1 - sum - a[check][i+1] a[check][i+1] += temp res[check] += temp print(min(res[0],res[1]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int a[100000], c[2]; int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; for (int C = 0; C < 2; C++) { int sign = C * 2 - 1; int sum = 0; for (int i = 0; i < n; i++) { if ((sum + a[i]) * sign < 1) { c[C] += abs(sum + a[i] - sign); sum = sign; } else sum += a[i]; sign *= -1; } } cout << min(c[0], c[1]); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
n = int(raw_input()) a = map(int, raw_input().split()) count = 0 if a[0] == 0: count += 1 if 0 < a[1]: a[0] = 1 else: a[0] = -1 for i in range(1, n): SUM = [sum(a[:i]), sum(a[:(i + 1)])] if 0 <= SUM[0] * SUM[1]: if 0 < SUM[0]: a[i] -= (SUM[1] + 1) count += (SUM[1] + 1) else: a[i] += (-SUM[1] + 1) count += (-SUM[1] + 1) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.sync_with_stdio(false); int n, a; cin >> n; int odd_sum = 0, even_sum = 0; int odd_cost = 0, even_cost = 0; for (int i = (int)(0); i < (int)(n); i++) { cin >> a; if (i % 2) { if (odd_sum + a > 0) odd_sum += a; else { odd_cost += abs(1 - (odd_sum + a)); odd_sum = 1; } if (even_sum + a < 0) even_sum += a; else { even_cost += abs(-1 - (even_sum + a)); even_sum = -1; } } else { if (odd_sum + a < 0) odd_sum += a; else { odd_cost += abs(-1 - (odd_sum + a)); odd_sum = -1; } if (even_sum + a > 0) even_sum += a; else { even_cost += abs(1 - (even_sum + a)); even_sum = 1; } } } cout << min(odd_cost, even_cost) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class T> using V = vector<T>; template <class T, class U> using P = pair<T, U>; using vll = V<ll>; using vvll = V<vll>; const ll MOD = (ll)1e9 + 7; const ll HIGHINF = (ll)1e18; int main() { ll n; cin >> n; vll a(n); for (ll i = 0; i < (ll)n; ++i) cin >> a.at(i); ll ansp = 0, ansm = 0; ll sump = 0, summ = 0; if (a.at(0) < 0) { ansp = -a.at(0) + 1; sump = 1; summ = a.at(0); } else { ansm = a.at(0) + 1; summ = -1; sump = a.at(0); } for (ll i = 1; i < (ll)n; ++i) { if (sump > 0) { if (sump + a.at(i) >= 0) { ansp += a.at(i) + sump + 1; sump = -1; } else { sump += a.at(i); } } else { if (sump + a.at(i) <= 0) { ansp += -(a.at(i) + sump) + 1; sump = 1; } else { sump += a.at(i); } } if (summ < 0) { if (summ + a.at(i) <= 0) { ansm += -(a.at(i) + summ) + 1; summ = 1; } else { summ += a.at(i); } } else { if (summ + a.at(i) >= 0) { ansm += a.at(i) + summ + 1; summ = -1; } else { summ += a.at(i); } } } cout << min(ansp, ansm) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for(int i =0; i<n; i++) { a[i] = sc.nextInt(); } boolean isPositive = false; if(a[0] > 0) { isPositive = true; } int cnt = 0; int tmp = a[0]; for(int i=0; i<n; i++) { if(i+1 < n) { if(isPositive) { while(tmp+a[i+1] >= 0) { a[i+1]--; cnt++; } } else { while(tmp+a[i+1] <= 0) { a[i+1]++; cnt++; } } if(isPositive) { isPositive = false; } else { isPositive = true; } tmp += a[i+1]; } } System.out.println(cnt); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sequence(N: int, A: list) -> int: def count_op(s: int) -> int: op = 0 if s * A[0] > 0: s = A[0] else: s = s / abs(s) op = abs(1 - s) for a in A[1:]: if s < 0: if s + a > 0: # OK s = s + a continue else: op += 1 - (s + a) s = 1 else: # s > 0 if s + a < 0: # OK s = s + a continue else: op += (s + a) - (-1) s = -1 return op return min(count_op(1), count_op(-1)) if __name__ == "__main__": N = int(input()) A = [int(s) for s in input().split()] ans = sequence(N, A) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(NULL); ios::sync_with_stdio(false); int n; cin >> n; long long a[n]; long long sum = 0; long long count = 0; for (int i = 0; i < n; i++) { cin >> a[i]; if (i == 0) { sum = a[i]; if ((sum == 0) && (i < n - 1)) { if (a[i + 1] < 0) { sum = 1; } else { sum = -1; } } } else { if (sum < 0) { if (sum + a[i] <= 0) { count += 1 - (sum + a[i]); sum = 1; } else { sum = sum + a[i]; } } else if (sum > 0) { if (sum + a[i] >= 0) { count += sum + a[i] - (-1); sum = -1; } else { sum = sum + a[i]; } } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> S(N + 1); for (int i = 1; i <= N; ++i) { cin >> S[i]; S[i] += S[i - 1]; } int ans = 0; int add = 0; int sign = S[1] >> 31; for (int i = 2; i <= N; ++i) { S[i] += add; int sign_i = ((S[i] >> 31) << 1) + 1; if (sign_i == sign) { ans += abs(-sign_i - S[i]); add += -sign_i - S[i]; S[i] = -sign_i; sign_i = -sign_i; } else if (S[i] == 0) { ans += 1; add += -sign; S[i] += -sign; sign_i = -sign; } sign = sign_i; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long sum = 0, num = 0; for (int i = 0; i < n; i++) { int a; cin >> a; if (sum > 0 && sum + a >= 0) { num += sum + a + 1; a -= sum + a + 1; } else if (sum < 0 && sum + a <= 0) { num += abs(sum + a) + 1; a += sum + a + 1; } sum += a; } cout << num << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys import copy import math from _bisect import * from collections import * from operator import itemgetter from math import factorial """ from fractions import gcd def lcm(x, y): return (x * y) // gcd(x, y) """ stdin = sys.stdin ni = lambda: int(ns()) na = lambda: list(map(int, stdin.readline().split())) ns = lambda: stdin.readline() n = ni() li = na() ans = 0 if li[0] > 0: code = 1 else: code = 0 s = li[0] for i in range(n - 1): code = 1 - code if code: if s + li[i + 1] > 0: s += li[i + 1] continue else: ans += abs(s * (-1) + 1 - li[i + 1]) s = 1 else: if s + li[i + 1] < 0: s += li[i + 1] continue else: ans += abs(s * (-1) - 1 - li[i + 1]) s = -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long ans = 0; if (sum == 0) { sum = 1; ans++; } for (int i = 1; i < n; i++) { long long tmp = sum + a[i]; if (sum > 0 && tmp > 0) { ans += tmp + 1; sum = -1; } else if (sum < 0 && tmp < 0) { ans += -tmp + 1; sum = 1; } else if (tmp == 0) { ans++; if (sum < 0) sum = 1; else sum = -1; } else sum = tmp; } long long sum2; if (a[0] >= 0) sum2 = -1; else sum2 = 1; long long ans2 = a[0] + 1; for (int i = 1; i < n; i++) { long long tmp = sum2 + a[i]; if (sum2 > 0 && tmp > 0) { ans2 += tmp + 1; sum2 = -1; } else if (sum2 < 0 && tmp < 0) { ans2 += -tmp + 1; sum2 = 1; } else if (tmp == 0) { ans2++; if (sum2 < 0) sum2 = 1; else sum2 = -1; } else sum2 = tmp; } cout << min(ans2, ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# # abc059 c # import sys from io import StringIO import unittest class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin self.assertEqual(out, output) def test_入力例_1(self): input = """4 1 -3 1 0""" output = """4""" self.assertIO(input, output) def test_入力例_2(self): input = """5 3 -6 4 -5 7""" output = """0""" self.assertIO(input, output) def test_入力例_3(self): input = """6 -1 4 3 2 -5 4""" output = """8""" self.assertIO(input, output) def resolve(): N = int(input()) A = list(map(int, input().split())) ans = 0 s = A[0] f = A[0] // abs(A[0]) for i in range(1, N): a = A[i] if f == 1 and s+a >= 0: ans += abs(s+a) + 1 s = -1 elif f == -1 and s+a <= 0: ans += abs(s+a) + 1 s = 1 else: s += a f = s // abs(s) print(ans) if __name__ == "__main__": unittest.main() # resolve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# coding: utf-8 # Your code here! n = int(input()) a = list(map(int,input().split())) def operate(ls,x): sm = 0 ans = 0 ans += abs(ls[0]-x) k = x for i in range(1,len(ls)): sm += k if sm > 0: if abs(ls[i]) <= sm or sm < ls[i]: ans += abs(ls[i]+sm+1) k = -sm-1 else: k = ls[i] if sm < 0: if abs(ls[i]) <= abs(sm) or sm > ls[i]: ans += abs(-sm+1-ls[i]) k = -sm+1 else: k = ls[i] return ans anstot = [] if a[0] > 0: inv = -1 if a[0] < 0: inv = 1 if a[0] != 0: anstot.append(operate(a,a[0])) anstot.append(operate(a,inv)) if a[0] == 0: a[0] = 1 anstot.append(1+operate(a,1)) anstot.append(1+operate(a,-1)) print(min(anstot))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> data(N); int y; cin >> y; data.at(0) = y; for (int i = 1; i < N; i++) { int x; cin >> x; data.at(i) = data.at(i - 1) + x; } int sei_ans = 0; int hu_ans = 0; int zyoutai = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { int a = max(0, 1 - data.at(i) - zyoutai); zyoutai += a; sei_ans += a; } else { int a = max(0, 1 + data.at(i) + zyoutai); zyoutai -= a; sei_ans += a; } } zyoutai = 0; for (int i = 0; i < N; i++) { if (i % 2 != 0) { int a = max(0, 1 - data.at(i) - zyoutai); zyoutai += a; hu_ans += a; } else { int a = max(0, 1 + data.at(i) + zyoutai); zyoutai -= a; hu_ans += a; } } cout << min(sei_ans, hu_ans) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using static Assistant.Input; using static Assistant.Debug; using System.Linq; using Assistant; namespace ABC059C { class Program { static void Main(string[] args) { var n = RInt; var a = RInts; long sum = a[0]; long ans = 0; for (int i = 1; i < n; i++) { if (sum < 0) { sum += a[i]; if (sum < 1) { ans += 1 - sum; sum = 1; } } else if (sum > 0) { sum += a[i]; if (sum > -1) { ans += sum + 1; sum = -1; } } } Console.WriteLine(ans); } } } namespace Assistant { static class Input { static List<string> line = new List<string>(); static int index = 0; static String RNext() { if (line.Count <= index) line.AddRange(Console.ReadLine().Split()); return line[index++]; } public static int RInt => int.Parse(RNext()); public static long RLong => long.Parse(RNext()); public static int[] RInts => Console.ReadLine().Split().Select(int.Parse).ToArray(); public static long[] RLongs => Console.ReadLine().Split().Select(long.Parse).ToArray(); public static string RString => RNext(); //以下未テスト public static int[] RIntsC(int c) => Enumerable.Repeat(0, c).Select(x => int.Parse(RNext())).ToArray(); public static long[] RLongsC(int c) => Enumerable.Repeat(0, c).Select(x => long.Parse(RNext())).ToArray(); public static char[][] RMap(int h) => Enumerable.Repeat(0, h).Select(x => Console.ReadLine().ToCharArray()).ToArray(); } public struct Mlong { long _v; const long mod = 1000000007; public Mlong(long n = 0) : this() { _v = n >= mod ? n % mod : n; } public static implicit operator Mlong(long _x) => new Mlong(_x); public static implicit operator long(Mlong _x) => _x._v; public static Mlong operator +(Mlong m1, Mlong m2) { long m = m1._v + m2._v; return m >= mod ? m - mod : m; } public static Mlong operator -(Mlong m1, Mlong m2) { long m = m1._v - m2._v; return m >= 0 ? m : m + mod; } public static Mlong operator *(Mlong m1, Mlong m2) => m1._v * m2._v % mod; public static Mlong operator /(Mlong m1, Mlong m2) => m1._v * ModPow(m2._v, mod - 2) % mod; public static long ModPow(long a, long n) { if (n == 0) return 1; else if (n % 2 == 1) return a * ModPow(a, n - 1) % mod; else return ModPow(a * a % mod, n / 2); } static Mlong[] fac, finv, inv; public static void nCkInit(int max) { fac = new Mlong[max]; finv = new Mlong[max]; inv = new Mlong[max]; fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < max; i++) { fac[i] = fac[i - 1] * i; inv[i] = mod - inv[mod % i] * (mod / i); finv[i] = finv[i - 1] * inv[i]; } } public static Mlong nCk(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * finv[k] * finv[n - k]; } } static class Debug { static public void Draw2D<T>(T[,] map, int mode = 1) { #if DEBUG int W = map.GetLength(0); int H = map.GetLength(1); string[,] map2 = new string[W + 1, H + 1]; for (int i = 0; i < W + 1; i++) { for (int j = 0; j < H + 1; j++) { if (i == 0 && j == 0) map2[i, j] = 0.ToString(); else if (i == 0) map2[i, j] = (j - 1).ToString(); else if (j == 0) map2[i, j] = (i - 1).ToString(); else map2[i, j] = map[i - 1, j - 1].ToString(); } } for (int i = 0; i < W + 1; i++) { for (int j = 0; j < H + 1; j++) { if (mode == 0) Console.Write(map2[i, j].Last()); if (mode == 1) Console.Write(map2[i, j] + " "); } Console.WriteLine(); } Console.WriteLine(); #endif } public static void Draw1D<T>(T[] array, int mode = 0) { #if DEBUG Console.WriteLine(string.Join(" ", array)); #endif } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) i = input() i = i.split() for item in range(len(i)): i[item] = int(i[item]) totn = 0 totp = 0 countp = 0 countn = 0 for x in range(len(i)): totp += i[x] totn += i[x] ''' if x == 0: if totp == 0: totn = -1 countn = 1 totp = 1 countp = 1 elif totp < 0: countp = abs(totp) + 1 totp = 1 elif totp > 0: countn = abs(totn) + 1 totn = -1 ''' if x %2 == 1: if totn == 0: countn += 1 totn = 1 elif totn < 0: countn += abs(totn) + 1 totn = 1 if totp == 0: countp += 1 totp = -1 elif totp > 0: countp += abs(totp) + 1 totp = -1 if x %2 == 0: if totn == 0: countn += 1 totn = -1 elif totn > 0: countn += abs(totn) + 1 totn = -1 if totp == 0: countp += 1 totp = 1 elif totp < 0: countp += abs(totp) + 1 totp = 1 '''print('totn', totn) print('countn', countn) print('totp', totp) print('countp', countp) ''' count = min(countn, countp) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; int sign(long long A) { if (A > 0) return 1; else if (A < 0) return -1; else return 0; } int main(void) { int N; cin >> N; long long ans = 0; long long diff = 0; long long sss; vector<long long> arr; for (int i = 0; i < N; i++) { cin >> sss; arr.push_back(sss); } vector<int> s(N + 1, 0); for (int i = 0; i < N; i++) s[i + 1] = s[i] + arr[i]; if (s[1] == 0) { diff++; ans++; } long long a = 0, b = 0; for (int i = 1; i <= N - 1; i++) { a = s[i] + diff; b = s[i + 1] + diff; if (sign(a) == sign(b)) { if (sign(a) == 1) { diff += (-1 - b); ans += (1 + b); } else if (sign(a) == -1) { diff += (1 - b); ans += (1 - b); } } if (sign(b) == 0) { if (sign(a) == 1) diff--; else if (sign(a) == -1) diff++; ans++; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Linq; namespace A { class Program { static void Main(string[] args) { var n = int.Parse(Console.ReadLine()); var aList = Console.ReadLine().Split(' ').Select(int.Parse).ToArray(); var total = 0; var count = 0; foreach (var a in aList) { var preTotal = total; total += a; while (preTotal > 0 && total >= 0) { total--; count++; } while (preTotal < 0 && total <= 0) { total++; count++; } } Console.WriteLine(count); } static int NumberOfDigits(long x) { if (x < 10) return 1; var result = 0; while (x > 0) { result++; x /= 10; } return result; } static int SumOfDigits(int x) { var sum = 0; while (x > 0) { sum += x % 10; x /= 10; } return sum; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) cnt=0 for i in range(1,n): # 条件満たすまでループ while True: #print(a[:i]) now_tmp = sum(a[:i]) next_tmp = sum(a[:i+1]) #print(now_tmp, next_tmp) # 符号が逆転していればOK かつ 現在までの総和が0でない # 異なる符号を掛けるとマイナスになる if now_tmp * next_tmp <0 and now_tmp !=0: break else: # 現在の合計がマイナスの場合 if sum(a[:i]) < 0 : a[i] +=1 cnt +=1 # 現在の合計がプラスの場合 elif sum(a[:i]) > 0 : a[i] -=1 cnt +=1 # 現在の合計が0の場合 elif sum(a[:i]) == 0 : a[i] +=1 cnt +=1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; class MainClass { static void Main(string[] args) { { int n = int.Parse(Console.ReadLine()); int[] arr = Console.ReadLine().Split(' ').Select(int.Parse).ToArray(); int[] arrSum = new int[n]; int sum_Plus = 0; int sum_minus = 0; bool isChange = false; bool isChange_minus = false; int nPreSum_Plus = 0; int nPreSum_minus = 0; for (int i = 0; i < n; i++) { if (i == 0) { arrSum[0] = arr[0]; nPreSum_minus = arr[0]; nPreSum_Plus = arr[0]; } else { arrSum[i] = (arrSum[i - 1] + arr[i]); } #region //plusStart if (i % 2 == 0) { if (!isChange) { //一回も変更していない if (arrSum[i] > 0) { //isChange = false; } else if (arrSum[i] < 0) { int tmpcnt = (1 - arrSum[i]); sum_Plus += tmpcnt; nPreSum_Plus = 1; isChange = true; } else { sum_Plus += 1; nPreSum_Plus = 1; isChange = true; } } else { //一回でも変更したとき arrSum[i-1]=-1 int tmpsum = (nPreSum_Plus) + arr[i]; if (0<tmpsum) { //isChange = false; nPreSum_Plus = tmpsum; } else if (tmpsum < 0) { int tmpcnt = Math.Abs(1 - (nPreSum_Plus)); sum_Plus += tmpcnt; nPreSum_Plus = nPreSum_Plus + arr[i]; } else { sum_Plus += 1; nPreSum_Plus = 1; } } } else { //奇数インデックス⇒マイナスにする if (!isChange) { //一回も変更していない if (arrSum[i] < 0) { //isChange = false; } else if (arrSum[i] > 0) { int tmpcnt = (arrSum[i] - (-1)); sum_Plus += tmpcnt; nPreSum_Plus = -1; isChange = true; } else { sum_Plus += 1; nPreSum_Plus = -1; isChange = true; } } else { //一回でも変更したとき⇒arrSum[i-1]=1; int tmpSum = nPreSum_Plus + arr[i]; if (tmpSum < 0) { //isChange = false; nPreSum_Plus= tmpSum; } else if (0<tmpSum) { int tmpcnt = (Math.Abs((-1)-nPreSum_Plus)); sum_Plus += tmpcnt; nPreSum_Plus = nPreSum_Plus + arr[i]; } else { sum_Plus += 1; nPreSum_Plus = -1; } } } #endregion #region //minusStart if (i % 2 == 1) { if (!isChange_minus) { //一回も変更していない if (arrSum[i] > 0) { //isChange_minus = false; } else if (arrSum[i] < 0) { int tmpcnt = (1 - arrSum[i]); sum_minus += tmpcnt; nPreSum_minus = 1; isChange_minus = true; } else { sum_minus += 1; nPreSum_minus = 1; isChange_minus = true; } } else { //一回でも変更したとき arrSum[i-1]=-1 int tmpsum = (nPreSum_minus) + arr[i]; if (0 < tmpsum) { //isChange_minus = false; nPreSum_minus= tmpsum; } else if (tmpsum < 0) { int tmpcnt = Math.Abs(1 - (nPreSum_minus)); sum_minus += tmpcnt; nPreSum_minus = nPreSum_minus + arr[i]; } else { sum_minus += 1; nPreSum_minus = 1; } } } else { //奇数インデックス⇒マイナスにする if (!isChange_minus) { //一回も変更していない if (arrSum[i] < 0) { //isChange_minus = false; } else if (arrSum[i] > 0) { int tmpcnt = (arrSum[i] - (-1)); sum_minus += tmpcnt; nPreSum_minus = -1; isChange_minus = true; } else { sum_minus += 1; nPreSum_minus = -1; isChange_minus = true; } } else { //一回でも変更したとき⇒arrSum[i-1]=1; int tmpSum = nPreSum_minus + arr[i]; if (tmpSum < 0) { //isChange_minus = false; nPreSum_minus = tmpSum; } else if (0 < tmpSum) { int tmpcnt = (Math.Abs((-1) - nPreSum_minus)); sum_minus += tmpcnt; nPreSum_minus = nPreSum_minus + arr[i]; } else { sum_Plus += 1; nPreSum_minus = -1; } } } #endregion } var ans = sum_minus <= sum_Plus ? sum_minus : sum_Plus; Console.WriteLine(ans); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) def solve(isPosi,N,A): ans = 0 sm = A[0] for a in A[1:]: if isPosi: sm += a if sm >= 0: ans += abs(-1-sm) sm = -1 isPosi = False else: sm += a if sm <= 0: ans += abs(1-sm) sm = 1 isPosi = True return ans ans_p = solve(True,N,A) ans_n = solve(False,N,A) print(min(ans_p,ans_n))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys sys.setrecursionlimit(2000000) def re(r,k,l): if k==0:return r while(k<l[0]): l=l[1:] return re(r+1,k-l[0],l) n=int(input()) i=1 l6=[] ans=10**5 while(i<n): l6.append(i) i*=6 i=1 l9=[] while(i<n): l9.append(i) i*=9 l6.sort(reverse=True) l9.sort(reverse=True) for i in range(n+1): ans=min(ans,re(0,n-i,l6)+re(0,i,l9)) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); long long a[n]; for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); } long long mans = 0, pans = 0; long long msub[n], psub[n]; if (a[0] == 0) { pans = 1; mans = 1; psub[0] = 1; msub[0] = -1; } if (a[0] > 0) { psub[0] = a[0]; msub[0] = -1; mans = a[0] + 1; } else { psub[0] = 1; msub[0] = a[0]; pans = 1; } for (int i = 1; i < n; i++) { if (i % 2 == 1 && psub[i - 1] + a[i] >= 0) { pans += psub[i - 1] + a[i] + 1; psub[i] = -1; } else if (i % 2 == 0 && psub[i - 1] + a[i] <= 0) { pans += 1 - (psub[i - 1] + a[i]); psub[i] = 1; } else { psub[i] = psub[i - 1] + a[i]; } if (i % 2 == 1 && msub[i - 1] + a[i] <= 0) { mans += 1 - (msub[i - 1] + a[i]); msub[i] = 1; } else if (i % 2 == 0 && msub[i - 1] + a[i] >= 0) { mans += msub[i - 1] + a[i] + 1; msub[i] = -1; } else { msub[i] = msub[i - 1] + a[i]; } } printf("%lld", mans < pans ? mans : pans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int d[n]; for (int i = 0; i < n; i++) { cin >> d[i]; } int count = 0; int sum = d[0]; int f = 0; if (d[0] > 0) { f = -1; } if (d[0] < 0) { f = 1; } for (int i = 1; i < n; i++) { sum += d[i]; if (sum == 0) { if (f == 1) { count++; f = -1; sum = 1; continue; } if (f == -1) { count++; f = 1; sum = -1; continue; } } if (sum > 0) { if (f == 1) { f = -1; continue; } if (f == -1) { count += sum + 1; sum = -1; f = 1; continue; } } if (sum < 0) { if (f == -1) { f = 1; continue; } if (f == 1) { count += 1 - sum; sum = 1; f = -1; continue; } } } int ccount = 0; int ssum; int ff = 0; if (d[0] > 0) { ff = 1; ccount = -1 - d[0]; ssum = -1; } if (d[0] < 0) { ff = -1; ccount = 1 - d[0]; ssum = 1; } for (int i = 1; i < n; i++) { sum += d[i]; if (ssum == 0) { if (ff == 1) { ccount++; ff = -1; ssum = 1; continue; } if (ff == -1) { ccount++; ff = 1; ssum = -1; continue; } } if (ssum > 0) { if (f == 1) { ff = -1; continue; } if (ff == -1) { ccount += sum + 1; ssum = -1; ff = 1; continue; } } if (ssum < 0) { if (ff == -1) { ff = 1; continue; } if (ff == 1) { ccount += 1 - sum; ssum = 1; ff = -1; continue; } } } cout << min(count, ccount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline signed wait() { return 0; } inline void dout(const char *arg, ...) {} template <typename T> inline void SWAP(T &a, T &b) { T t = a; a = b; b = t; } inline void CSWAP(char *&a, char *&b) { char *t = a; a = b; b = t; } void CombSort(int N, int *ar, int order_ascending = 1) { if (N <= 1) return; int h = int(N / 1.3); int flag; int i; while (true) { flag = 0; for (i = 0; i + h < N; ++i) { if ((order_ascending && ar[i] > ar[i + h]) || (!order_ascending && ar[i] < ar[i + h])) { swap<int>(ar[i], ar[i + h]); flag = 1; } } if (h == 1 && !flag) break; if (h == 9 || h == 10) h = 11; if (h > 1) h = int(h / 1.3); } } void CombSort(int N, long long int *ar, int order_ascending = 1) { if (N <= 1) return; int h = int(N / 1.3); int flag; int i; while (true) { flag = 0; for (i = 0; i + h < N; ++i) { if ((order_ascending && ar[i] > ar[i + h]) || (!order_ascending && ar[i] < ar[i + h])) { swap<long long int>(ar[i], ar[i + h]); flag = 1; } } if (h == 1 && !flag) break; if (h == 9 || h == 10) h = 11; if (h > 1) h = int(h / 1.3); } } int EuclideanAlgorithm(int N, int *ar) { for (int n = 0; n < N - 1; ++n) { while (true) { if (ar[n] % ar[n + 1] == 0 || ar[n + 1] % ar[n] == 0) { ar[n + 1] = ar[n] < ar[n + 1] ? ar[n] : ar[n + 1]; break; } if (ar[n] > ar[n + 1]) { ar[n] %= ar[n + 1]; } else { ar[n + 1] %= ar[n]; } } } return ar[N - 1]; } template <typename T> void CombSort(int N, T *ar, int order_ascending = 1) { if (N <= 1) return; int i, flag; int h = int(N / 1.3); while (true) { flag = 0; for (i = 0; i + h < N; ++i) { if (order_ascending && ar[i].SortValue > ar[i + h].SortValue || !order_ascending && ar[i].SortValue < ar[i + h].SortValue) { swap<T>(ar[i], ar[i + h]); flag = 1; } } if (h > 1) { h = int(h / 1.3); if (h == 9 || h == 10) h = 11; } else { if (!flag) break; } } } struct UnionFind { vector<int> par; UnionFind(int N) : par(N) { for (int i = 0; i < N; i++) par[i] = i; } int root(int x) { if (par[x] == x) return x; return par[x] = root(par[x]); } void unite(int x, int y) { int rx = root(x); int ry = root(y); if (rx == ry) return; par[rx] = ry; } bool same(int x, int y) { int rx = root(x); int ry = root(y); return rx == ry; } }; void Replace(char *c, int len, char before, char after) { for (int i = 0; i < len; ++i) { if (c[i] == before) c[i] = after; } } void Replace(char *c, char before, char after) { int len = strlen(c); Replace(c, len, before, after); } class csNode { public: csNode() {} }; class csStack { public: csStack() { num = 0; } void alloc(int size) { param = new int[size]; } void sort(int order = 1) { if (num > 1) CombSort(num, param, order); } int num; int *param; void push(int p) { param[num++] = p; } }; class csPosition { public: csPosition() { x = y = 0; } int x, y; }; template <typename T> class csPos { public: csPos() { x = y = 0; } T x, y; }; char s[200010], s2[1000]; signed main() { long long int n; scanf("%lld", &n); long long int cnt = 0; long long int i; long long int a, b, sum = 0; scanf("%lld", &b); sum = b; long long int flag; b < 0 ? flag = -1 : flag = 1; for (i = 1; i < n; ++i) { scanf("%lld", &a); sum += a; if (flag == -1 && sum < 0) { cnt += 1 - sum; sum = 1; } else if (flag == 1 && sum > 0) { cnt += sum + 1; sum = -1; } else if (sum == 0) { cnt++; if (flag == 1) { sum = -1; } else { sum = 1; } } flag *= -1; } cout << cnt << endl; ; return wait(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline n = int(input()) a = list(map(int,input().split())) sum_odd = sum(a[1::2]) sum_eve = sum(a[::2]) ans = 0 sum_a = 0 for i in range(n): sum_a = sum_a + a[i] if sum_a *(-1)**(i+1) < 1: kari = 1-sum_a *(-1)**(i+1) a[i] += 1*(-1)**(i+1) *(kari) sum_a += 1*(-1)**(i+1) *(kari) ans = ans + abs(kari) ans1 = 0 sum_a = 0 for i in range(n): sum_a = sum_a + a[i] if sum_a *(-1)**(i) < 1: kari = (1-sum_a *(-1)**(i)) a[i] += 1*(-1)**(i) * kari sum_a += 1*(-1)**(i) * kari ans1 = ans1 + abs(kari) print(min(ans,ans1))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (long long &x : a) cin >> x; long long ans = 0; if (a[0] == 0) { a[0] = 1; ans++; } long long sum = a[0]; if (a[0] > 0) { for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum >= 0) { sum--; ans++; } } if (i % 2 == 0) { while (sum <= 0) { sum++; ans++; } } } } if (a[0] < 0) { for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum <= 0) { sum++; ans++; } } if (i % 2 == 0) { while (sum >= 0) { sum--; ans++; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int64_t min(int64_t a, int64_t b) { if (a > b) { return b; } else { return a; } } int64_t solve(vector<int> a, bool next) { bool nextposi = next; int64_t ans = 0; int64_t sum = 0; for (int i = 0; i < a.size(); i++) { sum += a.at(i); if (nextposi != (sum > 0)) { if (nextposi == 1) { ans += abs(sum - 1); sum = 1; } else { ans += abs(sum + 1); sum = -1; } } nextposi = !nextposi; } return ans; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int64_t ans = 0; { ans = min(solve(a, 0), solve(a, 1)); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = list(map(int,input().split())) presum = a[0] summ = 0 ans = 0 if a[0] == 0: if a[1] - a[0] > 0: ans += a[1] + 1 a[0] = -a[1] - 1 else: ans += 1 - a[1] a[0] = 1 - a[1] for i in range(1,N): nsum = a[i] + presum if presum * nsum >= 0: if nsum == 0: if presum >= 0: a[i] -= 1 ans += 1 nsum = -1 elif presum < 0: a[i] += 1 ans += 1 nsum = 1 elif nsum > 0: ans += 1+presum+a[i] a[i] = -1 - presum nsum = -1 elif nsum < 0: nsum = 1 ans += 1 - presum - a[i] a[i] = 1-presum presum = nsum print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long a[100005], sum1 = 0, sum2 = 0, cnt1 = 0, cnt2 = 0; bool f1 = 0, f2 = 1; scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%lld", &a[i]); if (f1 == 0) { if (sum1 + a[i] <= 0) { cnt1 += 1 - sum1 - a[i]; sum1 = 1; } else { sum1 += a[i]; } f1 = 1; } else { if (sum1 + a[i] >= 0) { cnt1 += a[i] - (-1 - sum1); sum1 = -1; } else { sum1 += a[i]; } f1 = 0; } if (f2 == 0) { if (sum2 + a[i] <= 0) { cnt2 += 1 - sum2 - a[i]; sum2 = 1; } else { sum2 += a[i]; } f2 = 1; } else { if (sum2 + a[i] >= 0) { cnt2 += a[i] - (-1 - sum2); sum2 = -1; } else { sum1 += a[i]; } f2 = 0; } } printf("%lld", min(cnt1, cnt2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
input() seq = list(map(int, input().rstrip("\n").split())) iter_ = iter(seq) ans1 = 0 for i, num in enumerate(iter_): if i == 0: sum_ = num if sum_ <= 0: ans1 += abs(sum_ - 1) sum_ = 1 else: sum_ += num if i % 2 and sum_ >= 0: ans1 += abs(sum_ + 1) sum_ = -1 elif sum_ <= 0: ans1 += abs(sum_ - 1) sum_ = 1 iter_ = iter(seq) ans2 = 0 for i, num in enumerate(iter_): if i == 0: sum_ = num if sum_ >= 0: ans2 += abs(sum_ + 1) sum_ = -1 else: sum_ += num if i % 2 and sum_ <= 0: ans2 += abs(sum_ - 1) sum_ = 1 elif sum_ >= 0: ans2 += abs(sum_ + 1) sum_ = -1 print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) a1 = [a[0]] * n b = a[0] ans = 0 def f(x): if x == 0: return 0 else: return x // abs(x) for i in range(1, n): if a1[i - 1] * a[i] >= 0: a1[i] = -a[i] else: a1[i] = a[i] if b * (b + a1[i]) >= 0: a1[i] = -f(a1[i - 1]) - b if b + a1[i] == 0: a1[i] += f(a1[i]) ans += abs(a1[i] - a[i]) b += a1[i] a2 = [0] * n ans1 = abs(-f(a2[0]) - a2[0]) a2[0] = -f(a2[0]) b1 = a2[0] for i in range(1, n): if a2[i - 1] * a[i] >= 0: a2[i] = -a[i] else: a2[i] = a[i] if b * (b + a2[i]) >= 0: a2[i] = -f(a2[i - 1]) - b1 if b1 + a2[i] == 0: a2[i] += f(a2[i]) ans1 += abs(a2[i] - a[i]) b1 += a2[i] print(min(ans1, ans))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String args[]){ Scanner scanner = new Scanner(System.in); int count = 0; int l[] = new int[scanner.nextInt()]; int x[] = new int[l.length]; int y[] = new int[l.length]; for (int i = 0;i < l.length;++i){ l[i] = Integer.valueOf(scanner.next()); y[i] = Integer.valueOf(l[i]); if(i > 0){ x[i] = l[i] + x[i - 1]; } else{ x[i] = l[i]; } } boolean flag = true; while (true){ for (int i = 1;i < l.length;++i){ int p = x[i - 1]; int q = x[i]; if(q == 0||(q < 0&&p < 0)||(q > 0&&p > 0)){ flag = false; int d = (p < 0&&q <= 0) ? 1 : -1; l[i] += d; for (int j = i;j < l.length;++j){ x[j] += d; } } } if(flag){ break; } flag = true; } for (int i = 1;i < l.length;++i){ System.out.println(l[i]); count += Math.abs(l[i] - y[i]); } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 10E9; const long long MOD = 1000000007; const long double PI = 3.1415926; template <class T> T &chmin(T &a, const T &b) { return a = min(a, b); } template <class T> T &chmax(T &a, const T &b) { return a = max(a, b); } long long int n, m, k, ans = 0, sum = 0, cnt = 0; string s; int main() { long long int n; cin >> n; vector<long long int> acc(n); long long int x = 0; for (long long int i = (long long int)(0); i < (long long int)(n); i++) { cin >> acc[i]; acc[i] += x; x = acc[i]; } bool minus = true; long long int tmp = 0; for (long long int i = (long long int)(1); i < (long long int)(n); i++) { if ((minus && acc[i] + tmp >= 0) || (!minus && acc[i] + tmp <= 0)) { ans += llabs(acc[i] + tmp) + 1; if (!minus) tmp += (llabs(acc[i] + tmp) + 1); else tmp -= (llabs(acc[i] + tmp) + 1); } minus = !minus; } long long int ans1 = ans; minus = false; tmp = 0; for (long long int i = (long long int)(1); i < (long long int)(n); i++) { if ((minus && acc[i] + tmp >= 0) || (!minus && acc[i] + tmp <= 0)) { ans += llabs(acc[i] + tmp) + 1; if (!minus) tmp += (llabs(acc[i] + tmp) + 1); else tmp -= (llabs(acc[i] + tmp) + 1); } minus = !minus; } cout << min(ans, ans1) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define uint unsigned int #define llong long long int #define ullong unsigned long long int #define rep(i, n) for (int i = 0; i < n; ++i) int main (int argc, char *argv[]) { cin.tie(0); ios::sync_with_stdio(false); int n, a[100001]; cin >> n; rep(i, n) { cin >> a[i]; } llong res_even = 0, sum_a = 0; rep(i, n) { sum_a += a[i]; if (i % 2 == 0 && sum_a <= 0) { res_even += abs(sum_a) + 1; sum_a = 1; } if (i % 2 == 1 && sum_a >= 0) { res_even += sum_a + 1; sum_a = -1;s } } llong res_odd = 0; sum_a = 0; rep(i, n) { sum_a += a[i]; if (i % 2 == 0 && sum_a >= 0) { res_odd += sum_a + 1; sum_a = -1; } if (i % 2 == 1 && sum_a <= 0) { res_odd += abs(sum_a) + 1; sum_a += 1; } } cout << min(res_even, res_odd) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; const long long INF = 1e18; signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); long long n, ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; i++) { cin >> a[i]; } sum1 = a[0]; if (a[0] == 0) { sum1 = (a[1] > 0 ? -1 : 1); ans1++; } for (long long i = 1; i < n; i++) { if (sum1 + a[i] == 0) { ans1++; sum1 = (a[i] > 0 ? 1 : -1); } else if (sum1 > 0 && sum1 + a[i] < 0) { sum1 += a[i]; } else if (sum1 < 0 && sum1 + a[i] > 0) { sum1 += a[i]; } else if (sum1 > 0 && a[i] + sum1 > 0) { ans1 += sum1 + a[i] + 1; sum1 = -1; } else { ans1 += -a[i] - sum1 + 1; sum1 = 1; } } a[0] *= -1; if (a[0] == 0) { sum2 = (a[1] > 0 ? -1 : 1); ans2++; } for (long long i = 1; i < n; i++) { if (sum2 + a[i] == 0) { ans2++; sum2 = (a[i] > 0 ? 1 : -1); } else if (sum2 > 0 && sum2 + a[i] < 0) { sum2 += a[i]; } else if (sum2 < 0 && sum2 + a[i] > 0) { sum2 += a[i]; } else if (sum2 > 0 && a[i] + sum2 > 0) { ans2 += sum2 + a[i] + 1; sum2 = -1; } else { ans2 += -a[i] - sum2 + 1; sum2 = 1; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <class T> inline T chmax(T& a, const T b) { return a = (a < b) ? b : a; } template <class T> inline T chmin(T& a, const T b) { return a = (a > b) ? b : a; } using ll = long long; using ull = unsigned long long; using ld = long double; const ll MOD = 1000000007; const ll INF = 1e18; const double PI = acos(-1); using namespace std; ll N; ll solve(vector<ll> A) { ll ret = 0; ll sum = 0; for (ll i = 0; i < ll(N - 1); ++i) A[i + 1] += A[i]; for (ll i = (1); i < (N); ++i) { A[i] += sum; if (A[i] * A[i - 1] >= 0) { if (A[i] == 0) { if (A[i - 1] < 0) { sum++; ret++; A[i] += 1; } else { sum--; ret++; A[i] -= 1; } } else if (A[i] > 0) { sum -= A[i] + 1; ret += A[i] + 1; A[i] = -1; } else { sum += -A[i] + 1; ret += -A[i] + 1; A[i] = 1; } } } return ret; } signed main() { cin >> N; vector<ll> A(N); for (ll i = 0; i < ll(N); ++i) cin >> A[i]; ll ans = 0; if (A[0] != 0) { ans = solve(A); ll ret = abs(A[0]) + 1; if (A[0] > 0) { A[0] = -1; } else { A[0] = 1; } chmax(ans, solve(A) + ret); } else { A[0] = 1; ans = solve(A) + 1; A[0] = -1; chmin(ans, solve(A) + 1); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
// AtCoder-Template.cpp : このファイルには 'main' 関数が含まれています。プログラム実行の開始と終了がそこで行われます。 // #include <iostream> #include <algorithm> #include <bitset> #include <cassert> #include <cctype> #include <cmath> #include <cstdio> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <iostream> #include <limits> #include <map> #include <numeric> #include <queue> #include <set> #include <vector> using namespace std; using ll = long long; #define fst first #define snd second #define FOR(i,N) for(auto i=0; i<N; ++i) #define FORREV(i,N,_cnt) for(auto i=N-1,cnt=_cnt; cnt > 0; --i, --cnt) #define ALL(x) x.begin(), x.end() /* clang-format off */ template <class T, size_t D> struct _vec { using type = vector<typename _vec<T, D - 1>::type>; }; template <class T> struct _vec<T, 0> { using type = T; }; template <class T, size_t D> using vec = typename _vec<T, D>::type; template <class T> vector<T> make_v(size_t size, const T& init) { return vector<T>(size, init); } template <class... Ts> auto make_v(size_t size, Ts... rest) { return vector<decltype(make_v(rest...))>(size, make_v(rest...)); } template <class T> inline void chmin(T& a, const T& b) { if (b < a) a = b; } template <class T> inline void chmax(T& a, const T& b) { if (b > a) a = b; } /* clang-format on */ int main() { #ifdef DEBUG ifstream ifs("in.txt"); cin.rdbuf(ifs.rdbuf()); #endif ll N; cin >> N; vector<ll> A(N); FOR(i, N) cin >> A[i]; // RUISEKI vector<ll> Rui(N); Rui[0] = A[0]; ll ans = 0; if (Rui[0] == 0) { ans += 1; Rui[0] = 1; } FOR(i, N - 1) { Rui[i + 1] += Rui[i] + A[i + 1]; if (i + 1 >= 1 and Rui[i+1] * Rui[i] >= 0) { if (Rui[i + 1] * Rui[i] == 0 and Rui[i] > 0) { ans += 1; Rui[i + 1] = -1; } else if (Rui[i + 1] * Rui[i] == 0 and Rui[i] < 0) { ans += 1; Rui[i + 1] = 1; } else { // 両方とも同じ符号になった場合 if (Rui[i + 1] > 0) { ans += Rui[i + 1] + 1; Rui[i + 1] = -1; } else { ans += - Rui[i + 1] + 1; Rui[i + 1] = 1; } } } } /////////////////////////////////////////////// ///////// /////////////// /////////////////////////////////////////////// ll tmp = 0; if (Rui[0] == 0) { tmp += 1; Rui[0] = -1; } FOR(i, N - 1) { Rui[i + 1] += Rui[i] + A[i + 1]; if (i + 1 >= 1 and Rui[i + 1] * Rui[i] >= 0) { if (Rui[i + 1] * Rui[i] == 0 and Rui[i] > 0) { tmp += 1; Rui[i + 1] = -1; } else if (Rui[i + 1] * Rui[i] == 0 and Rui[i] < 0) { tmp += 1; Rui[i + 1] = 1; } else { // 両方とも同じ符号になった場合 if (Rui[i + 1] > 0) { tmp += Rui[i + 1] + 1; Rui[i + 1] = -1; } else { tmp += -Rui[i + 1] + 1; Rui[i + 1] = 1; } } } } chmin(ans, tmp); cout << ans << endl; //cout << 0 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def ii():return int(input()) def iim():return map(int,input().split()) def iil():return list(map(int,input().split())) def ism():return map(str,input().split()) def isl():return list(map(str,input().split())) import numpy n = ii() A = iil() cum = numpy.cumsum(A) #print(cum) #print(type(cum)) now = -1*cum[0] ans = 0 ope = 0 for i,item in enumerate(cum): num = item+ope if num == 0: ans += 1 ope += 1 if now < 0 else -1 num += 1 if now < 0 else -1 elif num*now > 0: ans += abs(num)+1 ope -= (abs(num)+1)*num//abs(num) num -= (abs(num)+1)*num//abs(num) # print(ans,ope,num) now = num print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[10002] = {}; long long b[10002] = {}; for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = 0; i < n; i++) { b[i] = a[i]; } long long eve = 0, sum = 0; for (int j = 0; j < n; j++) { if (j % 2 == 0 && sum + a[j] <= 0) { eve += abs(a[j] + sum) + 1; a[j] = abs(sum) + 1; } if (j % 2 == 1 && sum + a[j] >= 0) { eve += a[j] + sum + 1; a[j] = -abs(sum) - 1; } sum += a[j]; } sum = 0; long long odd = 0; for (int k = 0; k < n; k++) { if (k % 2 == 0 && sum + b[k] >= 0) { odd += abs(b[k] + sum) + 1; b[k] = -abs(sum) - 1; } if (k % 2 == 1 && sum + b[k] <= 0) { odd += abs(sum + b[k]) + 1; b[k] = abs(sum) + 1; } sum += b[k]; } cout << min(odd, eve) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
require 'prime' include Math def max(a,b); a > b ? a : b end def min(a,b); a < b ? a : b end def swap(a,b); a, b = b, a end def gif; gets.to_i end def gff; gets.to_f end def gsf; gets.chomp end def gi; gets.split.map(&:to_i) end def gf; gets.split.map(&:to_f) end def gs; gets.chomp.split.map(&:to_s) end def gc; gets.chomp.split('') end def pr(num); num.prime_division end def digit(num); num.to_s.length end def array(s,ini=nil); Array.new(s){ini} end def darray(s1,s2,ini=nil); Array.new(s1){Array.new(s2){ini}} end def rep(num); num.times{|i|yield(i)} end def repl(st,en,n=1); st.step(en,n){|i|yield(i)} end def f(sum,a, count) repl 1,a.size-1 do |i| sum << a[i]+sum[i-1] if sum[i-1] > 0 if sum[i] >= 0 count += sum[i]+1 sum[i] = -1 end elsif sum[i-1] < 0 if sum[i] <= 0 count += 1-sum[i] sum[i] = 1 end end end return count end n = gif a = gi sum1 = [] sum2 = [] sum = [] ans1 = nil ans2 = nil ans3 = nil if a[0] != 0 sum << a[0] ans1 = f sum,a, 0 else sum1 << 1 ans2 = f sum1,a,1 sum2 << -1 ans3 = f sum2,a,1 end if ans1 puts ans1 else puts min ans2,ans3 end
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.util.Scanner; public class Main { public static void main(String[] args) throws IOException{ Sequence solver = new Sequence(); solver.readInput(); solver.solve(); solver.writeOutput(); } static class Sequence { private int n; private long a[]; private int output; private Scanner scanner; public Sequence() { this.scanner = new Scanner(System.in); } public void readInput() { n = Integer.parseInt(scanner.next()); a = new long[n]; for(int i=0; i<n; i++) { a[i] = Integer.parseInt(scanner.next()); } } private int count(boolean sign) { int count=0; long sum=0; for(int i=0; i<n; i++) { sum += a[i]; if((i%2==0) == sign) { // a[i]までの合計を正にするとき if(sum<=0) { count += 1-sum; sum = 1; } } else { // a[i]までの合計を負にするとき if(0<=sum) { count += 1+sum; sum = -1; } } } return count; } public void solve() { output = Math.min(count(true), count(false)); } public void writeOutput() { System.out.println(output); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <cassert> #define rep(i,n) for (int i = 0; i < (n); ++i) #define ok() puts(ok?"Yes":"No"); #define chmax(x,y) x = max(x,y) #define chmin(x,y) x = min(x,y) using namespace std; using ll = long long; using vi = vector<int>; using vll = vector<ll>; using ii = pair<int, int>; using vvi = vector<vi>; using vii = vector<ii>; using gt = greater<int>; using minq = priority_queue<int, vector<int>, gt>; using P = pair<ll,ll>; const ll LINF = 1e18L + 1; const int INF = 1e9 + 1; //clang++ -std=c++11 -stdlib=libc++ int main() { int n; cin >> n; int a(n); rep(i,n) cin>>a[i]; ll ans = LINF; // even is positive // odd is nevgative ll sum=0; ll num=0; rep(i,n) { sum+=a[i]; if (i&1) { if (sum>=0) { num += (sum + 1); sum = -1; } } else { if (sum <= 0) { num += (-sum + 1); sum = 1; } } } chmin(ans, num); // even is negative // odd is positive num = 0; sum = 0; rep(i,n) { sum+=a[i]; if (i&1) { if (sum <= 0) { num += (-sum + 1); sum = 1; } } else { if (sum>=0) { num += (sum + 1); sum = -1; } } } chmin(ans, num); printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); vector<int64_t> s(n); for (int i = 0; i < n; i++) cin >> a[i]; s[0] = max(a[0], 1); int retval_p = (a[0] <= 0) ? abs(a[0]) + 1 : 0; for (int i = 1; i < n; i++) { s[i] = a[i] + s[i - 1]; if (i % 2 == 1 && s[i] >= 0) { retval_p += abs(s[i]) + 1; s[i] = -1; } else if (i % 2 == 0 && s[i] <= 0) { retval_p += abs(s[i]) + 1; s[i] = 1; } } s[0] = min(a[0], -1); int retval_m = (a[0] >= 0) ? abs(a[0]) + 1 : 0; for (int i = 1; i < n; i++) { s[i] = a[i] + s[i - 1]; if (i % 2 == 1 && s[i] <= 0) { retval_m += abs(s[i]) + 1; s[i] = 1; } else if (i % 2 == 0 && s[i] >= 0) { retval_m += abs(s[i]) + 1; s[i] = -1; } } cout << min(retval_p, retval_m) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.io.InputStream; import java.util.*; import java.util.function.IntFunction; import java.util.function.Supplier; import java.util.stream.IntStream; import java.util.stream.Stream; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(); int n=scanner.nextInt(); long[] a=new long[n+1]; for(int i=1;i<=n;i++){ a[i]=scanner.nextInt(); } Arrays.parallelPrefix(a,(c,b)->c+b); //put(Arrays.toString(a)); long ans=0; long ruiseki=0; for(int i=1;i<=n;i++){ //put(format("i=%d",i)); //put(format("ruiseki=%d",ruiseki)); long val=a[i]+ruiseki; long val_=a[i-1]+ruiseki; //put(format("val=%d",val)); //put(format("val_=%d",val_)); if(val==0){ int bit=a[i-1]/Math.abs(a[i-1]); ruiseki+=bit*1; ans+=Math.abs(bit); }else if(val>0&&val_>0){ ruiseki-=(val+1); ans+=Math.abs(val+1); }else if(val<0&&val_<0){ ruiseki+=Math.abs(val)+1; ans+=Math.abs(val)+1; } //put(ans); //put(); } put(ans); } public static void print(Object object){ System.out.print(object); } public static void put(Object object) { System.out.println(object); } public static void put(){ System.out.println(); } public static String format(String string, Object... args) { return String.format(string, args); } } final class Scanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next()); } } final class Pair { final public int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int hashCode() { return x+y; } @Override public boolean equals(Object obj) { boolean result=super.equals(obj); if(obj.getClass()!=this.getClass()){ return false; } Pair pair=(Pair)obj; if(this.x==pair.x&&this.y==pair.y) return true; return false; } @Override public String toString() { return String.format("(%d,%d)", x, y); } } final class Tuple<T,V>{ //immutabl1でないことに注意(T,Vがmutableの場合変更可能) final public T t; final public V v; Tuple(T t,V v){ this.t=t; this.v=v; } @Override public int hashCode() { return (t.hashCode()+v.hashCode()); } @Override public boolean equals(Object obj) { if(obj.getClass()!=this.getClass()){ return false; } Tuple<T,V> tuple=(Tuple)obj; return tuple.t.equals(this.t)&&tuple.v.equals(this.v); } @Override public String toString() { return String.format("<Tuple>=<%s,%s>",t,v); } } final class LowerBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) >= 0) ? 1 : -1; } } final class UpperBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) > 0) ? 1 : -1; } } final class Util { static long gcd(long a,long b){ if(a%b==0)return b; return gcd(b,a%b); } static long lcm(long a,long b){ long gcd=gcd(a,b); long result=b/gcd; return a*result; } static int kaijoMod(int n,int mod){ if(n<1) return -1; long result=1; for(int i=n;i>1;i--){ result*=i; result%=mod; } return (int)result; } static <T extends Comparable> Map<T,Integer> count(List<T> list){ //副作用 Collections.sort(list); Map<T,Integer> result=new HashMap<>(); int l=0,r=0; while(l<list.size()){ while(r<list.size()-1&&list.get(r).equals(r+1)){ r++; } result.put(list.get(r),r-l+1); r++; l=r; } return result; } static Map<Integer,Integer> count(int[] array){ //副作用 Arrays.sort(array); Map<Integer,Integer> result=new HashMap<>(); int l=0,r=0; while(l<array.length){ while(r<array.length-1&&array[r]==array[r+1]){ r++; } result.put(array[l],r-l+1); r++; l=r; } return result; } static String toStringBWS(Iterable iterable){ Iterator ite=iterable.iterator(); return toStringBWS(ite); } static String toStringBWS(Iterator ite){ StringBuilder sb=new StringBuilder(); sb.append(ite.next()); while(ite.hasNext()){ sb.append(" "); sb.append(ite.next()); } return sb.toString(); } static String toStringBWS(int[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } static String toStringBWS(long[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { size_t N; std::cin >> N; std::vector<int64_t> A(N); for (size_t n = 0; n < N; ++n) { std::cin >> A[n]; } int64_t a[2] = {0, 0}; for (size_t i = 0; i < 2; ++i) { int64_t c = 0; if (i == 0) { a[i] = 0; c = A[0]; } else { a[i] = abs(A[0]) + 1; c = A[0] < 0 ? 1 : 0; } for (size_t n = 1; n < N; ++n) { if (c < 0) { if (c + A[n] <= 0) { a[i] += -(c + A[n]) + 1; c = 1; } else { c += A[n]; } } else { if (c + A[n] >= 0) { a[i] += c + A[n] + 1; c = -1; } else { c += A[n]; } } } } std::cout << std::min(a[0], a[1]) << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool isplus(long long a) { return (a > 0) ? true : false; } int main() { int n; cin >> n; long long a[n]; long long sum = 0; long long ans = 0; bool is_plus = true; for (int i = 0; i < n; i++) { cin >> a[i]; } sum = a[0]; is_plus = isplus(sum); for (int i = 1; i < n; i++) { sum += a[i]; if (sum == 0) { if (is_plus) { sum--; ans++; } else { sum++; ans++; } } if (is_plus) { if (isplus(sum)) { ans += sum + 1; sum -= sum + 1; } } else { if (!isplus(sum)) { ans += -sum + 1; sum += -sum + 1; } } is_plus = !is_plus; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } int dy[] = {0, 1, 0, -1}; int dx[] = {1, 0, -1, 0}; int main() { long long n; cin >> n; long long a[n]; for (long long i = (0); i < (n); i++) cin >> a[i]; long long csum[n]; csum[0] = a[0]; for (long long i = (1); i < (n); i++) { csum[i] = csum[i - 1] + a[i]; } if (csum[0] != 0) { long long p1 = 0, m1 = 0; bool flag = (csum[0] > 0); for (long long i = (1); i < (n); i++) { if ((flag ? -1 : 1) * (csum[i] + p1 - m1) > 0) { flag = !flag; continue; } else { if (flag) { m1 += csum[i] + p1 - m1 + 1; } else { p1 += -(csum[i] + p1 - m1) + 1; } flag = !flag; } } long long res = p1 + m1; cout << res << endl; } else { long long p1 = 1, m1 = 0; bool flag = true; for (long long i = (1); i < (n); i++) { if ((flag ? -1 : 1) * (csum[i] + p1 - m1) > 0) { flag = !flag; continue; } else { if (flag) { m1 += csum[i] + p1 - m1 + 1; } else { p1 += -(csum[i] + p1 - m1) + 1; } flag = !flag; } } long long res = p1 + m1; p1 = 0, m1 = 1; flag = false; for (long long i = (1); i < (n); i++) { if ((flag ? -1 : 1) * (csum[i] + p1 - m1) > 0) { flag = !flag; continue; } else { if (flag) { m1 += csum[i] + p1 - m1 + 1; } else { p1 += -(csum[i] + p1 - m1) + 1; } flag = !flag; } } res = ((res) < (p1 + m1) ? (res) : (p1 + m1)); cout << res << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) *A, = map(int,input().split()) ans1 = 0 S = A[0] if S <= 0: S = 1 ans1 = abs(S)+1 for a in A[1:]: S1 = S+a if S1*S >= 0: ans1 += abs(S1)+1 S1 = -S//abs(S) S = S1 ans2 = 0 S = A[0] if S >= 0: S = -1 ans2 = abs(S)+1 for a in A[1:]: S1 = S+a if S1*S >= 0: ans2 += abs(S1)+1 S1 = -S//abs(S) S = S1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; vector<long long> rev_a = a; long long result = 0; bool isPlus = a[0] > 0 ? true : false; long long sum = a[0]; for (int i = 1; i < n; i++) { long long temp_sum = sum + a[i]; if (isPlus) { if (temp_sum >= 0) { result += temp_sum + 1; a[i] -= temp_sum + 1; } } else { if (temp_sum <= 0) { result += -temp_sum + 1; a[i] += -temp_sum + 1; } } isPlus = !isPlus; sum += a[i]; } sum = 0; long long rev_result = 0; isPlus = rev_a[0] > 0 ? true : false; if (isPlus) { rev_result += rev_a[0] + 1; rev_a[0] -= rev_a[0] + 1; isPlus = !isPlus; } else { rev_result -= rev_a[0] + 1; rev_a[0] += rev_a[0] + 1; isPlus = !isPlus; } for (int i = 1; i < n; i++) { int temp_sum = sum + rev_a[i]; if (isPlus) { if (temp_sum >= 0) { rev_result += temp_sum + 1; rev_a[i] -= temp_sum + 1; } } else { if (temp_sum <= 0) { rev_result += -temp_sum + 1; rev_a[i] += -temp_sum + 1; } } isPlus = !isPlus; sum += rev_a[i]; } if (rev_result < result) cout << rev_result << endl; else cout << result << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using static Assistant.Input; using static Assistant.Debug; using System.Linq; using Assistant; namespace ABC059C { class Program { static void Main(string[] args) { var n = RInt; var a = RInts; long ans = 0; if (a[0] != 0) { ans = cand(a[0], a); } else { ans = Math.Min(cand(1, a), cand(-1, a)) + 1; } Console.WriteLine(ans); } static long cand(int sum, int[] a) { long ret = 0; for (int i = 1; i < a.Length; i++) { if (sum < 0) { sum += a[i]; if (sum < 1) { ret += 1 - sum; sum = 1; } } else if (sum > 0) { sum += a[i]; if (sum > -1) { ret += sum + 1; sum = -1; } } } return ret; } } } namespace Assistant { static class Input { static List<string> line = new List<string>(); static int index = 0; static String RNext() { if (line.Count <= index) line.AddRange(Console.ReadLine().Split()); return line[index++]; } public static int RInt => int.Parse(RNext()); public static long RLong => long.Parse(RNext()); public static int[] RInts => Console.ReadLine().Split().Select(int.Parse).ToArray(); public static long[] RLongs => Console.ReadLine().Split().Select(long.Parse).ToArray(); public static string RString => RNext(); //以下未テスト public static int[] RIntsC(int c) => Enumerable.Repeat(0, c).Select(x => int.Parse(RNext())).ToArray(); public static long[] RLongsC(int c) => Enumerable.Repeat(0, c).Select(x => long.Parse(RNext())).ToArray(); public static char[][] RMap(int h) => Enumerable.Repeat(0, h).Select(x => Console.ReadLine().ToCharArray()).ToArray(); } public struct Mlong { long _v; const long mod = 1000000007; public Mlong(long n = 0) : this() { _v = n >= mod ? n % mod : n; } public static implicit operator Mlong(long _x) => new Mlong(_x); public static implicit operator long(Mlong _x) => _x._v; public static Mlong operator +(Mlong m1, Mlong m2) { long m = m1._v + m2._v; return m >= mod ? m - mod : m; } public static Mlong operator -(Mlong m1, Mlong m2) { long m = m1._v - m2._v; return m >= 0 ? m : m + mod; } public static Mlong operator *(Mlong m1, Mlong m2) => m1._v * m2._v % mod; public static Mlong operator /(Mlong m1, Mlong m2) => m1._v * ModPow(m2._v, mod - 2) % mod; public static long ModPow(long a, long n) { if (n == 0) return 1; else if (n % 2 == 1) return a * ModPow(a, n - 1) % mod; else return ModPow(a * a % mod, n / 2); } static Mlong[] fac, finv, inv; public static void nCkInit(int max) { fac = new Mlong[max]; finv = new Mlong[max]; inv = new Mlong[max]; fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < max; i++) { fac[i] = fac[i - 1] * i; inv[i] = mod - inv[mod % i] * (mod / i); finv[i] = finv[i - 1] * inv[i]; } } public static Mlong nCk(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * finv[k] * finv[n - k]; } } static class Debug { static public void Draw2D<T>(T[,] map, int mode = 1) { #if DEBUG int W = map.GetLength(0); int H = map.GetLength(1); string[,] map2 = new string[W + 1, H + 1]; for (int i = 0; i < W + 1; i++) { for (int j = 0; j < H + 1; j++) { if (i == 0 && j == 0) map2[i, j] = 0.ToString(); else if (i == 0) map2[i, j] = (j - 1).ToString(); else if (j == 0) map2[i, j] = (i - 1).ToString(); else map2[i, j] = map[i - 1, j - 1].ToString(); } } for (int i = 0; i < W + 1; i++) { for (int j = 0; j < H + 1; j++) { if (mode == 0) Console.Write(map2[i, j].Last()); if (mode == 1) Console.Write(map2[i, j] + " "); } Console.WriteLine(); } Console.WriteLine(); #endif } public static void Draw1D<T>(T[] array, int mode = 0) { #if DEBUG Console.WriteLine(string.Join(" ", array)); #endif } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ans; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } for (int i = 0; i < n - 1; i++) { int p = 0; for (int j = i + 1; j >= 0; j--) p += a.at(j); while (a.at(i) * a.at(i + 1) < 0 || p == 0) { if (a.at(i) > 0) { a.at(i + 1)--; ans++; if (p == 0) p++; } if (a.at(i) < 0) { a.at(i + 1)++; ans++; if (p == 0) p++; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[100010]; long long sum = 0, cnt = 0; for (int i = 0; i < n; i++) cin >> a[i]; bool nextpo = false; bool nextne = false; sum = a[0]; if (sum < 0) nextpo = true; else if (sum > 0) nextne = true; for (int i = 1; i < n; i++) { if (nextpo) { nextpo = false; nextne = true; sum += a[i]; if (sum == 0) { sum++; cnt++; } else if (sum < 0) { cnt += abs(sum) + 1; sum += abs(sum) + 1; } } else if (nextne) { nextpo = true; nextne = false; sum += a[i]; if (sum == 0) { sum--; cnt++; } else if (sum > 0) { cnt += sum + 1; sum -= sum + 1; } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using itn = int; using namespace std; int GCD(int a, int b) { return b ? GCD(b, a % b) : a; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } vector<ll> sum(n, 0); for (int i = 0; i < n; i++) { if (i == 0) sum[i] = a[i]; else sum[i] = a[i] + sum[i - 1]; } int cnt1 = 0, cnt2 = 0; ll add1 = 0, add2 = 0; for (int i = 0; i < n; i++) { ll tmp1 = sum[i] + add1; ll tmp2 = sum[i] + add2; if (i % 2 == 0) { if (tmp1 <= 0) { int b = 1 - tmp1; cnt1 += b; add1 += b; } if (tmp2 >= 0) { int b = tmp2 + 1; cnt2 += b; add2 -= b; } } else { if (tmp1 >= 0) { int b = tmp1 + 1; cnt1 += b; add1 -= b; } if (tmp2 <= 0) { int b = 1 - tmp2; cnt2 += b; add2 += b; } } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N; cin >> N; vector<long long> v(N); bool check = false; for (int i = 0; i < N; i++) { cin >> v[i]; if (v[0] < 0) check = true; if (check) v[i] = -v[i]; } vector<long long> a(N), b(N); int cntA = 0, cntB = 0; a[0] = v[0]; cntB += v[0] + 1; b[0] = -1; if (v[0] == 0) { cntA++; cntB++; a[0] = v[0] + 1; b[0] = v[0] - 1; } for (int i = 1; i < N; i++) { long long tmp_a = a[i - 1] + v[i]; if (tmp_a == 0) { if (i % 2 == 0) { a[i] = 1; } else { a[i] = -1; } cntA++; } else if (i % 2 == 0 && tmp_a < 0) { a[i] = 1; cntA += (-tmp_a) + 1; } else if (i % 2 == 1 && tmp_a > 0) { a[i] = -1; cntA += tmp_a + 1; } else { a[i] = tmp_a; } long long tmp_b = b[i - 1] + v[i]; if (tmp_b == 0) { if (i % 2 == 0) { b[i] = -1; } else { b[i] = 1; } cntB++; } else if (i % 2 == 0 && tmp_b > 0) { b[i] = -1; cntB += tmp_b + 1; } else if (i % 2 == 1 && tmp_b < 0) { b[i] = 1; cntB += (-tmp_b) + 1; } else { b[i] = tmp_b; } } cout << min(cntA, cntB) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Linq; using System.Collections.Generic; using System.Numerics; using static System.Console; class Program { static Scanner sc = new Scanner(); internal static void Main(string[] args) { var N = sc.nextInt(); var a = sc.ArrayInt(N); var sum = a[0]; var ans = 0; bool bef = a[0] >= 0; for (int i = 1; i < N; i++) { if (sum + a[i] == 0 || (sum + a[i] > 0) == bef ) { if (bef) { ans += sum + a[i] + 1; sum = -1; } else { ans += Math.Abs(sum + a[i]) + 1; sum = 1; } } else { sum += a[i]; } bef = !bef; } WriteLine(ans); } } class Scanner { string[] s; int i; char[] cs = new char[] { ' ' }; public Scanner() { s = new string[0]; i = 0; } public string next() { if (i < s.Length) return s[i++]; string st = Console.ReadLine(); while (st == "") st = Console.ReadLine(); s = st.Split(cs, StringSplitOptions.RemoveEmptyEntries); if (s.Length == 0) return next(); i = 0; return s[i++]; } public int nextInt() { return int.Parse(next()); } public int[] ArrayInt(int N, int add = 0) { int[] Array = new int[N]; for (int i = 0; i < N; i++) { Array[i] = nextInt() + add; } return Array; } public long nextLong() { return long.Parse(next()); } public long[] ArrayLong(int N, long add = 0) { long[] Array = new long[N]; for (int i = 0; i < N; i++) { Array[i] = nextLong() + add; } return Array; } public double nextDouble() { return double.Parse(next()); } public double[] ArrayDouble(int N, double add = 0) { double[] Array = new double[N]; for (int i = 0; i < N; i++) { Array[i] = nextDouble() + add; } return Array; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys # -*- coding: utf-8 -*- # 整数の入力 n=int(input()) a=list(map(int, input().split())) b=a[:] c=a[:] # 無変更チェック if a[0]!=0: S=int(a[0]) for i in range(1,n): if S<0 and S+a[i]<=0: break elif S>0 and S+a[i]>=0: break S+=a[i] if i==n-1: print(0) sys.exit() # a[0]を1に変えた場合の計算 counter_2=abs(b[0]-1) b[0]=1 S=b[0] for i in range(1,n): if S<0 and S+b[i]<=0: counter_2+=-S-b[i]+1 b[i]=-S+1 elif S>0 and S+b[i]>=0: counter_2+=S+b[i]+1 b[i]=-S-1 S+=b[i] # a[0]を-1に変えた場合の計算 counter_3=abs(c[0]+1) c[0]=-1 S=c[0] for i in range(1,n): if S<0 and S+c[i]<=0: counter_3+=-S-c[i]+1 c[i]=-S+1 elif S>0 and S+c[i]>=0: counter_3+=S+c[i]+1 c[i]=-S-1 S+=c[i] print(min(counter_1,counter_2,counter_3))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) check = '' if a[0] > 0: check = '+' else: check = '-' ans = 0 for i in range(1, n): a[i] += a[i-1] if check == '+': if a[i] >= 0: ans += abs(a[i]) + 1 a[i] -= abs(a[i]) + 1 check = '-' else: if a[i] <= 0: ans += abs(a[i]) + 1 a[i] += abs(a[i]) + 1 check = '+' print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys n = int(input()) a = [int(n) for n in input().split()] sum = [0]*n sum[0] = a[0] ans = 0 for i in range(1,n): sum[i] = sum[i-1] if((sum[i]+a[i])*sum[i-1] >= 0): if(sum[i-1] > 0): ans+=sum[i-1] + a[i]+1 a[i]-=sum[i-1] + a[i]+1 else: ans+=1 - sum[i-1] - a[i] a[i]+=1 - sum[i-1] - a[i] sum[i] += a[i] print(ans) # print(a) # print(sum)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; int a[100000]; for (long long i = 0; i < n; i++) cin >> a[i]; long long ans = 1 << 62; long long sum[100001] = {}; for (long long p = 0; p < 2; p++) { long long cnt = 0; for (long long i = 0; i < n; i++) { int border = 1 + (p + i) % 2 * -2; sum[i + 1] = sum[i] + a[i]; if (border == 1 && sum[i + 1] >= border) continue; if (border == -1 && sum[i + 1] <= border) continue; cnt += abs(border - sum[i + 1]); sum[i + 1] = border; } ans = min(ans, cnt); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long long int s1 = 0, s2 = 0, ans[] = {0, 0}; long long int a, b; for (int i = 0; i < N; ++i) { cin >> a; b = a; if (i % 2) { s1 += a; s2 += a; if (s1 >= 0) { ans[1] += s1 + 1; a -= s1 + 1; s1 = -1; } if (!a) { --a; --s1; ++ans[1]; } if (s2 <= 0) { ans[0] -= s2 - 1; b -= s2 - 1; s2 = 1; } if (!b) { ++b; ++s2; ++ans[0]; } } else { s1 += a; s2 += a; if (s2 >= 0) { ans[0] += s2 + 1; a -= s2 + 1; s2 = -1; } if (!a) { ++ans[0]; --a; --s2; } if (s1 <= 0) { ans[1] -= s1 - 1; b -= s1 + 1; s1 = 1; } if (!b) { ++ans[1]; ++b; ++s1; } } } cout << min(ans[0], ans[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { const int N = 100000; int n; long long a[N]; long long sum = 0, ans = 0; bool sign1 = true; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } sum = a[0]; if (sum >= 0) sign1 = true; else sign1 = false; for (int i = 1; i < n; i++) { bool sign2 = true; sum += a[i]; if (sum >= 0) sign2 = true; else sign2 = false; if (sign1 != sign2) { sign1 = sign2; if (sum == 0) ans++; } else { ans += abs(sum) + 1; if (sign2) sum = -1; else sum = 1; sign1 = !sign2; } } cout << ans << endl; return (0); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); long[] a=new long[n]; for(int i=0;i<n;i++)a[i]=sc.nextLong(); long sum=0; long count=0; for(int i=0;i<n-1;i++){ if(i==0){ if(a[i]==0){ for(int j=1;j<n;j++){ if(a[j]>0){ a[i]-=1; count++; break; }else if(a[j]<0){ a[i]+=1; count++; break; } } if(a[i]==0){ a[i]=1; count++; } } } sum+=a[i]; if(sum>0){ if(sum+a[i+1]>=0){ count+=sum+a[i+1]+1; a[i+1]-=sum+a[i+1]+1; } }else if(sum<0){ if(sum+a[i+1]<=0){ count+=-1*(sum+a[i+1])+1; a[i+1]+=-1*(sum+a[i+1])+1; } } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long INF = (1LL << 62); long long N; vector<long long> A, W; long long S[100002] = {INF * (-1)}; long long dp[100002] = {0}; void calcDP(int n) { if (n == 1) { if (W[1] != 0) { dp[1] = 0; } else { dp[1] = 1; if (W[2] <= 0) { W[1] = 1; } else { W[1] = -1; } S[1] = W[1]; } return; } else { S[n] = S[n - 1] + W[n]; if ((S[n - 1] < 0 && S[n] > 0) || (S[n - 1] > 0 && S[n] < 0)) { dp[n] = dp[n - 1]; } else { dp[n] = dp[n - 1] + abs(0 - S[n - 1] - W[n]) + 1; W[n] = 0 - S[n - 1] - (abs(S[n - 1]) / S[n - 1]); S[n] = S[n - 1] + W[n]; } return; } } int main(int argc, char* argv[]) { cin.tie(0); ios::sync_with_stdio(false); cin >> N; W.push_back(0); S[0] = 0; for (int i = 1; i <= N; i++) { long long a; cin >> a; A.push_back(a); W.push_back(a); if (i == 1) { S[1] = a; } else { S[i] = S[i - 1] + a; } } for (int i = 1; i <= N; i++) { calcDP(i); } printf("%lld\n", dp[N]); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) as = list(map(int, input().split(" "))) ope = 0 for i in range(0, n-1): sum_be=sum(as[:i]) sum_af=sum(as[:i+1]) if sum_be<0<sum_af or sum_af<0<sum_be: continue elif sum_be > 0: ope += as[i+1] + (sum_be+1) as[i+1] = sum_be + 1 elif sum_be < 0: ope += 1 - sum_be - sum_af as[i+1] = 1 - sum_be print(ope)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; int a[N]; int sum = 0, cnt = 0; for (long long i = 0; i < N; i++) { cin >> a[i]; if (i == 0) { sum += a[i]; continue; } if (sum > 0 && sum + a[i] > 0) { cnt += sum + a[i] + 1; sum = -1; } else if (sum < 0 && sum + a[i] < 0) { cnt += abs(sum + a[i]) + 1; sum = 1; } else if (sum + a[i] == 0) { if (a[i] >= 0) { sum++; cnt++; } else { sum--; cnt++; } } else sum += a[i]; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; // ABC 6-C // http://abc006.contest.atcoder.jp/tasks/abc006_3 public class Main { public static void main (String[] args) throws java.lang.Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] nums = new int[n]; for (int i = 0; i < n; i++) { nums[i] = in.nextInt(); } long answer = 0; if (nums[0] == 0) { answer = solve(nums, 0, 0); } else { answer = solve(nums, nums[0], 1); } System.out.println(answer); // // long sum = 0; // long answer = 0; // // for (int i = 0; i < n; i++) { // int a = in.nextInt(); // // if (sum < 0 && sum + a < 0) { // answer += 1 + Math.abs(sum + a); // sum = 1; // } else if (sum > 0 && sum + a > 0) { // answer += 1 + sum + a; // sum = -1; // } else if (sum + a == 0) { // answer++; // if (sum < 0) { // sum = 1; // } else { // sum = -1; // } // } else { // sum += a; // } // } // System.out.println(answer); } public static long solve(int[] nums, long sum, int index) { if (index == nums.length) { return 0; } if (sum < 0 && sum + nums[index] < 0) { return 1 + Math.abs(sum + nums[index]) + solve(nums, 1, index + 1); } else if (sum > 0 && sum + nums[index] > 0) { return 1 + sum + nums[index] + solve(nums, -1, index + 1); } else if (sum + nums[index] == 0) { return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); } else { return solve(nums, sum + nums[index], index + 1); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 100; const int mod = 1e9 + 7; long long a[N]; int n; int slove(int f) { long long sum = 0, ans = 0; for (int i = 1; i <= n; i++) { sum += a[i]; if (sum * f <= 0) { ans += abs(f - sum); sum = f; } f = -f; } return ans; } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i]; } long long ans = min(slove(1), slove(-1)); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n, cnt = 0; cin >> n; bool flag; vector<ll> a; ll x; for (int i = 0; i < n; i++) { cin >> x; a.push_back(x); } if (a[0] >= 0) { flag = true; } else { flag = false; } int sum = a[0]; for (int i = 1; i < n; i++) { bool flag2; int tmp = sum; sum += a[i]; if (sum == 0) { if (flag) { sum -= 1; flag = false; cnt++; } else { sum += 1; flag = true; cnt++; } } else { if (sum > 0) { flag2 = true; } else { flag2 = false; } if (flag == flag2) { if (flag2) { while (sum >= 0) { sum--; cnt++; } flag2 = false; } else { while (sum <= 0) { sum++; cnt++; } flag2 = true; } } flag = flag2; } } if (sum == 0) cnt++; cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i arr = gets.split.map(&:to_i) pre = arr[0] count = 0 # binding.pry (arr.size - 1).times do |i| pre2 = arr[i + 1] if pre > 0 if pre + pre2 >= 0 pre2 = -(pre + 1) end pre += pre2 count += (pre2 - arr[i + 1]).abs elsif pre < 0 if pre + pre2 <= 0 pre2 = -(pre - 1) end pre += pre2 count += (pre2 - arr[i + 1]).abs end end puts count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #define mp make_pair #define pb push_back #define pii pair<int, int> #define read_input freopen("in.txt","r", stdin) #define print_output freopen("out.txt","w", stdout) typedef long long ll; typedef long double ld; using namespace std; int sign(int x) { if(x > 0) return 1; else if(x < 0) return 0; else return -1; } ll f(ll t, int pre, int s) { if(s == 0) return abs(-1-pre-t); else return abs((1-t)-pre); } int main() { int n, a[100005]; cin >> n; for(int i = 1; i <= n; i++) cin >> a[i]; ll ans1 = 0, ans2 = 0; int s = 1; ll x = 0, tmp; for(int i = 1; i <= n; i++, s ^= 1) { tmp = x; x += a[i]; if(sign(x) != s) ans1 += f(tmp, a[i], s); if(not s) x = min(-1, x); else x = max(1, x); } s = 0, x = 0; for(int i = 1; i <= n; i++, s ^= 1) { tmp = x; x += a[i]; if(sign(x) != s) ans2 += f(tmp, a[i], s); if(not s) x = min(-1, x); else x = max(1, x); } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int i; int main() { int n; cin >> n; vector<int> a(n); for (i = 0; i < n; i++) { cin >> a[i]; } int res = 0; for (i = 0; i < n; i++) { if (a[i] > 0) { res += a[i + 1] - -abs(a[i] + 1); } else { res += a[i + 1] - abs(a[i] + 1); } } cout << res; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long Num[111111]; long long Sum[111111]; long long Out1, Out2; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%lld", &Num[i]); if (Num[1] == 0) Sum[1] = 1, Out1++; for (int i = 1; i <= n; i++) { Sum[i] = Sum[i - 1] + Num[i]; if (i % 2 == 0) { if (Sum[i] >= 0) { Out1 += (Sum[i] + 1); Sum[i] = -1; } } else { if (Sum[i] <= 0) { Out1 += (1 - Sum[i]); Sum[i] = 1; } } } memset(Sum, 0, sizeof(Sum)); if (Num[1] == 0) Sum[1] = -1, Out2++; for (int i = 1; i <= n; i++) { Sum[i] = Sum[i - 1] + Num[i]; if (i % 2 == 1) { if (Sum[i] >= 0) { Out2 += (Sum[i] + 1); Sum[i] = -1; } } else { if (Sum[i] <= 0) { Out2 += (1 - Sum[i]); Sum[i] = 1; } } } printf("%lld\n", min(Out1, Out2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); List<Integer> alist = new ArrayList<>(); for (int i = 0; i < n; i++) { alist.add(sc.nextInt()); } int cntOdd = 0; int cntEvn = 0; int sum = 0; for (int i = 0; i < alist.size(); i++) { sum += alist.get(i); if(i%2 != 0) { if(sum >= 0) { while(sum >= 0) { sum--; cntOdd++; } } else { continue; } } else { if(sum <= 0) { while(sum <= 0) { sum++; cntOdd++; } } else { continue; } } } sum = 0; for (int i = 0; i < alist.size(); i++) { sum += alist.get(i); if (i%2 != 0) { if(sum <= 0) { while(sum <= 0) { sum ++; cntEvn++; } } else { continue; } } else { if(sum >= 0) { while(sum >= 0) { sum --; cntEvn++; } } else { continue; } } } if(cntOdd <= cntEvn) { System.out.println(cntOdd); } else { System.out.println(cntEvn); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import algorithm, tables, sets, lists, intsets, critbits, sequtils, strutils, math, future var N:int = stdin.readLine.parseInt A = stdin.readLine.split.map(parseInt) # ans:int = 0 # now:int = A[0] proc dist(a, b:int):int = if a > b: return abs(a - b) else: return abs(b - a) proc solve(L:seq[int]):int = var ans:int = 0 A = L now = A[0] for i in 1..<N: if now < 0: if now + A[i] <= 0: var v = -now + 1 ans += dist(now, A[i]) A[i] = v now += A[i] elif now > 0: if now + A[i] >= 0: var v = -now - 1 ans += dist(now, A[i]) A[i] = v now += A[i] return ans var a1 = solve(A) var tmp:int if A[0] > 0: tmp = A[0] A[0] = -1 else: tmp = abs(A[0]) A[0] = 1 var a2 = solve(A) + tmp echo min(a1, a2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np import copy N = int(input()) a = list(map(int,input().split())) a = np.cumsum(a) ans1 = 0 ans2 = 0 b = copy.copy(a) for i in range(N): if i % 2 == 0: if a[i] > 0: pass else: ans1 += abs(a[i]) + 1 a = list(map(lambda n:n+abs(a[i])+1, a)) else: if a[i] < 0: pass else: ans1 += abs(a[i]) + 1 a = list(map(lambda n:n-(abs(a[i])+1), a)) for i in range(N): if i % 2 == 1: if b[i] > 0: pass else: ans2 += abs(b[i]) + 1 b = list(map(lambda n:n+abs(b[i])+1, a)) else: if b[i] < 0: pass else: ans2 += abs(b[i]) + 1 b = list(map(lambda n:n-(abs(b[i])+1), b)) print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans = 10**10 # 1 -1 1 -1... cost1 = 0 s = 0 for i in range(n): t = 1 if i % 2 == 0 else -1 c = 0 if i % 2 == 0: if s + a[i] > 0: s += a[i] else: c = abs(s - t) s += c cost1 += abs(c - a[i]) else: if s + a[i] < 0: s += a[i] else: c = abs(s - t) s -= c cost1 += abs(c - a[i]) cost2 = 0 s = 0 for i in range(n): t = -1 if i % 2 == 0 else 1 c = 0 if i % 2 == 1: if s + a[i] > 0: s += a[i] else: c = abs(s - t) s += c cost2 += abs(c - a[i]) else: if s + a[i] < 0: s += a[i] else: c = abs(s - t) s -= c cost2 += abs(- c - a[i]) print(cost1, cost2) print(min(cost1, cost2)) # -1 1 -1 1..
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a_lst = [int(x) for x in input().split()] def my_sign(num): return (num > 0) - (num < 0) sum = 0 cnt = 0 sum_lst = [] for i in range(N): if i == 0: if a_lst[i] == 0: a_lst[i] = 1 cnt += 1 sum_lst.append(a_lst[i]) else: sum_lst.append(a_lst[i] + sum_lst[i - 1]) if my_sign(sum_lst[i]) == my_sign(sum_lst[i - 1]) or my_sign(sum_lst[i]) == 0: cnt += max(-my_sign(sum_lst[i - 1]), sum_lst[i]) - min(-my_sign(sum_lst[i - 1]), sum_lst[i]) a_lst[i] += -my_sign(sum_lst[i - 1]) - sum_lst[i] sum_lst[i] = -my_sign(sum_lst[i - 1]) #print(a_lst) #print(sum_lst) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int,input().split())) totals = [0] * N totals[0] = A[0] con = 0 for i in range(1,N): totals[i] = totals[i - 1] + A[i] #チェック ##符号が等しいか、ゼロなら操作 if totals[i - 1] * totals[i] >= 0: if totals[i - 1] < 0: con += abs(1 - totals[i]) totals[i] += abs(1 - totals[i]) else: con += abs(-1 - totals[i]) totals[i] -= abs(-1 - totals[i]) print(con)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N; vector<int> a; int solve(bool b) { int count = 0; int sum = a[0]; if (a[0] == 0) { sum = b ? 1 : -1; count++; } else if (b && a[0] < 0) { sum = 1; count = 1 - a[0]; } else if (!b && a[0] > 0) { sum = -1; count = a[0] + 1; } for (int i = 1; i < N; i++) { if (sum * a[i] < 0 && abs(sum) < abs(a[i])) { sum += a[i]; } else { if (sum > 0) { count += a[i] + sum + 1; sum = -1; } else { count += 1 - sum - a[i]; sum = 1; } } } return count; } int main() { cin >> N; a.resize(N); for (int i = 0; i < N; i++) cin >> a[i]; cout << min(solve(true), solve(false)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i nums = gets.split.map(&:to_i) nonzero_index = nums.find_index { |i| i.nonzero? } if nonzero_index.even? && nums[nonzero_index] > 0 next_minus = false elsif nonzero_index.even? && nums[nonzero_index] < 0 next_minus = true elsif nonzero_index.odd? && nums[nonzero_index] > 0 next_minus = true else next_minus = false end cumulative = 0 ans = 0 nums.each do |num| cumulative += num if next_minus if cumulative >= 0 decrement = cumulative.abs + 1 ans += decrement cumulative -= decrement end else if cumulative <= 0 increment = cumulative.abs + 1 ans += increment cumulative += increment end end next_minus = !next_minus end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, char* argv[]) { int n; cin >> n; vector<long long> a(n, 0); vector<long long> s(n, 0); int i; for (i = 0; i < n; i++) { cin >> a[i]; } s[0] = a[0]; long long aw = 0; for (i = 1; i < n; i++) { s[i] = s[i - 1] + a[i]; if (s[i - 1] > 0) { if (s[i] < 0) { continue; } else { aw += abs(s[i - 1] + a[i] + 1); a[i] = -1 - s[i - 1]; s[i] = s[i - 1] + a[i]; } } else { if (s[i] > 0) { continue; } else { aw += abs(s[i - 1] + a[i] - 1); a[i] = 1 - s[i - 1]; s[i] = s[i - 1] + a[i]; } } } cout << aw << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n, b, c = 0; cin >> n >> b; for (int i = 0; i < n - 1; i++) { int a; cin >> a; a += b; if (a * b >= 0) { if (b > 0) { c += a + 1; a = -1; } else { c += 1 - a; a = 1; } } b = a; } cout << c << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; const int INF = 1001001001; int main() { int n; cin >> n; vector<int> a(n); for (long long(i) = 0; (i) < (n); (i)++) cin >> a[i]; long long s = a[0]; long long ans = 0; for (int i = 1; i < n; ++i) { long long cur = s + a[i]; cout << s << " "; if (s > 0) { if (cur >= 0) { ans += abs(cur) + 1; s = -1; } else { s += a[i]; } } else { if (cur <= 0) { ans += abs(cur) + 1; s = 1; } else { s += a[i]; } } cout << s << endl; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; long long s[maxn]; long long ans[maxn]; int main() { int n, j; cin >> n; long long sum = 0; for (int i = 1; i <= n; i++) { cin >> s[i]; } for (int i = 1; i < n; i++) { ans[i] = ans[i - 1] + s[i]; if (ans[i] > 0) { if (s[i + 1] >= 0) { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } else { if (abs(s[i + 1]) > ans[i]) { } else { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } } } else if (ans[i] == 0) { if (s[i + 1] <= 0) { sum += -s[i + 1] + 1; ans[i] = 2; s[i + 1] = -1; } else if (s[i + 1] > 0) { sum += s[i + 1] + 1; ans[i] = -2; s[i + 1] = 1; } } else if (ans[i] < 0) { if (s[i + 1] > 0) { if (abs(ans[i]) < s[i + 1]) { } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } } cout << sum << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) nums = list(map(int, input().split())) ans = 10**5+1 for start in [-1, 1]: before = start cnt = 0 sum_n = 0 for num in nums: sum_n += num if before*sum_n >= 0: if before < 0: cnt += abs(1-sum_n) sum_n = 1 else: cnt += abs(-1-sum_n) sum_n = -1 before = sum_n ans = min(ans, cnt) print(ans)