Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) l = list(map(int, input().split())) last_sum = l[0] ans_l = [] for j in range(2): ans = 0 if j == 0: if last_sum <= 0: ans += 1 - last_sum last_sum += 1 - last_sum else: if last_sum >= 0: ans += -1 - last_sum last_sum += -1 - last_sum for i in range(n - 1): # print(last_sum) if last_sum > 0: if last_sum + l[i + 1] < 0: last_sum += l[i + 1] else: a = -1 - last_sum - l[i + 1] ans += abs(a) last_sum += a + l[i + 1] else: if last_sum + l[i + 1] > 0: last_sum += l[i + 1] else: a = 1 - last_sum - l[i + 1] ans += abs(a) last_sum += a + l[i + 1] ans_l.append(ans) print(min(ans_l))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for(int i = 0 ; i < n ; i++) a[i] = sc.nextInt(); long sum = 0, ans = 0, ans2 = 0; // + - + - + ... for(int i = 0 ; i < n ; i++) { sum += a[i]; if(i % 2 == 0 && sum <= 0) { ans += 1 - sum; sum = 1; } else if(i % 2 == 1 && sum >= 0) { ans += sum + 1; sum = -1; } } // - + - + - ... for(int i = 0 ; i < n ; i++) { sum += a[i]; if(i % 2 == 0 && sum >= 0) { ans += sum + 1; sum = -1; } else if(i % 2 == 1 && sum <= 0) { ans += 1 - sum; sum = 1; } } System.out.println(Math.min(ans, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } int min_ans = INT_MAX; for (int mod = 0; mod < 2; ++mod) { int ans = 0; int sum = 0; for (int i = 0; i < n; ++i) { int sign = ((i % 2) == mod) * -2 + 1; sum += a[i]; if (sign * sum <= 0) { int diff = sign - sum; sum = sign; ans += abs(diff); } } min_ans = min(min_ans, ans); } cout << min_ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using llong = long long; const int MOD = 1000000007; int main(int argc, char** argv) { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } vector<int> s(n, 0); s[0] = a[0]; cout << s[0] << endl; for (int i = 1; i < n; i++) { s[i] = a[i] + s[i - 1]; cout << s[i] << endl; } int sum = 0; int c1 = 0, c2 = 0; int sign = 1; for (int i = 0; i < n; i++) { sum += a[i]; if (sum * sign <= 0) { c1 += abs(sum) + 1; sum = sign; } sign *= -1; } sign = -1; sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (sum * sign <= 0) { c2 += abs(sum) + 1; sum = sign; } sign *= -1; } cout << min(c1, c2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a_lst = [int(x) for x in input().split()] b_lst = [] for i in a_lst: b_lst.append(i) def my_sign(num): return (num > 0) - (num < 0) cnt_p = 0 cnt_n = 0 sum_lst = [] sum2_lst = [] for i in range(N): if i == 0: if a_lst[i] == 0: a_lst[i] = 1 cnt_p += 1 sum_lst.append(a_lst[i]) else: sum_lst.append(a_lst[i] + sum_lst[i - 1]) if my_sign(sum_lst[i]) == my_sign(sum_lst[i - 1]) or my_sign(sum_lst[i]) == 0: cnt_p += max(-my_sign(sum_lst[i - 1]), sum_lst[i]) - min(-my_sign(sum_lst[i - 1]), sum_lst[i]) a_lst[i] += -my_sign(sum_lst[i - 1]) - sum_lst[i] sum_lst[i] = -my_sign(sum_lst[i - 1]) for i in range(N): if i == 0: if b_lst[i] == 0: b_lst[i] = -1 cnt_n += 1 sum2_lst.append(b_lst[i]) else: sum2_lst.append(b_lst[i] + sum2_lst[i - 1]) if my_sign(sum2_lst[i]) == my_sign(sum2_lst[i - 1]) or my_sign(sum2_lst[i]) == 0: cnt_n += max(-my_sign(sum2_lst[i - 1]), sum2_lst[i]) - min(-my_sign(sum2_lst[i - 1]), sum2_lst[i]) b_lst[i] += -my_sign(sum2_lst[i - 1]) - sum2_lst[i] sum2_lst[i] = -my_sign(sum2_lst[i - 1]) print(min(cnt_p, cnt_n))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int a[100010]; int sum[100010] = {0}; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; int ans = 0; if (a[0] >= 0) { for (int i = 0; i < n; i++) { int j = i; while (j >= 0) { sum[i] += a[j]; j--; } if (i % 2 == 0) { if (sum[i] <= 0) { while (sum[i] <= 0) { sum[i]++; a[i]++; ans++; } } } else { if (sum[i] >= 0) { while (sum[i] >= 0) { sum[i]--; a[i]--; ans++; } } } } if (sum[n - 1] == 0) ans++; } else { for (int i = 0; i < n; i++) { int j = i; while (j >= 0) { sum[i] += a[j]; j--; } if (i % 2 == 0) { if (sum[i] >= 0) { while (sum[i] >= 0) { sum[i]--; a[i]--; ans++; } } } else { if (sum[i] <= 0) { while (sum[i] <= 0) { sum[i]++; a[i]++; ans++; } } } } if (sum[n - 1] == 0) ans++; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long s1, s2, c1, c2, a; for (int i = 1; i <= n; i++) { cin >> a; s1 += a; s2 += a; if (i % 2) {   if (s1 <= 0) c1 += 1 - s1, s1 = 1; if (s2 >= 0) c2 += 1 + s2, s2 = -1; } else {   if (s1 >= 0) c1 += 1 + s1, s1 = -1;   if (s2 <= 0) c2 += 1 - s2, s2 = 1; } } cout << min(c1, c2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- """ Created on Sat Sep 8 15:51:53 2018 @author: maezawa """ def f(n, a0, cnt, sa): a = a0[:] for i in range(n-1): sa += a[i] na = -sa//abs(sa)*(abs(sa)+1) if abs(a[i+1]) > abs(na) and a[i+1]*na > 0: continue else: cnt += abs(na-a[i+1]) a[i+1] = na return cnt n = int(input()) a = list(map(int, input().split())) sa = 0 cnt = 0 if a[0] == 0: a[0] = 1 cnt =1 cnt0 = f(n, a, cnt, sa) a[0] = -1 cnt1 = f(n, a, cnt, sa) cnt = min([cnt0,cnt1]) else: cnt = f(n, a, cnt, sa) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) b=list(map(int,input().split())) a=b[:] condition='' cnt=0 wa=0 for i in range(n): wa+=a[i] if i == 0: if a[i]>0: condition='minus' else: condition='plus' elif condition == 'plus': condition='minus' if wa<=0: cnt+=abs(wa)+1 a[i]+=abs(wa)+1 wa+=abs(wa)+1 elif condition == 'minus': condition='plus' if wa>=0: cnt+=abs(wa)+1 a[i]-=abs(wa)+1 wa-=abs(wa)+1 cnt1=cnt a=b[:] condition='' cnt=0 wa=0 for i in range(n): wa+=a[i] if i == 0: a[i]=int(a[i]/abs(a[i])*(-1)) cnt+=abs(a[i])+1 wa=a[i] if a[i]>0: condition='minus' else: condition='plus' elif condition == 'plus': condition='minus' if wa<=0: cnt+=abs(wa)+1 a[i]+=abs(wa)+1 wa+=abs(wa)+1 elif condition == 'minus': condition='plus' if wa>=0: cnt+=abs(wa)+1 a[i]-=abs(wa)+1 wa-=abs(wa)+1 cnt2=cnt print(min(cnt1,cnt2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{BufWriter, Write}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [graph1; $len:expr]) => {{ let mut g = vec![vec![]; $len]; let ab = read_value!($next, [(usize1, usize1)]); for (a, b) in ab { g[a].push(b); g[b].push(a); } g }}; ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } #[allow(unused)] macro_rules! debug { ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap()); } #[allow(unused)] macro_rules! debugln { ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap()); } /* mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type ModInt = mod_int::ModInt<P>; //n^p mod m fn repeat_square(n: i64, p: i64, m: i64) -> i64 { if p == 0 { 1 } else if p == 1 { n % m } else if p % 2 == 0 { repeat_square(n, p / 2, m).pow(2) % m } else { (n * repeat_square(n, p - 1, m)) % m } } fn ncr_mod(n: i64, r: i64, m: i64) -> i64 { let mut denominator = n; let mut numerator = 1; for i in 1..r { denominator = (denominator * (n - i)) % m; numerator = (numerator * (i + 1)) % m; } (denominator * repeat_square(numerator, m - 2, m)) % m } */ fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts { ($($format:tt)*) => (let _ = write!(out,$($format)*);); } input! { n: usize, a: [i32; n], } let mut cnt_odd = 0; let mut cnt_even = 0; let mut cum_1 = vec![0; n]; let mut cum_2 = vec![0; n]; //cum_1[even] < 0,cum_2[odd] < 0 if a[0] >= 0 { cnt_even += a[0].abs() + 1; cum_1[0] = a[0]; cum_2[0] = -1; } else { cnt_odd += a[0].abs() + 1; cum_1[0] = 1; cum_2[0] = a[0]; } //+ - + - for i in 1..n { cum_1[i] = cum_1[i-1] + a[i]; if i % 2 != 0 { if cum_1[i] >= 0 { cnt_odd += cum_1[i].abs() + 1; cum_1[i] = -1; } } else { if cum_1[i] <= 0 { cnt_odd += cum_1[i].abs() + 1; cum_1[i] = 1; } } } //- + - + for i in 1..n { cum_2[i] = cum_2[i-1] + a[i]; if i % 2 == 0 { if cum_2[i] >= 0 { cnt_even += cum_2[i].abs() + 1; cum_2[i] = -1; } } else { if cum_2[i] <= 0 { cnt_even += cum_2[i].abs() + 1; cum_2[i] = 1; } } } puts!("{}\n",min(cnt_odd, cnt_even)); } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static const int MAX = 100005; int n; int A[MAX]; int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> A[i]; } int ans1 = 0; int sum = 0; for (int i = 0; i < n; i++) { if (i % 2 == 1) { if (sum + A[i] >= 1) { sum += A[i]; continue; } else { ans1 += 1 - (sum + A[i]); sum = 1; } } else { if (sum + A[i] <= -1) { sum += A[i]; continue; } else { ans1 += (sum + A[i]) - (-1); sum = -1; } } } sum = 0; int ans2 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (sum + A[i] >= 1) { sum += A[i]; continue; } else { ans2 += 1 - (sum + A[i]); sum = 1; } } else { if (sum + A[i] <= -1) { sum += A[i]; continue; } else { ans2 += (sum + A[i]) - (-1); sum = -1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { new Main().execute(); } public void execute() { Scanner sc = new Scanner(System.in); final int N = sc.nextInt(); long[] A = new long[N]; for (int i = 0; i < N; i++) { long ai = sc.nextLong(); A[i] = ai; } long cnt = 0; if(A[0] ==0) { A[0] = 1; long cntA = countOps(A); A[0] = -1; long cntB = countOps(A); cnt = Math.min(cntA, cntB); }else { cnt = countOps(A); } System.out.println(cnt); sc.close(); } private long countOps(long[] A) { long[] arr = A.clone(); long sum = arr[0]; long cnt = 0; for (int i = 1; i < arr.length; i++) { if (sum > 0) { if (sum + arr[i] >= 0) { cnt += sum + arr[i] + 1; arr[i] = -sum - 1; sum = -1; } else { sum = sum + arr[i]; } } else {// sum <0 if (sum + arr[i] <= 0) { cnt += (sum + arr[i]) * -1 + 1; arr[i] = -sum + 1; sum = 1; } else { sum = sum + arr[i]; } } } return cnt; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main{ static int n; static long[] a; static long count; static long sum; public static void main(String[] args) throws IOException{ MyReader r = new MyReader(); n = r.i(); a = r.ll(); sum = a[0]; count = 0; if(a[0] == 0){ count = 1; sum = 1; solve(); long temp = count; count = 1; sum = -1; solve(); count = Math.min(count, temp); } else { solve(); long temp = count; sum = -a[1]-1; count = Math.abs(a[0]+a[1]+1); solve(); temp = Math.min(temp, count); sum = -a[1]+1; count = Math.abs(-a[0]+a[1]+1); solve(); count = Math.min(temp, count); } println(count); } static void solve(){ for(int i = 1; i < n; i++){ if(sum < 0){ if(a[i]+sum <= 0){ count += -(a[i]+sum)+1; sum = 1; } else sum = a[i]+sum; } else{ if(a[i]+sum>=0){ count += a[i]+sum+1; sum = -1; } else sum = a[i]+sum; } } } static void print(Object o){ System.out.print(o.toString()); } static void println(Object o){ System.out.println(o.toString()); } static int Int(String s){ return Integer.parseInt(s); } static long Long(String s){ return Long.parseLong(s); } static class MyReader extends BufferedReader{ MyReader(){ super(new InputStreamReader(System.in)); } String s() throws IOException{ return readLine(); } String[] ss() throws IOException{ return s().split(" "); } int i() throws IOException{ return Int(s()); } int[] ii() throws IOException{ String[] ss = ss(); int size = ss.length; int[] ii = new int[size]; for(int j = 0; j < size; j++) ii[j] = Integer.parseInt(ss[j]); return ii; } long l() throws IOException{ return Long(s()); } long[] ll() throws IOException{ String[] ss = ss(); int size = ss.length; long[] ll = new long[size]; for(int j = 0; j < size; j++) ll[j] = Long.parseLong(ss[j]); return ll; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long int ans1 = 0, ans2 = 0; int tmp = a[0]; if (tmp <= 0) { ans1 += (1 - tmp); tmp = 1; } for (int i = 1; i < n; i++) { tmp += a[i]; if (i % 2 == 1) { if (tmp >= 0) { ans1 += abs(-1 - tmp); tmp = -1; } } else { if (tmp <= 0) { ans1 += abs(1 - tmp); tmp = 1; } } } tmp = a[0]; if (tmp >= 0) { ans2 += (-1 - tmp); tmp = -1; } for (int i = 1; i < n; i++) { tmp += a[i]; if (i % 2 == 1) { if (tmp <= 0) { ans2 += abs(1 - tmp); tmp = 1; } } else { if (tmp >= 0) { ans2 += abs(-1 - tmp); tmp = -1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; unsigned int manipulation(vector<int>& a) { unsigned int m = 0; if (a[0] == 0) { m++; if (a[1] == 0) a[0] = 1; else if (a[1] == 1) a[0] = -1; else if (a[1] > 1) a[0] = -a[1] + 1; else if (a[1] == -1) a[0] = 1; else a[0] = -a[1] + 1; } int sum = a[0]; bool is_sum_above_0 = sum > 0; for (unsigned int ii = 1; ii < a.size(); ++ii) { sum += a[ii]; if (is_sum_above_0) { while (sum >= 0) { m++; sum--; } } else { while (sum <= 0) { m++; sum++; } } is_sum_above_0 = !is_sum_above_0; } return m; } int main() { unsigned int n; cin >> n; vector<int> a(n); for (unsigned int ii = 0; ii < n; ++ii) cin >> a[ii]; cout << manipulation(a) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long ans = 0; vector<long long> sum(n); sum[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (signbit(sum[i]) == signbit(sum[i - 1])) { ans += abs(sum[i]) + 1; sum[i] = sum[i - 1] / abs(sum[i - 1]) * (-1); } else if (sum[i] == 0) { sum[i] = sum[i - 1] / abs(sum[i - 1]) * (-1); ans += 1; } cout << sum[i] << endl; } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) li = list(map(int,input().split())) ans = 0 cnt = 0 s = 0 for i in range(n): if i == 0: ans += li[i] if ans > 0: s = 1 else: s = -1 else: ans += li[i] if ans <= 0 and s == -1: while True: ans += 1 cnt += 1 if ans > 0: s == 1 break if ans >= 0 and s == 1: while True: ans -= 1 cnt += 1 if ans < 0: s == -1 break s *= -1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) S1 = 0 S2 = 0 #S1が奇数番目が正の場合、S2が偶数番目が負の場合 cnt = 0 for i,num in enumerate(a): S1 += num if i % 2 == 0 and S1 <= 0: cnt1 += 1 - S1 S1 = 1 if i % 2 != 0 and S1 >= 0: cnt1 += 1 + S1 S1 = -1 S2 += num if i % 2 == 0 and S2 >= 0: cnt2 += 1 + S2 S2 = -1 if i % 2 != 0 and S2 <= 0: cnt2 += 1 - S2 S2 = 1 print(cnt1 if cnt1 <= cnt2 else cnt2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) def find(a): f = "+" if a[0] < 0 else "-" s = a[0] c = 0 #print((s,f,c)) for i in range(1,n): if f == "+" and s + a[i] > 0: f = "-" s = s + a[i] # print((s,f,c)) elif f == "+": c = c + abs(s + a[i])+1 f = "-" s = 1 # print((s,f,c)) elif f == "-" and s + a[i] < 0: f = "+" s = s + a[i] # print((s,f,c)) else: c = c + abs(s+a[i])+1 f = "+" s = -1 return c if a[0] = 0: a[0] = -1 cmin = find(a) a[0] = 1 cmax = find(a) c = min(cmin,cmax) else: c = find(a) print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using std::cin; using std::cout; using std::endl; using std::string; using std::vector; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < (N); ++i) { cin >> a[i]; } long long count = 0; if (a[0] == 0) { for (int i = 1; i < N; i++) { if (a[i] > 0) { if (i % 2 == 0) { a[0]++; } else { a[0]--; } break; } else if (a[i] < 0) { if (i % 2 == 0) { a[0]--; } else { a[0]++; } break; } if (i == N - 1) a[0]++; } count++; } long long sum = 0; for (int i = 0; i < (N - 1); ++i) { sum += a[i]; long long next_sum = sum + a[i + 1]; if ((sum < 0 && next_sum > 0) || (sum > 0 && next_sum < 0)) { } else { if (sum < 0) { count += 1 - next_sum; a[i + 1] += 1 - next_sum; } else { count += next_sum + 1; a[i + 1] -= (next_sum + 1); } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] count = 0 for i in range(1, n) : temp = sum sum += a[i] if temp > 0 and sum > 0 : count += sum + 1 sum = -1 elif temp < 0 and sum < 0 : count += -sum + 1 sum = 1 if sum == 0 : count += 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") using namespace std; using vl = vector<long long>; using vvl = vector<vector<long long>>; using vs = vector<string>; const int mod = 1000000007; class mint { public: long long x; mint(long long x = 0) : x((x % mod + mod) % mod) {} mint operator-() const { return mint(-x); } mint& operator+=(const mint& a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint& a) { if ((x += mod - a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint& a) { (x *= a.x) %= mod; return *this; } mint operator+(const mint& a) const { mint res(*this); return res += a; } mint operator-(const mint& a) const { mint res(*this); return res -= a; } mint operator*(const mint& a) const { mint res(*this); return res *= a; } mint pow(long long t) const { if (!t) return 1; mint a = pow(t >> 1); a *= a; if (t & 1) a *= *this; return a; } mint inv() const { return pow(mod - 2); } mint& operator/=(const mint& a) { return (*this) *= a.inv(); } mint operator/(const mint& a) const { mint res(*this); return res /= a; } friend ostream& operator<<(ostream& os, const mint& m) { os << m.x; return os; } }; long long modpow(long long x, long long n, long long p = 1000000007) { if (n == 0) return 1 % p; if (n % 2 == 0) return modpow(x * x % p, n / 2, p); else return x * modpow(x, n - 1, p) % p; } void Main() { long long N; cin >> N; vl v(N); for (long long i = 0; i < N; i++) cin >> v[i]; long long ans = 0; if (v[0]) { long long flg = (v[0] > 0); long long acc = v[0]; for (long long i = 1; i < N; i++) { acc += v[i]; if (flg && acc >= 0) { ans += acc + 1; acc = -1; } else if (!flg && acc <= 0) { ans += -acc + 1; acc = 1; } flg ^= 1; } } else { long long flg = 0; long long ans1 = 1; long long acc = -1; for (long long i = 1; i < N; i++) { acc += v[i]; if (flg && acc >= 0) { ans1 += acc + 1; acc = -1; } else if (!flg && acc <= 0) { ans1 += -acc + 1; acc = 1; } flg ^= 1; } flg = 1; long long ans2 = 1; acc = 1; for (long long i = 1; i < N; i++) { acc += v[i]; if (flg && acc >= 0) { ans2 += acc + 1; acc = -1; } else if (!flg && acc <= 0) { ans2 += -acc + 1; acc = 1; } flg ^= 1; } ans = min(ans1, ans2); } cout << ans << "\n"; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); long long t = 1; for (long long i = 0; i < t; i++) Main(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) sum = A[0] ans = 0 if sum == 0: if A[1] >= 0: sum = -1 elif A[1] < 0: sum = 1 ans += 1 for i in range(1, len(A)): if sum > 0: if sum + A[i] >= 0: ans += abs(sum + A[i]) + 1 sum = -1 else: sum += A[i] elif sum < 0: if sum + A[i] <= 0: ans += abs(sum + A[i]) + 1 sum = 1 else: sum += A[i] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int ans = 0; long long int sum = 0; cin >> sum; for (auto i = 1; i < n; ++i) { long long int a; cin >> a; if ((sum > 0 && sum + a >= 0) || (sum < 0 && sum + a <= 0)) { ans += (abs(sum + a) + 1); sum = (sum > 0 ? -1 : 1); } else { sum += a; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long MOD = 1000000007; int main() { int N; cin >> N; vector<long long> sum_a(N, 0); long long ans = 0; int flag = 1; for (int i = 0; i < N; i++) { int a; cin >> a; if (i == 0) { if (a < 0) { flag = -1; } sum_a[i] = flag * a; } else { sum_a[i] = sum_a[i - 1] + flag * a; } if (i % 2 == 0 && sum_a[i] <= 0) { ans += -sum_a[i] + 1; sum_a[i] = 1; } else if (i % 2 == 1 && sum_a[i] >= 0) { ans += sum_a[i] + 1; sum_a[i] = -1; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (auto &i : a) cin >> i; int64_t sum = 0; int64_t cnt = 0; int sign = a.at(0) / abs(a.at(0)); for (int i = 0; i < N; i++) { sum += a.at(i); if (sign * sum <= 0) { cnt += abs(sum) + 1; sum = sign; } sign *= -1; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1}; const int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; const int INF = 1e9; int guki(int a) { if (a % 2 == 0) return 0; else return 1; } using namespace std; int main() { int N; cin >> N; int sum = 0, ans = 0, a; cin >> a; sum += a; if (a < 0) { for (int i = 1; i < N; i++) { cin >> a; sum += a; if ((i % 2 == 0) && (0 <= sum)) { int x = abs(sum + 1); sum -= x; ans += abs(x); } else if ((i % 2 == 1) && (sum <= 0)) { int x = abs(1 - sum); sum += x; ans += abs(x); } } } else { for (int i = 1; i < N; i++) { cin >> a; sum += a; if ((i % 2 == 0) && (sum <= 0)) { int x = abs(1 - sum); sum += x; ans += abs(x); } else if ((i % 2 == 1) && (0 <= sum)) { int x = abs(sum + 1); sum -= x; ans += abs(x); } } } cout << ans << endl; cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<int, int>; using vi = vector<int>; using vc = vector<char>; using vb = vector<bool>; using vs = vector<string>; using vll = vector<long long>; using vp = vector<pair<int, int>>; using vvi = vector<vector<int>>; using vvc = vector<vector<char>>; using vvll = vector<vector<long long>>; template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T &a, T b) { if (b < a) { a = b; return 1; } return 0; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; vll a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; auto f = [&](ll x) { ll sm = x; ll res = 0; for (int i = 1; i < n; ++i) { if (sm > 0) { if (!(a[i] < -sm)) { res += a[i] - (-sm - 1); a[i] = -sm - 1; } } else { if (!(-sm < a[i])) { res += (-sm + 1) - a[i]; a[i] = -sm + 1; } } sm += a[i]; } return res; }; ll ans; if (a[0] == 0) { ll res1 = f(-1) + 1; ll res2 = f(1) + 1; ans = min(res1, res2); } else { ll res1 = f(a[0]); ll res2; if (a[0] > 0) res2 = f(-1) + a[0] + 1; else res2 = f(1) + -a[0] + 1; ans = min(res1, res2); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n1=int(input()) l1=list(map(int,input().split())) total=l1[0] Num=0 for j in range(1,n1): pretotal=total total=total+l1[j] if pretotal ==0: total=total+(total)/abs(total) Num=Num+1 while (pretotal*total>0) or (total ==0): if total==0: Num=Num+1 if pretotal<0: total=1 else: total=-1 elif pretotal<0: Num=Num-total+1 total=+1 print(total) elif pretotal>0: Num=Num+total+1 total=-1 print(Num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, sum; vector<int> a(100000); int ans1 = 0, ans2 = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; if (a[0] < 1) { ans1 += abs(1 - a[0]); sum = 1; } else sum = a[0]; for (int i = 1; i < n; i++) { if (i % 2 != 0 && sum + a[i] >= 0) { ans1 += abs(sum * (-1) - 1 - a[i]); sum = -1; } else if (i % 2 == 0 && sum + a[i] <= 0) { ans1 += abs(sum * (-1) + 1 - a[i]); sum = 1; } else sum += a[i]; } if (a[0] > 1) { ans2 += abs(-1 - a[0]); sum = -1; } else sum = a[0]; for (int i = 1; i < n; i++) { if (i % 2 == 0 && sum + a[i] >= 0) { ans2 += abs(sum * (-1) - 1 - a[i]); sum = -1; } else if (i % 2 != 0 && sum + a[i] <= 0) { ans2 += abs(sum * (-1) + 1 - a[i]); sum = 1; } else sum += a[i]; } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int ms = 1e5 + 9; int val; int vet[ms]; int main() { int f = 0; long long soma = 0, ans = 0; int n; cin >> n; for (int i = 0; i < n; i++) cin >> vet[i]; soma = vet[0]; if (soma < 0) f = 1; else if (soma == 0 and vet[1] < 0) { ans++; soma++; } else if (soma == 0 and vet[1] >= 0) { ans++; soma++; f = 1; } for (int i = 1; i < n; i++) { val = vet[i]; soma += val; if (f) { if (soma == 0) { ans += 1; soma++; } else if (soma < 0) { ans += ((-soma) + 1); soma = 1; } } else { if (soma == 0) { ans++; soma--; } else if (soma > 0) { ans += (soma + 1); soma = -1; } } f = 1 - f; } cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int d[n]; for (int i = 0; i < n; i++) { cin >> d[i]; } int count = 0; int sum = d[0]; int f = 0; if (d[0] > 0) { f = -1; } if (d[0] < 0) { f = 1; } for (int i = 1; i < n; i++) { sum += d[i]; if (sum == 0) { if (f == 1) { count++; f = -1; sum = 1; continue; } if (f == -1) { count++; f = 1; sum = -1; continue; } } if (sum > 0) { if (f == 1) { f = -1; continue; } if (f == -1) { count += sum + 1; sum = -1; f = 1; continue; } } if (sum < 0) { if (f == -1) { f = 1; continue; } if (f == 1) { count += 1 - sum; sum = 1; f = -1; continue; } } } int ccount = 0; int ssum; int ff = 0; if (d[0] > 0) { ff = 1; ccount = 1 + d[0]; ssum = -1; } if (d[0] < 0) { ff = -1; ccount = 1 - d[0]; ssum = 1; } for (int i = 1; i < n; i++) { sum += d[i]; if (ssum == 0) { if (ff == 1) { ccount++; ff = -1; ssum = 1; continue; } if (ff == -1) { ccount++; ff = 1; ssum = -1; continue; } } if (ssum > 0) { if (ff == 1) { ff = -1; continue; } if (ff == -1) { ccount += sum + 1; ssum = -1; ff = 1; continue; } } if (ssum < 0) { if (ff == -1) { ff = 1; continue; } if (ff == 1) { ccount += 1 - sum; ssum = 1; ff = -1; continue; } } } cout << min(count, ccount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) X = [a[0]] ans = 0 #+-+-のとき if a[0] >= 0: for i in range(n-1): #print(X[i], a[i+1]) num = X[i] + a[i+1] if i % 2 != 0: #iが奇数の時はnumの値は正 if num < 0: X.append(abs(num)) ans += abs(num) + 1 else: X.append(num) else: #iが偶数のときnumの値は負 if num > 0: X.append(num*-1) ans += abs(num) + 1 else: X.append(num) #-+-+のとき else: for i in range(n-1): #print(X[i], a[i+1]) num = X[i] + a[i+1] if i % 2 != 0: #iが奇数の時はnumの値は負 if num < 0: X.append(num) else: ans += abs(num) + 1 X.append(-1) else: #iが偶数のときnumの値は正 if num > 0: X.append(num) else: X.append(num*-1) ans += abs(num) + 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) ans=0 sum0=a[0] for i in a[1:]: if sum0>0: if sum0+i>=0: ans+=sum0+i+1 sum0=-1 else:sum0=sum0+i else: if sum0+i<=0: ans+=abs(sum0+i)+1 sum0=1 else:sum0=sum0+i print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long dy[4] = {1, 0, -1, 0}; long long dx[4] = {0, 1, 0, -1}; bool check(long long a, long long b) { if ((a <= 0 && b > 0) || (a >= 0 && b < 0)) return true; return false; } int32_t main() { long long n; cin >> n; vector<long long> v(n); long long sum = 0, cnt = 0; for (long long i = 0; i < n; i++) { cin >> v[i]; long long t = sum; sum += v[i]; if (sum == 0) { if (i > 0) { if (t > 0) { cnt += (1 - v[i]); sum--; } else { cnt += (1 + v[i]); sum++; } } else { for (long long j = 1; j < n; j++) { if (v[j] > 0) { sum += pow((-1), j); cnt++; break; } else if (v[j] < 0) { sum += pow((-1), j + 1); cnt++; break; } } } continue; } if (i > 0) { if (!check(sum, t)) { if (sum > 0) { cnt += (sum + 1); sum -= (sum + 1); } else if (sum < 0) { cnt += (1 - sum); sum += (1 - sum); } } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) nums = list(map(int, input().split())) sum_n = 0 ans = 10**5+1 for start in [-1, 1]: before = start cnt = 0 for num in nums: sum_n += num if before*sum_n >= 0: if before < 0: cnt += abs(1-sum_n) before = 1 else: cnt += abs(-1-sum_n) before = -1 else: before = sum_n print(cnt) ans = min(ans, cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int body(std::vector<int>& a) { int ans = 0; std::vector<int> s(a.size()); s.at(0) = a.at(0); for (unsigned int i = 1; i < a.size(); i++) { s.at(i) = s.at(i - 1) + a.at(i); } for (unsigned int i = 1; i < s.size(); i++) { if (s.at(i - 1) > 0 && s.at(i) >= 0) { int n = s.at(i) + 1; ans += n; for (unsigned int j = i; j < s.size(); j++) { s.at(j) -= n; } } if (s.at(i - 1) < 0 && s.at(i) <= 0) { int n = -1 * s.at(i) + 1; ans += n; for (unsigned int j = i; j < s.size(); j++) { s.at(j) += n; } } } return ans; } int main(int argc, char** argv) { int n; std::cin >> n; std::vector<int> a(n); for (int i = 0; i < n; i++) { std::cin >> a.at(i); } int ans; if (a.at(0) != 0) { ans = body(a); } else { a.at(0) = -1; int ans_a = body(a); a.at(0) = 1; int ans_b = body(a); ans = std::min(ans_a, ans_b); } std::cout << ans << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> clock_t CLOCK; using namespace std; using ll = long long; using ld = long double; using vll = vector<ll>; using vvll = vector<vector<ll>>; using mll = map<ll, ll>; using qll = queue<ll>; using P = pair<ll, ll>; constexpr ll INF = 0x3f3f3f3f3f3f3f3f; constexpr ld PI = 3.141592653589793238462643383279; ll get_digit(ll x) { return to_string(x).size(); } ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } vector<P> factorize(ll n) { vector<P> result; for (ll i = 2; i * i <= n; ++i) { if (n % i == 0) { result.push_back({i, 0}); while (n % i == 0) { n /= i; result.back().second++; } } } if (n != 1) { result.push_back({n, 1}); } return result; } vll divisor(ll n) { vll ret; for (ll i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if (i * i != n) ret.push_back(n / i); } } sort(ret.begin(), ret.end()); return (ret); } signed main() { cin.tie(0); ios::sync_with_stdio(false); ll N; cin >> N; ll ans1 = 0; ll ans2 = 0; ll current_num1; ll current_num2; for (ll i = 0; i < (ll)(N); ++i) { ll a; cin >> a; if (i == 0) { current_num1 = a; current_num2 = a; continue; } current_num1 += a; current_num2 += a; if (i % 2 == 0) { if (current_num1 >= 0) { ans1 += abs(current_num1) + 1; current_num1 = -1; } if (current_num2 <= 0) { ans2 += abs(current_num2) + 1; current_num2 = 1; } } else { if (current_num1 <= 0) { ans1 += abs(current_num1) + 1; current_num1 = 1; } if (current_num2 >= 0) { ans2 += abs(current_num2) + 1; current_num2 = -1; } } } ll ans = min(ans1, ans2); cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) not_0 = n for i in range(n): if a[i]: not_0 = i break if not_0 == n: print(1+2*(n-1)) exit() ans = 0 if not_0 == 0: b = [a[0]] else: if abs(a[not_0]) == 1: a[not_0] *= 2 ans = 2*not_0 else: ans = 1 + 2*(not_0-1) if a[not_0] > 0: b = [a[not_0] - 1] else: b = [a[not_0] + 1] tmp = b[0] for i in range(not_0+1, n): tmp += a[i] b.append(tmp) for i in range(not_0+1, n): if b[i-1]*b[i] < 0: continue else: if b[i-1] > 0: d = b[i] + 1 ans += d for j in range(i, n): b[j] -= d else: d = -b[i] + 1 ans += d for j in range(i, n): b[j] += d print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans = 0 temp=a[0] for i in range(n - 1): if temp > 0: temp+=a[i+1] if temp < 0: pass else: ans += (temp + 1) temp -= (temp+1) else: temp+=a[i+1] if temp > 0: pass else: ans -= (temp - 1) temp -= (temp - 1) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } const double EPS = 1e-10; const double PI = acos(-1.0); pair<long long, long long> maxP(vector<long long> a, long long size) { pair<long long, long long> p; long long Max = a[0]; long long place = 0; for (int i = (0); i < (size); ++i) { if (a[i] > Max) { Max = a[i]; place = i; } } p.first = Max; p.second = place; return p; } pair<long long, long long> minP(vector<long long> a, long long size) { pair<long long, long long> p; long long min = a[0]; long long place = 0; for (int i = (0); i < (size); ++i) { if (a[i] < min) { min = a[i]; place = i; } } p.first = min; p.second = place; return p; } long long sumL(vector<long long> a, long long size) { long long sum = 0; for (int i = (0); i < (size); ++i) { sum += a[i]; } return sum; } long long counT(vector<long long> a, long long t) { sort(a.begin(), a.end()); return upper_bound(a.begin(), a.end(), t) - lower_bound(a.begin(), a.end(), t); } long long DIV[1000 + 1][1000 + 1]; void divide(long long n, long long m) { DIV[0][0] = 1; for (int i = (1); i < (n + 1); ++i) { DIV[i][0] = 0; } for (int i = (0); i < (n + 1); ++i) { DIV[i][1] = 1; } for (int i = (1); i < (m + 1); ++i) { for (int t = (0); t < (n + 1); ++t) { if (DIV[t][i] > 0) continue; if (t >= i) { DIV[t][i] = DIV[t - i][i] + DIV[t][i - 1]; } else { DIV[t][i] = DIV[t][i - 1]; } } } } bool IsPrime(int num) { if (num < 2) return false; else if (num == 2) return true; else if (num % 2 == 0) return false; double sqrtNum = sqrt(num); for (int i = 3; i <= sqrtNum; i += 2) { if (num % i == 0) { return false; } } return true; } class UnionFind { public: vector<long long> par; vector<long long> rank; UnionFind(long long N) : par(N), rank(N) { for (int i = (0); i < (N); ++i) par[i] = i; for (int i = (0); i < (N); ++i) rank[i] = 0; } ~UnionFind() {} long long root(long long x) { if (par[x] == x) return x; else { par[x] = root(par[x]); return par[x]; } } void unite(long long x, long long y) { long long rx = root(x); long long ry = root(y); if (rx == ry) return; if (rank[rx] < rank[ry]) { par[rx] = ry; } else { par[ry] = rx; if (rank[rx] == rank[ry]) { rank[rx]++; } } } bool same(long long x, long long y) { long long rx = root(x); long long ry = root(y); return rx == ry; } }; class BFS_shortestDistance { public: BFS_shortestDistance(vector<vector<char> > p_, long long h_, long long w_) { p = p_; h = h_; w = w_; initial_number = h * w * 2; for (int i = (0); i < (h); ++i) { vector<long long> k(w); for (int t = (0); t < (w); ++t) k[t] = initial_number; field.push_back(k); } } vector<vector<char> > p; long long h; long long w; long long initial_number; vector<vector<long long> > field; pair<long long, long long> plus(pair<long long, long long> &a, pair<long long, long long> &b) { pair<long long, long long> p; p.first = a.first + b.first; p.second = a.second + b.second; return p; } bool equal(pair<long long, long long> &a, pair<long long, long long> &b) { return (a.first == b.first && a.second == b.second); } bool is_in_field(int h, int w, const pair<long long, long long> &point) { const int c = point.second; const int r = point.first; return (0 <= c && c < w) && (0 <= r && r < h); } void init() { for (int i = (0); i < (field.size()); ++i) { for (int t = (0); t < (field[i].size()); ++t) { field[i][t] = initial_number; } } } void shortest(long long sy, long long sx) { init(); pair<long long, long long> c[4]; c[0].first = 0; c[0].second = 1; c[1].first = 0; c[1].second = -1; c[2].first = 1; c[2].second = 0; c[3].first = -1; c[3].second = 0; queue<pair<long long, long long> > Q; pair<long long, long long> s; s.first = sy; s.second = sx; field[sy][sx] = 0; Q.push(s); while (Q.empty() == false) { pair<long long, long long> now = Q.front(); Q.pop(); for (int u = 0; u < 4; u++) { pair<long long, long long> x = c[u]; pair<long long, long long> next = plus(now, x); if (is_in_field(h, w, next)) { if (p[next.first][next.second] == '.') { if (field[next.first][next.second] == initial_number) { field[next.first][next.second] = field[now.first][now.second] + 1; Q.push(next); } else { } } } } } } }; bool Ischanged(long long a, long long b) { if (a * b < 0) { return true; } else { return false; } } int main() { long long n; cin >> n; vector<long long> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; long long sum = 0; long long count = 0; for (int i = (0); i < (n); ++i) { if (i == 0) { sum += a[i]; if (sum == 0 && n != 1) { sum = 1; count++; } else if (sum == 0 && n == 1) { count++; } } else { long long was = sum; sum += a[i]; if (Ischanged(was, sum)) { continue; } else { if (sum < 0) { count += abs(sum) + 1; sum = 1; } else if (sum > 0) { count += abs(sum) + 1; sum = -1; } else { if (was < 0) { sum = 1; } else { sum = -1; } count++; } } } } long long sum2 = 0; long long count2 = 0; for (int i = (0); i < (n); ++i) { if (i == 0) { sum2 += a[i]; if (sum2 == 0 && n != 1) { sum2 = -1; count2++; } else if (sum2 == 0 && n == 1) { count2++; } } else { long long was = sum2; sum2 += a[i]; if (Ischanged(was, sum2)) { continue; } else { if (sum2 < 0) { count2 += abs(sum2) + 1; sum2 = 1; } else if (sum2 > 0) { count2 += abs(sum2) + 1; sum2 = -1; } else { if (was < 0) { sum2 = 1; } else { sum2 = -1; } count2++; } } } } cout << min(count, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1000000000; const long long MOD = (long long)1e9 + 7; template <class T> inline T in() { T x; cin >> x; return x; } signed main() { long long n = in<long long>(); vector<long long> v(n, 0); for (long long i = 0; i < n; i++) { if (i == 0) cin >> v[i]; else { long long x = in<long long>(); v[i] = v[i - 1] + x; } } long long sign = v[0] / abs(v[0]); long long cnt = 0; for (long long i = 1; i < n; i++) { if (v[i] * sign >= 0) { long long d = abs(v[i]) + 1; cnt += d; for (long long j = i + 1; j < n; j++) v[j] += d * sign * -1; } sign *= -1; } cout << cnt << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll=long long; #define int ll #define FOR(i,a,b) for(int i=int(a);i<int(b);i++) #define REP(i,b) FOR(i,0,b) int read(){ int i; scanf("%lld",&i); return i; } int sign(int s){ return (s>0?1:-1); } signed main(){ // your code goes here int N = read(); int a[N]; int sum[N]={0}; int count=0; REP(i,N){ a[i] = read(); //cout << a[i]; } if(a[0] == 0){ a[0] = -sign(a[0]); count++; } sum[0] = a[0]; FOR(i,1,N){ sum[i] = sum[i-1]+a[i]; if(sum[i] == 0){ sum[i] -= sum[i-1]; count++; } else if(sign(sum[i])==sign(sum[i-1])){ int bef=a[i]; sum[i] = sum[i]-a[i]; a[i] = -sign(sum[i-1])*(abs(sum[i-1])+1); sum[i] = sum[i-1]+a[i]; count += abs(bef - a[i]); } } REP(i,N) cout << a[i]; cout << count; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e9 + 7; long long n, g, ans, a[100001]; int main() { cin >> n; bool flag = 1; int p; for (int i = 1; i <= (n); i++) { cin >> a[i]; if (flag && a[i] != 0) { p = i; flag = 0; } } if (p != 1) { ans += (p - 1) * 2 - 1; if (a[p] > 0) { ans += a[p] + 1; } else { ans += 1 - a[p]; } } g = a[p]; for (int i = p + 1; i <= n; i++) { if (g > 0) { g += a[i]; if (g > -1) { ans += g + 1; g = -1; } } else { g += a[i]; if (g < 1) { ans += 1 - g; g = 1; } } } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { cin.sync_with_stdio(false); int n; cin >> n; ll a[10000]; ll sum = 0; int flag = true; for (int i = 0; i < n; i++) { cin >> a[i]; } ll count = 0; sum = a[0]; for (int i = 1; i < n; i++) { if (sum < 0 && sum + a[i] <= 0) { count += abs(sum) - a[i] + 1; sum = 1; } else if (sum > 0 && sum + a[i] >= 0) { count += abs(sum + a[i] + 1); sum = -1; } else { sum += a[i]; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; class Program { static string InputPattern = "InputX"; static List<string> GetInputList() { var WillReturn = new List<string>(); if (InputPattern == "Input1") { WillReturn.Add("4"); WillReturn.Add("1 -3 1 0"); //4 } else if (InputPattern == "Input2") { WillReturn.Add("5"); WillReturn.Add("3 -6 4 -5 7"); //0 } else if (InputPattern == "Input3") { WillReturn.Add("6"); WillReturn.Add("-1 4 3 2 -5 4"); //8 } else { string wkStr; while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr); } return WillReturn; } static void Main() { List<string> InputList = GetInputList(); int[] AArr = InputList[1].Split(' ').Select(X => int.Parse(X)).ToArray(); long Cost1 = Solve(AArr, true); long Cost2 = Solve(AArr, false); Console.WriteLine(Math.Min(Cost1, Cost2)); } //最初の符号を引数として、コストを求める static long Solve(int[] pArr, bool pIsFirstPlus) { long Cost = 0; long RunSum = 0; for (int I = 0; I <= pArr.GetUpperBound(0); I++) { RunSum += pArr[I]; if (I % 2 == 0 && pIsFirstPlus) { if (RunSum > 0) continue; Cost += Math.Abs(RunSum) + 1; RunSum = 1; } else { if (RunSum < 0) continue; Cost += Math.Abs(RunSum) + 1; RunSum = -1; } } return Cost; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> an(n); for (int i = 0; i < n; ++i) { cin >> an[i]; } int accum = 0; int sign = 0; bool non_zero = true; int cnt = 0; for (int i = 0; i < n; ++i) { auto new_accum = accum + an[i]; if (i == 0) { if (new_accum == 0) { int next_sign = an[1] > 0 ? 1 : -1; new_accum -= next_sign; ++cnt; an[0] = -next_sign; } accum = new_accum; sign = accum > 0 ? 1 : -1; } else { if (new_accum * accum >= 0) { int x = -sign - new_accum; new_accum += x; cnt += abs(x); an[i] += x; } int new_sign = new_accum > 0 ? 1 : -1; accum = new_accum; sign = new_sign; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline void solve() { long long n; cin >> n; vector<long long> a(n); for (long long &i : a) cin >> i; long long p = 0, ne = 0, s = 0; for (long long i = 0; i < n; i++) { s += a[i]; if (i & 1) { if (s >= 0) { p += s + 1; s = -1; } } else { if (s <= 0) { p += abs(s) + 1; s = 1; } } } s = 0; for (long long i = 0; i < n; i++) { s += a[i]; if (i % 2 == 0) { if (s >= 0) { ne += s + 1; s = -1; } } else { if (s <= 0) { ne += abs(s) + 1; s = 1; } } } cout << min(p, ne) << endl; } signed main() { long long n = 1; cin >> n; while (n--) solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) cnt=0 for i in range(1,n): # 条件満たすまでループ while True: #print(a) now_tmp = sum(a[:i]) next_tmp = sum(a[:i+1]) #print(i, now_tmp, next_tmp) # 符号が逆転していればOK かつ 現在までの総和が0でない # 異なる符号を掛けるとマイナスになる if now_tmp * next_tmp <0 and now_tmp !=0: break else: # 現在の合計がマイナスの場合 if now_tmp < 0: a[i] += next_tmp+1 cnt +=abs(next_tmp+1) # 現在の合計がプラスの場合 elif now_tmp > 0 : a[i] += -next_tmp-1 cnt +=abs(next_tmp+1) # 現在の合計が0の場合 elif now_tmp == 0 : # 1個前がプラスの場合、 if sum(a[:i-1]) > 0: a[i] -=1 cnt +=1 # 1個前がマイナスの場合 else: a[i] +=1 cnt +=1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) s=[0]*n s[0]=a[0] cnt=0 for i in range(1,n): s[i]=a[i]+s[i-1] num=0 if s[i]<0 and s[i-1]<0: num+=1-s[i] cnt+=num a[i]+=num s[i]=s[i-1]+a[i] elif 0<s[i] and 0<s[i-1]: num+=(-1-s[i]) cnt+=abs(num) a[i]+=num s[i]=s[i-1]+a[i] elif s[i]==0: if s[i-1]<0: s[i]+=1 cnt+=1 elif 0<s[i-1]: s[i]-=1 cnt+=1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.util.Scanner; public class Main { public static void main(String[] args) throws IOException{ Sequence solver = new Sequence(); solver.readInput(); solver.solve(); solver.writeOutput(); } static class Sequence { private int n; private int a[]; private int output; private Scanner scanner; public Sequence() { this.scanner = new Scanner(System.in); } public void readInput() { n = Integer.parseInt(scanner.next()); a = new int[n]; for(int i=0; i<n; i++) { a[i] = Integer.parseInt(scanner.next()); } } private int count(boolean sign) { int count=0; long sum=0; for(int i=0; i<n; i++) { sum += a[i]; if((i%2==0) == sign) { // a[i]までの合計を正にするとき if(sum<=0) { count += Math.abs(sum)+1; sum = 1; } } else if((i%2==0) != sign){ // a[i]までの合計を負にするとき if(0<=sum) { count += Math.abs(sum)+1; sum = -1; } } } return count; } public void solve() { output = Math.min(count(true), count(false)); } public void writeOutput() { System.out.println(output); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> inline void chmin(T1 &a, T2 b) { if (a > b) a = b; } template <typename T1, typename T2> inline void chmax(T1 &a, T2 b) { if (a < b) a = b; } template <typename T> T gcd(T a, T b) { if (b == 0) return a; return gcd(b, a % b); } int ans = (int)(1e9 + 7); void solve(int n, vector<int> a, int key) { int sum = 0; int cnt = 0; for (int i = 0; i < (n); ++i) { if ((key == 0 && i % 2 == 0) || (key == 1 && i % 2 != 0)) { sum += a[i]; if (sum == 0) { cnt++; sum = 1; } else if (sum < 0) { cnt += -sum + 1; sum = 1; } } else { sum += a[i]; if (sum == 0) { cnt++; sum = -1; } else if (sum > 0) { cnt += sum + 1; sum = -1; } } } chmin(ans, cnt); } int main() { int n; cin >> n; vector<int> a(n); for (int &ai : a) cin >> ai; solve(n, a, 0); solve(n, a, 1); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Arrays; import java.util.Scanner; import java.util.stream.IntStream; public class Main { public static void main(String[] args) { try (Scanner scanner = new Scanner(System.in)) { int n = scanner.nextInt(); int[] a = new int[n]; IntStream.range(0, n).forEach(i -> a[i] = scanner.nextInt()); // sum1=[1,-1,...], sum2=[-1,1,...] int[] sum1 = new int[n], sum2 = new int[n]; Arrays.fill(sum1, 1); Arrays.fill(sum2, -1); IntStream.range(0, n / 2).forEach(i -> { sum1[2 * i + 1] = -1; sum2[2 * i + 1] = 1; }); System.out.println(Math.min(getResult(a, sum1), getResult(a, sum2))); } } /** * @param a 数値配列 * @param sum 変更したい合計値の配列 * @return 変更すべきステップ数 */ private static int getResult(final int[] a, final int[] sum) { int n = a.length, now = 0, result = 0; for (int i = 0; i < n; i++) { now += a[i]; if (sum[i] * now <= 0) { result += Math.abs(sum[i] - now); now = sum[i]; } } return result; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!/usr/bin/env python3 import copy n = int(input()) am = list(map(int, input().split())) pcnt = 0 mcnt = 0 f = 0 #前の項の符号(1:+、2:-) wa = 0 #最初の数字を正とするとき a = copy.copy(am) f = 2 for i in range(len(a)): wa += a[i] if f == 1:#-にする必要あり if wa > -1: pcnt += wa + 1 a[i] -= wa + 1 f = 2 elif f == 2: #+にする必要あり if wa < 1: pcnt += -wa + 1 a[i] += -wa + 1 f = 1 wa = sum(a[0: i + 1]) #最初の数字を負とするとき a = copy.copy(am) f = 1 for i in range(len(a)): wa += a[i] if f == 1: # -にする必要あり if wa > -1: mcnt += wa + 1 a[i] -= wa + 1 f = 2 elif f == 2: # +にする必要あり if wa < 1: mcnt += -wa + 1 a[i] += -wa + 1 f = 1 wa = sum(a[0: i + 1]) print(min(pcnt, mcnt))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 200010; long long n, m, md, ans; long long a[maxn], pre[maxn]; ; long long read() { long long s = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { s = s * 10 + ch - '0'; ch = getchar(); } return s * f; } int main() { md = 0, ans = 0; memset(pre, 0, sizeof(pre)); n = read(); for (long long i = 1; i <= n; i++) { a[i] = read(); pre[i] = a[i]; pre[i] += pre[i - 1]; } for (long long i = 1; i < n; i++) { long long tmp = md; if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) { if ((pre[i] + tmp) < 0) { md += (1ll - (pre[i + 1] + tmp)); ans += (1ll - (pre[i + 1] + tmp)); } else { md -= ((pre[i + 1] + tmp) + 1ll); ans += (1ll + (pre[i + 1] + tmp)); } } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def count_op(n, a, i_sum): op_num = 0 for i in range(1, n): tmp_sum = i_sum + a[i] if i_sum > 0: if tmp_sum == 0: op_num += 1 a[i] -= 1 tmp_sum -= 1 elif tmp_sum > 0: op_num += tmp_sum + 1 a[i] -= tmp_sum + 1 tmp_sum = -1 else: if tmp_sum == 0: op_num += 1 a[i] += 1 tmp_sum += 1 elif tmp_sum < 0: op_num += -tmp_sum + 1 a[i] += -tmp_sum + 1 tmp_sum = 1 i_sum = tmp_sum return op_num n = int(input()) a = [int(i) for i in input().split()] if a[0] != 0: i_sum = a[0] print(count_op(n, a, a[0])) else: b = a[:] a[0] = 1 op_num_a = count_op(n, a, a[0]) + 1 b[0] = -1 op_num_b = count_op(n, b, b[0]) + 1 print(min(op_num_a, op_num_b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<ll> v(n, 0ll); for (int i = (int)(0); i < (int)(n); i++) cin >> v[i]; vector<ll> memo(n + 1, 0ll); memo[1] = v[0]; ll cnt = 0; for (int i = 2; i <= n; i++) { memo[i] = memo[i - 1] + v[i - 1]; cerr << "memo" ":[ "; for (auto macro_vi : memo) { cerr << macro_vi << " "; } cerr << "]" << endl; if (not(memo[i - 1] * memo[i] < 0)) { if (memo[i] < 0) { int plus = memo[i] - 1 + 1; memo[i] += memo[i] * -1 + 1; cnt += plus; } else if (memo[i] > 0) { int plus = memo[i] * -1 - 1; memo[i] += memo[i] * -1 - 1; cnt -= plus; } else { if (memo[i - 1] < 0) { memo[i]++; cnt++; } else { memo[i]--; cnt++; } } } cerr << "(" "i" "," "cnt" "):(" << i << "," << cnt << ")" << endl; cerr << "memo" ":[ "; for (auto macro_vi : memo) { cerr << macro_vi << " "; } cerr << "]" << endl; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import "fmt" func main() { var n, w, t, cnt, s int var isPlus bool fmt.Scan(&n) fmt.Scan(&t) if t > 0 { isPlus = true } for i := 0; i < n-1; i++ { fmt.Scan(&w) t += w s = 0 if isPlus { if t >= 0 { s = t + 1 t = -1 } isPlus = false } else { if t <= 0 { s = t*-1 + 1 t = 1 } isPlus = true } cnt += s } fmt.Println(cnt) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 100100100100100100; const long long MOD = 1000000007; long long my_abs(long long a); long long a_n(long long a, long long n); long long my_gcd(long long a, long long b); long long inv(long long a); long long madd(long long a, long long b, long long c); long long msub(long long a, long long b); long long mtime(long long a, long long b, long long c); bool nega(long long a) { if (a < 0) return true; else return false; } bool posi(long long a) { if (a > 0) return true; else return false; } int main() { long long n; cin >> n; vector<long long> a(n); for (long long(i) = 0; (i) < (long long)(n); (i)++) cin >> a[i]; long long ans = 0, sum = 0; for (long long(i) = 0; (i) < (long long)(n); (i)++) { sum += a[i]; if (i == 0) continue; else { if (sum == 0) { if (sum - a[i] > 0) { ans++; sum--; } else { ans++; sum++; } } else if (nega(sum - a[i]) && nega(sum)) { ans += (my_abs(sum) + 1); sum += (my_abs(sum) + 1); } else if (posi(sum - a[i]) && posi(sum)) { ans += (sum + 1); sum -= (sum + 1); } } } cout << ans << endl; return 0; } long long my_abs(long long a) { if (a >= 0) return a; else return -1 * a; } long long a_n(long long a, long long n) { if (n == 0) return 1; long long ret = a, count = 1; while (count * 2 < n) { ret *= ret; count *= 2; } if (count == n) return ret; else return (ret * a_n(a, n - count)); } long long my_gcd(long long a, long long b) { if (b == 0) return a; return my_gcd(b, a % b); } long long inv(long long a) { return a_n(a, MOD - 2); } long long madd(long long a, long long b, long long c) { long long ret = (a + b) % MOD; return (ret + c) % MOD; } long long msub(long long a, long long b) { if (a < b) return (a - b + MOD) % MOD; else return (a - b) % MOD; } long long mtime(long long a, long long b, long long c) { long long ret = (a * b) % MOD; return (ret * c) % MOD; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) acc = [0] * n acc[0] = A[0] for i in range(1, n): acc[i] = acc[i - 1] + A[i] ans = 0 cur = acc[0] x = 0 for i in range(1, n): acc[i] += x if cur > 0: if acc[i] >= 0: ans += acc[i] + 1 x -= acc[i] + 1 acc[i] = -1 else: if acc[i] < 0: ans += abs(acc[i]) + 1 x += abs(acc[i]) + 1 acc[i] = 1 cur = acc[i] if acc[n - 1] == 0: ans += 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); int[] list = new int[sc.nextInt()]; for (int i=0; i < list.length ; i++){ list[i] = sc.nextInt(); } int beforeSum = 0; int cnt = 0; for (int i=0; i < list.length ; i++){ int sum = beforeSum + list[i]; if(i != 0){ if( beforeSum * sum > 0) { int orgNum = list[i]; list[i] = - (beforeSum + beforeSum/Math.abs(beforeSum)); cnt += Math.abs(orgNum - list[i]); sum = beforeSum + list[i]; } else if (beforeSum * sum == 0){ list[i] -= beforeSum/Math.abs(beforeSum); cnt++; sum = beforeSum + list[i]; } } beforeSum = sum; } System.out.println(cnt); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> auto calc(std::vector<int64_t>& vec, int64_t sum) -> uint64_t { uint64_t result = 0; bool is_sum_negative = sum < 0; for (int i = 1; i < vec.size(); ++i) { sum += vec[i]; auto tmp = std::abs(sum) + 1; if (is_sum_negative) { if (sum <= 0) { sum += tmp; result += tmp; assert(sum == 1); } } else { if (sum >= 0) { sum -= tmp; result += tmp; assert(sum == -1); } } is_sum_negative = !is_sum_negative; } return result; } int main(int argc, char const* argv[]) { uint64_t n; std::cin >> n; auto vec = std::vector<int64_t>(n); for (auto& v : vec) { std::cin >> v; } int64_t sum = vec[0]; auto result_0 = std::numeric_limits<uint64_t>::max(); auto result_1 = result_0; if (sum == 0) { sum = -1; result_0 = 1; result_0 += calc(vec, sum); sum = 1; result_1 = 1; result_1 += calc(vec, sum); } else { result_0 = calc(vec, sum); } auto result = std::min(result_0, result_1); std::cout << result << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int[] a = new int[n]; int[] s = new int[n]; int sum = 0; a[0] = scanner.nextInt(); sum += a[0]; boolean check; if(a[0] < 0){ check = false; }else{ check = true; } int count = 0; for(int i=1;i<n;i++){ a[i] = scanner.nextInt(); int x = sum + a[i]; int y = 0; if(check && x >= 0){ y = -1 - x; }else if(!check && x < 0){ y = 1 - x; } a[i] += y; count += Math.abs(y); sum += a[i]; //System.out.println(y + " " + a[i] + " " + sum); check = !check; } if(sum == 0){ count ++; } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int Even(vector<int> a) { int res = 0; int temp = 0; for (long long i = 0; i < (long long)(a.size()); i++) { temp += a[i]; if (i % 2 == 0) { while (temp <= 0) { temp += 1; res += 1; } } else { while (temp >= 0) { temp += -1; res += 1; } } } return res; } int Odd(vector<int> a) { int res = 0; int temp = 0; for (long long i = 0; i < (long long)(a.size()); i++) { temp += a[i]; if (i % 2 == 0) { while (temp >= 0) { temp += -1; res += 1; } } else { while (temp <= 0) { temp += 1; res += 1; } } } return res; } int main() { int n, ans; cin >> n; vector<int> a(n); for (long long i = 0; i < (long long)(n); i++) { cin >> a[i]; } int cnt = 0; int b[n]; b[0] = a[0]; if (b[0] == 0 and a[1] > 0) { b[0] = -1; cnt += 1; } else if (b[0] == 0 and a[1] < 0) { b[0] = 1; cnt += 1; } cout << min(Even(a), Odd(a)) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
function Main(s) { var s = s.split("\n"); var n = parseInt(s[0], 10); var a = s[1].split(" ").map(e => parseInt(e, 10)); var acc1 = 0, cnt1 = 0, arr1 = []; var acc2 = 0, cnt2 = 0, arr2 = []; for (var i = 0; i < n; i++) { acc1 += a[i]; if (i != 0) { if (arr1[i - 1] > 0) { if (acc1 >= 0) { cnt1 += (acc1 + 1); acc1 -= (acc1 + 1); } } else { if (acc1 <= 0) { cnt1 += (Math.abs(acc1) + 1); acc1 += (Math.abs(acc1) + 1); } } } arr1.push(acc1); } console.log(cnt1); } Main(require("fs").readFileSync("/dev/stdin", "utf8"));
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, chk; long long ans = 0, ans2 = 0; scanf("%d", &n); vector<int> a(n); for (auto& e : a) scanf("%d", &e); chk = a[0]; for (int i = 1; i < n; i++) { if (i % 2) { chk += a[i]; if (chk >= 0) { ans += chk + 1; chk = -1; } } else { chk += a[i]; if (chk <= 0) { ans += -1 * chk + 1; chk = 1; } } } chk = a[0]; for (int i = 1; i < n; i++) { if (i % 2 == 0) { chk += a[i]; if (chk >= 0) { ans += chk + 1; chk = -1; } } else { chk += a[i]; if (chk <= 0) { ans += -1 * chk + 1; chk = 1; } } } if (a[0] == 0) printf("%lld\n", min(ans, ans2)); else if (a[0] > 0) printf("%lld\n", ans); else printf("%lld\n", ans2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a, ans = 0, d = 0; cin >> n >> a; int sum[n]; sum[0] = a; for (int i = 1; i < n; i++) { cin >> a; sum[i] = sum[i - 1] + a; } if (sum[0] == 0) d++; for (int i = 1; i < n; i++) { if ((sum[i - 1] + d) * (sum[i] + d) >= 0) { ans += abs(sum[i] + d) + 1; if (sum[i - 1] + d < 0) { d += -(sum[i] + d) + 1; } else if (sum[i - 1] + d > 0) { d += -(sum[i] + d) - 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) result = [] for i in range(1): num = 0 r = 0 for j in range(len(a)): num += a[j] if (j + i) % 2 == 0: if num <= 0: r -= num - 1 num = 1 else: if num >= 0: r += num + 1 num = -1 result.append(r) print(min(result))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int num_count = sc.nextInt(); int[] numbers = new int[num_count]; for(int i = 0;i < numbers.length;i++){ numbers[i] = sc.nextInt(); } int res = 0; int id = 0; do{ boolean flag = true; int sum = 0; int pre_sum = 0; int i; for(i = 0;i < numbers.length;i++){ sum += numbers[i]; if(pre_sum > 0 && sum > 0){ flag = false; break; } if(pre_sum < 0 && sum < 0){ flag = false; break; } if(sum == 0){ flag = false; break; } pre_sum = sum; } if(flag)break; if(sum > 0){ numbers[i] -= sum + 1; res += sum + 1; }else{ numbers[i] -= sum - 1; res += -sum + 1; } }while(true); System.out.println(res); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long mod = 1e09; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long s[n + 1]; s[0] = 0; int cp = 0, cm = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (s[i] + a[i] <= 0) { cp += 1 - (s[i] + a[i]); s[i + 1] = 1; } else s[i + 1] = s[i] + a[i]; } else { if (s[i] + a[i] >= 0) { cp += 1 + (s[i] + a[i]); s[i + 1] = -1; } else s[i + 1] = s[i] + a[i]; } } for (int i = 0; i < n; i++) { if (i % 2) { if (s[i] + a[i] <= 0) { cm += 1 - (s[i] + a[i]); s[i + 1] = 1; } else s[i + 1] = s[i] + a[i]; } else { if (s[i] + a[i] >= 0) { cm += 1 + (s[i] + a[i]); s[i + 1] = -1; } else s[i + 1] = s[i] + a[i]; } } cout << min(cp, cm) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n, i, j, sw, sw2, count = 0, add = 0, adda = 0; cin >> n; vector<long long> a(n); for (i = 0; i < n; i++) { cin >> a[i]; adda += a[i]; } if (a[0] == 0) { a[0]++; count++; add++; } if (a[0] > 0) sw = 1; else sw = -1; add += a[0]; if ((adda > 0 && n % 2 == 1) || (adda < 0 && n % 2 == 0)) { } else { if (a[0] < 0) { while (a[0] != 1) { add++; a[0]++; count++; } } else { while (a[0] != -1) { add--; a[0]--; count++; } } } if (a[0] > 0) sw = 1; else sw = -1; for (i = 1; i < n; i++) { add += a[i]; if (sw == 1) { if (add < 0) { } else { while (add != -1) { a[i]--; add--; count++; } } } else { if (add > 0) { } else { while (add != 1) { a[i]++; add++; count++; } } } if (a[i] > 0) sw = 1; else sw = -1; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int get_sum(vector<int> &a, int position) { int sum = 0; for (int i = 0; i <= position; i++) { sum += a[i]; } return sum; } int get_operation_count(vector<int> &a, int n, bool is_start_negative) { int diff_sum = 0; int operation_count = 0; for (int i = 0; i < n; i++) { int sum = get_sum(a, i) + diff_sum; int is_positive = i % 2 == 0; if (is_start_negative) is_positive = !is_positive; if (is_positive && sum <= 0) { int diff_abs = abs(1 - sum); operation_count += diff_abs; diff_sum += diff_abs; } else if (!is_positive && 0 <= sum) { int diff_abs = abs(-1 - sum); operation_count += diff_abs; diff_sum -= diff_abs; } } if (get_sum(a, n) == 0) operation_count++; return operation_count; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int positive_count = get_operation_count(a, n, true); int negative_count = get_operation_count(a, n, false); cout << min(negative_count, positive_count) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; long long sum; cin >> n >> sum; long long ans = 0; if (sum == 0) { sum = 1; ans = 1; } for (int i = 0; i < n - 1; ++i) { int a; cin >> a; if ((a + sum) * sum >= 0) { if (sum > 0) { ans += a + sum + 1; sum = -1; } else { ans += -(a + sum) + 1; sum = 1; } } else { sum += a; } } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = list(map(int, input().split())) res = [] for start in [1, -1]: ans = 0 _a = [a[0]] prev_sign = start for i in range(0, N): c = a[i] if c >= 0 and prev_sign > 0: ans += abs(c - (-1)) c = -1 elif c <= 0 and prev_sign < 0: ans += abs(c - 1) c = 1 if c > 0: prev_sign = 1 else: prev_sign = -1 _a.append(c) __a = [_a[0]] acm_sum = _a[0] for i in range(1, N): c = _a[i] if abs(acm_sum) >= abs(c): if c < 0: c = -1*(abs(acm_sum)+1) else: c = abs(acm_sum)+1 acm_sum += c ans += abs(c - _a[i]) __a.append(c) res.append(ans) print(min(res))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
package sample.code; import java.util.Scanner; public class Main { public static void main(String[] args) { long[] a = null; try(Scanner sc = new Scanner(System.in)){ // N入力 aスペース区切り入力 a = new long[sc.nextInt()]; for(int i = 0; i < a.length; i ++) { a[i] = sc.nextLong(); } } long start = a[0]; long start2 = a[1]; long ret = 0L; if(start > 0 && start2 > 0) { if(start < start2) { ret += Math.abs(start - start2) +1; start = -1; } } else if (start <= 0 && start2 <= 0) { if(start > start2) { ret += Math.abs(start - start2) +1; start = +1; } } boolean isNaturalNum = true; if(start < 0) { isNaturalNum = false; } for(int i = 1; i < a.length; i++) { long temp2 = start + a[i]; if(isNaturalNum) { if(temp2 >= 0) { ret += Math.abs(start + a[i]) + 1 ; start = -1; } else { //OK start = temp2; } isNaturalNum = false; } else { if(temp2 <= 0) { ret += Math.abs(start + a[i]) + 1; start = 1; } else { start = temp2; } isNaturalNum = true; } } System.out.println(ret); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD7 = 1000000007; const long long MOD9 = 1000000009; int main() { cin.tie(0); ios::sync_with_stdio(false); long long N; cin >> N; vector<long long> vec(N); for (long long i = 0; i < N; i++) cin >> vec[i]; long long res, partial, distance_0; vector<long long> res_vec; bool flag_before; for (long long n = 0; n < 2; ++n) { res = 0; if (vec[0] == 0) { if (n == 0) { partial = +1; } else { partial = -1; } } else { partial = vec[0]; } flag_before = partial > 0; for (long long i = 1; i < N; ++i) { partial += vec[i]; distance_0 = abs(partial) + 1; if (flag_before) { if (partial >= 0) { res += distance_0; partial -= distance_0; } } else { if (partial <= 0) { res += distance_0; partial += distance_0; } } flag_before = !flag_before; } res_vec.push_back(res); } cout << *min_element(((res_vec)).begin(), ((res_vec)).end()) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, const char* argv[]) { int n; cin >> n; int a[100010]; for (int i = 0; i < n; ++i) cin >> a[i]; long long int res = 0; bool plus = false; long long int sum = a[0]; if (a[0] > 0) plus = true; else if (a[0] < 0) plus = false; int j = 1; while (sum == 0) { if (a[j] > 0) { ++res; sum = (j % 2 == 0) ? 1 : -1; plus = (j % 2 == 0) ? true : false; } else if (a[j] < 0) { ++res; sum = (j % 2 == 0) ? -1 : 1; plus = (j % 2 == 0) ? false : true; } ++j; if (j == n) { cout << 1 + 2 * (n - 1) << endl; return 0; } } for (int i = 0; i < n - 1; ++i) { if (sum + a[i + 1] > 0) { if (plus == true) { res += sum + a[i + 1] + 1; sum = -1; plus = false; } else { sum += a[i + 1]; plus = true; } } else if (sum + a[i + 1] < 0) { if (plus == false) { res += -(sum + a[i + 1] - 1); sum = 1; plus = true; } else { sum += a[i + 1]; plus = false; } } else if (sum + a[i + 1] == 0) { if (plus == true) { ++res; sum = -1; } else { ++res; sum = 1; } } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> long long int func(std::vector<long long int>& a, int n) { long long int count = 0; signed long long sum = a[0]; for (int i = 1; i < n; i++) { if (sum >= 0) { sum += a[i]; if (sum >= 0) { count += sum + 1; sum = -1; } } else { sum += a[i]; if (sum <= 0) { count += -sum + 1; sum = 1; } } } return count; } int main(void) { int n; std::cin >> n; std::vector<long long int> a(n); for (int i = 0; i < n; i++) { std::cin >> a[i]; } long long int count = 0; if (a[0] == 0) { count++; a[0] = -1; long long int count1 = func(a, n); a[0] = +1; long long int count2 = func(a, n); count += std::min(count1, count2); } else { count += func(a, n); } std::cout << count << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
n=int(raw_input()) a=map(int,raw_input().split(' ')) c=0 for i in range(n): s=sum(a[0:i+1]) if s==0: if i==n-1: a[i]+=1 c+=1 elif a[i+1]>=0: a[i]-=1 c+=1 else: a[i]+=1 c+=1 if i==(n-1): break s=sum(a[0:i+1]) n_s=s+a[i+1] if s*n_s>0: if s>=0: while n_s>=0: a[i+1]-=1 c+=1 n_s=s+a[i+1] else: while n_s<=0: a[i+1]+=1 c+=1 n_s=s+a[i+1] print a print c
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def first_positive(n,a): count = 0 sum = a[0] #正ならTrue flag = True if a[0] <= 0: sum = 1 count += abs(1 - a[0]) for i in range(1,n): if sum + a[i] < 0 and flag == True: sum += a[i] flag = False continue elif sum + a[i] < 0 and flag == False: flag = True count += abs(1 - sum - a[i]) sum = 1 elif sum + a[i] >= 0 and flag == True: flag = False count += abs(-1 - sum - a[i]) sum = -1 elif sum + a[i] >= 0 and flag == False: sum += a[i] flag = True continue return count def first_negative(n,a): count = 0 sum = a[0] #正ならTrue flag = True if a[0] >= 0: sum = -1 count += abs(-1 - a[0]) for i in range(1,n): if sum + a[i] < 0 and flag == True: sum += a[i] flag = False continue elif sum + a[i] < 0 and flag == False: flag = True count += abs(1 - sum - a[i]) sum = 1 elif sum + a[i] >= 0 and flag == True: flag = False count += abs(-1 - sum - a[i]) sum = -1 elif sum + a[i] >= 0 and flag == False: sum += a[i] flag = True continue return count if __name__ == '__main__': n = int(input()) a = [int(i) for i in input().split()] p = first_positive(n,a) n = first_negative(n,a) if p < n: print(p) else: print(n)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) ans_1 = 0 sum_1 = A[0] if A[0] <= 0: ans_1 += abs(A[0])+1 sum_1 = ans_1 for i in range(1, len(A)): a = A[i] prev_sum = sum_1 sum_1 += a if sum_1 * prev_sum >= 0: ans_1 += abs(prev_sum+a)+1 if prev_sum > 0: sum_1 = -1 else: sum_1 = 1 ans_2 = 0 sum_2 = A[0] if A[0] >= 0: ans_2 += abs(A[0])+1 sum_2 = -ans_2 for i in range(1, len(A)): a = A[i] prev_sum = sum_2 sum_2 += a if sum_2 * prev_sum >= 0: ans_2 += abs(prev_sum+a)+1 if prev_sum > 0: sum_2 = -1 else: sum_2 = 1 print(min(ans_1, ans_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = [int(i) for i in input().split()] seq_sum = A[0] sign = 1 if seq_sum >= 0 else -1 count = 0 for i in range(1, n): if A[i] * sign * (-1) > seq_sum * sign: seq_sum += A[i] sign = sign * (-1) else: count += abs(sign * (-1) - (seq_sum + A[i])) A[i] += sign * (-1) - (seq_sum + A[i]) seq_sum += A[i] sign = sign * (-1) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using P = pair<int, int>; int main() { long long n; cin >> n; long long c[2], s[2]; long long a; for (int i = 0; i != n; ++i) { cin >> a; for (int j : {0, 1}) { s[j] += a; auto p = 1 - (i + j) % 2 * 2; if (s[j] * p <= 0) { c[j] += abs(p - s[j]); s[j] = p; } } } cout << min(c[0], c[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long int ans = 0; long long int cnt = a[0]; for (int i = 1; i < n; i++) { if (i % 2 == 0) { if (0 < cnt + a[i]) { cnt += a[i]; } else { ans += 1 - (cnt + a[i]); cnt = 1; } } else { if (cnt + a[i] < 0) { cnt += a[i]; } else { ans += 1 + (cnt + a[i]); cnt = -1; } } } long long int ans2 = 0; cnt = a[0]; for (int i = 1; i < n; i++) { if (i % 2 == 1) { if (0 < cnt + a[i]) { cnt += a[i]; } else { ans2 += 1 - (cnt + a[i]); cnt = 1; } } else { if (cnt + a[i] < 0) { cnt += a[i]; } else { ans2 += 1 + (cnt + a[i]); cnt = -1; } } } if (ans > ans2) { ans = ans2; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> vec; int a; for (int i = 0; i < n; i++) { cin >> a; vec.emplace_back(a); } int ans = 0; int wa[100001]; wa[0] = vec[0]; for (int i = 1; i < n; i++) { wa[i] = wa[i - 1] + vec[i]; if (wa[i - 1] > 0) { if (wa[i] >= 0) { ans += wa[i] + 1; wa[i] = -1; } } else if (wa[i - 1] < 0) { if (wa[i] <= 0) { ans += -wa[i] + 1; wa[i] = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N = 0; cin >> N; vector<long long int> A(N), a(N), b(N); for (int i = 0; i < N; i++) cin >> A[i]; for (int i = 0; i < N; i++) a[i] = A[i]; for (int i = 0; i < N; i++) b[i] = A[i]; long long int M = 0; long long int cnt1 = 0, cnt2 = 0; cnt1 += abs(1 - a[0]); a[0] = 1; for (int i = 1; i < N; i++) { M += a[i - 1]; if (i % 2 == 0) { cnt1 += abs(1 - (M + a[i])); a[i] = 1 - (M + a[i]); } else { cnt1 += abs(-1 - (M + a[i])); a[i] = -1 - (M + a[i]); } } cnt2 += abs(-1 - b[0]); b[0] = -1; for (int i = 1; i < N; i++) { M += b[i - 1]; if (i % 2 == 1) { cnt2 += abs(1 - (M + b[i])); a[i] = 1 - (M + b[i]); } else { cnt2 += abs(-1 - (M + b[i])); a[i] = -1 - (M + b[i]); } } long long int ans = min(cnt1, cnt2); cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; long long unsigned int cnt, cnt1, cnt2 = 0; long long int M = 0; M = A[0]; for (int i = 1; i < N; i++) { if (i % 2 == 0) { cnt1 += abs(1 - M); } else { cnt1 += abs(-1 - M); } M += A[i]; } M = A[0]; for (int i = 1; i < N; i++) { if (i % 2 == 1) { cnt2 += abs(1 - M); } else { cnt2 += abs(-1 - M); } } cnt = min(cnt1, cnt2); cout << cnt; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = [int(i) for i in input().split()] def pura(A): ans = 0 check = 0 if A[0] <= 0: ans += abs(1-A[0]) A[0] = 1 check += A[0] for i in range(1, N): if i % 2 != 0: if check + A[i] >= 0: ans += abs(A[i] + 1 + check) A[i] = -1 + check else: if check + A[i] <= 0: ans += abs(A[i] - (1 + check)) A[i] = 1 - check check += A[i] return ans print(pura(a))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n, *A = map(int, open(0).read().split()) def sgn(n): return 0 if n==0 else 1 if n>0 else -1 C = [0, 0] S = [1, -1] for a in A: for i, s in enumerate(S): sgn_sum = sgn(s) if sgn(s+a) == -sgn_sum: S[i] += a else: C[i] += abs(s+a+sgn_sum) S[i] = -sgn_sum print(min(C))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n, i, j, sw, sw2, count = 0, add = 0; cin >> n; vector<long long> a(n); for (i = 0; i < n; i++) cin >> a[i]; if (a[0] > 0) sw = 1; else sw = -1; add += a[0]; for (i = 1; i < n; i++) { add += a[i]; if (sw == 1) { if (add < 0) { } else { if (a[i] >= 0) { while (add != -1) { a[i]--; add--; count++; } } else { while (add != -1) { a[i]--; add--; count++; } } } } else { if (add > 0) { } else { if (a[i] <= 0) { while (add != 1) { a[i]++; add++; count++; } } else { while (add != 1) { a[i]++; add++; count++; } } } } if (a[i] > 0) sw = 1; else sw = -1; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = input() a = map(int, input().split()) def f(x): cnt = 0 cur = 0 for ai in a: cur += ai cur *= x if cur < 0: cnt += 1 - ai x *= -1 print(cnt) print(min(f(1), f(-1))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ttl = a[0] cst = 0 if a[0]>=0: flg = 1 elif a[0]<0: flg = -1 for i in range(1,n): ttl += a[i] if ttl*flg < 0: flg *= -1 else: if flg > 0: memo = abs(ttl)+1 ttl -= memo cst += memo elif flg < 0: memo = abs(ttl)+1 ttl += memo cst += memo flg *= -1 ttl = a[0] cst2 = 0 print(min(cst,cst2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int a[100001]; int main() { int cul; int ans = 0; cin >> n; for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } int j = 0; int count = 0; while (a[j] == 0) { j++; count++; } cul = a[count]; for (int i = count + 1; i < n; i++) { if (cul > 0) { while ((a[i] + cul) >= 0) { ans++; a[i]--; } cul += a[i]; } else { while ((a[i] + cul) <= 0) { ans++; a[i]++; } cul += a[i]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import Control.Monad import Data.List main = readLn >>= main' where main' n = getLine >>= print . solve' n . fmap read . words solve' n (x : xs) = min (solve n $ x : xs) (solve n $ negate x : xs) solve :: Int -> [Int] -> Int solve c (x : xs) | x /= 0 = fst $ foldl' ff (0, x) xs | null zs = zeroCount c | otherwise = fst $ foldl' ff (zeroCount $ length ys, negate z `div` abs z) zs where ff (acc, s) n | s * next < 0 = (acc, next) | s * next > 0 = (acc + abs next + 1 , negate s `div` abs s) | otherwise = (acc + 1, negate s `div` abs s) where next = s + n (ys, zs) = span (== 0) xs z = head zs zeroCount = pred . (2 *)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ansa = 0, ansb = 0, suma = 0, sumb = 0; cin >> n; for (int i = 0; i < (n); i++) { int c; cin >> c; suma += c; sumb += c; if (i % 2 == 0) { if (suma <= 0) { ansa += (1 - suma); suma = 1; } if (sumb >= 0) { ansb += (sumb + 1); sumb = -1; } } else { if (suma >= 0) { ansa += (suma + 1); suma = -1; } if (sumb <= 0) { ansb += (1 - sumb); sumb = 1; } } } cout << min(ansa, ansb) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import static java.lang.Math.*; import static java.lang.Math.min; import java.util.*; import java.util.stream.*; /** * @author baito */ class P implements Comparable<P> { int x, y; P(int a, int b) { x = a; y = b; } @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof P)) return false; P p = (P) o; return x == p.x && y == p.y; } @Override public int hashCode() { return Objects.hash(x, y); } @Override public int compareTo(P p) { return x == p.x ? y - p.y : x - p.x; //xで昇順にソート //return (x == p.x ? y - p.y : x - p.x) * -1; //xで降順にソート //return y == p.y ? x - p.x : y - p.y;//yで昇順にソート //return (y == p.y ? x - p.x : y - p.y)*-1;//yで降順にソート } } @SuppressWarnings("unchecked") public class Main { static StringBuilder sb = new StringBuilder(); static int INF = 1234567890; static int MINF = -1234567890; static long LINF = 123456789123456789L; static long MLINF = -123456789123456789L; static long MOD = 1000000007; static double EPS = 1e-10; static int[] y4 = {0, 1, 0, -1}; static int[] x4 = {1, 0, -1, 0}; static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1}; static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1}; static ArrayList<Long> Fa; static boolean[] isPrime; static int[] primes; static char[][] ban; static long maxRes = MLINF; static long minRes = LINF; static boolean DEBUG = true; static int N; static long[] A; public static void solve() throws Exception { //longを忘れるなオーバーフローするぞ N = ni(); A = nla(N); long sum = A[0]; long cou = 0; boolean plus = A[0] >= 0 ? false : true; for (int i = 1; i < N; i++) { if (plus) { long now = sum + A[i]; if (now < 0) { cou += (-now) + 1; A[i] += (-now) + 1; } else if (now == 0) { cou++; A[i]++; } sum += A[i]; plus = false; } else { long now = sum + A[i]; if (now > 0) { cou += (now) + 1; A[i] -= (now) + 1; } else if (now == 0) { cou++; A[i]--; } sum += A[i]; plus = true; } } System.out.println(cou); } public static boolean calc(long va) { //貪欲にギリギリセーフを選んでいく。 int v = (int) va; return true; } //条件を満たす最大値、あるいは最小値を求める static int mgr(long ok, long ng, long w) { //int ok = 0; //解が存在する //int ng = N; //解が存在しない while (Math.abs(ok - ng) > 1) { long mid; if (ok < 0 && ng > 0 || ok > 0 && ng < 0) mid = (ok + ng) / 2; else mid = ok + (ng - ok) / 2; if (calc(mid)) { ok = mid; } else { ng = mid; } } if (calc(ok)) return (int) ok; else return -1; } boolean equal(double a, double b) { return a == 0 ? abs(b) < EPS : abs((a - b) / a) < EPS; } public static void matPrint(long[][] a) { for (int hi = 0; hi < a.length; hi++) { for (int wi = 0; wi < a[0].length; wi++) { System.out.print(a[hi][wi] + " "); } System.out.println(""); } } //rにlを掛ける l * r public static long[][] matMul(long[][] l, long[][] r) throws IOException { int lh = l.length; int lw = l[0].length; int rh = r.length; int rw = r[0].length; //lwとrhが,同じである必要がある if (lw != rh) throw new IOException(); long[][] res = new long[lh][rw]; for (int i = 0; i < lh; i++) { for (int j = 0; j < rw; j++) { for (int k = 0; k < lw; k++) { res[i][j] = modSum(res[i][j], modMul(l[i][k], r[k][j])); } } } return res; } public static long[][] matPow(long[][] a, int n) throws IOException { int h = a.length; int w = a[0].length; if (h != w) throw new IOException(); long[][] res = new long[h][h]; for (int i = 0; i < h; i++) { res[i][i] = 1; } long[][] pow = a.clone(); while (n > 0) { if (bitGet(n, 0)) res = matMul(pow, res); pow = matMul(pow, pow); n >>= 1; } return res; } public static void chMax(long v) { maxRes = Math.max(maxRes, v); } public static void chMin(long v) { minRes = Math.min(minRes, v); } //2点間の行き先を配列に持たせる static int[][] packE(int n, int[] from, int[] to) { int[][] g = new int[n][]; int[] p = new int[n]; for (int f : from) p[f]++; for (int t : to) p[t]++; for (int i = 0; i < n; i++) g[i] = new int[p[i]]; for (int i = 0; i < from.length; i++) { g[from[i]][--p[from[i]]] = to[i]; g[to[i]][--p[to[i]]] = from[i]; } return g; } public static boolean bitGet(BitSet bit, int keta) { return bit.nextSetBit(keta) == keta; } public static boolean bitGet(long bit, int keta) { return ((bit >> keta) & 1) == 1; } public static int restoreHashA(long key) { return (int) (key >> 32); } public static int restoreHashB(long key) { return (int) (key & -1); } //正の数のみ public static long getHashKey(int a, int b) { return (long) a << 32 | b; } public static long sqrt(long v) { long res = (long) Math.sqrt(v); while (res * res > v) res--; return res; } public static int u0(int a) { if (a < 0) return 0; return a; } public static long u0(long a) { if (a < 0) return 0; return a; } public static int[] toIntArray(int a) { int[] res = new int[keta(a)]; for (int i = res.length - 1; i >= 0; i--) { res[i] = a % 10; a /= 10; } return res; } public static Integer[] toIntegerArray(int[] ar) { Integer[] res = new Integer[ar.length]; for (int i = 0; i < ar.length; i++) { res[i] = ar[i]; } return res; } public static long bitGetCombSizeK(int k) { return (1 << k) - 1; } //k個の次の組み合わせをビットで返す 大きさに上限はない 110110 -> 111001 public static long bitNextComb(long comb) { long x = comb & -comb; //最下位の1 long y = comb + x; //連続した下の1を繰り上がらせる return ((comb & ~y) / x >> 1) | y; } public static int keta(long num) { int res = 0; while (num > 0) { num /= 10; res++; } return res; } public static boolean isOutofIndex(int x, int y, int w, int h) { if (x < 0 || y < 0) return true; if (w <= x || h <= y) return true; return false; } public static boolean isOutofIndex(int x, int y, char[][] ban) { if (x < 0 || y < 0) return true; if (ban[0].length <= x || ban.length <= y) return true; return false; } public static int arrayCount(int[] a, int v) { int res = 0; for (int i = 0; i < a.length; i++) { if (a[i] == v) res++; } return res; } public static int arrayCount(long[] a, int v) { int res = 0; for (int i = 0; i < a.length; i++) { if (a[i] == v) res++; } return res; } public static int arrayCount(int[][] a, int v) { int res = 0; for (int hi = 0; hi < a.length; hi++) { for (int wi = 0; wi < a[0].length; wi++) { if (a[hi][wi] == v) res++; } } return res; } public static int arrayCount(long[][] a, int v) { int res = 0; for (int hi = 0; hi < a.length; hi++) { for (int wi = 0; wi < a[0].length; wi++) { if (a[hi][wi] == v) res++; } } return res; } public static int arrayCount(char[][] a, char v) { int res = 0; for (int hi = 0; hi < a.length; hi++) { for (int wi = 0; wi < a[0].length; wi++) { if (a[hi][wi] == v) res++; } } return res; } public static void setPrimes() { int n = 100001; isPrime = new boolean[n]; List<Integer> prs = new ArrayList<>(); Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for (int i = 2; i * i <= n; i++) { if (!isPrime[i]) continue; prs.add(i); for (int j = i * 2; j < n; j += i) { isPrime[j] = false; } } primes = new int[prs.size()]; for (int i = 0; i < prs.size(); i++) primes[i] = prs.get(i); } public static void revSort(int[] a) { Arrays.sort(a); reverse(a); } public static void revSort(long[] a) { Arrays.sort(a); reverse(a); } public static int[][] copy(int[][] ar) { int[][] nr = new int[ar.length][ar[0].length]; for (int i = 0; i < ar.length; i++) for (int j = 0; j < ar[0].length; j++) nr[i][j] = ar[i][j]; return nr; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static <T extends Number> int lowerBound(final List<T> lis, final T value) { int low = 0; int high = lis.size(); int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (lis.get(mid).doubleValue() < value.doubleValue()) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static <T extends Number> int upperBound(final List<T> lis, final T value) { int low = 0; int high = lis.size(); int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (lis.get(mid).doubleValue() < value.doubleValue()) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int lowerBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値が無ければ、挿入できる最小のインデックス */ public static int upperBound(final int[] arr, final int value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値以上の先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値以上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long lowerBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] < value) { low = mid + 1; } else { high = mid; } } return low; } /** * <h1>指定した値より大きい先頭のインデクスを返す</h1> * <p>配列要素が0のときは、0が返る。</p> * * @return<b>int</b> : 探索した値より上で、先頭になるインデクス * 値がなければ挿入できる最小のインデックス */ public static long upperBound(final long[] arr, final long value) { int low = 0; int high = arr.length; int mid; while (low < high) { mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策) if (arr[mid] <= value) { low = mid + 1; } else { high = mid; } } return low; } //次の順列に書き換える、最大値ならfalseを返す public static boolean nextPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] < A[pos + 1]) break; } if (pos == -1) return false; //posより大きい最小の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] > A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } //次の順列に書き換える、最小値ならfalseを返す public static boolean prevPermutation(int A[]) { int len = A.length; int pos = len - 2; for (; pos >= 0; pos--) { if (A[pos] > A[pos + 1]) break; } if (pos == -1) return false; //posより小さい最大の数を二分探索 int ok = pos + 1; int ng = len; while (Math.abs(ng - ok) > 1) { int mid = (ok + ng) / 2; if (A[mid] < A[pos]) ok = mid; else ng = mid; } swap(A, pos, ok); reverse(A, pos + 1, len - 1); return true; } static long ncr2(int a, int b) { if (b == 0) return 1; else if (a < b) return 0; long res = 1; for (int i = 0; i < b; i++) { res *= a - i; res /= i + 1; } return res; } static long ncrdp(int n, int r) { if (n < r) return 0; long[][] dp = new long[n + 1][r + 1]; for (int ni = 0; ni < n + 1; ni++) { dp[ni][0] = dp[ni][ni] = 1; for (int ri = 1; ri < ni; ri++) { dp[ni][ri] = dp[ni - 1][ri - 1] + dp[ni - 1][ri]; } } return dp[n][r]; } public static int mod(int a, int m) { return a >= 0 ? a % m : (int) (a + ceil(-a * 1.0 / m) * m) % m; } static long modNcr(int n, int r) { if (n < 0 || r < 0 || n < r) return 0; if (Fa == null || Fa.size() <= n) factorial(n); long result = Fa.get(n); result = modMul(result, modInv(Fa.get(n - r))); result = modMul(result, modInv(Fa.get(r))); return result; } public static long modSum(long... lar) { long res = 0; for (long l : lar) res = (res + l % MOD) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiff(long a, long b) { long res = a % MOD - b % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modMul(long... lar) { long res = 1; for (long l : lar) res = (res * l % MOD) % MOD; if (res < 0) res += MOD; res %= MOD; return res; } public static long modDiv(long a, long b) { long x = a % MOD; long y = b % MOD; long res = (x * modInv(y)) % MOD; return res; } static long modInv(long n) { return modPow(n, MOD - 2); } static void factorial(int n) { if (Fa == null) { Fa = new ArrayList<>(); Fa.add(1L); Fa.add(1L); } for (int i = Fa.size(); i <= n; i++) { Fa.add((Fa.get(i - 1) * i) % MOD); } } static long modPow(long x, long n) { long res = 1L; while (n > 0) { if ((n & 1) == 1) { res = res * x % MOD; } x = x * x % MOD; n >>= 1; } return res; } //↑nCrをmod計算するために必要 static long lcm(long n, long r) { return n / gcd(n, r) * r; } static int gcd(int n, int r) { return r == 0 ? n : gcd(r, n % r); } static long gcd(long n, long r) { return r == 0 ? n : gcd(r, n % r); } static <T> void swap(T[] x, int i, int j) { T t = x[i]; x[i] = x[j]; x[j] = t; } static void swap(int[] x, int i, int j) { int t = x[i]; x[i] = x[j]; x[j] = t; } public static void reverse(int[] x) { int l = 0; int r = x.length - 1; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(long[] x) { int l = 0; int r = x.length - 1; while (l < r) { long temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(char[] x) { int l = 0; int r = x.length - 1; while (l < r) { char temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } public static void reverse(int[] x, int s, int e) { int l = s; int r = e; while (l < r) { int temp = x[l]; x[l] = x[r]; x[r] = temp; l++; r--; } } static int length(int a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int length(long a) { int cou = 0; while (a != 0) { a /= 10; cou++; } return cou; } static int cou(boolean[] a) { int res = 0; for (boolean b : a) { if (b) res++; } return res; } static int cou(String s, char c) { int res = 0; for (char ci : s.toCharArray()) { if (ci == c) res++; } return res; } static int countC2(char[][] a, char c) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == c) co++; return co; } static int countI(int[] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) if (a[i] == key) co++; return co; } static int countI(int[][] a, int key) { int co = 0; for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) if (a[i][j] == key) co++; return co; } static void fill(int[][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(char[][] a, char c) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = c; } static void fill(long[][] a, long v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) a[i][j] = v; } static void fill(int[][][] a, int v) { for (int i = 0; i < a.length; i++) for (int j = 0; j < a[0].length; j++) for (int k = 0; k < a[0][0].length; k++) a[i][j][k] = v; } static int max(int... a) { int res = Integer.MIN_VALUE; for (int i : a) { res = Math.max(res, i); } return res; } static long max(long... a) { long res = Integer.MIN_VALUE; for (long i : a) { res = Math.max(res, i); } return res; } static long min(long... a) { long res = Long.MAX_VALUE; for (long i : a) { res = Math.min(res, i); } return res; } static int max(int[][] ar) { int res = Integer.MIN_VALUE; for (int i[] : ar) res = Math.max(res, max(i)); return res; } static long max(long[][] ar) { long res = Integer.MIN_VALUE; for (long i[] : ar) res = Math.max(res, max(i)); return res; } static int min(int... a) { int res = Integer.MAX_VALUE; for (int i : a) { res = Math.min(res, i); } return res; } static int min(int[][] ar) { int res = Integer.MAX_VALUE; for (int i[] : ar) res = Math.min(res, min(i)); return res; } static int sum(int[] a) { int cou = 0; for (int i : a) cou += i; return cou; } static long sum(long[] a) { long cou = 0; for (long i : a) cou += i; return cou; } //FastScanner static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer tokenizer = null; public static String next() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } /*public String nextChar(){ return (char)next()[0]; }*/ public static String nextLine() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken("\n"); } public static long nl() { return Long.parseLong(next()); } public static String n() { return next(); } public static int ni() { return Integer.parseInt(next()); } public static double nd() { return Double.parseDouble(next()); } public static int[] nia(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni(); } return a; } //1-index public static int[] niao(int n) { int[] a = new int[n + 1]; for (int i = 1; i < n + 1; i++) { a[i] = ni(); } return a; } public static int[] niad(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni() - 1; } return a; } public static P[] npa(int n) { P[] p = new P[n]; for (int i = 0; i < n; i++) { p[i] = new P(ni(), ni()); } return p; } public static P[] npad(int n) { P[] p = new P[n]; for (int i = 0; i < n; i++) { p[i] = new P(ni() - 1, ni() - 1); } return p; } public static int[][] nit(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = ni(); } } return a; } public static int[][] nitd(int h, int w) { int[][] a = new int[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = ni() - 1; } } return a; } static int[][] S_ARRAY; static long[][] S_LARRAY; static int S_INDEX; static int S_LINDEX; //複数の配列を受け取る public static int[] niah(int n, int w) { if (S_ARRAY == null) { S_ARRAY = new int[w][n]; for (int i = 0; i < n; i++) { for (int ty = 0; ty < w; ty++) { S_ARRAY[ty][i] = ni(); } } } return S_ARRAY[S_INDEX++]; } public static long[] nlah(int n, int w) { if (S_LARRAY == null) { S_LARRAY = new long[w][n]; for (int i = 0; i < n; i++) { for (int ty = 0; ty < w; ty++) { S_LARRAY[ty][i] = ni(); } } } return S_LARRAY[S_LINDEX++]; } public static char[] nca() { char[] a = next().toCharArray(); return a; } public static char[][] nct(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = next().toCharArray(); } return a; } //スペースが入っている場合 public static char[][] ncts(int h, int w) { char[][] a = new char[h][w]; for (int i = 0; i < h; i++) { a[i] = nextLine().replace(" ", "").toCharArray(); } return a; } public static char[][] nctp(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + next() + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } //スペースが入ってる時用 public static char[][] nctsp(int h, int w, char c) { char[][] a = new char[h + 2][w + 2]; //char c = '*'; int i; for (i = 0; i < w + 2; i++) a[0][i] = c; for (i = 1; i < h + 1; i++) { a[i] = (c + nextLine().replace(" ", "") + c).toCharArray(); } for (i = 0; i < w + 2; i++) a[h + 1][i] = c; return a; } public static long[] nla(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nl(); } return a; } public static long[][] nlt(int h, int w) { long[][] a = new long[h][w]; for (int hi = 0; hi < h; hi++) { for (int wi = 0; wi < w; wi++) { a[hi][wi] = nl(); } } return a; } public static void main(String[] args) throws Exception { long startTime = System.currentTimeMillis(); solve(); System.out.flush(); long endTime = System.currentTimeMillis(); if (DEBUG) System.err.println(endTime - startTime); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long calcSum(int i, long long na[]) { long long sum = 0; for (int j = 0; j <= i; j++) { sum += na[j]; } return sum; } int check(int n, int s, long long a[]) { long long cnt = 0; long long na[n]; for (int i = 0; i < n; i++) { na[i] = a[i]; long long sum = calcSum(i, na); if (s == 0) { if (i % 2 == 0 && sum <= 0) { long long dx = 1 - sum; na[i] += dx; cnt += abs(dx); } else if (i % 2 != 0 && sum >= 0) { long long dx = -1 - sum; na[i] += dx; cnt += abs(dx); } } if (s == 1) { if (i % 2 != 0 && sum <= 0) { long long dx = 1 - sum; na[i] += dx; cnt += abs(dx); } else if (i % 2 == 0 && sum >= 0) { long long dx = -1 - sum; na[i] += dx; cnt += abs(dx); } } } return cnt; } int main() { int n; cin >> n; long long a[100000]; for (int i = 0; i < n; i++) cin >> a[i]; cout << min(check(n, 0, a), check(n, 1, a)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int64_t> a_vec(n); for (int i = 0; i < n; ++i) cin >> a_vec.at(i); int64_t min_step; for (int j = 0; j < 2; ++j) { int sign = (2 * j - 1); int sum = 0; int step = 0; for (int i = 0; i < n; ++i, sign *= -1) { sum += a_vec.at(i); if (sign * sum > 0) continue; step += -sign * sum + 1; sum = sign; } if (j == 0 || min_step > step) min_step = step; } cout << min_step << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "fmt" "math" ) func main() { var n float64 fmt.Scan(&n) var counter1, counter2 float64 = 0, 0 var total1, total2 float64 = 0, 0 var a float64 for i := 0; i < int(n); i++ { fmt.Scan(&a) total1 += a total2 += a if i%2 == 0 { if total1 <= 0 { counter1 += math.Abs(total1) + 1 total1 = 1 } } else { if total1 >= 0 { counter1 += math.Abs(total1) + 1 } } if i%2 == 0 { if total2 >= 0 { counter2 += math.Abs(total2) + 1 total2 = -1 } } else { if total2 <= 0 { counter2 += math.Abs(total2) + 1 total2 = 1 } } } if counter1 < counter2 { fmt.Println(counter1) } else { fmt.Println(counter2) } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { long long n, ans = 0; scanf("%lld", &n); long long a[n], sum[n]; for (long long i = 0; i < n; i++) { scanf("%lld", &a[i]); } sum[0] = a[0]; if (sum[0] == 0 && a[1] > 0) { sum[0]--; ans++; } else if (sum[0] == 0 && a[1] <= 0) { sum[0]++; ans--; } for (long long i = 1; i < n; i++) { sum[i] = a[i] + sum[i - 1]; if (sum[i - 1] < 0) { if (sum[i] <= 0) { ans += (llabs(sum[i]) + 1); sum[i] += (llabs(sum[i]) + 1); } } else { if (sum[i] >= 0) { ans += (llabs(sum[i]) + 1); sum[i] -= (llabs(sum[i]) + 1); } } } printf("%lld\n", ans); return 0; }