Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 55;
string res;
bool vis[maxn][maxn][maxn][maxn];
int failure[maxn];
void push() {
memset(failure, 0, sizeof(failure));
for (int s = 2; s <= res.size(); s++) {
failure[s] = failure[s - 1];
while (failure[s] > 0 && res[failure[s]] != res[s - 1])
failure[s] = failure[failure[s]];
if (res[failure[s]] == res[s - 1]) ++failure[s];
}
}
bool solve(int qx, int qy, int qz, int pos) {
if (qx + qy + qz == 0) {
string pref;
for (int e = 0; e < pos; e++) pref.push_back(res[e]);
pref += res;
for (int f = 0; f < pref.size() - res.size() + 1; f++) {
bool ok = true;
for (int e = 0; e < res.size() && ok; e++) {
if (pref[e + f] < res[e]) ok = false;
if (pref[e + f] > res[e]) break;
}
if (!ok) return false;
}
return true;
}
if (vis[qx][qy][qz][pos]) return false;
vis[qx][qy][qz][pos] = 1;
if (qz > 0) {
int nxt = pos;
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'c' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'c') nxt++;
if (solve(qx, qy, qz - 1, nxt)) return true;
}
if (res[pos] != 'c' && qy > 0) {
int nxt = pos;
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'b' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'b') nxt++;
if (solve(qx, qy - 1, qz, nxt)) return true;
}
if (res[pos] != 'c' && res[pos] != 'b' && qx > 0) {
int nxt = pos;
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'a' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'a') nxt++;
if (solve(qx - 1, qy, qz, nxt)) return true;
}
return false;
}
int M() {
int x, y, z;
if (!(cin >> x >> y >> z)) return 0;
int len = x + y + z;
res.clear();
for (int e = 0; e < len; e++) {
{
if (z > 0) {
res.push_back('c');
push();
memset(vis, false, sizeof(vis));
if (solve(x, y, z - 1, 0)) {
z--;
continue;
}
res.pop_back();
}
}
{
if (y > 0) {
res.push_back('b');
push();
memset(vis, false, sizeof(vis));
if (solve(x, y - 1, z, 0)) {
y--;
continue;
}
res.pop_back();
}
}
{
if (x > 0) {
res.push_back('a');
push();
memset(vis, false, sizeof(vis));
if (solve(x - 1, y, z, 0)) {
x--;
continue;
}
res.pop_back();
}
}
assert(0);
}
cout << res << endl;
return 1;
}
int main() {
while (M())
;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string eval(string s) {
int n = s.size();
s += s;
string ans = "~";
for (int i = 0; i < n; ++i) {
ans = min(ans, s.substr(i, n));
}
return ans;
}
int main() {
int X, Y, Z;
cin >> X >> Y >> Z;
int N = X + Y + Z;
string ans = string(X, 'a') + string(Y, 'b') + string(Z, 'c');
string cur_ev = eval(ans);
while (true) {
bool found = false;
for (int i = 0; i < N && !found; ++i) {
for (int j = 0; j < N; ++j) {
string nxt = ans;
char ch = nxt[i];
nxt.erase(nxt.begin() + i);
nxt.insert(nxt.begin() + j, ch);
string ev = eval(nxt);
if (ev > cur_ev) {
cur_ev = ev;
ans = nxt;
found = true;
break;
}
}
}
if (!found) break;
}
cout << cur_ev << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename A, size_t N, typename T>
void Fill(A (&array)[N], const T &val) {
std::fill((T *)array, (T *)(array + N), val);
}
template <class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
bool check(string s, int a, int b, int c) {
int m = s.size();
int n = a + b + c;
string t;
bool flag = 0;
bool ng = 0;
for (int i = 0; i < (int)(n); ++i) {
if (flag) {
if (c != 0) {
t.push_back('c');
c--;
} else {
t.push_back('b');
b--;
}
} else {
if (s[i % m] == 'a') {
if (a != 0) {
t.push_back('a');
a--;
} else {
flag = 1;
if (c != 0) {
t.push_back('c');
c--;
} else {
t.push_back('b');
b--;
}
}
} else if (s[i % m] == 'b') {
if (b == 0) {
if (c == 0) {
ng = 1;
} else {
t.push_back('c');
c--;
}
} else {
t.push_back('b');
b--;
}
} else {
if (c == 0) {
ng = 1;
} else {
t.push_back('c');
c--;
}
}
}
}
if (ng) return false;
for (int i = 0; i < (int)(n); ++i) {
string p;
for (int j = 0; j < (int)(m); ++j) {
p.push_back(t[(i + j) % n]);
}
if (s > p) return false;
}
return true;
}
int main() {
int a, b, c;
cin >> a >> b >> c;
int n = a + b + c;
string s;
for (int i = 0; i < (int)(n); ++i) {
string t = s;
t.push_back('c');
if (check(t, a, b, c)) {
s = t;
} else {
t[t.size() - 1] = 'b';
if (check(t, a, b, c)) {
s = t;
} else {
t[t.size() - 1] = 'a';
s = t;
}
}
}
cout << s << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double TIME_LIMIT = 1.5;
const unsigned int RANDMAX = -1;
unsigned int randxor() {
static unsigned int x = 123456789, y = 362436069, z = 521288629, w = 88675123;
unsigned int t;
t = (x ^ (x << 11));
x = y;
y = z;
z = w;
return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)));
}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < v.size(); i++) {
os << v[i] << (i + 1 == v.size() ? "" : " ");
}
return os;
}
namespace Timer {
bool is_started = false;
unsigned long long int cycle_per_sec = 2800000000;
unsigned long long int beginCycle;
unsigned long long int get_cycle() {
unsigned int low, high;
__asm__ volatile("rdtsc" : "=a"(low), "=d"(high));
return ((unsigned long long int)low) | ((unsigned long long int)high << 32);
}
double time_elapsed() {
assert(is_started);
return (double)(get_cycle() - beginCycle) / cycle_per_sec;
}
void reset_timer() {
is_started = true;
beginCycle = get_cycle();
}
bool is_TLE(double limit) {
assert(is_started);
return time_elapsed() >= limit;
}
}; // namespace Timer
using namespace Timer;
string sorted(string s) {
string t = s + s;
string mx = "~";
for (int i = 0; i < s.size(); i++) {
mx = min(mx, t.substr(i, s.size()));
}
return mx;
}
int main() {
long long X, Y, Z;
cin >> X >> Y >> Z;
string w;
for (int i = 0; i < X; i++) w += "a";
for (int i = 0; i < Y; i++) w += "b";
for (int i = 0; i < Z; i++) w += "c";
reset_timer();
string cur;
while (!is_TLE(TIME_LIMIT)) {
random_shuffle(w.begin(), w.end());
w = sorted(w);
cur = max(w, cur);
while (true) {
bool update = false;
for (int i = 0; i < w.size(); i++) {
for (int j = i; j < w.size(); j++) {
swap(w[i], w[j]);
string t = sorted(w);
if (cur < t) {
cur = t;
update = true;
cout << cur << endl;
} else {
swap(w[i], w[j]);
}
}
}
if (!update) break;
}
}
cout << cur << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long s[200000];
long long t[200000];
int main() {
char x[50];
int a, b, c;
cin >> a >> b >> c;
for (int i = 0; i < a; i++) x[i] = 'a';
for (int i = 0; i < b; i++) x[i + a] = 'b';
for (int i = 0; i < c; i++) x[i + a + b] = 'c';
bool k = 1, m = 1;
while (k || m) {
k = 0;
m = 0;
for (int i = 0; i < a + b + c - 1; i++) {
if (x[i] == x[i + 1]) {
swap(x[i], x[i + 1]);
k = 1;
}
}
for (int i = a + b + c; i > 0; i--) {
if (x[i] == x[i - 1]) {
swap(x[i], x[i - 1]);
m = 1;
}
}
}
cout << x;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long fastpow(int a, int b, int MOD) {
long long x = 1, y = a;
while (b > 0) {
if (b % 2 == 1) {
x = (x * y) % MOD;
}
y = (y * y) % MOD;
b /= 2;
}
return x;
}
long long InverseEuler(int n, int MOD) { return fastpow(n, MOD - 2, MOD); }
long long f[300000];
bool init;
long long C(int n, int r, int MOD) {
if (!init) {
init = 1;
f[0] = 1;
for (int i = 1; i < 300000; i++) f[i] = (f[i - 1] * i) % MOD;
}
return (f[n] *
((InverseEuler(f[r], MOD) * InverseEuler(f[n - r], MOD)) % MOD)) %
MOD;
}
int N;
string S = "";
vector<int> res;
vector<char> tok;
string solve(int A, int B, int C) {
string res = "";
if (A == 1 || B == 1 || C == 1) {
for (int i = 0; i < A; i++) res += "a";
for (int i = 0; i < C; i++) res += "c";
for (int i = 0; i < B; i++) res += "b";
return res;
}
int ka = (A + 1) / 2;
int kb = B / 2;
int kc = C / 2;
return solve(ka, kb, kc) + solve(A - ka, B - kb, C - kc);
}
int main() {
int A, B, C;
std::ios::sync_with_stdio(false);
cin >> A >> B >> C;
string res = solve(A, B, C);
cout << res << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
set<string> s;
int main() {
int aa, bb, cc;
scanf("%d%d%d", &aa, &bb, &cc);
for (; aa--;) s.insert("a");
for (; bb--;) s.insert("b");
while (cc--) s.insert("c");
while (s.size() - 1) {
auto st = *s.begin() + *(--s.end());
s.erase(s.begin());
s.erase(--s.end());
s.insert(st);
}
puts((*s.begin()).c_str());
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<cstdio>
int main(){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
int b[x]={};
int c[x]={};
if(x>y+z){
for(int i=x-1;i>=x-y;i--){
b[i]++;
}
for(int i=x-y-1;i>=x-y-z;i--){
c[i]++;
}
}else if(x==y+z){
for(int i=x-1;i>=x-z;i--){
c[i]++;
}
for(int i=x-z-1;i>=0;i--){
b[i]++;
}
}else{
if(x<=z){
if(z%x==0){
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=0;i<x;i++){
b[i]+=y/x;
}
for(int i=x-1;i>=x-y%x;i--){
b[i]++;
}
}else{
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=x-1;i>=x-z%x;i--){
c[i]++;
}
int k=x-z%x;
for(int i=0;i<k;i++){
b[i]+=y/k;
}
for(int i=0;i<y%k;i--){
b[i]++;
}
}
}else{
for(int i=x-1;i>=x-z;i--){
c[i]++;
}
int k=x-z;
for(int i=0;i<k;i++){
b[i]+=x/k;
}
for(int i=k-1;i>=k-x%k;i--){
b[i]++;
}
}
}
for(int i=0;i<x;i++){
printf("a");
for(int j=0;j<c[i];j++){
printf("c");
}
for(int j=0;j<b[i];j++){
printf("b");
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | ary = gets.chomp.split(" ").map(&:to_i)
a = ary[0]
b = ary[1]
c = ary[2]
if a > 0
bb = b/a
ba = b%a
cc = c/a
ca = c%a
kihonkei = "a"+"c"*cc+"b"*bb
str = kihonkei*a+"c"*ca+"b"*ba
elsif b>0
cc = c/b
cb = c%b
kihonkei = "b"+"c"*cb
str = kihonkei*b+"c"*cb
else
str = "c"*c
end
puts str |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int A, B, C;
vector<string> vec;
string maxn = "";
int cnt = 0;
string shifts(string G) {
string T = G;
for (int i = 0; i < G.size(); i++) {
string TT = "";
for (int j = 0; j < G.size(); j++) TT += G[(i + j) % G.size()];
T = min(T, TT);
}
return T;
}
void dfs(vector<string> V, string S) {
cnt++;
if (shifts(S) < maxn.substr(0, S.size())) return;
if (V.size() == 0) {
string G = S;
for (int i = 0; i < S.size(); i++) {
string I = "";
for (int j = 0; j < S.size(); j++) I += S[(i + j) % S.size()];
G = min(G, I);
}
maxn = max(maxn, G);
return;
}
int G = rand() % V.size();
for (int h = G; h < V.size() + G; h++) {
int i = h % V.size();
if (i >= 1 && V[i] == V[i - 1]) continue;
vector<string> Z;
for (int j = 0; j < V.size(); j++) {
if (i != j) Z.push_back(V[j]);
}
string ZZ = S + V[i];
dfs(Z, ZZ);
}
}
int main() {
cin >> A >> B >> C;
int P = 0;
while (A == 0) {
A = B;
B = C;
C = 0;
P++;
}
for (int i = 0; i < A; i++) vec.push_back("a");
for (int i = 0; i < C; i++) vec[i % A] += "c";
sort(vec.begin(), vec.end());
int Z = 1;
for (int i = 0; i < (int)vec.size() - 1; i++) {
if (vec[i] == vec[i + 1])
Z = i + 2;
else
break;
}
for (int i = 0; i < B; i++) vec[i % Z] += "b";
sort(vec.begin(), vec.end());
vector<string> vec2;
for (int i = 1; i < vec.size(); i++) vec2.push_back(vec[i]);
dfs(vec2, vec[0]);
for (int i = 0; i < maxn.size(); i++) maxn[i] += P;
cout << maxn << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class Main {
static InputStream is;
static PrintWriter out;
static String INPUT = "";
static void solve()
{
int x = ni(), y = ni(), z = ni();
int n = x+y+z;
int[] f = new int[]{x, y, z};
if(x == 0 && y == 0){
for(int i = 0;i < z;i++){
out.print("c");
}
out.println();
return;
}
if(x == 0){
f[0] = f[1];
f[1] = f[2];
f[2] = 0;
}
String ans = "";
for(int ar = 1;ar <= n;ar++){
int na = 0;
int nbc = 0;
for(int i = 0;i < n;i+=ar+1){
if(i+ar+1 > n){
na += n-i-1;
nbc++;
}else{
na += ar;
nbc += 1;
}
}
assert na + nbc == n;
if(na >= f[0]){
for(int pe = n;pe >= ar+1;pe--){
int lna = 0;
for(int i = 0;i < n;i+=pe){
if(i+pe > n){
lna += Math.min(ar, n-1-i);
}else{
lna += ar;
}
}
if(lna >= f[0]){
// tr("OK", pe, lna, f[0], na, ar);
int[] g = Arrays.copyOf(f, 3);
char[] t = new char[n];
int[] h = new int[n];
for(int j = 0;j < pe;j++){
for(int k = j;k < n-1;k+=pe){
if(g[0] > 0){
h[k/pe]++;
g[0]--;
t[k] = 'a';
}
}
}
for(int l = 0;l < n;l++){
if(h[l] == 0){
if(h[0] == h[l-1]){
for(int j = 0;j < pe;j++){
for(int k = j+pe*50;k >= j;k-=pe){
if(k >= n)continue;
if(t[k] != 0)continue;
if(g[2] > 0){
g[2]--;
t[k] = 'c';
}
}
}
for(int j = 0;j < n;j++){
if(t[j] == 0){
t[j] = 'b';
}
}
}else{
int u = 0;
for(;u < l && h[0] == h[u];u++);
for(int j = 0;j < pe;j++){
for(int k = j+(u-1)*pe;k >= j;k-=pe){
if(k >= n)continue;
if(t[k] != 0)continue;
if(g[2] > 0){
g[2]--;
t[k] = 'c';
}
}
}
for(int j = 0;j < n;j++){
if(t[j] == 0){
t[j] = 'b';
}
}
}
String can = new String(t);
can = rotate(can);
if(can.compareTo(ans) > 0){
ans = can;
}
break;
}
}
}
}
}
}
if(x == 0){
ans = ans.replace("b", "c");
ans = ans.replace("a", "b");
}
out.println(ans);
}
static String rotate(String s)
{
String t = s;
for(int i = 0;i < s.length();i++){
String v = s.substring(i) + s.substring(0, i);
if(v.compareTo(t) < 0){
t = v;
}
}
return t;
}
public static void main(String[] args) throws Exception
{
long S = System.currentTimeMillis();
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
solve();
out.flush();
long G = System.currentTimeMillis();
tr(G-S+"ms");
}
private static boolean eof()
{
if(lenbuf == -1)return true;
int lptr = ptrbuf;
while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false;
try {
is.mark(1000);
while(true){
int b = is.read();
if(b == -1){
is.reset();
return true;
}else if(!isSpaceChar(b)){
is.reset();
return false;
}
}
} catch (IOException e) {
return true;
}
}
private static byte[] inbuf = new byte[1024];
static int lenbuf = 0, ptrbuf = 0;
private static int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
// private static boolean isSpaceChar(int c) { return !(c >= 32 && c <= 126); }
private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private static double nd() { return Double.parseDouble(ns()); }
private static char nc() { return (char)skip(); }
private static String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private static char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private static char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private static int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private static int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); }
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline bool chkmin(T &a, const T &b) {
return a > b ? a = b, 1 : 0;
}
template <typename T>
inline bool chkmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
}
const int oo = 0x3f3f3f3f;
const int maxn = 60;
int a, b, c;
int main() {
scanf("%d%d%d", &a, &b, &c);
if (!a) {
for (int i = (0), i_end_ = (b); i < i_end_; ++i) putchar('b');
for (int i = (0), i_end_ = (c); i < i_end_; ++i) putchar('c');
return 0;
}
if (b + c <= a) {
for (int i = (0), i_end_ = (a - b - c); i < i_end_; ++i) {
putchar('a');
}
for (int i = (0), i_end_ = (c); i < i_end_; ++i) putchar('a'), putchar('c');
for (int i = (0), i_end_ = (b); i < i_end_; ++i) putchar('a'), putchar('b');
return 0;
}
do {
putchar('a');
static bool f[maxn + 5][maxn + 5][maxn + 5];
memset(f, 0, sizeof f);
f[a][b][c] = 1;
while (1) {
static bool nxt[maxn + 5][maxn + 5][maxn + 5];
memset(nxt, 0, sizeof nxt);
bool ok = 0;
for (int i = (0), i_end_ = (a + 1); i < i_end_; ++i)
for (int j = (0), j_end_ = (b + 1); j < j_end_; ++j)
for (int k = (0), k_end_ = (c + 1); k < k_end_; ++k)
if (f[i][j][k]) {
if (k >= i) {
ok = 1;
nxt[i][j][k - i] = 1;
}
}
if (ok) {
memcpy(f, nxt, sizeof f);
putchar('c');
--c;
} else {
ok = 0;
for (int i = (0), i_end_ = (a + 1); i < i_end_; ++i)
for (int j = (0), j_end_ = (b + 1); j < j_end_; ++j)
for (int k = (0), k_end_ = (c + 1); k < k_end_; ++k)
if (f[i][j][k]) {
for (int l = (0), l_end_ = (min(i, j) + 1); l < l_end_; ++l)
if (l + k >= i) {
ok = 1;
nxt[l][j - l][k - (i - l)] = 1;
}
}
if (ok) {
memcpy(f, nxt, sizeof f);
putchar('b');
--b;
} else
break;
}
}
} while (--a);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline bool chkmin(T &a, const T &b) {
return a > b ? a = b, 1 : 0;
}
template <typename T>
inline bool chkmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
}
template <typename T>
inline bool smin(T &a, const T &b) {
return a > b ? a = b : a;
}
template <typename T>
inline bool smax(T &a, const T &b) {
return a < b ? a = b : a;
}
const int N = (int)55, mod = (int)0;
int na, nb, nc, n, t[3];
int a[N];
bool check(string p) {
t[0] = na;
t[1] = nb;
t[2] = nc;
int m = (int)p.size();
for (int j = 0; j < m; ++j) {
a[j] = p[j];
for (int ti = 0; ti < 3; ++ti)
if (a[j] == (ti + 'a')) --t[ti];
}
for (int ti = 0; ti < 3; ++ti)
if (t[ti] < 0) return 0;
for (int ch = m; ch < n; ++ch) {
int val = 0;
for (int j = ch - 1; j >= ch - m + 1; --j) {
int flag = 1;
for (int i = j; i < ch; ++i) {
if (p[i - j] < a[i]) {
flag = 0;
break;
}
}
if (flag) val = max(val, p[ch - j] - 'a');
}
int flag = 1;
for (int k = val; k < 3; ++k) {
if (t[k]) {
flag = 0;
--t[k];
a[ch] = k + 'a';
break;
}
}
if (flag) return 0;
}
for (int st = 0; st < n; ++st) {
for (int j = 0; j < m; ++j) {
int pos = (st + j) % n;
if (a[pos] > p[j]) break;
if (a[pos] < p[j]) {
return 0;
}
}
}
return 1;
}
int main() {
cin >> na >> nb >> nc;
n = na + nb + nc;
string res = "";
if (na) {
res = "a";
} else if (nb) {
res = "b";
} else {
res = "c";
}
for (int len = 2; len <= n; ++len) {
for (int c = 2; c >= 0; --c) {
string nxt = res;
nxt += char('a' + c);
if (check(nxt)) {
res = nxt;
break;
}
}
}
cout << res << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline void read(T &x) {
int f = 0;
x = 0;
char ch = getchar();
for (; !isdigit(ch); ch = getchar()) f |= (ch == '-');
for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
if (f) x = -x;
}
string solve(string a, string b, int x, int y) {
if (b + a < a + b) swap(a, b), swap(x, y);
if (!x || !y) {
string res;
for (int i = (1); i <= (x); i++) res += a;
for (int i = (1); i <= (y); i++) res += b;
return res;
}
if (x < y) {
int u = y / x, v = y % x;
string A = a, B;
while (u--) A += b;
B = A + b;
return solve(A, B, x - v, v);
}
int u = x / y, v = x % y;
string A, B;
while (u--) A += a;
A += b;
B = a + A;
return solve(A, B, y - v, v);
}
string solve(string a, string b, string c, int x, int y, int z) {
if (b + a < a + b) swap(a, b), swap(x, y);
if (c + a < a + c) swap(a, c), swap(x, z);
if (c + b < b + c) swap(b, c), swap(y, z);
if (!x) return solve(b, c, y, z);
if (!y) return solve(a, c, x, z);
if (!z) return solve(a, b, x, y);
if (x <= y + z) {
int u = (y + z) / x, R = (y + z) % x, L = x - R;
if (R * (u + 1) + min(u, z / L) * L <= z) {
int u0 = (z - R * (u + 1)) / L, v0 = (z - R * (u + 1)) % L;
string A = a, B = a, C = a;
for (int i = (1); i <= (u0); i++) A += c;
for (int i = (u0 + 1); i <= (u); i++) A += b;
for (int i = (1); i <= (u0 + 1); i++) B += c;
for (int i = (u0 + 2); i <= (u); i++) B += b;
for (int i = (1); i <= (u + 1); i++) C += c;
return solve(A, B, C, L - v0, v0, R);
}
int u0 = min(u, z / L), z0 = z - u0 * L;
string A = a, B = a, C = a;
for (int i = (1); i <= (u0); i++) A += c;
for (int i = (u0 + 1); i <= (u); i++) A += b;
int u1 = z0 / R, v1 = z0 % R;
for (int i = (1); i <= (u1); i++) B += c;
for (int i = (u1 + 1); i <= (u + 1); i++) B += b;
for (int i = (1); i <= (u1 + 1); i++) C += c;
for (int i = (u1 + 2); i <= (u + 1); i++) C += b;
return solve(A, B, C, L, R - v1, v1);
}
int u = x / (y + z), v = x % (y + z);
string A, B, C;
int X = 0, Y = 0, Z = 0, now = 0;
for (int i = (1); i <= (y + z); i++) {
if (i <= v && now < z) {
if (!X) {
for (int i = (1); i <= (u + 1); i++) A += a;
A += c;
}
X++, now++;
} else if (i > v && now == z) {
if (!Z) {
for (int i = (1); i <= (u); i++) C += a;
C += b;
}
Z++;
} else if (now < z) {
if (!Y) {
for (int i = (1); i <= (u); i++) B += a;
B += c;
}
Y++, now++;
} else {
if (!Y) {
for (int i = (1); i <= (u + 1); i++) B += a;
B += b;
}
Y++;
}
}
return solve(A, B, C, X, Y, Z);
}
int main() {
int x, y, z;
cin >> x >> y >> z;
cout << solve("a", "b", "c", x, y, z) << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:336777216")
using namespace std;
const int MAXN = 50 + 2;
int A, B, C, N;
int L;
char Fill[MAXN];
int Tmp[MAXN * 2];
int Check(int a, int b, int c, string S) {
int Len = S.length();
for (int i = 0; i < N * 2; i++) Tmp[i] = 255;
for (int i = 0; i < Len; i++) Tmp[i] = Tmp[i + N] = S[i];
for (int k = 1; k < Len; k++)
for (int i = 0; i < N; i++)
if (Tmp[i] != Tmp[k + i]) {
if (Tmp[i] > Tmp[k + i]) return 0;
break;
}
return 1;
}
string DP[MAXN][MAXN][MAXN];
int Test() {
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) DP[i][j][k] = "";
DP[0][0][0] = (string)Fill;
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) {
if (DP[i][j][k].length() != i + j + k + L) continue;
string tmp;
if (i < A) {
tmp = DP[i][j][k] + 'a';
if (Check(A - i - 1, B - j, C - k, tmp) && tmp > DP[i + 1][j][k])
DP[i + 1][j][k] = tmp;
}
if (j < B) {
tmp = DP[i][j][k] + 'b';
if (Check(A - i, B - j - 1, C - k, tmp) && tmp > DP[i][j + 1][k])
DP[i][j + 1][k] = tmp;
}
if (k < C) {
tmp = DP[i][j][k] + 'c';
if (Check(A - i, B - j, C - k - 1, tmp) && tmp > DP[i][j][k + 1])
DP[i][j][k + 1] = tmp;
}
}
return (DP[A][B][C].length() == A + B + C + L);
}
void Work() {
scanf("%d%d%d", &A, &B, &C);
N = A + B + C;
for (L = 1; L <= N; L++) {
Fill[L] = 0;
if (C > 0) {
Fill[L - 1] = 'c';
C--;
if (Test()) continue;
C++;
}
if (B > 0) {
B--;
Fill[L - 1] = 'b';
if (Test()) continue;
B++;
}
A--;
Fill[L - 1] = 'a';
}
printf("%s\n", Fill);
}
int main() {
Work();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class S, class T>
ostream& operator<<(ostream& o, const pair<S, T>& p) {
return o << "(" << p.first << "," << p.second << ")";
}
template <class T>
ostream& operator<<(ostream& o, const vector<T>& vc) {
o << "sz = " << vc.size() << endl << "[";
for (const T& v : vc) o << v << ",";
o << "]";
return o;
}
string operator*(string a, int k) {
string s;
for (int i = 0; i < (int)(k); i++) s += a;
return s;
}
string solve(int A, int B, int C, string a, string b, string c) {
if (B + C == 0) {
return a * A;
}
if (A + C == 0) {
return b * B;
}
if (B + A == 0) {
return c * C;
}
if (A == 0) {
return solve(B, C, 0, b, c, "");
}
int q = A / (B + C);
int r = A % (B + C);
string o = a * q;
if (r <= C) {
return solve(r, B, C - r, o + a + c, o + b, o + c);
} else {
return solve(r - C, C, B - r, o + a + b, o + a + c, o + b);
}
}
int main() {
int A, B, C;
cin >> A >> B >> C;
cout << solve(A, B, C, "a", "b", "c") << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline bool chkmin(T &a, const T &b) {
return a > b ? a = b, 1 : 0;
}
template <typename T>
inline bool chkmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
}
const int oo = 0x3f3f3f3f;
const int maxn = 60;
int a, b, c;
int main() {
scanf("%d%d%d", &a, &b, &c);
do {
putchar('a');
static bool f[maxn + 5][maxn + 5][maxn + 5];
memset(f, 0, sizeof f);
f[a][b][c] = 1;
while (1) {
static bool nxt[maxn + 5][maxn + 5][maxn + 5];
memset(nxt, 0, sizeof nxt);
bool ok = 0;
for (int i = (0), i_end_ = (a + 1); i < i_end_; ++i)
for (int j = (0), j_end_ = (b + 1); j < j_end_; ++j)
for (int k = (0), k_end_ = (c + 1); k < k_end_; ++k)
if (f[i][j][k]) {
if (k >= i) {
ok = 1;
nxt[i][j][k - i] = 1;
}
}
if (ok) {
memcpy(f, nxt, sizeof f);
putchar('c');
--c;
} else {
ok = 0;
for (int i = (0), i_end_ = (a + 1); i < i_end_; ++i)
for (int j = (0), j_end_ = (b + 1); j < j_end_; ++j)
for (int k = (0), k_end_ = (c + 1); k < k_end_; ++k)
if (f[i][j][k]) {
for (int l = (0), l_end_ = (min(i, j) + 1); l < l_end_; ++l)
if (l + k >= i) {
ok = 1;
nxt[l][j - l][k - (i - l)] = 1;
}
}
if (ok) {
memcpy(f, nxt, sizeof f);
putchar('b');
--b;
} else
break;
}
}
} while (--a);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
os << "sz:" << v.size() << "\n[";
for (const auto& p : v) {
os << p << ",";
}
os << "]\n";
return os;
}
template <typename S, typename T>
ostream& operator<<(ostream& os, const pair<S, T>& p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
constexpr ll MOD = (ll)1e9 + 7LL;
template <typename T>
constexpr T INF = numeric_limits<T>::max() / 100;
void place(const int small, const int large, vector<int>& result) {
assert(result.size() == small + large);
if (large == 0) {
for (int i = 0; i < result.size(); i++) {
result[i] = -1;
}
} else if (large == 1) {
for (int i = 0; i < result.size() - 1; i++) {
result[i] = -1;
}
result[result.size() - 1] = 1;
} else if (small >= large) {
const int ssize = (small + large - 1) / large;
const int lsize = ssize - 1;
const int snum = small - (lsize * large);
const int lnum = large - snum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = -2;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = -1;
pos++;
}
}
result[pos] = 1;
pos++;
}
} else {
const int ssize = large / small;
const int lsize = ssize + 1;
const int lnum = large - ssize * small;
const int snum = small - lnum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
result[pos] = -1;
pos++;
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = 1;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = 2;
pos++;
}
}
}
}
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int X, Y, Z;
cin >> X >> Y >> Z;
string s;
s.resize(X + Y + Z, 'd');
if (X > 0) {
if (Y + Z > 0) {
if (X >= Y + Z) {
vector<int> tmp(X + Y + Z);
place(X, Y + Z, tmp);
for (int i = 0; i < X + Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'a';
}
vector<int> smalls;
vector<int> larges;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] > 0 and tmp[i - 1] == -1) {
larges.push_back(i);
} else if (tmp[i] > 0 and tmp[i - 1] == -2) {
smalls.push_back(i);
}
}
reverse(smalls.begin(), smalls.end());
for (const int li : larges) {
if (Y > 0) {
s[li] = 'b';
Y--;
} else {
s[li] = 'c';
Z--;
}
}
for (const int si : smalls) {
if (Z > 0) {
s[si] = 'c';
Z--;
} else {
s[si] = 'b';
Y--;
}
}
}
cout << s << endl;
} else {
vector<string> sv(X, "a");
const int slen = Z / X;
const int llen = slen + 1;
const int snum = llen * X - Z;
for (int i = 0; i < snum; i++) {
for (int j = 0; j < slen; j++) {
sv[i].push_back('c');
}
}
for (int i = snum; i < X; i++) {
for (int j = 0; j < llen; j++) {
sv[i].push_back('c');
}
}
const int sslen = Y / snum;
const int lllen = sslen + 1;
const int ssnum = lllen * snum - Y;
for (int i = 0; i < ssnum; i++) {
for (int j = 0; j < sslen; j++) {
sv[i].push_back('b');
}
}
for (int i = ssnum; i < snum; i++) {
for (int j = 0; j < lllen; j++) {
sv[i].push_back('b');
}
}
for (int i = 0; i < X; i++) {
cout << sv[i];
}
cout << endl;
}
} else {
for (int i = 0; i < Y + Z; i++) {
cout << 'a';
}
cout << endl;
return 0;
}
} else {
if (Y > 0) {
if (Z > 0) {
vector<int> tmp(Y + Z);
place(Y, Z, tmp);
for (int i = 0; i < Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'b';
} else {
s[i] = 'c';
}
}
cout << s << endl;
return 0;
} else {
for (int i = 0; i < Y; i++) {
cout << 'b';
}
cout << endl;
return 0;
}
} else {
for (int i = 0; i < Z; i++) {
cout << 'c';
}
cout << endl;
return 0;
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string res = "";
vector<string> v;
void change(int z, int y, int x) {
vector<string> s;
for (int i = 0; i < (int)v.size(); i++) {
string temp = v[i];
if (x > 0) {
x--;
temp += 'a';
} else if (y > 0) {
y--;
temp += 'b';
} else if (z > 0) {
z--;
temp += 'c';
}
s.push_back(temp);
}
v = s;
return;
}
void solve(int x, int y, int z, int tot) {
if (tot == 0) {
if (x > 0) {
res += 'a';
for (int i = 0; i < x; i++) {
v.push_back("a");
}
solve(0, y, z, x);
} else if (y > 0) {
res += 'b';
for (int i = 0; i < y; i++) {
v.push_back("b");
}
solve(x, 0, z, y);
} else {
res += 'c';
for (int i = 0; i < z; i++) {
v.push_back("c");
}
solve(x, y, 0, z);
}
} else {
if (tot <= z) {
res += 'c';
solve(x, y, z - tot, tot);
change(tot, 0, 0);
} else if (tot <= y + z) {
res += 'b';
int aux = tot;
int used = y >= aux ? aux : y;
aux -= used;
int used2 = z >= aux ? aux : z;
change(used2, used, 0);
solve(x, y - used, z - used2, tot);
} else if (tot <= x + y + z) {
res += 'a';
int aux = tot;
int used = x >= aux ? aux : x;
aux -= used;
int used2 = y >= aux ? aux : y;
aux -= used2;
int used3 = z >= aux ? aux : z;
change(used3, used2, used);
solve(x - used, y - used2, z - used3, tot);
} else {
for (int i = (int)v.size() - 1; i >= 0; i--) {
if (x > 0) {
v[i] += 'a';
x--;
} else if (y > 0) {
v[i] += 'b';
y--;
} else if (z > 0) {
v[i] += 'c';
z--;
}
}
}
}
return;
}
int main(void) {
int x, y, z;
scanf(" %d %d %d", &x, &y, &z);
solve(x, y, z, 0);
for (int i = 0; i < (int)v.size(); i++) {
cout << v[i];
}
cout << '\n';
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string solve(int x, int y, int z) {
cout << x << " " << y << " " << z << endl;
if (y == 0 && z == 0) {
string ans;
for (int i = 0; i < x; i++) ans += 'a';
return ans;
}
if (x == 0) {
string str = solve(y, z, 0);
for (int i = 0; i < str.size(); i++) str[i]++;
return str;
}
if (z == 0) {
string str = solve(x, 0, y);
for (int i = 0; i < str.size(); i++) {
if (str[i] == 'c') str[i] = 'b';
}
return str;
}
if (z >= x) {
string str = solve(x, y, z - x);
string ans;
for (int i = 0; i < str.size(); i++) {
if (str[i] == 'a') {
ans += 'a';
ans += 'c';
} else {
ans += str[i];
}
}
return ans;
}
if (x > z) {
string str = solve(x - z, z, y);
string ans;
for (int i = 0; i < str.size(); i++) {
if (str[i] == 'a') {
ans += 'a';
} else if (str[i] == 'b') {
ans += 'a';
ans += 'c';
} else if (str[i] == 'c') {
ans += 'b';
}
}
return ans;
}
}
int main() {
int x, y, z;
cin >> x >> y >> z;
cout << solve(x, y, z);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline char nc() {
static char buf[100000], *l = buf, *r = buf;
return l == r && (r = (l = buf) + fread(buf, 1, 100000, stdin), l == r)
? EOF
: *l++;
}
template <class T>
void read(T &x) {
x = 0;
int f = 1, ch = nc();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = nc();
}
while (ch >= '0' && ch <= '9') {
x = x * 10 - '0' + ch;
ch = nc();
}
x *= f;
}
int X, Y, Z;
multiset<char> s;
int main() {
read(X), read(Y), read(Z);
for (int i = 1; i <= X; ++i) {
s.insert('a');
}
for (int i = 1; i <= Y; ++i) {
s.insert('b');
}
for (int i = 1; i <= Z; ++i) {
s.insert('c');
}
set<char>::iterator it;
while (true) {
if (s.empty()) break;
it = s.begin();
putchar(*it);
s.erase(it);
if (s.empty()) break;
it = s.end();
putchar(*(--it));
s.erase(it);
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
struct dice {
mt19937 mt;
dice() {
random_device rd;
mt = mt19937(rd());
}
int operator()(int x) { return this->operator()(0, x - 1); }
int operator()(int x, int y) {
uniform_int_distribution<int> dist(x, y);
return dist(mt);
}
} dc;
string f(string s) {
int N = s.length();
string mi = "z";
for (int t = 0; t < N; t++) {
mi = min(mi, s);
rotate(s.begin(), s.begin() + 1, s.end());
}
return mi;
}
string solve(int A, int B, int C) {
string s;
for (int t = 0; t < A; t++) s.push_back('a');
for (int t = 0; t < B; t++) s.push_back('b');
for (int t = 0; t < C; t++) s.push_back('c');
shuffle(s.begin(), s.end(), dc.mt);
int N = s.length();
string ma = f(s);
for (int t = 0; t < 10000; t++) {
int i = dc(N), j = dc(N);
swap(s[i], s[j]);
string mi = f(s);
if (mi < ma)
swap(s[i], s[j]);
else
ma = mi;
}
return s;
}
int main() {
int A, B, C;
cin >> A >> B >> C;
string ma = "";
for (int t = 0; t < 50; t++) ma = max(ma, solve(A, B, C));
cout << ma << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
struct dice {
mt19937 mt;
dice() {
random_device rd;
mt = mt19937(rd());
}
int operator()(int x) { return this->operator()(0, x - 1); }
int operator()(int x, int y) {
uniform_int_distribution<int> dist(x, y);
return dist(mt);
}
} dc;
string f(string s) {
int N = s.length();
string mi = "z";
for (int t = 0; t < N; t++) {
mi = min(mi, s);
rotate(s.begin(), s.begin() + 1, s.end());
}
return mi;
}
int main() {
int A, B, C;
cin >> A >> B >> C;
string s;
for (int t = 0; t < A; t++) s.push_back('a');
for (int t = 0; t < B; t++) s.push_back('b');
for (int t = 0; t < C; t++) s.push_back('c');
int N = s.length();
string ma = f(s);
for (int t = 0; t < 10000; t++) {
int i = dc(N), j = dc(N);
swap(s[i], s[j]);
string mi = f(s);
if (mi < ma)
swap(s[i], s[j]);
else
ma = mi;
}
cout << ma << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:336777216")
using namespace std;
const int MAXN = 100 + 2;
int A, B, C, N;
int L;
char Fill[MAXN];
int Tmp[MAXN * 2];
int Check(int ta, int tb, int tc, string S) {
int a, b, c;
int Len = S.length();
for (int i = 0; i < Len; i++) Tmp[i] = S[i];
a = ta;
b = tb;
c = tc;
if (S[0] == 'b' && a > 0) return 0;
if (S[0] == 'c' && (a > 0 || b > 0)) return 0;
if (a > 0 && b == 0 && c == 0)
for (int i = Len; i < N; i++) Tmp[i] = 'a';
else if (b > 0 && a == 0 && c == 0)
for (int i = Len; i < N; i++) Tmp[i] = 'b';
else
for (int i = Len; i < N; i++) Tmp[i] = 'c';
for (int k = 1; k < N; k++)
for (int i = 0; i < N; i++)
if (Tmp[i] != Tmp[(k + i) % N]) {
if (Tmp[i] > Tmp[(k + i) % N]) return 0;
break;
}
int Best = 1;
for (int k = 1; k < N; k++)
for (int i = 0; i < N; i++)
if (Tmp[(Best + i) % N] != Tmp[(k + i) % N]) {
if (Tmp[(Best + i) % N] > Tmp[(k + i) % N]) Best = k;
break;
}
for (int i = 0; i < N; i++)
if (Tmp[(Best + i) % N] != Tmp[i]) {
if (Tmp[(Best + i) % N] != 255) return 1;
if (Tmp[i] == 'a') {
if (b > 0 || c > 0) return 1;
if (a == 0) return 0;
a--;
} else if (Tmp[i] == 'b') {
if (c > 0) return 1;
if (b == 0) return 0;
b--;
} else {
if (c == 0) return 0;
c--;
}
}
return 1;
}
void Update(string& To, string From) {
if (To == "" || To > From) To = From;
}
string DP[MAXN][MAXN][MAXN];
int Test() {
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) DP[i][j][k] = "";
DP[0][0][0] = (string)Fill;
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) {
if (DP[i][j][k].length() != i + j + k + L) continue;
string tmp;
if (i < A) {
tmp = DP[i][j][k] + 'a';
if (Check(A - i - 1, B - j, C - k, tmp)) Update(DP[i + 1][j][k], tmp);
}
if (j < B) {
tmp = DP[i][j][k] + 'b';
if (Check(A - i, B - j - 1, C - k, tmp)) Update(DP[i][j + 1][k], tmp);
}
if (k < C) {
tmp = DP[i][j][k] + 'c';
if (Check(A - i, B - j, C - k - 1, tmp)) Update(DP[i][j][k + 1], tmp);
}
}
return (DP[A][B][C].length() == A + B + C + L);
}
void Work() {
scanf("%d%d%d", &A, &B, &C);
N = A + B + C;
for (L = 1; L <= N; L++) {
Fill[L] = 0;
if (C > 0) {
Fill[L - 1] = 'c';
C--;
if (Test()) continue;
C++;
}
if (B > 0) {
B--;
Fill[L - 1] = 'b';
if (Test()) continue;
B++;
}
A--;
Fill[L - 1] = 'a';
}
printf("%s\n", Fill);
}
int main() {
Work();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
unsigned long long over = 1000000007;
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed;
int a, b, c;
cin >> a >> b >> c;
if (a == 0 && b == 0) {
for (int i = 0; i < c; ++i) cout << "c";
cout << endl;
return 0;
}
if (b == 0 && c == 0) {
for (int i = 0; i < a; ++i) cout << "a";
cout << endl;
return 0;
}
if (c == 0 && a == 0) {
for (int i = 0; i < b; ++i) cout << "b";
cout << endl;
return 0;
}
string ans_str;
if (a == 0) {
int k = min(b, c);
vector<string> ans(k);
for (int i = 0; i < b; ++i) ans[i % k] += "b";
for (int i = 0; i < c; ++i) ans[i % k] += "c";
for (int i = 0; i < k; ++i) ans_str += ans[i];
} else if (b == 0) {
int k = min(a, c);
vector<string> ans(k);
for (int i = 0; i < a; ++i) ans[i % k] += "a";
for (int i = 0; i < c; ++i) ans[i % k] += "c";
for (int i = 0; i < k; ++i) ans_str += ans[i];
} else if (c == 0) {
int k = min(a, b);
vector<string> ans(k);
for (int i = 0; i < a; ++i) ans[i % k] += "a";
for (int i = 0; i < b; ++i) ans[i % k] += "b";
for (int i = 0; i < k; ++i) ans_str += ans[i];
} else {
int k = min(a, min(b, c));
vector<string> ans(k);
for (int i = 0; i < a; ++i) ans[i % k] += "a";
for (int i = 0; i < c; ++i) ans[i % k] += "c";
for (int i = 0; i < b; ++i) ans[(i + c) % k] += "b";
for (int i = 0; i < k; ++i) ans_str += ans[i];
}
string ans_min = ans_str;
for (int i = 1; i < ans_str.size(); ++i) {
ans_min = min(ans_min,
ans_str.substr(i, ans_str.size() - i) + ans_str.substr(0, i));
}
cout << ans_min << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
string s[100];
int main() {
scanf("%d%d%d", &x, &y, &z);
if (!x) {
for (int i = 1; i <= y; ++i) s[i] = 'b';
for (; z;) {
for (int i = y; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
for (int i = 1; i <= y; ++i)
for (int j = 0; j <= (int)s[i].length() - 1; ++j) {
printf("%c", s[i][j]);
}
} else {
for (int i = 1; i <= x; ++i) s[i] = 'a';
for (; z;) {
for (int i = x; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
int k = x;
for (int i = 1; i <= x - 1; ++i)
if (s[i].length() != s[i + 1].length()) {
k = i;
break;
}
for (; y;) {
for (int i = k; i; --i)
if (y) {
s[i] = s[i] + 'b';
--y;
}
}
for (int i = 1; i <= x; ++i)
for (int j = 0; j <= (int)s[i].length() - 1; ++j) {
printf("%c", s[i][j]);
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string solve(int a, int b, int c) {
if (b == 0 and c == 0) {
string res = "";
for (int t = 0; t != a; ++t) res += 'a';
return res;
}
int num = (a + (b + c - 1)) / (b + c);
int cnt_short = num * (b + c) - a;
string tmp = "";
for (int i = 0; i != num - 1; ++i) tmp += 'a';
vector<string> parts;
for (int i = 0; i != (b + c - cnt_short); ++i) parts.push_back(tmp + 'a');
for (int i = 0; i != cnt_short; ++i) parts.push_back(tmp);
for (int i = 0; i != c; ++i) parts[i] += 'c';
for (int i = 0; i != b; ++i) parts[c + i] += 'b';
sort(parts.begin(), parts.end());
vector<string> cparts = parts;
cparts.resize(std::unique(parts.begin(), parts.end()) - cparts.begin());
while (cparts.size() < 3) cparts.push_back("");
assert(cparts.size() == 3);
string zzans = solve(std::count(parts.begin(), parts.end(), cparts[0]),
std::count(parts.begin(), parts.end(), cparts[1]),
std::count(parts.begin(), parts.end(), cparts[2]));
string ans = "";
for (char ch : zzans) ans += cparts[ch - 'a'];
return ans;
}
int main() {
int a, b, c;
cin >> a >> b >> c;
map<char, char> back;
if (a == 0 and b == 0) {
back['a'] = 'c';
a = c;
b = 0;
c = 0;
} else if (a == 0) {
back['a'] = 'b';
back['b'] = 'c';
a = b;
b = c;
c = 0;
} else {
back['a'] = 'a';
back['b'] = 'b';
back['c'] = 'c';
}
string ans = solve(a, b, c);
for (int i = 0; i != int(ans.size()); ++i) cout << back[ans[i]];
cout << "\n";
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
string s[105];
string doit(int d, int e, int f, string x, string y, string z) {
if (d == 0) {
if (e == 0) {
string t;
for (int i = 0; i < f; ++i) t += 'c';
return t;
}
string s[e + 5];
for (int i = 0; i < e + 5; ++i) s[i] = "";
for (int i = 0; i < e; ++i) s[i] += 'b';
int ct = 0;
for (int i = 0; i < f; ++i) {
s[ct] += 'c';
ct++;
ct %= e;
}
int c1 = e;
for (int i = 1; i < e; ++i)
if (s[i] != s[i - 1]) c1 = i;
string t;
t = doit(0, e - c1, c1, "", s[c1], s[0]);
string ans = "";
for (int i = 0; i < t.length(); ++i) {
if (t[i] == 'b')
ans += s[c1];
else
ans += s[0];
}
return ans;
} else {
string s[d + 5];
for (int i = 0; i < d + 5; ++i) s[i] = "";
for (int i = 0; i < d; ++i) s[i] += 'a';
int ct = 0;
for (int i = 0; i < f; ++i) {
s[ct] += 'c';
ct++;
ct %= d;
}
for (int i = 0; i < e; ++i) {
s[ct] += 'b';
ct++;
ct %= d;
}
int c1 = d, c2 = d;
for (int i = 1; i < d; ++i) {
if (s[i] != s[i - 1]) {
if (c1 == d)
c1 = i;
else
c2 = i;
}
}
string t = doit(d - c2, c2 - c1, c1, s[c2], s[c1], s[0]);
string ans = "";
for (int i = 0; i < t.length(); ++i) {
if (t[i] == 'a') ans += s[c2];
if (t[i] == 'b') ans += s[c1];
if (t[i] == 'c') ans += s[0];
}
return ans;
}
}
int main() {
cin >> x >> y >> z;
cout << doit(x, y, z, "a", "b", "c") << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int x, y, z;
vector<char> at[100];
int l = 0;
scanf("%d %d %d", &x, &y, &z);
if (x > y + z) {
for (int i = (long long int)0; i < y + z; i++) {
at[i % (y + z)].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[i + z].push_back('b');
}
l = y + z;
} else if (x > 0) {
for (int i = (long long int)0; i < x; i++) {
at[i].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i % x].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[(i + z) % x].push_back('b');
}
l = x;
} else if (y > 0) {
for (int i = (long long int)0; i < y; i++) {
at[i].push_back('b');
}
for (int i = (long long int)0; i < z; i++) {
at[i % y].push_back('c');
}
l = y;
} else {
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
l = z;
}
for (int i = (long long int)0; i < l; i++) {
for (int j = (long long int)0; j < at[i].size(); j++) {
printf("%c", at[i][j]);
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int a,b,c;
multiset<string>s;
int main()
{
scanf("%d%d%d",&a,&b,&c);
for(int i = 1;i<=a;i++)s.insert("a");
for(int i = 1;i<=b;i++)s.insert("b");
for(int i = 1;i<=c;i++)s.insert("c");
for(int i = 1;i<r+b+g;i++)
{
string x = *s.begin(),y = *(--s.end());
s.erase(s.lower_bound(x)),s.erase(s.lower_bound(y));
s.insert(x+y);
}cout<<*s.begin();
return 0;
} |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 101;
int x, y, z;
string a, b, c;
int main() {
scanf("%d%d%d", &x, &y, &z);
a = "a";
b = "b";
c = "c";
while (1) {
if (!x) {
x = y;
a = b;
y = z;
b = c;
}
if (!x) {
x = y;
a = b;
}
if (z) {
if (x <= z) {
for (; z >= x; z -= x) a = a + c;
} else {
for (; x >= y + z; x -= y + z) {
b = a + b;
c = a + c;
}
if (x >= z) {
swap(y, z);
swap(b, c);
b = a + b;
x -= y;
}
}
} else if (y) {
if (x <= y) {
for (; y >= x; y -= x) a = a + b;
} else {
for (; x >= y; x -= y) b = a + b;
}
} else {
break;
}
}
b = a;
for (int i = 1; i < x; ++i) a = a + b;
puts(a.c_str());
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string ans;
int x, y, z;
void dfs(int a, int b, int c, string x, string y, string z) {
if (a == 0)
dfs(b, c, 0, y, z, "");
else if (c == 0 && b == 0) {
for (int i = 1; i <= a; i++) ans += x;
} else {
string ra = x, rb, rc;
for (int i = 1; i <= c / a; i++) ra += z;
rc = ra + z;
int rrc = c % a;
a -= (c % a);
for (int i = 1; i <= b / a; i++) ra += y;
rb = ra + y;
int rrb = b % 1;
a -= rrb;
dfs(a, rrb, rrc, ra, rb, rc);
}
}
int main() {
scanf("%d%d%d", &x, &y, &z);
ans.clear();
dfs(x, y, z, "a", "b", "c");
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.*;
class Main {
public static void main(String args[]) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String s = new String(in.readLine());
String[] abc = s.split(",");
// 整数の入力
int a = Integer.parseInt(abc[0]);
// スペース区切りの整数の入力
int b = Integer.parseInt(abc[1]);
// スペース区切りの整数の入力
int c = Integer.parseInt(abc[2]);
StringBuilder buff = new StringBuilder();
while(true) {
if(a!=0) {
buff.append("a");
a--;
}else if(c!=0) {
buff.append("c");
}else if(b!=0) {
buff.append("b");
} else {
System.out.println(buff);
return;
}
}
}
} |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline long long quickpow(long long m, long long n, long long p) {
long long b = 1;
while (n) {
if (n & 1) b = b * m % p;
n = n >> 1;
m = m * m % p;
}
return b;
}
inline long long getinv(long long x, long long p) {
return quickpow(x, p - 2, p);
}
inline long long read(void) {
long long x = 0, f = 1;
char ch = cin.get();
while (!isdigit(ch)) {
f = ch == '-' ? -1 : 1;
ch = cin.get();
}
while (isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - '0';
ch = cin.get();
}
return x * f;
}
string ans;
signed main(signed argc, char *argv[]) {
ios::sync_with_stdio(false);
long long x = read(), y = read(), z = read(), sum = x + y + z;
while (1) {
if (!sum) break;
if (sum == 1) {
if (x) ans += 'a';
if (y) ans += 'b';
if (z) ans += 'c';
--sum;
continue;
}
if (x && z) {
--x;
--z;
ans += "ac";
sum -= 2;
continue;
}
if (x && y) {
--x;
--y;
ans += "ab";
sum -= 2;
continue;
}
if (y && z) {
--y;
--z;
ans += "bc";
sum -= 2;
continue;
}
if (x) {
x -= 2;
ans += "aa";
sum -= 2;
continue;
}
if (y) {
y -= 2;
ans += "bb";
sum -= 2;
continue;
}
if (z) {
z -= 2;
ans += "cc";
sum -= 2;
continue;
}
}
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int A, B, C;
string getans(string S) {
int ca = 0, cb = 0, cc = 0;
for (int i = 0; i < S.size(); i++) {
if (S[i] == 'a') ca++;
if (S[i] == 'b') cb++;
if (S[i] == 'c') cc++;
}
if (cb == 0) return S;
vector<string> vec;
for (int i = 0; i < ca; i++) vec.push_back("a");
for (int i = 0; i < cc; i++) vec[i % ca] += "c";
sort(vec.begin(), vec.end());
int Z = 1;
for (int i = 1; i < vec.size(); i++) {
if (vec[i] == vec[i - 1])
Z = i + 1;
else
break;
}
for (int i = 0; i < cb; i++) vec[i % Z] += "b";
sort(vec.begin(), vec.end());
string G = "a";
int I = 0;
for (int i = 1; i < vec.size(); i++) {
if (vec[i] != vec[i - 1]) I++;
G += ('a' + I);
}
vector<string> A = vec;
A.erase(unique(A.begin(), A.end()), A.end());
string V = getans(G), U = "";
for (int i = 0; i < V.size(); i++) {
U += A[V[i] - 'a'];
}
return U;
}
string F;
int main() {
cin >> A >> B >> C;
if (A >= 1) F += "a";
if (B >= 1) F += "b";
if (C >= 1) F += "c";
int P = 0;
while (A == 0) {
A = B;
B = C;
C = 0;
}
while (B == 0) {
B = C;
C = 0;
}
string G = "";
for (int i = 0; i < A; i++) G += "a";
for (int i = 0; i < B; i++) G += "b";
for (int i = 0; i < C; i++) G += "c";
string ret = getans(G);
for (int i = 0; i < ret.size(); i++) ret[i] = F[ret[i] - 'a'];
cout << ret << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int x, y, z;
vector<char> at[100];
int l = 0;
scanf("%d %d %d", &x, &y, &z);
if (x > y + z && y + z > 0) {
for (int i = (long long int)0; i < x; i++) {
at[y + z - 1 - (i % (y + z))].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[i + z].push_back('b');
}
l = y + z;
} else if (x > 0) {
for (int i = (long long int)0; i < x; i++) {
at[i].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i % x].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[(i + z) % x].push_back('b');
}
l = x;
} else if (y > z && z > 0) {
for (int i = (long long int)0; i < y; i++) {
at[z - 1 - (i % z)].push_back('b');
}
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
l = z;
} else if (y > z) {
for (int i = (long long int)0; i < y; i++) {
at[0].push_back('b');
}
l = y;
} else {
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
l = z;
}
for (int i = (long long int)0; i < l; i++) {
if (i % 2 == 0) {
for (int j = (long long int)0; j < at[l - 1 - i / 2].size(); j++) {
printf("%c", at[l - 1 - i / 2][j]);
}
} else {
for (int j = (long long int)0; j < at[i / 2].size(); j++) {
printf("%c", at[i / 2][j]);
}
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c;
char model[55];
vector<char> ans[55];
int p;
void solve() {
for (int i = (1); i <= (a); i++) ans[i].push_back('a');
int id = 1;
for (int i = (1); i <= (c); i++) {
ans[id].push_back('c');
id = id % a + 1;
}
int flag = id;
for (int i = (1); i <= (b); i++) {
ans[id].push_back('b');
id = id % a + 1;
if (id == 1 && flag > 1) {
id = flag;
flag = 1;
}
}
for (int i = (1); i <= (a); i++) {
for (auto out : ans[i]) {
printf("%c", out);
}
}
}
int main() {
scanf("%d %d %d", &a, &b, &c);
if (a == 0 && b == 0) {
for (int i = (1); i <= (c); i++) printf("c");
} else if (a == 0) {
int boc = c / b;
model[++p] = 'b';
for (int i = (1); i <= (boc); i++) model[++p] = 'c';
c %= b;
for (int i = (1); i <= (b); i++) {
printf("%s", model + 1);
if (c > 0) {
printf("c");
c--;
}
}
} else
solve();
puts("");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long int X, Y, Z, S, Q, R, K;
void twoletter(long long X, long long Y, char xc, char yc) {
bool f = false;
if (X > Y) {
swap(X, Y);
swap(xc, yc);
f = true;
}
long long xq = S / X, xr = S % X, yq = Y / X, yr = Y % X;
for (int i = 0; i < X; ++i) {
if (!f) cout << xc;
for (int j = (i < xr) ^ f; j < xq; ++j) {
cout << yc;
}
if (f) cout << xc;
}
}
int main() {
scanf("%lld%lld%lld", &X, &Y, &Z);
S = X + Y + Z;
if (S == X || S == Y || S == Z) {
for (int i = 0; i < X; ++i) cout << 'a';
for (int i = 0; i < Y; ++i) cout << 'b';
for (int i = 0; i < Z; ++i) cout << 'c';
cout << endl;
return 0;
}
if (X == 0) {
twoletter(Y, Z, 'b', 'c');
return 0;
} else {
if (Y == 0) {
twoletter(X, Z, 'a', 'c');
return 0;
}
if (Z == 0) {
twoletter(X, Y, 'a', 'b');
return 0;
}
K = min({X, Y, Z}), Q = K;
if (K == X) {
long long Yq = Y / X, Yr = Y % X, Zq = Z / X, Zr = Z % X;
for (int i = 0; i < Q; ++i) {
cout << 'a';
for (int j = i < Zr; j < Zq; ++j) cout << 'c';
for (int j = i < Yr; j < Yq; ++j) cout << 'b';
}
} else if (K == Y) {
long long Xq = X / Y, Xr = X % Y, Zq = Z / Y, Zr = Z % Y;
for (int i = 0; i < Q; ++i) {
for (int j = i < Xr; j < Xq; ++j) cout << 'a';
for (int j = i < Zr; j < Zq; ++j) cout << 'c';
cout << 'b';
}
} else {
long long Xq = X / Z, Xr = X % Z, Yq = Y / Z, Yr = Y % Z;
for (int i = 0; i < Q; ++i) {
for (int j = i < Xr; j < Xq; ++j) cout << 'a';
cout << 'c';
for (int j = i < Yr; j < Yq; ++j) cout << 'b';
}
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // eddy1021
#pragma GCC optimize("O3")
#include <bits/stdc++.h>
using namespace std;
typedef double D;
typedef long double LD;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<LL,LL> PLL;
#define mod9 1000000009LL
#define mod7 1000000007LL
#define INF 1023456789LL
#define INF16 10000000000000000LL
#define eps 1e-9
#define SZ(x) (int)(x).size()
#define ALL(x) (x).begin(), (x).end()
#define IOS ios_base::sync_with_stdio(0); cin.tie(0)
#ifndef ONLINE_JUDGE
#define debug(...) printf(__VA_ARGS__)
#else
#define debug(...)
#endif
inline LL getint(){
LL _x=0,_tmp=1; char _tc=getchar();
while( (_tc<'0'||_tc>'9')&&_tc!='-' ) _tc=getchar();
if( _tc == '-' ) _tc=getchar() , _tmp = -1;
while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();
return _x*_tmp;
}
inline LL add( LL _x , LL _y , LL _mod = mod7 ){
_x += _y;
return _x >= _mod ? _x - _mod : _x;
}
inline LL sub( LL _x , LL _y , LL _mod = mod7 ){
_x -= _y;
return _x < 0 ? _x + _mod : _x;
}
inline LL mul( LL _x , LL _y , LL _mod = mod7 ){
_x *= _y;
return _x >= _mod ? _x % _mod : _x;
}
LL mypow( LL _a , LL _x , LL _mod ){
if( _x == 0 ) return 1LL;
LL _ret = mypow( mul( _a , _a , _mod ) , _x >> 1 , _mod );
if( _x & 1 ) _ret = mul( _ret , _a , _mod );
return _ret;
}
LL mymul( LL _a , LL _x , LL _mod ){
if( _x == 0 ) return 0LL;
LL _ret = mymul( add( _a , _a , _mod ) , _x >> 1 , _mod );
if( _x & 1 ) _ret = add( _ret , _a , _mod );
return _ret;
}
inline bool equal( D _x , D _y ){
return _x > _y - eps && _x < _y + eps;
}
#define Bye exit(0)
int __ = 1 , _cs;
/*********default*********/
void build(){
}
string mcp(string s){
int n = s.length();
s += s;
int i=0, j=1;
while (i<n && j<n){
int k = 0;
while (k < n && s[i+k] == s[j+k]) k++;
if (s[i+k] <= s[j+k]) j += k+1;
else i += k+1;
if (i == j) j++;
}
int ans = i < n ? i : j;
return s.substr(ans, n);
}
int a , b , c;
void init(){
cin >> a >> b >> c;
}
int gcd( int x , int y ){
if( x == 0 or y == 0 ) return x + y;
return __gcd( x , y );
}
int mxa;
bool ok = false;
inline string cal2( const vector<int>& v ){
int perc = c / (int)v.size();
int resc = c % (int)v.size();
int ress = (int)v.size() - resc;
if( ress == 0 ) ress = (int)v.size();
int perb = b / ress;
int resb = b % ress;
//cout << perc << " " << resc << " " << perb << " " << resb << endl;
vector<int> tmp;
for( int i = 0 ; i < (int)v.size() ; i ++ )
if( i < resc )
tmp.push_back( 0 );
else
tmp.push_back( 1 );
vector<int> tmp2;
for( int i = 0 ; i < ress ; i ++ )
if( i < resb )
tmp2.push_back( 1 );
else
tmp2.push_back( 0 );
string ret = "0";
do{
for( size_t i = 0 ; i < v.size() ; i ++ ){
string got = "";
for( size_t j = 0 ; j < v.size() ; j ++ ){
for( int k = 0 ; k < mxa - 1 ; k ++ ) got += "a";
if( v[ j ] == 0 ) got += "a";
for( int k = 0 ; k < perc ; k ++ ) got += "c";
if( tmp[ j ] == 0 ) got += "c";
if( i == j ){
for( int k = 0 ; k < b ; k ++ ) got += "b";
}
}
string got2 = mcp( got );
if( got == got2 ) ok = true;
ret = max( ret , got2 );
}
sort( tmp2.begin() , tmp2.end() );
do{
int ptr = 0;
string got = "";
for( size_t j = 0 ; j < v.size() ; j ++ ){
for( int k = 0 ; k < mxa - 1 ; k ++ ) got += "a";
if( v[ j ] == 0 ) got += "a";
for( int k = 0 ; k < perc ; k ++ ) got += "c";
if( tmp[ j ] == 0 ) got += "c";
else{
for( int k = 0 ; k < perb ; k ++ ) got += "b";
if( tmp2[ ptr ++ ] ) got += "b";
}
}
string got2 = mcp( got );
if( got == got2 ) ok = true;
ret = max( ret , got2 );
}while( next_permutation( tmp2.begin() , tmp2.end() ) );
if( ok )
return ret;
}while( next_permutation( tmp.begin() , tmp.end() ) );
return ret;
}
inline string cal(){
mxa = 2;
while( a / mxa > b + c ) mxa ++;
int tot = a / (mxa - 1);
int mr = a - tot * (mxa - 1);
// mr with mxa, tot - mr with mxa - 1
vector<int> tmp;
if( mr )
tmp.push_back( 0 );
for( int i = 0 ; i < tot - mr ; i ++ )
tmp.push_back( 1 );
for( int i = 1 ; i < mr ; i ++ )
tmp.push_back( 0 );
string bst = "0";
do{
bst = max( bst , cal2( tmp ) );
if( ok ) return bst;
}while( next_permutation( tmp.begin() , tmp.end() ) );
return bst;
}
void real_solve(){
if( a == 0 and b == 0 ){
for( int i = 0 ; i < c ; i ++ )
putchar( 'c' );
puts( "" );
Bye;
}
bool noa = false;
if( a == 0 ){
a = b;
b = c;
c = 0;
noa = true;
}
int gg = gcd( a , gcd( b , c ) );
a /= gg;
b /= gg;
c /= gg;
string tmp = cal();
string ans = "";
while( gg -- ) ans += tmp;
if( noa ){
for( size_t i = 0 ; i < ans.length() ; i ++ )
ans[ i ] ++;
}
cout << ans << endl;
Bye;
}
void solve(){
real_solve();
vector<char> v;
for( int i = 0 ; i < a ; i ++ ) v.push_back( 'a' );
for( int i = 0 ; i < b ; i ++ ) v.push_back( 'b' );
for( int i = 0 ; i < c ; i ++ ) v.push_back( 'c' );
string bst = "0";
do{
string ret = "";
for( auto i : v )
ret += i;
bst = max( bst , mcp( ret ) );
}while( next_permutation( v.begin() , v.end() ) );
cout << bst << endl;
}
int main(){
build();
//__ = getint();
while( __ -- ){
init();
solve();
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline bool chkmin(T &a, const T &b) {
return a > b ? a = b, 1 : 0;
}
template <typename T>
inline bool chkmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
}
const int oo = 0x3f3f3f3f;
int a, b, c;
int main() {
scanf("%d%d%d", &a, &b, &c);
do {
putchar('a');
int resc = c, resb = b;
while (1) {
if (resc >= a)
putchar('c'), resc -= a, --c;
else if (resb + resc >= a) {
putchar('b');
int tmp = min(resb, a);
resb -= tmp;
resc -= a - tmp;
--b;
} else
break;
}
} while (--a);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int X, Y, Z;
string f(int x, int y, int z) {
if (x == 0 && y == 0 && z == 0) return "";
if (x == 0) {
string ret = f(y, z, 0);
for (int i = 0; i < ret.size(); i++) ret[i]++;
return ret;
}
if (y + z == 0) {
string ret;
for (int i = 0; i < x; i++) ret.push_back('a');
return ret;
}
string ret;
int q = (x + y + z - 1) / (y + z);
int r = x % (y + z);
if (r == 0) r = y + z;
for (int i = 0; i < q; i++) ret.push_back('a');
for (int i = 0; i < z / r; i++) ret.push_back('c');
for (int i = 0; i < y / (r - z % r); i++) ret.push_back('b');
return ret += f(x - q, y - y / (r - z % r), z - z / r);
}
int main() {
cin >> X >> Y >> Z;
cout << f(X, Y, Z);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:336777216")
using namespace std;
const int MAXN = 100 + 2;
int A, B, C, N;
int L;
char Fill[MAXN];
int Tmp[MAXN * 2];
int Check(int a, int b, int c, string S) {
int Len = S.length();
for (int i = 0; i < N * 2; i++) Tmp[i] = 255;
for (int i = 0; i < Len; i++) Tmp[i] = Tmp[i + N] = S[i];
for (int k = 1; k < Len; k++)
for (int i = 0; i < N; i++)
if (Tmp[i] != Tmp[k + i]) {
if (Tmp[i] > Tmp[k + i]) return 0;
break;
}
return 1;
}
void Update(string& To, string From) {
if (To == "" || To > From) To = From;
}
string DP[MAXN][MAXN][MAXN];
int Test() {
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) DP[i][j][k] = "";
DP[0][0][0] = (string)Fill;
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) {
if (DP[i][j][k].length() != i + j + k + L) continue;
string tmp;
if (i < A) {
tmp = DP[i][j][k] + 'a';
if (Check(A - i - 1, B - j, C - k, tmp)) Update(DP[i + 1][j][k], tmp);
}
if (j < B) {
tmp = DP[i][j][k] + 'b';
if (Check(A - i, B - j - 1, C - k, tmp)) Update(DP[i][j + 1][k], tmp);
}
if (k < C) {
tmp = DP[i][j][k] + 'c';
if (Check(A - i, B - j, C - k - 1, tmp)) Update(DP[i][j][k + 1], tmp);
}
}
return (DP[A][B][C].length() == A + B + C + L);
}
void Work() {
scanf("%d%d%d", &A, &B, &C);
N = A + B + C;
for (L = 1; L <= N; L++) {
Fill[L] = 0;
if (C > 0) {
Fill[L - 1] = 'c';
C--;
if (Test()) continue;
C++;
}
if (B > 0) {
B--;
Fill[L - 1] = 'b';
if (Test()) continue;
B++;
}
A--;
Fill[L - 1] = 'a';
}
printf("%s\n", Fill);
}
int main() {
Work();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, char *argv[]) {
int cnt[3];
int sm = 0;
int st = -1;
for (int i = 0; i < 3; i++) {
cin >> cnt[i];
if (cnt[i] && st == -1) st = cnt[i];
sm += cnt[i];
}
string seg[55];
string ans;
for (int segn = st; segn <= sm; segn++) {
deque<char> deq;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < cnt[i]; j++) {
deq.push_back('a' + i);
}
}
for (int i = 1; i <= segn; i++) {
seg[i].clear();
}
for (int i = 1; i <= segn; i++) {
seg[i] += deq.front();
deq.pop_front();
}
int cur = segn;
while (deq.size()) {
seg[cur] += deq.back();
deq.pop_back();
if (--cur == 0) cur = segn;
}
string cand;
for (int i = 1; i <= segn; i++) {
cand += seg[i];
}
if (cand > ans) ans = cand;
}
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from itertools import permutations
def shift(seq):
res = []
for _ in range(len(seq)):
res.append(seq)
seq = seq[1:]+seq[0]
return min(res)
N = [int(i) for i in input().split(" ")]
seq = "a"*N[0] + "b"*N[1] + "c"*N[2]
print(max([shift("".join(i)) for i in set([s for s in permutations(seq)])])) |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr long long mod = 1000000007;
const long long INF = mod * mod;
const long double eps = 1e-12;
const long double pi = acos(-1.0);
long long mod_pow(long long x, long long n) {
long long res = 1;
while (n) {
if (n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
struct modint {
long long n;
modint() : n(0) { ; }
modint(long long m) : n(m) {
if (n >= mod)
n %= mod;
else if (n < 0)
n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) {
a.n += b.n;
if (a.n >= mod) a.n -= mod;
return a;
}
modint operator-=(modint& a, modint b) {
a.n -= b.n;
if (a.n < 0) a.n += mod;
return a;
}
modint operator*=(modint& a, modint b) {
a.n = ((long long)a.n * b.n) % mod;
return a;
}
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, int n) {
if (n == 0) return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2) res = res * a;
return res;
}
long long inv(long long a, long long p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b) return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
string calc(int x, int y, int z) {
int c[3] = {x, y, z};
if (y == 0 && z == 0) {
string res;
res.resize(x, 'a');
return res;
}
if (x == 0) {
if (z == 0) {
string res;
res.resize(y, 'b');
return res;
}
string res;
res.resize(y + z, 'b');
int d = (y + z) / z;
int r = (y + z) % z;
int cur = 0;
for (int i = 0; i < z; i++) {
cur += d;
if (i < r) cur++;
res[cur - 1] = 'c';
}
return res;
}
int num = -1;
for (int i = 1; i <= 50; i++) {
int x = c[0] / i;
if (c[0] % i) x++;
if (x <= c[1] + c[2]) {
num = i;
break;
}
}
vector<string> anss;
for (int i = 0; i < c[0] / num; i++) {
string s;
s.resize(num, 'a');
anss.push_back(s);
}
if (c[0] % num) {
string s;
s.resize(c[0] % num, 'a');
s.push_back('b');
c[1]--;
anss.push_back(s);
}
int d = c[0] / num;
while (c[2] >= d) {
for (int i = 0; i < d; i++) {
anss[i].push_back('c');
}
c[2] -= d;
}
int rest = d;
for (int i = 0; i < c[2]; i++) {
anss[d - 1 - i].push_back('c');
rest--;
}
int m2 = d - rest;
while (c[1] >= rest) {
for (int i = 0; i < rest; i++) {
anss[i].push_back('b');
}
c[1] -= rest;
}
int m1 = c[1];
for (int i = 0; i < c[1]; i++) {
anss[rest - 1 - i].push_back('b');
}
int m0 = rest - c[1];
string rec = calc(m0, m1, m2);
vector<string> vans;
for (int i = 0; i < rec.size(); i++) {
if (rec[i] == 'a') {
vans.push_back(anss[0]);
} else if (rec[i] == 'b') {
vans.push_back(anss[m0]);
} else {
vans.push_back(anss[m0 + m1]);
}
}
if (anss.size() > m1 + m2 + m0) vans.push_back(anss.back());
string res;
for (int i = 0; i < vans.size(); i++) res += vans[i];
return res;
}
void solve() {
int c[3];
for (int i = 0; i < 3; i++) cin >> c[i];
string ans = calc(c[0], c[1], c[2]);
cout << ans << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
solve();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:336777216")
using namespace std;
const int MAXN = 50 + 2;
int A, B, C, N;
string DP[MAXN][MAXN][MAXN];
int Tmp[MAXN * 2];
int Check(string S) {
int Len = S.length();
for (int i = 0; i < N * 2; i++) Tmp[i] = 255;
for (int i = 0; i < Len; i++) Tmp[i] = Tmp[i + N] = S[i];
for (int k = 1; k < Len; k++)
for (int i = 0; i < N; i++)
if (Tmp[i] != Tmp[k + i]) {
if (Tmp[i] > Tmp[k + i]) return 0;
break;
}
return 1;
}
void Work() {
scanf("%d%d%d", &A, &B, &C);
N = A + B + C;
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) {
string tmp;
if (i < A) {
tmp = DP[i][j][k] + 'a';
if (Check(tmp) && tmp > DP[i + 1][j][k]) DP[i + 1][j][k] = tmp;
}
if (j < B) {
tmp = DP[i][j][k] + 'b';
if (Check(tmp) && tmp > DP[i][j + 1][k]) DP[i][j + 1][k] = tmp;
}
if (k < C) {
tmp = DP[i][j][k] + 'c';
if (Check(tmp) && tmp > DP[i][j][k + 1]) DP[i][j][k + 1] = tmp;
}
}
printf("%s\n", DP[A][B][C].c_str());
}
int main() {
Work();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename A, size_t N, typename T>
void Fill(A (&array)[N], const T &val) {
std::fill((T *)array, (T *)(array + N), val);
}
template <class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
bool check(string s, int a, int b, int c) {
int m = s.size();
int n = a + b + c;
string t;
bool flag = 0;
bool ng = 0;
for (int i = 0; i < (int)(n); ++i) {
if (flag) {
if (c != 0) {
t.push_back('c');
c--;
} else {
t.push_back('b');
b--;
}
} else {
if (s[i % m] == 'a') {
if (a != 0) {
t.push_back('a');
a--;
} else {
flag = 1;
if (c != 0) {
t.push_back('c');
c--;
} else {
t.push_back('b');
b--;
}
}
} else if (s[i % m] == 'b') {
if (b == 0) {
if (c == 0) {
ng = 1;
} else {
t.push_back('c');
c--;
}
} else {
t.push_back('b');
b--;
}
} else {
if (c == 0) {
ng = 1;
} else {
t.push_back('c');
c--;
}
}
}
}
if (ng) return false;
for (int i = 0; i < (int)(n); ++i) {
string p;
for (int j = 0; j < (int)(m); ++j) {
p.push_back(t[(i + j) % n]);
}
if (s > p) return false;
}
return true;
}
int main() {
int a, b, c;
cin >> a >> b >> c;
string s = "a";
int n = a + b + c;
for (int i = 0; i < (int)(n - 1); ++i) {
string t = s;
t.push_back('c');
if (check(t, a, b, c)) {
s = t;
} else {
t[t.size() - 1] = 'b';
if (check(t, a, b, c)) {
s = t;
} else {
t[t.size() - 1] = 'a';
s = t;
}
}
}
cout << s << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 200;
char s[maxn];
int main() {
int A, B, C, N = 0;
scanf("%d%d%d", &A, &B, &C);
for (int i = 0; i < A; i++) s[N++] = 'a';
for (int i = 0; i < B; i++) s[N++] = 'b';
for (int i = 0; i < C; i++) s[N++] = 'c';
for (int i = 0, j = N - 1, k = 0; k < N; k++)
if (k & 1)
printf("%c", s[j--]);
else
printf("%c", s[i++]);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int A, B, C;
vector<string> vec;
string maxn = "";
void dfs(vector<string> V, string S) {
if (V.size() == 0) {
string G = S;
for (int i = 0; i < S.size(); i++) {
string I = "";
for (int j = 0; j < S.size(); j++) I += S[(i + j) % S.size()];
G = min(G, I);
}
maxn = max(maxn, G);
return;
}
for (int i = 0; i < V.size(); i++) {
if (i >= 1 && V[i] == V[i - 1]) continue;
vector<string> Z;
for (int j = 0; j < V.size(); j++) {
if (i != j) Z.push_back(V[j]);
}
string ZZ = S + V[i];
dfs(Z, ZZ);
}
}
int main() {
cin >> A >> B >> C;
int P = 0;
while (A == 0) {
A = B;
B = C;
C = 0;
P++;
}
for (int i = 0; i < A; i++) vec.push_back("a");
for (int i = 0; i < C; i++) vec[i % A] += "c";
sort(vec.begin(), vec.end());
int Z = 0;
for (int i = 0; i < vec.size() - 1; i++) {
if (vec[i] == vec[i + 1]) Z = i + 2;
}
for (int i = 0; i < B; i++) vec[i % Z] += "b";
sort(vec.begin(), vec.end());
dfs(vec, "");
for (int i = 0; i < maxn.size(); i++) maxn[i] += P;
cout << maxn << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // eddy1021
#pragma GCC optimize("O3")
#include <bits/stdc++.h>
using namespace std;
typedef double D;
typedef long double LD;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<LL,LL> PLL;
#define mod9 1000000009LL
#define mod7 1000000007LL
#define INF 1023456789LL
#define INF16 10000000000000000LL
#define eps 1e-9
#define SZ(x) (int)(x).size()
#define ALL(x) (x).begin(), (x).end()
#define IOS ios_base::sync_with_stdio(0); cin.tie(0)
#ifndef ONLINE_JUDGE
#define debug(...) printf(__VA_ARGS__)
#else
#define debug(...)
#endif
inline LL getint(){
LL _x=0,_tmp=1; char _tc=getchar();
while( (_tc<'0'||_tc>'9')&&_tc!='-' ) _tc=getchar();
if( _tc == '-' ) _tc=getchar() , _tmp = -1;
while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();
return _x*_tmp;
}
inline LL add( LL _x , LL _y , LL _mod = mod7 ){
_x += _y;
return _x >= _mod ? _x - _mod : _x;
}
inline LL sub( LL _x , LL _y , LL _mod = mod7 ){
_x -= _y;
return _x < 0 ? _x + _mod : _x;
}
inline LL mul( LL _x , LL _y , LL _mod = mod7 ){
_x *= _y;
return _x >= _mod ? _x % _mod : _x;
}
LL mypow( LL _a , LL _x , LL _mod ){
if( _x == 0 ) return 1LL;
LL _ret = mypow( mul( _a , _a , _mod ) , _x >> 1 , _mod );
if( _x & 1 ) _ret = mul( _ret , _a , _mod );
return _ret;
}
LL mymul( LL _a , LL _x , LL _mod ){
if( _x == 0 ) return 0LL;
LL _ret = mymul( add( _a , _a , _mod ) , _x >> 1 , _mod );
if( _x & 1 ) _ret = add( _ret , _a , _mod );
return _ret;
}
inline bool equal( D _x , D _y ){
return _x > _y - eps && _x < _y + eps;
}
#define Bye exit(0)
int __ = 1 , _cs;
/*********default*********/
void build(){
}
string mcp(string s){
int n = s.length();
s += s;
int i=0, j=1;
while (i<n && j<n){
int k = 0;
while (k < n && s[i+k] == s[j+k]) k++;
if (s[i+k] <= s[j+k]) j += k+1;
else i += k+1;
if (i == j) j++;
}
int ans = i < n ? i : j;
return s.substr(ans, n);
}
int a , b , c;
void init(){
cin >> a >> b >> c;
}
int gcd( int x , int y ){
if( x == 0 or y == 0 ) return x + y;
return __gcd( x , y );
}
int mxa;
bool ok = false;
inline string cal2( const vector<int>& v ){
int perc = c / (int)v.size();
int resc = c % (int)v.size();
int ress = (int)v.size() - resc;
if( ress == 0 ) ress = (int)v.size();
int perb = b / ress;
int resb = b % ress;
//cout << perc << " " << resc << " " << perb << " " << resb << endl;
vector<int> tmp;
for( int i = 0 ; i < (int)v.size() ; i ++ )
if( i < resc )
tmp.push_back( 0 );
else
tmp.push_back( 1 );
vector<int> tmp2;
for( int i = 0 ; i < ress ; i ++ )
if( i < resb )
tmp2.push_back( 1 );
else
tmp2.push_back( 0 );
string ret = "0";
do{
for( size_t i = 0 ; i < v.size() ; i ++ ){
string got = "";
for( size_t j = 0 ; j < v.size() ; j ++ ){
for( int k = 0 ; k < mxa - 1 ; k ++ ) got += "a";
if( v[ j ] == 0 ) got += "a";
for( int k = 0 ; k < perc ; k ++ ) got += "c";
if( tmp[ j ] == 0 ) got += "c";
if( i == j ){
for( int k = 0 ; k < b ; k ++ ) got += "b";
}
}
string got2 = mcp( got );
if( got == got2 ) ok = true;
ret = max( ret , got2 );
}
sort( tmp2.begin() , tmp2.end() );
do{
int ptr = 0;
string got = "";
for( size_t j = 0 ; j < v.size() ; j ++ ){
for( int k = 0 ; k < mxa - 1 ; k ++ ) got += "a";
if( v[ j ] == 0 ) got += "a";
for( int k = 0 ; k < perc ; k ++ ) got += "c";
if( tmp[ j ] == 0 ) got += "c";
else{
for( int k = 0 ; k < perb ; k ++ ) got += "b";
if( tmp2[ ptr ++ ] ) got += "b";
}
}
string got2 = mcp( got );
if( got == got2 ) ok = true;
ret = max( ret , got2 );
}while( next_permutation( tmp2.begin() , tmp2.end() ) );
if( ok )
return ret;
}while( next_permutation( tmp.begin() , tmp.end() ) );
return ret;
}
inline string cal(){
mxa = 2;
while( a / mxa > b + c ) mxa ++;
int tot = a / (mxa - 1);
int mr = a - tot * (mxa - 1);
// mr with mxa, tot - mr with mxa - 1
vector<int> tmp;
if( mr )
tmp.push_back( 0 );
for( int i = 0 ; i < tot - mr ; i ++ )
tmp.push_back( 1 );
for( int i = 1 ; i < mr ; i ++ )
tmp.push_back( 0 );
string bst = "0";
do{
bst = max( bst , cal2( tmp ) );
//if( ok ) return bst;
}while( next_permutation( tmp.begin() , tmp.end() ) );
return bst;
}
void real_solve(){
if( a == 0 and b == 0 ){
for( int i = 0 ; i < c ; i ++ )
putchar( 'c' );
puts( "" );
Bye;
}
bool noa = false;
if( a == 0 ){
a = b;
b = c;
c = 0;
noa = true;
}
int gg = gcd( a , gcd( b , c ) );
a /= gg;
b /= gg;
c /= gg;
string tmp = cal();
string ans = "";
while( gg -- ) ans += tmp;
if( noa ){
for( size_t i = 0 ; i < ans.length() ; i ++ )
ans[ i ] ++;
}
cout << ans << endl;
Bye;
}
void solve(){
real_solve();
vector<char> v;
for( int i = 0 ; i < a ; i ++ ) v.push_back( 'a' );
for( int i = 0 ; i < b ; i ++ ) v.push_back( 'b' );
for( int i = 0 ; i < c ; i ++ ) v.push_back( 'c' );
string bst = "0";
do{
string ret = "";
for( auto i : v )
ret += i;
bst = max( bst , mcp( ret ) );
}while( next_permutation( v.begin() , v.end() ) );
cout << bst << endl;
}
int main(){
build();
//__ = getint();
while( __ -- ){
init();
solve();
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename A, size_t N, typename T>
void Fill(A (&array)[N], const T &val) {
std::fill((T *)array, (T *)(array + N), val);
}
template <class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
bool check(string s, int a, int b, int c) {
int m = s.size();
int n = a + b + c;
string t;
bool ng = 0;
int id = -1;
bool flag[60] = {};
for (int i = 1; i < m; i++) {
bool ppp = 1;
for (int j = 0; j < (int)(m - i); ++j) {
if (s[j] != s[i + j]) {
ppp = 0;
}
}
flag[i] = ppp;
}
for (int i = 1; i < m; i++) {
if (flag[i]) id = i;
}
if (id != -1) {
while (flag[id]) {
id--;
}
id++;
string q;
for (int i = 0; i < (int)(id); ++i) {
q.push_back(s[i]);
}
for (int i = 0; i < (int)(7); ++i) {
if (q.size() >= a + b + c) break;
q += q;
}
s = q;
}
m = s.size();
for (int i = 0; i < (int)(n); ++i) {
if (s[i % m] == 'a') {
if (a != 0) {
t.push_back('a');
a--;
} else {
if (b != 0) {
t.push_back('b');
b--;
} else {
t.push_back('c');
c--;
}
}
} else if (s[i % m] == 'b') {
if (b == 0) {
if (c == 0) {
t.push_back('a');
} else {
t.push_back('c');
c--;
}
} else {
t.push_back('b');
b--;
}
} else {
if (c == 0) {
if (b == 0) {
t.push_back('a');
} else {
t.push_back('b');
b--;
}
} else {
t.push_back('c');
c--;
}
}
}
for (int i = 0; i < (int)(n); ++i) {
string p;
for (int j = 0; j < (int)(m); ++j) {
p.push_back(t[(i + j) % n]);
}
if (s > p) return false;
}
return true;
}
int main() {
int a, b, c;
cin >> a >> b >> c;
int n = a + b + c;
string s;
while (s.size() != n) {
string t = s;
t.push_back('c');
if (check(t, a, b, c)) {
s = t;
} else {
t[t.size() - 1] = 'b';
if (check(t, a, b, c)) {
s = t;
} else {
t[t.size() - 1] = 'a';
s = t;
}
}
}
cout << s << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAX_N = 100005;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
unsigned long long over = 1000000007;
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed;
int a, b, c;
cin >> a >> b >> c;
if (a == 0 && b == 0) {
for (int i = 0; i < c; ++i) cout << "c";
cout << endl;
return 0;
}
if (b == 0 && c == 0) {
for (int i = 0; i < a; ++i) cout << "a";
cout << endl;
return 0;
}
if (c == 0 && a == 0) {
for (int i = 0; i < b; ++i) cout << "b";
cout << endl;
return 0;
}
string ans_str;
if (a == 0) {
int k = min(b, c);
vector<string> ans(k);
for (int i = 0; i < b; ++i) ans[i % k] += "b";
for (int i = 0; i < c; ++i) ans[i % k] += "c";
for (int i = 0; i < k; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < k; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
} else if (b == 0) {
int k = min(a, c);
vector<string> ans(k);
for (int i = 0; i < a; ++i) ans[i % k] += "a";
for (int i = 0; i < c; ++i) ans[i % k] += "c";
for (int i = 0; i < k; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < k; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
} else if (c == 0) {
int k = min(a, b);
vector<string> ans(k);
for (int i = 0; i < a; ++i) ans[i % k] += "a";
for (int i = 0; i < b; ++i) ans[i % k] += "b";
for (int i = 0; i < k; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < k; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
} else {
if (a <= b + c) {
vector<string> ans(a, "a");
for (int i = 0; i < c; ++i) ans[i % a] += "c";
for (int i = 0; i < b; ++i) ans[i % (a - c % a) + c % a] += "b";
for (int i = 0; i < a; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < a; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
} else {
vector<string> ans(b + c);
for (int i = 0; i < a; ++i) ans[i % (b + c)] += "a";
for (int i = 0; i < c; ++i) ans[i] += "c";
for (int i = c; i < b + c; ++i) ans[i] += "b";
for (int i = 0; i < b + c; ++i) ans_str += ans[i];
sort(ans.begin(), ans.end());
do {
string ans_n = "";
for (int i = 0; i < b + c; ++i) ans_n += ans[i];
ans_str = min(ans_n, ans_str);
} while (next_permutation(ans.begin(), ans.end()));
}
}
cout << ans_str << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c, xa, xb, xc;
string AA, BB, CC, ss[110];
void iter() {
for (int i = 0; i < a; i++) ss[i] = AA;
for (int i = 0; i < c; i++) {
ss[i % a] += CC;
}
int ll = 0;
if (c % a == 0)
ll = a;
else
ll = (c - 1) % a;
int now = 0;
for (int i = 0; i < b; i++) {
ss[i % (ll)] += BB;
now += 1;
if (now >= a) now = ll;
}
sort(ss, ss + a);
int cnt = 0;
xa = xb = xc = 0;
for (int i = 0; i < a; i++) {
if (i == 0 || ss[i] != ss[i - 1]) {
cnt += 1;
if (cnt == 1)
AA = ss[i];
else if (cnt == 2)
BB = ss[i];
else
CC = ss[i];
}
if (cnt == 1)
xa += 1;
else if (cnt == 2)
xb += 1;
else
xc += 1;
}
a = xa;
b = xb;
c = xc;
}
int main() {
scanf("%d%d%d", &a, &b, &c);
AA = "a";
BB = "b";
CC = "c";
if (a == 0) {
a = b;
b = c;
AA = BB;
BB = CC;
}
if (a == 0) {
for (int i = 0; i < c; i++) printf("c");
printf("\n");
return 0;
}
while (b + c > 0) {
iter();
}
while (a--) {
cout << AA;
}
cout << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c;
char sa[55], sb[55], sc[55];
char ua[55], ub[55], uc[55];
int pa, pb, pc;
void solve() {
if (a == 0 && b == 0) {
for (int i = (1); i <= (c); i++) printf("%s", sc);
printf("\n");
return;
} else if (a == 0) {
int good = c % b, bad = b - c % b;
for (int i = (1); i <= (b); i++) {
printf("%s", sb);
if (i * bad / b != (i - 1) * bad / b) {
for (int j = (1); j <= (c / b); j++) printf("%s", sc);
} else {
for (int j = (1); j <= (c / b + 1); j++) printf("%s", sc);
}
}
printf("\n");
return;
} else {
if (b == 0) {
strcpy(sb, sa);
b = a, a = 0;
solve();
return;
} else if (c == 0) {
strcpy(sc, sb);
strcpy(sb, sa);
c = b, b = a, a = 0;
solve();
return;
}
memset(ua, 0, sizeof(ua));
memset(ub, 0, sizeof(ub));
memset(uc, 0, sizeof(uc));
pa = pb = pc = 0;
strcpy(ua, sa);
pa += strlen(sa);
strcpy(ub, sa);
pb += strlen(sa);
strcpy(uc, sa);
pc += strlen(sa);
int na, nb, nc, nab;
int iter = c / a + (c % a > 0);
for (int i = (1); i <= (iter); i++) {
if (i < iter || c % a == 0) {
strcpy(ua + pa, sc);
pa += strlen(sc);
}
if (i < iter || c % a == 0) {
strcpy(ub + pb, sc);
pb += strlen(sc);
}
strcpy(uc + pc, sc);
pc += strlen(sc);
}
nc = c % a;
nab = a - nc;
iter = b / nab + (b % nab > 0);
for (int i = (1); i <= (iter); i++) {
if (i < iter || b % nab == 0) {
strcpy(ua + pa, sb);
pa += strlen(sb);
}
strcpy(ub + pb, sb);
pb += strlen(sb);
}
nb = b % nab;
na = nab - nb;
strcpy(sa, ua);
a = na;
strcpy(sb, ub);
b = nb;
strcpy(sc, uc);
c = nc;
solve();
}
}
int main() {
scanf("%d %d %d", &a, &b, &c);
sa[0] = 'a';
sb[0] = 'b';
sc[0] = 'c';
solve();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // ayy
// ' lamo
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld; //CARE
typedef complex<ld> pt;
#define fi first
#define se second
#define pb push_back
const ld eps=1e-8;
const int inf=1e9+99;
const ll linf=1e18+99;
const int P=1e9+7;
string g1(string A,int X) {
string Z="";
// cerr<<A<<" * "<<X<<endl;
for(;X--;) Z+=A;
return Z;
}
string g2(string A,string B,int X,int Y) {
// cerr<<"g2"<<" "<<A<<" "<<B<<" "<<X<<" "<<Y<<endl;
assert(A<B);
if(!X) return g1(B,Y);
if(!Y) return g1(A,X);
string AA=A;
string BB=A;
for(int i=0;i*X<Y;i++) AA+=B, BB+=B;
AA+=B;
int XX=Y%X;
int YY=X-XX;
return g2(BB,AA,YY,XX);
}
string g3(string A,string B,string C,int X,int Y,int Z) {
// cerr<<"g3"<<" "<<A<<" "<<B<<" "<<C<<" "<<X<<" "<<Y<<" "<<Z<<endl;
assert(A<B && B<C);
if(!X) return g2(B,C,Y,Z);
if(!Y) return g2(A,C,X,Z);
if(!Z) return g2(A,B,X,Y);
string AA=A;
string BB=A;
string CC=A;
for(int i=1;i*X<=Z;i++) AA+=C, BB+=C, CC+=C;
AA+=C;
int XX=Z%X;
int qq=X-XX;
assert(qq>=1);
for(int i=1;i*qq<=Y;i++) BB+=B, CC+=B;
BB+=B;
int YY=Y%qq;
int ZZ=qq-YY;
assert(XX+YY+ZZ == X);
return g3(CC,BB,AA,ZZ,YY,XX);
}
int32_t main() {
int X,Y,Z;
cin>>X>>Y>>Z;
cout<<g3("a","b","c",X,Y,Z)<<endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
public class Main {
private static void solve() {
int[] a = na(3);
int n = a[0] + a[1] + a[2];
char[] ret = new char[n];
for (int i = 0; i < n; i ++) {
int v = i % 2 == 0 ? 1 : -1;
int ptr = i % 2 == 0 ? 0 : 2;
while (a[ptr] == 0) ptr += v;
ret[i] = (char)('a' + ptr);
a[ptr] --;
}
System.out.println(ret);
}
public static void main(String[] args) {
new Thread(null, new Runnable() {
@Override
public void run() {
long start = System.currentTimeMillis();
String debug = System.getProperty("debug");
if (debug != null) {
try {
is = java.nio.file.Files.newInputStream(java.nio.file.Paths.get(debug));
} catch (Exception e) {
throw new RuntimeException(e);
}
}
reader = new java.io.BufferedReader(new java.io.InputStreamReader(is), 32768);
solve();
out.flush();
tr((System.currentTimeMillis() - start) + "ms");
}
}, "", 64000000).start();
}
private static java.io.InputStream is = System.in;
private static java.io.PrintWriter out = new java.io.PrintWriter(System.out);
private static java.util.StringTokenizer tokenizer = null;
private static java.io.BufferedReader reader;
public static String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new java.util.StringTokenizer(reader.readLine());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
private static double nd() {
return Double.parseDouble(next());
}
private static long nl() {
return Long.parseLong(next());
}
private static int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private static char[] ns() {
return next().toCharArray();
}
private static long[] nal(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
private static int[][] ntable(int n, int m) {
int[][] table = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
table[i][j] = ni();
}
}
return table;
}
private static int[][] nlist(int n, int m) {
int[][] table = new int[m][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
table[j][i] = ni();
}
}
return table;
}
private static int ni() {
return Integer.parseInt(next());
}
private static void tr(Object... o) {
if (is != System.in)
System.out.println(java.util.Arrays.deepToString(o));
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline void gmin(T &x, const T &y) {
if (x > y) x = y;
}
template <class T>
inline void gmax(T &x, const T &y) {
if (x < y) x = y;
}
const int BufferSize = 1 << 16;
char buffer[BufferSize], *Bufferhead, *Buffertail;
bool Terminal;
inline char Getchar() {
if (Bufferhead == Buffertail) {
int l = fread(buffer, 1, BufferSize, stdin);
if (!l) {
Terminal = 1;
return 0;
}
Buffertail = (Bufferhead = buffer) + l;
}
return *Bufferhead++;
}
template <class T>
inline bool read(T &x) {
x = 0;
char c = Getchar(), rev = 0;
while (c < '0' || c > '9') {
rev |= c == '-';
c = Getchar();
if (Terminal) return 0;
}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = Getchar();
if (c == '.') {
c = Getchar();
double t = 0.1;
while (c >= '0' && c <= '9')
x = x + (c - '0') * t, c = Getchar(), t = t / 10;
}
x = rev ? -x : x;
return 1;
}
template <class T1, class T2>
inline bool read(T1 &x, T2 &y) {
return read(x) & read(y);
}
template <class T1, class T2, class T3>
inline bool read(T1 &x, T2 &y, T3 &z) {
return read(x) & read(y) & read(z);
}
template <class T1, class T2, class T3, class T4>
inline bool read(T1 &x, T2 &y, T3 &z, T4 &w) {
return read(x) & read(y) & read(z) & read(w);
}
inline bool reads(char *x) {
char c = Getchar();
while (c < 33 || c > 126) {
c = Getchar();
if (Terminal) return 0;
}
while (c >= 33 && c <= 126) (*x++) = c, c = Getchar();
*x = 0;
return 1;
}
template <class T>
inline void print(T x, const char c = '\n') {
if (!x) {
putchar('0');
putchar(c);
return;
}
if (x < 0) putchar('-'), x = -x;
int m = 0, a[20];
while (x) a[m++] = x % 10, x /= 10;
while (m--) putchar(a[m] + '0');
putchar(c);
}
const int inf = 0x3f3f3f3f;
const int N = 105, M = 100005, mod = 1e9 + 7;
template <class T, class S>
inline void ch(T &x, const S y) {
x = (x + y) % mod;
}
inline int exp(int x, int y, const int mod = ::mod) {
int ans = 1;
while (y) {
if (y & 1) ans = (long long)ans * x % mod;
x = (long long)x * x % mod;
y >>= 1;
}
return ans;
}
int n, pl = -1;
int g[5], a[N], s[N];
inline int check(int l, int r, int p, int q) {
for (int i = l, j = p; i <= r && j <= q; i++, j++)
if (a[i] > a[j])
return 1;
else if (a[i] < a[j])
return -1;
return 0;
}
inline bool check() {
for (int i = 2; i <= n; i++) {
int tmp = check(1, n, i, n);
if (tmp == 1) return 0;
if (tmp == -1) continue;
if (check(n - i + 2, n, 1, i - 1) == 1) return 0;
}
return 1;
}
inline bool check(int m) {
bool tag = 0;
if (m == 2 && s[m] == 2) tag = 1;
vector<int> now = vector<int>{0};
int cnt[5];
memcpy(cnt, g, sizeof(cnt));
for (int i = 1; i <= m; i++) a[i] = s[i], cnt[a[i]]--;
for (int i = 2; i <= m; i++) {
int tmp = check(1, m, i, m);
if (tmp == 1) return 0;
if (tmp == 0) now.push_back(m - i + 1);
}
for (int i = m + 1; i <= n; i++) {
int mx = 1;
for (int j = 0; j < now.size(); j++)
if (now[j] < m) gmax(mx, a[now[j] + 1]);
while (mx < 4 && !cnt[mx]) mx++;
if (mx == 4) return 0;
a[i] = mx;
cnt[mx]--;
vector<int> tn = vector<int>{0};
for (int j = 0; j < now.size(); j++)
if (now[j] < m && a[now[j] + 1] == mx) tn.push_back(now[j] + 1);
now = tn;
}
return check();
}
int main() {
read(g[1], g[2], g[3]);
n = g[1] + g[2] + g[3];
if (!g[1]) {
g[1] = g[2], g[2] = g[3], g[3] = 0;
pl++;
}
if (!g[1]) {
for (int i = 1; i <= n; i++) putchar('c');
puts("");
return 0;
}
int cnt[5];
memcpy(cnt, g, sizeof(cnt));
s[1] = 1;
cnt[1]--;
for (int i = 2; i <= n; i++) {
for (int j = 3; j; j--) {
if (!cnt[j]) continue;
s[i] = j;
if (check(i)) break;
}
cnt[s[i]]--;
}
for (int i = 1; i <= n; i++) putchar('a' + s[i] + pl);
puts("");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int x, y, z;
vector<char> at[100];
int l = 0;
scanf("%d %d %d", &x, &y, &z);
if (x > y + z && y + z > 0) {
for (int i = (long long int)0; i < x; i++) {
at[y + z - 1 - (i % (y + z))].push_back('a');
}
for (int i = (long long int)0; i < y; i++) {
at[i].push_back('b');
}
for (int i = (long long int)0; i < z; i++) {
at[i + y].push_back('c');
}
l = y + z;
} else if (x > 0) {
for (int i = (long long int)0; i < x; i++) {
at[i].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i % x].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[x - 1 - (i + z) % x].push_back('b');
}
l = x;
} else if (y > z && z > 0) {
for (int i = (long long int)0; i < y; i++) {
at[z - 1 - (i % z)].push_back('b');
}
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
l = z;
} else if (y > z) {
for (int i = (long long int)0; i < y; i++) {
at[0].push_back('b');
}
l = y;
} else {
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
l = z;
}
for (int i = (long long int)0; i < l; i++) {
if (i % 2 == 0) {
for (int j = (long long int)0; j < at[l - 1 - i / 2].size(); j++) {
printf("%c", at[l - 1 - i / 2][j]);
}
} else {
for (int j = (long long int)0; j < at[i / 2].size(); j++) {
printf("%c", at[i / 2][j]);
}
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using vi = vector<int>;
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
os << "sz:" << v.size() << "\n[";
for (const auto& p : v) {
os << p << ",";
}
os << "]\n";
return os;
}
template <typename S, typename T>
ostream& operator<<(ostream& os, const pair<S, T>& p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
constexpr ll MOD = (ll)1e9 + 7LL;
template <typename T>
constexpr T INF = numeric_limits<T>::max() / 100;
void place(const int small, const int large, vector<int>& result) {
assert(result.size() == small + large);
if (large == 0) {
for (int i = 0; i < result.size(); i++) {
result[i] = -1;
}
} else if (large == 1) {
for (int i = 0; i < result.size() - 1; i++) {
result[i] = -1;
}
result[result.size() - 1] = 1;
} else if (small >= large) {
const int ssize = (small + large - 1) / large;
const int lsize = ssize - 1;
const int snum = small - (lsize * large);
const int lnum = large - snum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = -2;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = -1;
pos++;
}
}
result[pos] = 1;
pos++;
}
} else {
const int ssize = large / small;
const int lsize = ssize + 1;
const int lnum = large - ssize * small;
const int snum = small - lnum;
vector<int> tmp(snum + lnum);
place(snum, lnum, tmp);
int pos = 0;
for (int i = 0; i < tmp.size(); i++) {
result[pos] = -1;
pos++;
if (tmp[i] < 0) {
for (int i = 0; i < ssize; i++) {
result[pos] = 1;
pos++;
}
} else {
for (int i = 0; i < lsize; i++) {
result[pos] = 2;
pos++;
}
}
}
}
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int X, Y, Z;
cin >> X >> Y >> Z;
string s;
s.resize(X + Y + Z, 'd');
if (X > 0) {
if (Y + Z > 0) {
vector<int> tmp(X + Y + Z);
place(X, Y + Z, tmp);
for (int i = 0; i < X + Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'a';
}
}
if (X >= Y + Z) {
vector<int> smalls;
vector<int> larges;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] > 0 and tmp[i - 1] == -1) {
larges.push_back(i);
} else if (tmp[i] > 0 and tmp[i - 1] == -2) {
smalls.push_back(i);
}
}
reverse(smalls.begin(), smalls.end());
for (const int li : larges) {
if (Y > 0) {
s[li] = 'b';
Y--;
} else {
s[li] = 'c';
Z--;
}
}
for (const int si : smalls) {
if (Z > 0) {
s[si] = 'c';
Z--;
} else {
s[si] = 'b';
Y--;
}
}
} else {
vector<int> smalls;
vector<int> larges;
const int slen = (Y + Z) / X;
const int llen = slen + 1;
for (int i = 0; i < tmp.size(); i++) {
if (tmp[i] < 0 and tmp[i + 1] == 1) {
smalls.push_back(i + 1);
} else if (tmp[i] < 0 and tmp[i + 1] == 2) {
larges.push_back(i + 1);
}
}
reverse(larges.begin(), larges.end());
for (int i = 0; i < llen; i++) {
for (const int li : larges) {
if (Y > 0) {
s[li + i] = 'b';
Y--;
} else {
s[li + i] = 'c';
Z--;
}
}
}
for (int i = 0; i < slen; i++) {
for (const int si : smalls) {
if (Z > 0) {
s[si + i] = 'c';
Z--;
} else {
s[si + i] = 'b';
Y--;
}
}
}
}
cout << s << endl;
} else {
for (int i = 0; i < Y + Z; i++) {
cout << 'a';
}
cout << endl;
return 0;
}
} else {
if (Y > 0) {
if (Z > 0) {
vector<int> tmp(Y + Z);
place(Y, Z, tmp);
for (int i = 0; i < Y + Z; i++) {
if (tmp[i] < 0) {
s[i] = 'b';
} else {
s[i] = 'c';
}
}
cout << s << endl;
return 0;
} else {
for (int i = 0; i < Y; i++) {
cout << 'b';
}
cout << endl;
return 0;
}
} else {
for (int i = 0; i < Z; i++) {
cout << 'c';
}
cout << endl;
return 0;
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string solve(string a, string b, string c, int x, int y, int z) {
if (y + z == 0) {
string res = "";
for (int i = 0; i < x; ++i) res += a;
return res;
}
if (x == 0) return solve(b, c, "", y, z, 0);
int p = x / (y + z);
int r = x % (y + z);
string A = "";
for (int i = 0; i < p; ++i) A += a;
if (z >= r)
return solve(A + a + c, A + b, A + c, r, y, z - r);
else
return solve(A + a + b, A + a + c, A + b + c, r - z, z, y + z - r);
}
int main() {
int x, y, z;
while (cin >> x >> y >> z) {
cout << solve("a", "b", "c", x, y, z) << endl;
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<string> v;
int main() {
int x, y, z, k;
scanf("%d %d %d", &x, &y, &z);
for (k = 0; k <= 50; k++) {
if (k * (y + z) >= x) break;
}
if (k == 51) {
cout << string(x, 'a');
}
if (k == 0) {
if (y == 0) {
cout << string(z, 'c');
return 0;
}
if (z == 0) {
cout << string(y, 'b');
return 0;
}
for (k = 0; k <= 50; k++) {
if (k * z >= y) break;
}
int q = y / k, r = y % k;
if (r) {
string S = "";
S += string(k - 1, 'b');
v.push_back(S + "c");
z -= k - r;
q = r;
}
int qc = z / q, rc = z % q;
if (rc) {
for (int i = 0; i < q - rc; i++)
v.push_back(string(k, 'b') + string(qc, 'c'));
q = rc;
qc++;
}
vector<string> v2;
for (int i = 0; i < q; i++) v2.push_back(string(k, 'b') + string(qc, 'c'));
sort(v.begin(), v.end());
int sz = v.size();
for (int i = 0; i < sz; i++) v2[i % q] += v[sz - i - 1];
for (int i = 0; i < q; i++) cout << v2[i];
} else {
int q = x / k, r = x % k;
if (r) {
string S = "";
S += string(k - 1, 'a');
if (y >= q - r) {
for (int i = 0; i < q - r; i++) v.push_back(S + "b");
y -= q - r;
} else {
for (int i = 0; i < y; i++) v.push_back(S + "b");
for (int i = 0; i < q - r - y; i++) v.push_back(S + "c");
z -= q - r - y;
y = 0;
}
q = r;
}
vector<string> v2;
for (int i = 0; i < q; i++) v2.push_back(string(k, 'a'));
int qc = z / q, rc = z % q;
for (int i = 0; i < q; i++) v2[i] += string(qc, 'c');
if (rc) {
for (int i = 0; i < rc; i++) {
v2[q - 1 - i] += "c";
v.push_back(v2[q - 1 - i]);
v2.pop_back();
q = q - rc;
}
}
int qb = y / q, rb = y % q;
for (int i = 0; i < q; i++) v2[i] += string(qb, 'b');
for (int i = 0; i < rb; i++) v2[i] += "b";
for (int i = 0; i < q; i++) v.push_back(v2[i]);
if (rb) q = rb;
sort(v.begin(), v.end());
int sz = v.size();
vector<string> v3;
for (int i = 0; i < q; i++) {
v3.push_back(v[sz - 1 - i]);
v.pop_back();
}
sz = v.size();
for (int i = 0; i < sz; i++) {
v3[i % q] += v[sz - 1 - i];
}
for (int i = 0; i < q; i++) cout << v3[i];
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string res = "";
vector<string> v;
void change(int z, int y, int x) {
vector<string> s;
for (int i = (int)v.size() - 1; i >= 0; i--) {
string temp = v[i];
if (z > 0) {
z--;
temp += 'c';
} else if (y > 0) {
y--;
temp += 'b';
} else if (x > 0) {
x--;
temp += 'a';
}
s.push_back(temp);
}
v = s;
return;
}
void solve(int x, int y, int z, int tot) {
if (tot == 0) {
if (x > 0) {
res += 'a';
for (int i = 0; i < x; i++) {
v.push_back("a");
}
solve(0, y, z, x);
} else if (y > 0) {
res += 'b';
for (int i = 0; i < y; i++) {
v.push_back("b");
}
solve(x, 0, z, y);
} else {
res += 'c';
for (int i = 0; i < z; i++) {
v.push_back("c");
}
solve(x, y, 0, z);
}
} else {
if (tot <= z) {
res += 'c';
solve(x, y, z - tot, tot);
change(tot, 0, 0);
} else if (tot <= y + z) {
res += 'b';
int aux = tot;
int used = y >= aux ? aux : y;
aux -= used;
int used2 = z >= aux ? aux : z;
change(used2, used, 0);
solve(x, y - used, z - used2, tot);
} else if (tot <= x + y + z) {
res += 'a';
int aux = tot;
int used = x >= aux ? aux : x;
aux -= used;
int used2 = y >= aux ? aux : y;
aux -= used2;
int used3 = z >= aux ? aux : z;
change(used3, used2, used);
solve(x - used, y - used2, z - used3, tot);
} else {
for (int i = (int)v.size() - 1; i >= 0; i--) {
if (z > 0) {
v[i] += 'c';
z--;
} else if (y > 0) {
v[i] += 'b';
y--;
} else if (x > 0) {
v[i] += 'a';
x--;
}
}
}
}
return;
}
int main(void) {
int x, y, z;
scanf(" %d %d %d", &x, &y, &z);
solve(x, y, z, 0);
for (int i = 0; i < (int)v.size(); i++) {
cout << v[i];
}
cout << '\n';
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define PB push_back
#define MP make_pair
#define LL long long
#define int LL
#define FOR(i,a,b) for(int i = (a); i <= (b); i++)
#define RE(i,n) FOR(i,1,n)
#define REP(i,n) FOR(i,0,(int)(n)-1)
#define R(i,n) REP(i,n)
#define VI vector<int>
#define PII pair<int,int>
#define LD long double
#define FI first
#define SE second
#define st FI
#define nd SE
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((int)(x).size())
template<class C> void mini(C &a4, C b4) { a4 = min(a4, b4); }
template<class C> void maxi(C &a4, C b4) { a4 = max(a4, b4); }
template<class TH> void _dbg(const char *sdbg, TH h){ cerr<<sdbg<<'='<<h<<endl; }
template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) {
while(*sdbg!=',')cerr<<*sdbg++;cerr<<'='<<h<<','; _dbg(sdbg+1, a...);
}
template<class T> ostream &operator<<(ostream& os, vector<T> V) {
os << "["; for (auto vv : V) os << vv << ","; return os << "]";
}
template<class L, class R> ostream &operator<<(ostream &os, pair<L,R> P) {
return os << "(" << P.st << "," << P.nd << ")";
}
#ifdef LOCAL
#define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (__VA_ARGS__)
#define cerr if(0)cout
#endif
int a,b,c;
int t[3];
vector<int> res;
int nwd;
void licz(int ak){
//debug(res,ak);
if(SZ(res) == a + b + c){
R(i,nwd)for(int el:res)cout << char(el + 'a');
cout << "\n";
exit(0);
}
for(int i = 2; i >= res[ak]; i--){
if(t[i]){
t[i]--;
res.PB(i);
licz(i == res[ak] ? ak+1:0);
res.pop_back();
t[i]++;
}
}
}
int32_t main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(11);
cerr << fixed << setprecision(6);
cin >> a >> b >> c;
nwd = __gcd(__gcd(a,b),c);
a /= nwd;
b /= nwd;
c /= nwd;
t[0] = a;
t[1] = b;
t[2] = c;
for(int i = 0;i < 3;i++){
if(t[i]){
res.PB(i);
t[i]--;
break;
}
}
licz(0);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string A[3], B[10];
int x[3], y[10];
string solve() {
if (x[1] == 0 && x[2] == 0) {
string ans = "";
for (int i = 1; i <= x[0]; i++) ans = ans + A[0];
return ans;
}
memset(y, 0x00, sizeof y);
int num = x[2] / x[0];
for (int i = 1; i <= num; i++) A[0] = A[0] + A[2];
A[2] = A[0] + A[2];
int ne = x[2] % x[0];
x[0] -= ne;
x[2] = ne;
num = x[1] / x[0];
for (int i = 1; i <= num; i++) A[0] = A[0] + A[1];
A[1] = A[1] + A[2];
ne = x[1] % x[0];
x[0] -= ne;
x[1] = ne;
return solve();
}
int main() {
for (int i = 0; i < 3; i++) scanf("%d", &x[i]);
A[0] = 'a';
A[1] = 'b';
A[2] = 'c';
cout << solve() << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int p[55], size;
const char c[3] = {'a', 'b', 'c'};
int main() {
for (int i = 0, x; i < 3; ++i) {
scanf("%d", &x);
while (x--) p[++size] = i;
}
int head = 1, tail = size;
while (head <= tail) {
printf("%c", c[p[head++]]);
if (head > tail) break;
printf("%c", c[p[tail--]]);
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class C>
void mini(C &a4, C b4) {
a4 = min(a4, b4);
}
template <class C>
void maxi(C &a4, C b4) {
a4 = max(a4, b4);
}
template <class TH>
void _dbg(const char *sdbg, TH h) {
cerr << sdbg << '=' << h << endl;
}
template <class TH, class... TA>
void _dbg(const char *sdbg, TH h, TA... a) {
while (*sdbg != ',') cerr << *sdbg++;
cerr << '=' << h << ',';
_dbg(sdbg + 1, a...);
}
template <class T>
ostream &operator<<(ostream &os, vector<T> V) {
os << "[";
for (auto vv : V) os << vv << ",";
return os << "]";
}
template <class L, class R>
ostream &operator<<(ostream &os, pair<L, R> P) {
return os << "(" << P.first << "," << P.second << ")";
}
long long a, b, c;
long long t[3];
vector<long long> res;
void licz(long long ak) {
vector<long long> pom = res;
long long ak2 = ak;
long long t2[3];
for (long long i = (0); i <= ((long long)(3) - 1); i++) t2[i] = t[i];
while (((long long)(pom).size()) != a + b + c) {
if (t2[pom[ak2]]) {
pom.push_back(pom[ak2]);
t2[pom[ak2]]--;
ak2++;
} else {
for (long long i = pom[ak2]; i < 3; i++) {
if (t2[i]) {
pom.push_back(i);
t2[i]--;
goto ok;
}
}
return;
ok:;
ak2 = 0;
}
}
if (((long long)(res).size()) == a + b + c) {
for (long long el : res) cout << char(el + 'a');
cout << "\n";
exit(0);
}
for (long long i = 2; i >= res[ak]; i--) {
if (t[i]) {
t[i]--;
res.push_back(i);
licz(i == res[ak] ? ak + 1 : 0);
res.pop_back();
t[i]++;
}
}
}
int32_t main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(11);
if (0) cout << fixed << setprecision(6);
cin >> a >> b >> c;
t[0] = a;
t[1] = b;
t[2] = c;
for (long long i = 0; i < 3; i++) {
if (t[i]) {
res.push_back(i);
t[i]--;
break;
}
}
licz(0);
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string A[3], B[10];
int x[3], y[10];
string solve() {
if (x[1] == 0 && x[2] == 0) {
string ans = "";
for (int i = 1; i <= x[0]; i++) ans = ans + A[0];
return ans;
}
memset(y, 0x00, sizeof y);
int num = x[2] / x[0];
for (int i = 1; i <= num; i++) A[0] = A[0] + A[2];
A[2] = A[0] + A[2];
int ne = x[2] % x[0];
x[0] -= ne;
x[2] = ne;
num = x[1] / x[0];
for (int i = 1; i <= num; i++) A[0] = A[0] + A[1];
A[1] = A[1] + A[2];
ne = x[1] % x[0];
x[0] -= ne;
x[1] = ne;
return solve();
}
int main() {
for (int i = 0; i < 3; i++) scanf("%d", &x[i]);
A[0] = 'a';
A[1] = 'b';
A[2] = 'c';
if (x[0] == 0) {
x[0] = x[1];
x[1] = x[2];
A[0] = A[1];
A[1] = A[2];
x[2] = 0;
}
if (x[0] == 0) {
x[0] = x[1];
x[1] = x[2];
A[0] = A[1];
A[1] = A[2];
x[2] = 0;
}
cout << solve() << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr long long mod = 1000000007;
const long long INF = mod * mod;
const long double eps = 1e-12;
const long double pi = acos(-1.0);
long long mod_pow(long long x, long long n) {
long long res = 1;
while (n) {
if (n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
struct modint {
long long n;
modint() : n(0) { ; }
modint(long long m) : n(m) {
if (n >= mod)
n %= mod;
else if (n < 0)
n = (n % mod + mod) % mod;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) {
a.n += b.n;
if (a.n >= mod) a.n -= mod;
return a;
}
modint operator-=(modint& a, modint b) {
a.n -= b.n;
if (a.n < 0) a.n += mod;
return a;
}
modint operator*=(modint& a, modint b) {
a.n = ((long long)a.n * b.n) % mod;
return a;
}
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, int n) {
if (n == 0) return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2) res = res * a;
return res;
}
long long inv(long long a, long long p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b) return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
void solve() {
int c[3];
for (int i = 0; i < 3; i++) cin >> c[i];
int num = -1;
for (int i = 1; i <= 50; i++) {
int x = c[0] / i;
if (c[0] % i) x++;
if (x <= c[1] + c[2]) {
num = i;
break;
}
}
vector<string> anss;
for (int i = 0; i < c[0] / num; i++) {
string s;
s.resize(num, 'a');
anss.push_back(s);
}
if (c[0] % num) {
string s;
s.resize(c[0] % num, 'a');
s.push_back('b');
c[1]--;
anss.push_back(s);
}
int d = c[0] / num;
while (c[2] >= d) {
for (int i = 0; i < d; i++) {
anss[i].push_back('c');
}
c[2] -= d;
}
int rest = d;
for (int i = 0; i < c[2]; i++) {
anss[d - 1 - i].push_back('c');
rest--;
}
while (c[1] >= rest) {
for (int i = 0; i < rest; i++) {
anss[i].push_back('b');
}
c[1] -= rest;
}
for (int i = 0; i < c[1]; i++) {
anss[rest - 1 - i].push_back('b');
}
string ans;
for (int i = 0; i < anss.size(); i++) ans += anss[i];
cout << ans << "\n";
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
solve();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string trans(string x, string a, string b, string c) {
string ret;
for (int i = 0; i <= (int)x.length() - 1; ++i) {
if (x[i] == 'a') ret += a;
if (x[i] == 'b') ret += b;
if (x[i] == 'c') ret += c;
}
return ret;
}
void dfs(string a, string b, string c, int x, int y, int z) {
if (!y && !z) {
cout << a << endl;
return;
}
string s[55];
for (int i = 1; i <= x; ++i) s[i] = 'a';
for (; z;) {
for (int i = x; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
int k = x;
for (int i = 1; i <= x - 1; ++i)
if (s[i].length() != s[i + 1].length()) {
k = i;
break;
}
for (; y;) {
for (int i = k; i; --i)
if (y) {
s[i] = s[i] + 'b';
--y;
}
}
int X = 0, Y = 0, Z = 0, d[5] = {0};
for (int i = 1; i <= x - 1; ++i)
if (s[i] != s[i + 1]) {
d[++d[0]] = i;
}
d[++d[0]] = x;
if (d[0]) X = d[1];
if (d[0] > 1) Y = d[2] - d[1];
if (d[0] > 2) Z = d[3] - d[2];
dfs(trans(s[d[1]], a, b, c), trans(s[d[2]], a, b, c), trans(s[d[3]], a, b, c),
X, Y, Z);
}
int main() {
int x, y, z;
string s[55];
scanf("%d%d%d", &x, &y, &z);
if (!x && !y) {
for (int i = 1; i <= z; ++i) printf("%c", 'c');
} else if (!x) {
for (int i = 1; i <= y; ++i) s[i] = 'b';
for (; z;) {
for (int i = y; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
for (int i = 1; i <= y; ++i)
for (int j = 0; j <= (int)s[i].length() - 1; ++j) {
printf("%c", s[i][j]);
}
} else {
dfs("a", "b", "c", x, y, z);
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string slow(int ca, int cb, int cc) {
int n = ca + cb + cc;
string s = "";
for (int i = 0; i < ca; i++) s += 'a';
for (int i = 0; i < cb; i++) s += 'b';
for (int i = 0; i < cc; i++) s += 'c';
string ans = s;
do {
string mn = s;
for (int i = 0; i < n; i++) {
string t = s;
rotate(t.begin(), t.begin() + i, t.end());
mn = min(mn, t);
}
ans = max(ans, mn);
} while (next_permutation(s.begin(), s.end()));
return ans;
}
string fast(int ca, int cb, int cc) {
bool f = 0;
if (ca == 0) {
f = 1;
ca = cb;
cb = cc;
cc = 0;
}
if (ca == 0) {
return string(cb, 'a');
}
int n = ca + cb + cc;
vector<string> a(ca, "a");
for (int i = 0; i < cc; i++) {
a[i % ca] += "c";
}
for (int i = 0; i < cb; i++) {
a[(i + cc) % (ca - cc % ca) + cc % ca] += "b";
}
sort(a.begin(), a.end());
string ans = "a";
while (1) {
string s = "";
random_shuffle(a.begin(), a.end());
for (string ss : a) s += ss;
string mn = s;
for (int i = 0; i < n; i++) {
string t = s;
rotate(t.begin(), t.begin() + i, t.end());
mn = min(mn, t);
}
ans = max(ans, mn);
if (clock() / (double)CLOCKS_PER_SEC > 1.9) break;
}
if (f) {
for (char &c : ans) {
if (c == 'a')
c = 'b';
else
c = 'c';
}
}
return ans;
}
int main() {
int ca, cb, cc;
while (cin >> ca >> cb >> cc) {
cout << fast(ca, cb, cc) << endl;
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<char> pyon(int x, int y, int z) {
vector<char> ans;
if (!y && !z) {
ans = vector<char>(x, 'a');
} else if (!z && !x) {
ans = vector<char>(y, 'b');
} else if (!x && !y) {
ans = vector<char>(z, 'c');
} else {
ans.reserve(x + y + z);
int p = z / x, s = z % x, q = y / (x - s), t = y % (x - s), u = x - s - t;
for (char c : pyon(u, t, s)) {
ans.push_back('a');
if (c == 'a') {
for (int o_to_ = (p), o = (0); o < o_to_; o++) ans.push_back('c');
for (int o_to_ = (q), o = (0); o < o_to_; o++) ans.push_back('b');
} else if (c == 'b') {
for (int o_to_ = (p), o = (0); o < o_to_; o++) ans.push_back('c');
for (int o_to_ = (q + 1), o = (0); o < o_to_; o++) ans.push_back('b');
} else {
for (int o_to_ = (p + 1), o = (0); o < o_to_; o++) ans.push_back('c');
}
}
}
if (false) {
cout << x << ' ' << y << ' ' << z << '\t';
for (char c : ans) cout << c;
cout << '\n';
}
return ans;
}
signed main() {
if (!false) {
cin.tie(0);
ios::sync_with_stdio(0);
}
int X, Y, Z;
scanf("%d%d%d", &X, &Y, &Z);
for (char c : pyon(X, Y, Z)) cout << c;
cout << '\n';
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int X;
int Y;
int Z;
string s;
cin >> X;
cin >> Y;
cin >> Z;
while (X > 0 || Y > 0 || Z > 0) {
if (X > 0) {
s += "a";
--X;
}
if (Z > 0) {
s += "c";
--Z;
}
if (Y > 0) {
s += "b";
--Y;
}
}
cout << s << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 55;
string res;
bool vis[maxn][maxn][maxn][maxn];
int failure[maxn];
void push() {
memset(failure, 0, sizeof(failure));
for (int s = 2; s <= res.size(); s++) {
failure[s] = failure[s - 1];
while (failure[s] > 0 && res[failure[s]] != res[s - 1])
failure[s] = failure[failure[s]];
if (res[failure[s]] == res[s - 1]) ++failure[s];
}
}
bool has_small_shift(string a, string b) {
for (int e = 0; e < a.size(); e++) {
for (int f = 0; f < b.size(); f++)
if (a[f] < b[f])
return true;
else if (a[f] > b[f])
break;
a.push_back(a[0]);
a.erase(a.begin());
}
return false;
}
bool has_small_pref(string a, string b) {
for (int e = 0; e < a.size(); e++) {
for (int f = 0; f < b.size(); f++) {
if (e + f == a.size()) break;
if (a[e + f] < b[f]) return true;
if (a[e + f] > b[f]) break;
}
}
return false;
}
bool solve(int qx, int qy, int qz, int pos) {
if (qx + qy + qz == 0) {
string pref;
for (int e = 0; e < pos; e++) pref.push_back(res[e]);
pref += res;
for (int e = 0; e < res.size(); e++) {
if (pref[e] < res[e]) return false;
if (pref[e] > res[e]) return true;
}
return true;
}
if (vis[qx][qy][qz][pos]) return false;
vis[qx][qy][qz][pos] = 1;
if (qz > 0) {
int nxt = pos;
bool go = true;
if (nxt == res.size()) {
string check = res;
check.push_back('c');
if (has_small_shift(check, res)) go = false;
}
if (go) {
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'c' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'c') nxt++;
if (solve(qx, qy, qz - 1, nxt)) return true;
}
}
if (res[pos] != 'c' && qy > 0) {
int nxt = pos;
bool go = true;
if (nxt == res.size()) {
string check = res;
check.push_back('b');
if (has_small_shift(check, res)) go = false;
}
if (go) {
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'b' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'b') nxt++;
if (solve(qx, qy - 1, qz, nxt)) return true;
}
}
if (res[pos] != 'c' && res[pos] != 'b' && qx > 0) {
int nxt = pos;
bool go = true;
if (nxt == res.size()) {
string check = res;
check.push_back('a');
if (has_small_shift(check, res)) go = false;
}
if (go) {
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'a' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'a') nxt++;
if (solve(qx - 1, qy, qz, nxt)) return true;
}
}
return false;
}
int M() {
int x, y, z;
if (!(cin >> x >> y >> z)) return 0;
int len = x + y + z;
res.clear();
for (int e = 0; e < len; e++) {
{
if (z > 0) {
res.push_back('c');
if (!has_small_pref(res, res)) {
push();
memset(vis, false, sizeof(vis));
if (solve(x, y, z - 1, 0)) {
z--;
continue;
}
}
res.pop_back();
}
}
{
if (y > 0) {
res.push_back('b');
push();
memset(vis, false, sizeof(vis));
if (!has_small_pref(res, res)) {
if (solve(x, y - 1, z, 0)) {
y--;
continue;
}
}
res.pop_back();
}
}
{
if (x > 0) {
res.push_back('a');
push();
if (!has_small_pref(res, res)) {
memset(vis, false, sizeof(vis));
if (solve(x - 1, y, z, 0)) {
x--;
continue;
}
}
res.pop_back();
}
}
assert(0);
}
cout << res << endl;
return 1;
}
int main() {
while (M())
;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args){
StringBuilder buff = new StringBuilder();
Scanner sc = new Scanner(System.in);
// 整数の入力
int a = sc.nextInt();
// スペース区切りの整数の入力
int b = sc.nextInt();
int c = sc.nextInt();
while(true) {
if(a!=0) {
buff.append("a");
a--;
}else if(c!=0) {
buff.append("c");
}else if(b!=0) {
buff.append("b");
} else {
System.out.println(buff);
return;
}
}
}
} |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | // eddy1021
#pragma GCC optimize("O3")
#include <bits/stdc++.h>
using namespace std;
typedef double D;
typedef long double LD;
typedef long long LL;
typedef pair<int,int> PII;
typedef pair<LL,LL> PLL;
#define mod9 1000000009LL
#define mod7 1000000007LL
#define INF 1023456789LL
#define INF16 10000000000000000LL
#define eps 1e-9
#define SZ(x) (int)(x).size()
#define ALL(x) (x).begin(), (x).end()
#define IOS ios_base::sync_with_stdio(0); cin.tie(0)
#ifndef ONLINE_JUDGE
#define debug(...) printf(__VA_ARGS__)
#else
#define debug(...)
#endif
inline LL getint(){
LL _x=0,_tmp=1; char _tc=getchar();
while( (_tc<'0'||_tc>'9')&&_tc!='-' ) _tc=getchar();
if( _tc == '-' ) _tc=getchar() , _tmp = -1;
while(_tc>='0'&&_tc<='9') _x*=10,_x+=(_tc-'0'),_tc=getchar();
return _x*_tmp;
}
inline LL add( LL _x , LL _y , LL _mod = mod7 ){
_x += _y;
return _x >= _mod ? _x - _mod : _x;
}
inline LL sub( LL _x , LL _y , LL _mod = mod7 ){
_x -= _y;
return _x < 0 ? _x + _mod : _x;
}
inline LL mul( LL _x , LL _y , LL _mod = mod7 ){
_x *= _y;
return _x >= _mod ? _x % _mod : _x;
}
LL mypow( LL _a , LL _x , LL _mod ){
if( _x == 0 ) return 1LL;
LL _ret = mypow( mul( _a , _a , _mod ) , _x >> 1 , _mod );
if( _x & 1 ) _ret = mul( _ret , _a , _mod );
return _ret;
}
LL mymul( LL _a , LL _x , LL _mod ){
if( _x == 0 ) return 0LL;
LL _ret = mymul( add( _a , _a , _mod ) , _x >> 1 , _mod );
if( _x & 1 ) _ret = add( _ret , _a , _mod );
return _ret;
}
inline bool equal( D _x , D _y ){
return _x > _y - eps && _x < _y + eps;
}
#define Bye exit(0)
int __ = 1 , _cs;
/*********default*********/
void build(){
}
string mcp(string s){
int n = s.length();
s += s;
int i=0, j=1;
while (i<n && j<n){
int k = 0;
while (k < n && s[i+k] == s[j+k]) k++;
if (s[i+k] <= s[j+k]) j += k+1;
else i += k+1;
if (i == j) j++;
}
int ans = i < n ? i : j;
return s.substr(ans, n);
}
int a , b , c;
void init(){
cin >> a >> b >> c;
}
int gcd( int x , int y ){
if( x == 0 or y == 0 ) return x + y;
return __gcd( x , y );
}
int mxa;
inline string cal2( const vector<int>& v ){
int perc = c / (int)v.size();
int resc = c % (int)v.size();
int ress = (int)v.size() - resc;
if( ress == 0 ) ress = (int)v.size();
int perb = b / ress;
int resb = b % ress;
//cout << perc << " " << resc << " " << perb << " " << resb << endl;
vector<int> tmp;
for( int i = 0 ; i < (int)v.size() ; i ++ )
if( i < resc )
tmp.push_back( 0 );
else
tmp.push_back( 1 );
vector<int> tmp2;
for( int i = 0 ; i < ress ; i ++ )
if( i < resb )
tmp2.push_back( 1 );
else
tmp2.push_back( 0 );
string ret = "0";
do{
for( size_t i = 0 ; i < v.size() ; i ++ ){
string got = "";
for( size_t j = 0 ; j < v.size() ; j ++ ){
for( int k = 0 ; k < mxa - 1 ; k ++ ) got += "a";
if( v[ j ] == 0 ) got += "a";
for( int k = 0 ; k < perc ; k ++ ) got += "c";
if( tmp[ j ] == 0 ) got += "c";
if( i == j ){
for( int k = 0 ; k < b ; k ++ ) got += "b";
}
}
ret = max( ret , mcp( got ) );
}
sort( tmp2.begin() , tmp2.end() );
do{
int ptr = 0;
string got = "";
for( size_t j = 0 ; j < v.size() ; j ++ ){
for( int k = 0 ; k < mxa - 1 ; k ++ ) got += "a";
if( v[ j ] == 0 ) got += "a";
for( int k = 0 ; k < perc ; k ++ ) got += "c";
if( tmp[ j ] == 0 ) got += "c";
else{
for( int k = 0 ; k < perb ; k ++ ) got += "b";
if( tmp2[ ptr ++ ] ) got += "b";
}
}
ret = max( ret , mcp( got ) );
}while( next_permutation( tmp2.begin() , tmp2.end() ) );
}while( next_permutation( tmp.begin() , tmp.end() ) );
return ret;
}
inline string cal(){
mxa = 2;
while( a / mxa > b + c ) mxa ++;
int tot = a / (mxa - 1);
int mr = a - tot * (mxa - 1);
// mr with mxa, tot - mr with mxa - 1
vector<int> tmp;
if( mr )
tmp.push_back( 0 );
for( int i = 0 ; i < tot - mr ; i ++ )
tmp.push_back( 1 );
for( int i = 1 ; i < mr ; i ++ )
tmp.push_back( 0 );
string bst = "0";
do{
bst = max( bst , cal2( tmp ) );
}while( next_permutation( tmp.begin() , tmp.end() ) );
return bst;
}
void real_solve(){
int gg = gcd( a , gcd( b , c ) );
a /= gg;
b /= gg;
c /= gg;
string tmp = cal();
string ans = "";
while( gg -- ) ans += tmp;
cout << ans << endl;
Bye;
}
void solve(){
real_solve();
vector<char> v;
for( int i = 0 ; i < a ; i ++ ) v.push_back( 'a' );
for( int i = 0 ; i < b ; i ++ ) v.push_back( 'b' );
for( int i = 0 ; i < c ; i ++ ) v.push_back( 'c' );
string bst = "0";
do{
string ret = "";
for( auto i : v )
ret += i;
bst = max( bst , mcp( ret ) );
}while( next_permutation( v.begin() , v.end() ) );
cout << bst << endl;
}
int main(){
build();
//__ = getint();
while( __ -- ){
init();
solve();
}
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
int main(void) {
scanf("%d%d%d", &x, &y, &z);
deque<string> ss;
string ans = "";
if (x == 0 && y == 0) {
for (int i = 0; i < z; i++) {
ans += 'c';
}
cout << ans << endl;
return 0;
}
if (x == 0) {
for (int i = 0; i < y; i++) {
ss.push_back("b");
}
int now = 0;
for (int i = 0; i < z; i++) {
ss[now] += 'c';
now = (now + 1) % y;
}
sort(ss.begin(), ss.end());
int fl = 0;
for (int i = 0; i < y; i++) {
if (fl == 0) {
string st = ss[0];
ss.pop_front();
ans += st;
} else {
string st = ss[ss.size() - 1];
ss.pop_back();
ans += st;
}
fl = 1 - fl;
}
cout << ans << endl;
return 0;
}
for (int i = 0; i < x; i++) {
ss.push_back("a");
}
int now = 0;
for (int i = 0; i < z; i++) {
ss[now] += 'c';
now = (now + 1) % x;
}
for (int i = 0; i < y; i++) {
ss[now] += 'b';
now = (now + 1) % x;
}
sort(ss.begin(), ss.end());
int fl = 0;
for (int i = 0; i < x; i++) {
if (fl == 0) {
string st = ss[0];
ss.pop_front();
ans += st;
} else {
string st = ss[ss.size() - 1];
ss.pop_back();
ans += st;
}
fl = 1 - fl;
}
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | def work(a,b,c,A,B,C):
if A==0:
return work(b,c,'',B,C,0)
if B==0:
if C==0:
return a*A
else:
return work(a,c,'',A,C,0)
if C==0:
return work(a+b*(B/A),a+b*(B/A+1),'',A-B%A,B%A,0)
cmod = C%A
if B <= A-cmod:
return work(a+c*(C/A),a+c*(C/A)+b,a+c*(C/A+1),A-cmod-B,B,cmod)
else:
B = B - (A-cmod)
bmod = B%A
if bmod>=cmod:
return work(a+c*(C/A)+b*(B/A+1),a+c*(C/A)+b*(B/A+2),a+c*(C/A+1)+b*(B/A+1),A-bmod,bmod-cmod,cmod)
else:
return work(a+c*(C/A)+b*(B/A+1),a+c*(C/A+1)+b*(B/A),a+c*(C/A+1)+b*(B/A+1),A-cmod,cmod-bmod,bmod)
if __name__ == '__main__':
s = raw_input()
a,b,c = [int(i) for i in s.split()]
print(work('a','b','c',a,b,c))
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c, xa, xb, xc;
string AA, BB, CC, ss[110];
void iter() {
for (int i = 0; i < a; i++) ss[i] = AA;
for (int i = 0; i < c; i++) {
ss[i % a] += CC;
}
int ll = 0;
if (c % a == 0)
ll = 0;
else
ll = (c - 1) % a + 1;
int now = ll;
for (int i = 0; i < b; i++) {
ss[now] += BB;
now += 1;
if (now >= a) now = ll;
}
sort(ss, ss + a);
int cnt = 0;
xa = xb = xc = 0;
for (int i = 0; i < a; i++) {
if (i == 0 || ss[i] != ss[i - 1]) {
cnt += 1;
if (cnt == 1)
AA = ss[i];
else if (cnt == 2)
BB = ss[i];
else
CC = ss[i];
}
if (cnt == 1)
xa += 1;
else if (cnt == 2)
xb += 1;
else
xc += 1;
}
a = xa;
b = xb;
c = xc;
}
int main() {
scanf("%d%d%d", &a, &b, &c);
AA = "a";
BB = "b";
CC = "c";
if (a == 0) {
a = b;
b = c;
AA = BB;
BB = CC;
}
if (a == 0) {
for (int i = 0; i < c; i++) printf("c");
printf("\n");
return 0;
}
while (b + c > 0) {
iter();
}
while (a--) {
cout << AA;
}
cout << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int A, B, C;
vector<string> vec;
string maxn = "";
void dfs(vector<string> V, string S) {
if (V.size() == 0) {
string G = S;
for (int i = 0; i < S.size(); i++) {
string I = "";
for (int j = 0; j < S.size(); j++) I += S[(i + j) % S.size()];
G = min(G, I);
}
maxn = max(maxn, G);
return;
}
for (int i = 0; i < V.size(); i++) {
if (i >= 1 && V[i] == V[i - 1]) continue;
vector<string> Z;
for (int j = 0; j < V.size(); j++) {
if (i != j) Z.push_back(V[j]);
}
string ZZ = S + V[i];
dfs(Z, ZZ);
}
}
int main() {
cin >> A >> B >> C;
int P = 0;
while (A == 0) {
A = B;
B = C;
C = 0;
P++;
}
for (int i = 0; i < A; i++) vec.push_back("a");
for (int i = 0; i < C; i++) vec[i % A] += "c";
sort(vec.begin(), vec.end());
int Z = 1;
for (int i = 0; i < (int)vec.size() - 1; i++) {
if (vec[i] == vec[i + 1]) Z = i + 2;
}
for (int i = 0; i < B; i++) vec[i % Z] += "b";
sort(vec.begin(), vec.end());
dfs(vec, "");
for (int i = 0; i < maxn.size(); i++) maxn[i] += P;
cout << maxn << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
int main(void) {
scanf("%d%d%d", &x, &y, &z);
deque<string> ss;
for (int i = 0; i < x; i++) {
ss.push_back("a");
}
int now = 0;
for (int i = 0; i < z; i++) {
ss[now] += 'c';
now = (now + 1) % x;
}
for (int i = 0; i < y; i++) {
ss[now] += 'b';
now = (now + 1) % x;
}
sort(ss.begin(), ss.end());
string ans = "";
int fl = 0;
for (int i = 0; i < x; i++) {
if (fl == 0) {
string st = ss[0];
ss.pop_front();
ans += st;
} else {
string st = ss[ss.size() - 1];
ss.pop_back();
ans += st;
}
fl = 1 - fl;
}
cout << ans << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma comment(linker, "/STACK:336777216")
using namespace std;
const int MAXN = 50 + 2;
int A, B, C, N;
int L;
char Fill[MAXN];
int Tmp[MAXN * 2];
int Check(int a, int b, int c, string S) {
int Len = S.length();
for (int i = 0; i < N * 2; i++) Tmp[i] = 255;
for (int i = 0; i < Len; i++) Tmp[i] = Tmp[i + N] = S[i];
for (int k = 1; k < Len; k++)
for (int i = 0; i < N; i++)
if (Tmp[i] != Tmp[k + i]) {
if (Tmp[i] > Tmp[k + i]) return 0;
break;
}
return 1;
}
void Update(string& To, string From) {
if (To == "" || To > From) To = From;
}
string DP[MAXN][MAXN][MAXN];
int Test() {
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) DP[i][j][k] = "";
DP[0][0][0] = (string)Fill;
for (int i = 0; i <= A; i++)
for (int j = 0; j <= B; j++)
for (int k = 0; k <= C; k++) {
if (DP[i][j][k].length() != i + j + k + L) continue;
string tmp;
if (i < A) {
tmp = DP[i][j][k] + 'a';
if (Check(A - i - 1, B - j, C - k, tmp)) Update(DP[i + 1][j][k], tmp);
}
if (j < B) {
tmp = DP[i][j][k] + 'b';
if (Check(A - i, B - j - 1, C - k, tmp)) Update(DP[i][j + 1][k], tmp);
}
if (k < C) {
tmp = DP[i][j][k] + 'c';
if (Check(A - i, B - j, C - k - 1, tmp)) Update(DP[i][j][k + 1], tmp);
}
}
return (DP[A][B][C].length() == A + B + C + L);
}
void Work() {
scanf("%d%d%d", &A, &B, &C);
N = A + B + C;
for (L = 1; L <= N; L++) {
Fill[L] = 0;
if (C > 0) {
Fill[L - 1] = 'c';
C--;
if (Test()) continue;
C++;
}
if (B > 0) {
B--;
Fill[L - 1] = 'b';
if (Test()) continue;
B++;
}
A--;
Fill[L - 1] = 'a';
}
printf("%s\n", Fill);
}
int main() {
Work();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string f(vector<pair<string, int> > A) {
if (A.size() == 1) {
string ret = "";
for (int i = 0; i < A[0].second; i++) ret += A[0].first;
return ret;
}
sort(A.begin(), A.end());
int sum = 0;
for (pair<string, int> p : A) {
sum += p.second;
}
vector<string> ret;
if (A[0].second * 2 <= sum) {
for (int i = 0; i < A[0].second; i++) ret.push_back(A[0].first);
int cnt = A[0].second;
A[0].second = 0;
int id = A.size() - 1;
while (0 < id) {
for (int i = 0; i < cnt; i++) {
while (0 < id && A[id].second == 0) id--;
if (id == 0)
break;
else {
A[id].second--;
ret[i] += A[id].first;
}
}
int ncnt = 0;
for (int i = 0; i < cnt; i++)
if (ret[0] == ret[i]) ncnt++;
cnt = ncnt;
}
} else {
int cnt = sum - A[0].second;
for (int i = 0; i < cnt; i++) {
ret.push_back("");
for (int j = 0; j < A[0].second / cnt + (i < A[0].second % cnt); j++) {
ret.back() += A[0].first;
}
}
int id = A.size() - 1;
for (string& s : ret) {
while (A[id].second == 0) id--;
A[id].second--;
s += A[id].first;
}
}
sort(ret.begin(), ret.end());
vector<pair<string, int> > nxt;
nxt.push_back(make_pair(ret[0], 1));
for (int i = 1; i < ret.size(); i++) {
if (nxt.back().first == ret[i])
nxt.back().second += 1;
else
nxt.push_back(make_pair(ret[i], 1));
}
return f(nxt);
}
int main() {
int X, Y, Z;
cin >> X >> Y >> Z;
vector<pair<string, int> > A;
if (X > 0) A.push_back(make_pair("a", X));
if (Y > 0) A.push_back(make_pair("b", Y));
if (Z > 0) A.push_back(make_pair("c", Z));
cout << f(A) << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<int> vec[55];
void put(int x) {
if (x == 1) printf("a");
if (x == 2) printf("b");
if (x == 3) printf("c");
}
int main() {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
int now = x;
for (int u = 1; u <= x; u++) vec[u].push_back(1);
for (int u = 1; u <= z; u++) {
vec[now].push_back(3);
now--;
if (now == 0) now = x;
}
for (int u = 1; u <= y; u++) {
vec[now].push_back(2);
now--;
if (now == 0) now = x;
}
for (int u = 1; u <= x; u++) {
int siz = vec[u].size();
for (int i = 0; i < siz; i++) put(vec[u][i]);
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c;
char sa[55], sb[55], sc[55];
char ua[55], ub[55], uc[55];
int pa, pb, pc;
void solve() {
printf("%d %d %d\n", a, b, c);
printf("%s %s %s\n", sa, sb, sc);
if (a == 0 && b == 0) {
for (int i = (1); i <= (c); i++) printf("%s", sc);
printf("\n");
return;
} else if (a == 0) {
int good = c % b, bad = b - c % b;
for (int i = (1); i <= (b); i++) {
printf("%s", sb);
if (i * bad / b != (i - 1) * bad / b) {
for (int j = (1); j <= (c / b); j++) printf("%s", sc);
} else {
for (int j = (1); j <= (c / b + 1); j++) printf("%s", sc);
}
}
printf("\n");
return;
} else {
if (b == 0) {
strcpy(sb, sa);
b = a, a = 0;
solve();
return;
} else if (c == 0) {
strcpy(sc, sb);
strcpy(sb, sa);
c = b, b = a, a = 0;
solve();
return;
}
pa = pb = pc = 0;
strcpy(ua, sa);
pa += strlen(sa);
strcpy(ub, sa);
pb += strlen(sa);
strcpy(uc, sa);
pc += strlen(sa);
int na, nb, nc, nab;
int iter = c / a + (c % a > 0);
for (int i = (1); i <= (iter); i++) {
if (i < iter || c % a == 0) {
strcpy(ua + pa, sc);
pa += strlen(sc);
}
if (i < iter || c % a == 0) {
strcpy(ub + pb, sc);
pb += strlen(sc);
}
strcpy(uc + pc, sc);
pc += strlen(sc);
}
nc = c % a;
nab = a - nc;
iter = b / nab + (b % nab > 0);
for (int i = (1); i <= (iter); i++) {
if (i < iter || b % nab == 0) {
strcpy(ua + pa, sb);
pa += strlen(sb);
}
strcpy(ub + pb, sb);
pb += strlen(sb);
}
nb = b % nab;
na = nab - nb;
strcpy(sa, ua);
a = na;
strcpy(sb, ub);
b = nb;
strcpy(sc, uc);
c = nc;
solve();
}
}
int main() {
scanf("%d %d %d", &a, &b, &c);
sa[0] = 'a';
sb[0] = 'b';
sc[0] = 'c';
solve();
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int x, y, z;
vector<char> at[100];
int l = 0;
scanf("%d %d %d", &x, &y, &z);
if (x > y + z && y + z > 0) {
for (int i = (long long int)0; i < x; i++) {
at[y + z - 1 - (i % (y + z))].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[i + z].push_back('b');
}
l = y + z;
} else if (x > 0) {
for (int i = (long long int)0; i < x; i++) {
at[i].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i % x].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[(i + z) % x].push_back('b');
}
l = x;
} else if (y > 0) {
for (int i = (long long int)0; i < y; i++) {
at[i].push_back('b');
}
for (int i = (long long int)0; i < z; i++) {
at[i % y].push_back('c');
}
l = y;
} else {
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
l = z;
}
for (int i = (long long int)0; i < l; i++) {
if (i % 2 == 0) {
for (int j = (long long int)0; j < at[l - 1 - i / 2].size(); j++) {
printf("%c", at[l - 1 - i / 2][j]);
}
} else {
for (int j = (long long int)0; j < at[i / 2].size(); j++) {
printf("%c", at[i / 2][j]);
}
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c, xa, xb, xc;
string AA, BB, CC, ss[110];
void iter() {
for (int i = 0; i < a; i++) ss[i] = AA;
for (int i = 0; i < c; i++) {
ss[i % a] += CC;
}
int ll = 0;
if (c % a == 0)
ll = 0;
else
ll = (c - 1) % a + 1;
int now = ll;
for (int i = 0; i < b; i++) {
ss[now] += BB;
now += 1;
if (now >= a) now = ll;
}
sort(ss, ss + a);
int cnt = 0;
xa = xb = xc = 0;
for (int i = 0; i < a; i++) {
if (i == 0 || ss[i] != ss[i - 1]) {
cnt += 1;
if (cnt == 1)
AA = ss[i];
else if (cnt == 2)
BB = ss[i];
else
CC = ss[i];
}
if (cnt == 1)
xa += 1;
else if (cnt == 2)
xb += 1;
else
xc += 1;
}
a = xa;
b = xb;
c = xc;
}
int main() {
scanf("%d%d%d", &a, &b, &c);
AA = "a";
BB = "b";
CC = "c";
while (b + c > 0) {
iter();
}
while (a--) {
cout << AA;
}
cout << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
inline bool chkmin(T &a, const T &b) {
return a > b ? a = b, 1 : 0;
}
template <typename T>
inline bool chkmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
}
const int oo = 0x3f3f3f3f;
const int maxn = 60;
int a[3];
int main() {
for (int i = (0), i_end_ = (3); i < i_end_; ++i) scanf("%d", a + i);
int n = a[0] + a[1] + a[2];
static char ans[maxn + 5];
for (int i = (0), i_end_ = (n); i < i_end_; ++i) {
static bool f[maxn + 5][maxn + 5][maxn + 5][maxn + 5];
for (int j = (0), j_end_ = (3); j < j_end_; ++j)
if (a[j] > 0) {
ans[i] = 'a' + j;
--a[j];
memset(f, 0, sizeof f);
f[a[0]][a[1]][a[2]][0] = 1;
for (int first = a[0]; first >= 0; --first)
for (int second = a[1]; second >= 0; --second)
for (int z = a[2]; z >= 0; --z)
for (int l = (0), l_end_ = (i + 1); l < l_end_; ++l)
if (f[first][second][z][l]) {
for (int k = (0), k_end_ = (3); k < k_end_; ++k) {
int b[3] = {first, second, z};
if (b[k]) {
--b[k];
if (ans[l] <= 'a' + k) {
if (ans[l] == 'a' + k)
l = (l + 1) % (i + 1);
else
l = 0;
f[b[0]][b[1]][b[2]][l] = 1;
}
}
}
}
if (f[0][0][0][0])
break;
else
++a[j];
}
}
printf("%s\n", ans);
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 55;
string res;
bool vis[maxn][maxn][maxn][maxn];
int failure[maxn];
void push() {
memset(failure, 0, sizeof(failure));
for (int s = 2; s <= res.size(); s++) {
failure[s] = failure[s - 1];
while (failure[s] > 0 && res[failure[s]] != res[s - 1])
failure[s] = failure[failure[s]];
if (res[failure[s]] == res[s - 1]) ++failure[s];
}
}
bool has_small_shift(string a, string b) {
for (int e = 0; e < a.size(); e++) {
for (int f = 0; f < b.size(); f++)
if (a[f] < b[f])
return true;
else if (a[f] > b[f])
break;
a.push_back(a[0]);
a.erase(a.begin());
}
return false;
}
bool has_small_pref(string a, string b) {
for (int e = 0; e < a.size(); e++) {
for (int f = 0; f < b.size(); f++) {
if (e + f == a.size()) break;
if (a[e + f] < b[f]) return true;
if (a[e + f] > b[f]) break;
}
}
return false;
}
bool solve(int qx, int qy, int qz, int pos) {
if (qx + qy + qz == 0) {
string pref;
for (int e = 0; e < pos; e++) pref.push_back(res[e]);
pref += res;
if (!has_small_pref(pref, res)) return true;
return false;
}
if (vis[qx][qy][qz][pos]) return false;
vis[qx][qy][qz][pos] = 1;
if (qz > 0) {
int nxt = pos;
bool go = true;
if (nxt == res.size()) {
string check = res;
check.push_back('c');
if (has_small_shift(check, res)) go = false;
}
if (go) {
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'c' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'c') nxt++;
if (solve(qx, qy, qz - 1, nxt)) return true;
}
}
if (res[pos] != 'c' && qy > 0) {
int nxt = pos;
bool go = true;
if (nxt == res.size()) {
string check = res;
check.push_back('b');
if (has_small_shift(check, res)) go = false;
}
if (go) {
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'b' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'b') nxt++;
if (solve(qx, qy - 1, qz, nxt)) return true;
}
}
if (res[pos] != 'c' && res[pos] != 'b' && qx > 0) {
int nxt = pos;
bool go = true;
if (nxt == res.size()) {
string check = res;
check.push_back('a');
if (has_small_shift(check, res)) go = false;
}
if (go) {
if (nxt == res.size()) nxt = failure[nxt];
while (nxt > 0 && 'a' != res[nxt]) nxt = failure[nxt];
if (res[nxt] == 'a') nxt++;
if (solve(qx - 1, qy, qz, nxt)) return true;
}
}
return false;
}
int M() {
int x, y, z;
if (!(cin >> x >> y >> z)) return 0;
int len = x + y + z;
res.clear();
for (int e = 0; e < len; e++) {
{
if (z > 0) {
res.push_back('c');
if (!has_small_pref(res, res)) {
push();
memset(vis, false, sizeof(vis));
if (solve(x, y, z - 1, 0)) {
z--;
continue;
}
}
res.pop_back();
}
}
{
if (y > 0) {
res.push_back('b');
push();
memset(vis, false, sizeof(vis));
if (!has_small_pref(res, res)) {
if (solve(x, y - 1, z, 0)) {
y--;
continue;
}
}
res.pop_back();
}
}
{
if (x > 0) {
res.push_back('a');
push();
if (!has_small_pref(res, res)) {
memset(vis, false, sizeof(vis));
if (solve(x - 1, y, z, 0)) {
x--;
continue;
}
}
res.pop_back();
}
}
assert(0);
}
cout << res << endl;
return 1;
}
int main() {
while (M())
;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename Arg1>
void __f(const char* name, Arg1&& arg1) {
cerr << name << ": " << arg1 << endl;
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args) {
const char* comma = strchr(names + 1, ',');
cerr.write(names, comma - names) << ": " << arg1 << " |";
__f(comma + 1, args...);
}
const int INF = 1 << 30;
const int MOD = 1e9 + 7;
int main() {
int x, y, z;
cin >> x >> y >> z;
multiset<string> A;
for (int i = 0; i < x; ++i) A.insert("a");
for (int i = 0; i < y; ++i) A.insert("b");
for (int i = 0; i < z; ++i) A.insert("c");
for (int k = 1; k < x + y + z; ++k) {
auto it1 = A.begin();
auto it2 = prev(A.end());
A.erase(it1);
A.erase(it2);
A.insert(*it1 + *it2);
}
cout << *A.begin() << endl;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int x, y, z;
vector<char> at[100];
int l = 0;
scanf("%d %d %d", &x, &y, &z);
if (x > y + z && y + z > 0) {
for (int i = (long long int)0; i < x; i++) {
at[y + z - 1 - (i % (y + z))].push_back('a');
}
for (int i = (long long int)0; i < y; i++) {
at[i].push_back('b');
}
for (int i = (long long int)0; i < z; i++) {
at[i + y].push_back('c');
}
l = y + z;
} else if (x > 0) {
for (int i = (long long int)0; i < x; i++) {
at[i].push_back('a');
}
for (int i = (long long int)0; i < z; i++) {
at[i % x].push_back('c');
}
for (int i = (long long int)0; i < y; i++) {
at[(i + z) % x].push_back('b');
}
l = x;
} else if (y > z && z > 0) {
for (int i = (long long int)0; i < y; i++) {
at[z - 1 - (i % z)].push_back('b');
}
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
l = z;
} else if (y > z) {
for (int i = (long long int)0; i < y; i++) {
at[0].push_back('b');
}
l = y;
} else {
for (int i = (long long int)0; i < z; i++) {
at[i].push_back('c');
}
l = z;
}
for (int i = (long long int)0; i < l; i++) {
if (i % 2 == 0) {
for (int j = (long long int)0; j < at[l - 1 - i / 2].size(); j++) {
printf("%c", at[l - 1 - i / 2][j]);
}
} else {
for (int j = (long long int)0; j < at[i / 2].size(); j++) {
printf("%c", at[i / 2][j]);
}
}
}
printf("\n");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAX_N = 100005;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
struct dice {
mt19937 mt;
dice() {
random_device rd;
mt = mt19937(rd());
}
int operator()(int x) { return this->operator()(0, x - 1); }
int operator()(int x, int y) {
uniform_int_distribution<int> dist(x, y);
return dist(mt);
}
} dc;
string f(string s) {
int N = s.length();
string mi = "z";
for (int t = 0; t < N; t++) {
mi = min(mi, s);
rotate(s.begin(), s.begin() + 1, s.end());
}
return mi;
}
int main() {
int A, B, C;
cin >> A >> B >> C;
string s;
for (int t = 0; t < A; t++) s.push_back('a');
for (int t = 0; t < B; t++) s.push_back('b');
for (int t = 0; t < C; t++) s.push_back('c');
int N = s.length();
string ma = f(s);
for (int t = 0; t < 100000; t++) {
int i = dc(N), j = dc(N);
swap(s[i], s[j]);
string mi = f(s);
if (mi < ma)
swap(s[i], s[j]);
else
ma = mi;
}
cout << ma << endl;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a, b, c;
char model[55];
vector<char> ans[55];
int p;
void solve() {
for (int i = (1); i <= (a); i++) ans[i].push_back('a');
int id = 1;
for (int i = (1); i <= (c); i++) {
ans[id].push_back('c');
id = id % a + 1;
}
for (int i = (1); i <= (b); i++) {
ans[id].push_back('b');
id = id % b + 1;
}
for (int i = (1); i <= (a); i++) {
for (auto out : ans[i]) {
printf("%c", out);
}
}
}
int main() {
scanf("%d %d %d", &a, &b, &c);
if (a == 0 && b == 0) {
for (int i = (1); i <= (c); i++) printf("c");
} else if (a == 0) {
int boc = c / b;
model[++p] = 'b';
for (int i = (1); i <= (boc); i++) model[++p] = 'c';
c %= b;
for (int i = (1); i <= (b); i++) {
printf("%s", model + 1);
if (c > 0) {
printf("c");
c--;
}
}
} else
solve();
puts("");
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits\stdc++.h>
using namespace std;
int main() {
int x, y, z; cin >> x >> y >> z;
multiset<string> st;
for (int i = 1;i <= x; i++) st.insert("a");
for (int i = 1;i <= y; i++) st.insert("b");
for (int i = 1;i <= z; i++) st.insert("c");
while (st.size() != 1) {
auto be = st.begin(), ed = st.end(); ed--;
st.insert(*be + *ed);
st.erase(be), st.erase(ed);
}
cout << *st.begin() << endl;
return 0;
} |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
string s[100], S[100];
int main() {
scanf("%d%d%d", &x, &y, &z);
if (!x && !y) {
for (int i = 1; i <= z; ++i) printf("%c", 'c');
} else if (!x) {
for (int i = 1; i <= y; ++i) s[i] = 'b';
for (; z;) {
for (int i = y; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
for (int i = 1; i <= y; ++i)
for (int j = 0; j <= (int)s[i].length() - 1; ++j) {
printf("%c", s[i][j]);
}
} else {
for (int i = 1; i <= x; ++i) s[i] = 'a';
for (; z;) {
for (int i = x; i; --i)
if (z) {
s[i] = s[i] + 'c';
--z;
}
}
int k = x;
for (int i = 1; i <= x - 1; ++i)
if (s[i].length() != s[i + 1].length()) {
k = i;
break;
}
for (; y;) {
for (int i = k; i; --i)
if (y) {
s[i] = s[i] + 'b';
--y;
}
}
int X = 0, Y = 0, Z = 0, d[5] = {0};
for (int i = 1; i <= x - 1; ++i)
if (s[i] != s[i + 1]) {
d[++d[0]] = i;
}
d[++d[0]] = x;
if (d[0]) X = d[1];
if (d[0] > 1) Y = d[2] - d[1];
if (d[0] > 2) Z = d[3] - d[2];
for (int i = 1; i <= X; ++i) S[i] = 'a';
for (; Z;) {
for (int i = X; i; --i)
if (Z) {
S[i] = S[i] + 'c';
--Z;
}
}
k = X;
for (int i = 1; i <= X - 1; ++i)
if (S[i].length() != S[i + 1].length()) {
k = i;
break;
}
for (; Y;) {
for (int i = k; i; --i)
if (Y) {
S[i] = S[i] + 'b';
--Y;
}
}
for (int i = 1; i <= X; ++i)
for (int j = 0; j <= (int)S[i].length() - 1; ++j) {
if (S[i][j] == 'a') cout << s[d[1]];
if (S[i][j] == 'b') cout << s[d[2]];
if (S[i][j] == 'c') cout << s[d[3]];
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<cstdio>
int main(){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
int b[x]={};
int c[x]={};
if(x>y+z){
for(int i=x-1;i>=x-y;i--){
b[i]++;
}
for(int i=x-y-1;i>=x-y-z;i--){
c[i]++;
}
}
else{
if(x<=z){
if(z%x==0){
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=0;i<x;i++){
b[i]+=y/x;
}
for(int i=x-1;i>=x-y%x;i--){
b[i]++;
}
}else{
for(int i=0;i<x;i++){
c[i]+=z/x;
}
for(int i=x-1;i>=x-z%x;i--){
c[i]++;
}
int k=x-z%x;
for(int i=0;i<k;i++){
b[i]+=y/k;
}
for(int i=0;i<y%k;i--){
b[i]++;
}
}
}else{
for(int i=x-1;i>=x-z;i++){
c[i]++;
}
int k=x-z;
for(int i=0;i<k;i++){
b[i]+=x/k;
}
for(int i=k-1;i>=k-x%k;i--){
b[i]++;
}
}
}
for(int i=0;i<x;i++){
printf("a");
for(int j=0;j<c[i];j++){
printf("c");
}
for(int j=0;j<b[i];j++){
printf("b");
}
}
printf("\n");
return 0;
} |
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string f(int x, int y, int z, string a, string b, string c) {
if (y == 0 && z == 0) {
string ret;
for (int i = 0; i < x; i++) ret += a;
return ret;
}
if (x == 0) return f(y, z, 0, b, c, a);
if (y == 0 && z) return f(x, z, y, a, c, b);
if (x <= y + z) {
string na = a, nb = a;
for (int i = 0; i < z / x; i++) {
na += c;
nb += c;
}
for (int i = 0; i < z % x; i++) nb += c;
for (int i = 0; i < y / (x - z % x); i++) na += b;
return f(x - z % x, z % x, y % (x - z % x), na, nb, b);
} else {
string na = a, nb = a + b, nc = a + c;
return f(x - y - z, y, z, na, nb, nc);
}
}
int X, Y, Z;
int main() {
cin >> X >> Y >> Z;
cout << f(X, Y, Z, "a", "b", "c");
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int x, y, z;
void charput(int par) {
cout << (char)('a' + par);
if (par == 0)
--x;
else if (par == 1)
--y;
else
--z;
}
int main() {
cin >> x >> y >> z;
if (x > 0) {
charput(0);
} else if (y > 0) {
charput(1);
} else {
charput(2);
}
int end = x + y + z;
for (int i = 0; i < end; i++) {
if (x > 2) {
charput(0);
} else if (x == 1 && (y > 1 || z > 1)) {
if (y > z)
charput(1);
else
charput(2);
} else if (x == 1) {
charput(0);
} else {
if (y > z)
charput(1);
else
charput(2);
}
}
return 0;
}
|
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift | For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`).
You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically.
Compute the lexicographically largest possible value of f(T).
Constraints
* 1 \leq X + Y + Z \leq 50
* X, Y, Z are non-negative integers.
Input
Input is given from Standard Input in the following format:
X Y Z
Output
Print the answer.
Examples
Input
2 2 0
Output
abab
Input
1 1 1
Output
acb | {
"input": [
"2 2 0",
"1 1 1"
],
"output": [
"abab",
"acb"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize "-O3"
using namespace std;
string solve(string sa, int a, string sb, int b, string sc, int c) {
if (a == 0) {
return solve(sb, b, sc, c, "", 0);
}
if (a <= b + c) {
vector<string> vv(a, sa);
int g = c / a;
for (int i = 0; i < vv.size(); ++i)
for (int j = 0; j < g; ++j) vv[i] += sc;
g = a - c % a;
for (int i = g; i < a; ++i) vv[i] += sc;
for (int i = 0; i < b; ++i) vv[i % g] += sb;
vector<pair<string, int> > go;
int cur = 0;
for (int i = 0; i < vv.size(); ++i) {
++cur;
if (i == vv.size() - 1 || vv[i + 1] != vv[i]) {
go.push_back(make_pair(vv[i], cur));
cur = 0;
}
}
while (go.size() < 3) go.push_back(make_pair("", 0));
return solve(go[0].first, go[0].second, go[1].first, go[1].second,
go[2].first, go[2].second);
} else {
if (b + c == 0) {
string ans;
for (int i = 0; i < a; ++i) ans += sa;
return ans;
}
vector<string> vv(b + c);
for (int i = 0; i < a; ++i) vv[i % (b + c)] += sa;
for (int i = 0; i < c; ++i) vv[i] += sc;
for (int i = 0; i < b; ++i) vv[c + i] += sb;
sort(vv.begin(), vv.end());
vector<pair<string, int> > go;
int cur = 0;
for (int i = 0; i < vv.size(); ++i) {
++cur;
if (i == vv.size() - 1 || vv[i + 1] != vv[i]) {
go.push_back(make_pair(vv[i], cur));
cur = 0;
}
}
while (go.size() < 3) go.push_back(make_pair("", 0));
return solve(go[0].first, go[0].second, go[1].first, go[1].second,
go[2].first, go[2].second);
}
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int a, b, c;
cin >> a >> b >> c;
cout << solve("a", a, "b", b, "c", c) << "\n";
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.