Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define REP(i,n) for(int i=0,_n=(int)(n);i<_n;++i) template<class T>bool chmin(T&a,const T&b){return a>b?(a=b,true):false;} template<class T>bool chmax(T&a,const T&b){return a<b?(a=b,true):false;} int nextInt() { int x; scanf("%d", &x); return x;} int main2() { int X = nextInt(); int Y = nextInt(); int Z = nextInt(); vector<string> v; REP(i, X) v.push_back("a"); REP(i, Y) v.push_back("b"); REP(i, Z) v.push_back("c"); while (v.size() > 1) { sort(v.begin(), v.end()); v.front() += v.back(); v.erase(v.begin() + v.size() - 1); } cout << v.front() << endl; return 0; } int main() { for (;!cin.eof();cin>>ws) main2(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long lint; typedef pair<int, int> pi; const int mod = 1e9 + 7; const int MAXN = 4005; #define rend fuck int x, y, z; string s; int dp[51][51][51][51]; int link[51][3]; // -1 if failure, otherwise follow it's next int fail[51]; bool rend[MAXN]; bool f(int x, int y, int z, int m){ if(m == s.size()) m = fail[m]; if(x + y + z == 0) return rend[m]; if(~dp[x][y][z][m]) return dp[x][y][z][m]; int ret = 0; if(link[m][0] != -1 && x && f(x-1, y, z, link[m][0])) ret = 1; if(link[m][1] != -1 && y && f(x, y-1, z, link[m][1])) ret = 1; if(link[m][2] != -1 && z && f(x, y, z-1, link[m][2])) ret = 1; return dp[x][y][z][m] = ret; } bool trial(){ int p = 0; for(int i=1; i<s.size(); i++){ while(p && s[i] != s[p]) p = fail[p]; if(s[i] == s[p]) p++; fail[i+1] = p; } for(int i=0; i<s.size(); i++){ for(int j=0; j<3; j++){ int pos = i; if(s[i] > j + 'a'){ link[i][j] = -1; continue; } while(pos && s[pos] != j + 'a') pos = fail[pos]; if(s[pos] == j + 'a') pos++; link[i][j] = pos; } } for(int i=0; i<s.size(); i++){ int pos = i; rend[i] = 1; for(int j=0; j<s.size(); j++){ pos = link[pos][s[j] - 'a']; if(pos == -1){ rend[i] = 0; break; } } } memset(dp, -1, sizeof(dp)); return f(x, y, z, 0); } int main(){ cin >> x >> y >> z; while(s.size() < x + y + z){ s.push_back('c'); if(trial()) continue; s.back() = 'b'; if(trial()) continue; s.back() = 'a'; } cout << s << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<stdio.h> #include<iostream> #include<vector> #include<algorithm> #include<string> #include<string.h> #ifdef LOCAL #define eprintf(...) fprintf(stderr, __VA_ARGS__) #else #define NDEBUG #define eprintf(...) do {} while (0) #endif #include<cassert> using namespace std; typedef long long LL; typedef vector<int> VI; #define REP(i,n) for(int i=0, i##_len=(n); i<i##_len; ++i) #define EACH(i,c) for(__typeof((c).begin()) i=(c).begin(),i##_end=(c).end();i!=i##_end;++i) template<class T> inline void amin(T &x, const T &y) { if (y<x) x=y; } template<class T> inline void amax(T &x, const T &y) { if (x<y) x=y; } template<class Iter> void rprintf(const char *fmt, Iter begin, Iter end) { for (bool sp=0; begin!=end; ++begin) { if (sp) putchar(' '); else sp = true; printf(fmt, *begin); } putchar('\n'); } string dp[51][51][51]; int X, Y, Z; int N; string S; // qUUUU >= UUUUU bool ok() { REP (x, X+1) REP (y, Y+1) REP (z, Z+1) dp[x][y][z].clear(); REP (x, X+1) REP (y, Y+1) REP (z, Z+1) if (x+y+z == (int)dp[x][y][z].size()) { for (char c='c'; c>='a'; c--) { string g = string(1, c) + dp[x][y][z]; string &t = (c=='c'? dp[x][y][z+1]: (c=='b'? dp[x][y+1][z]: dp[x+1][y][z])); if (t.empty() || t < g) if (g + S + S > S + S) { t = g; } } } return !dp[X][Y][Z].empty(); } void MAIN() { scanf("%d%d%d", &X, &Y, &Z); N = X + Y + Z; S = string(N, 'a'); REP (i, N) { S[i] = 'c'; if (!ok()) { S[i] = 'b'; if (!ok()) S[i] = 'a'; } } puts(S.c_str()); } int main() { int TC = 1; // scanf("%d", &TC); REP (tc, TC) MAIN(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <string> #include <utility> #define llint long long using namespace std; typedef pair<llint, llint> P; int n; int x, y, z; string dp[55][55][55]; string ans; bool check(string s) { while(s.size() < n) s += 'a'; for(int i = 0; i <= x; i++){ for(int j = 0; j <= y; j++){ for(int k = 0; k <= z; k++){ dp[i][j][k] = ""; } } } dp[0][0][0] = s; for(int i = 0; i <= x; i++){ for(int j = 0; j <= y; j++){ for(int k = 0; k <= z; k++){ if(dp[i][j][k] < s) continue; if(i+1 <= x) dp[i+1][j][k] = max(dp[i+1][j][k], ('a' + dp[i][j][k]).substr(0, n)); if(j+1 <= y) dp[i][j+1][k] = max(dp[i][j+1][k], ('b' + dp[i][j][k]).substr(0, n)); if(k+1 <= z) dp[i][j][k+1] = max(dp[i][j][k+1], ('c' + dp[i][j][k]).substr(0, n)); } } } return (dp[x][y][z] >= s); } int main(void) { cin >> x >> y >> z; n = x + y + z; for(int i = 0; i < n; i++){ for(int j = 2; j >= 0; j--){ string s = ans + ((char)('a'+j)); if(check(s)){ ans = s; break; } } } cout << ans << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i = (a); i < (b); i++) #define RFOR(i,b,a) for(int i = (b) - 1; i >= (a); i--) #define ITER(it, a) for(typeof(a.begin()) it = a.begin(); it != a.end(); it++) #define FILL(a, value) memset(a, value, sizeof(a)) #define SZ(a) (int) a.size() #define ALL(a) a.begin(),a.end() #define PB push_back #define MP make_pair typedef long long LL; typedef vector<int> VI; typedef pair<int, int> PII; const double PI = acos(-1.0); const int INF = 1000 * 1000 * 1000 + 7; const LL LINF = INF * (LL)INF; string minShift(string s) { string res = s; FOR (it, 0, SZ(s)) { s += s[0]; s.erase(s.begin()); res = min(res, s); } return res; } string getString(vector<string> v) { string res; FOR (i, 0, SZ(v)) { res += v[i]; } return res; } string solveSmall(int a, int b, int c, string A, string B, string C) { vector<string> v; FOR (i, 0, a) { v.PB(A); } FOR (i, 0, b) { v.PB(B); } FOR (i, 0, c) { v.PB(C); } sort(ALL(v)); string res = getString(v); do { res = max(res, minShift(getString(v))); }while(next_permutation(ALL(v))); return res; } string getString(int cnt, string s) { string res; FOR (i, 0, cnt) { res += s; } return res; } string solveLarge(int a, int b, int c, string A, string B, string C) { //if (a + b + c <= 3) return solveSmall(a, b, c, A, B, C); if (a == 0) { a = b; A = B; b = c; B = C; c = 0; C = ""; } if (b == 0) { b = c; B = C; c = 0; C = ""; } if (b == 0 && c == 0) { return getString(a, A); } if (c >= a) { c -= a; A += C; return solveLarge(a, b, c, A, B, C); } C = A + C; a -= c; if (b >= a) { A += B; b -= a; swap(b, c); swap(B, C); } else { a -= b; B = A + B; } return solveLarge(a, b, c, A, B, C); } int main() { //freopen("in.txt", "r", stdin); //ios::sync_with_stdio(false); cin.tie(0); int x, y, z; cin>>x>>y>>z; string res = solveLarge(x, y, z, "a", "b", "c"); cout<<res<<endl; // FOR (a, 0, 5) // { // FOR (b, 0, 5) // { // FOR (c, 0, 5) // { // string r = solveSmall(a, b, c, "a", "b", "c"); // string s = solveLarge(a, b, c, "a", "b", "c"); // cout<<r<<endl<<s<<endl; // if (r != s) // { // cout<<"!! "<<endl; // cout<<a<<' '<<b<<' '<<c<<endl; // throw -1; // } // } // } // } // // cout<<"Done"<<endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define per(i,a,b) for(int i=(a);i>=(b);i--) #define REP(i,n) for(int i=0;i<(n);i++) #define fi first #define se second #define pb push_back #define mp make_pair using namespace std; typedef pair<int,int> pii; typedef vector<int> vi; typedef long long ll; template<class T> inline void read(T &x){ int f=0;x=0;char ch=getchar(); for(;!isdigit(ch);ch=getchar())f|=(ch=='-'); for(;isdigit(ch);ch=getchar())x=x*10+ch-'0'; if(f)x=-x; } string solve(string a,string b,int x,int y){ // assert(a.size()+b.size()<=20); // cerr<<a<<" "<<b<<" "<<x<<" "<<y<<endl; if(b+a<a+b) swap(a,b),swap(x,y); if(!x||!y){ string res; rep(i,1,x) res+=a; rep(i,1,y) res+=b; return res; } if(x<y){ int u=y/x,v=y%x; string A=a,B; while(u--) A+=b; B=A+b; return solve(A,B,x-v,v); } int u=x/y,v=x%y; string A,B; while(u--) A+=a; A+=b; B=a+A; return solve(A,B,y-v,v); } string solve(string a,string b,string c,int x,int y,int z){ if(b+a<a+b) swap(a,b),swap(x,y); if(c+a<a+c) swap(a,c),swap(x,z); if(c+b<b+c) swap(b,c),swap(y,z); if(!x) return solve(b,c,y,z); if(!y) return solve(a,c,x,z); if(!z) return solve(a,b,x,y); vector<string> s(x,a); REP(i,z) s[i%x]+=c; int cur=z%x; REP(i,y){ s[cur++]+=b; if(cur==x) cur=z%x; } map<string,int> t; REP(i,x) t[s[i]]++; string S[3]; int C[3]={0,0,0},k=0; for(auto x:t) S[k]=x.fi,C[k++]=x.se; return solve(S[0],S[1],S[2],C[0],C[1],C[2]); } int main(){ int x,y,z; cin>>x>>y>>z; cout<<solve("a","b","c",x,y,z)<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<stdio.h> #include<math.h> #include<algorithm> #include<queue> #include<deque> #include<string> #include<string.h> #include<vector> #include<set> #include<map> #include<stdlib.h> #include<cassert> using namespace std; const long long mod=1000000007; const long long inf=mod*mod; const long long d2=500000004; const double EPS=1e-6; const double PI=acos(-1.0); int ABS(int a){return max(a,-a);} long long ABS(long long a){return max(a,-a);} int C[1100]; int B[1100]; int ad=0; vector<string> str; void f(string aa,string bb,string cc,int a,int b,int c){ //printf("%s %s %s %d %d %d\n",aa.c_str(),bb.c_str(),cc.c_str(),a,b,c); if(a==0){ f(bb,cc,"",b,c,0); return; } if(b+c==0){ for(int i=0;i<a;i++)printf("%s",aa.c_str());printf("\n");return; } ad=0; for(int i=0;i<1100;i++)B[i]=C[i]=0; while(a==0){ a=b;b=c;c=0;ad++; } for(int i=0;i<c;i++){ C[i%a]++; } if(C[0]!=C[a-1]){ int f=0; for(int i=0;i<a;i++)if(C[a-1]==C[i])f++; for(int i=0;i<b;i++){ B[a-f+i%f]++; } }else{ for(int i=0;i<b;i++){ B[i%a]++; } } str.clear(); for(int i=a-1;i>=0;i--){ string tmp=""; tmp+=aa; for(int j=0;j<C[i];j++)tmp+=cc;//printf("%c",'c'+ad); for(int j=0;j<B[i];j++)tmp+=bb;//printf("%c",'b'+ad); str.push_back(tmp); } std::sort(str.begin(),str.end()); // for(int i=0;i<str.size();i++)printf("%s\n",str[i].c_str()); string ta="",tb="",tc=""; int va=0; int vb=0; int vc=0; int fi=0; int ph=0; for(int i=0;i<a;i++){ if(str[i]==str[fi]){ if(ph==0){va++;ta=str[i];} if(ph==1){vb++;tb=str[i];} if(ph==2){vc++;tc=str[i];} }else{ // printf("%s %s\n",str[i].c_str(),str[fi].c_str()); if(ph==0){ph++;vb++;tb=str[i];fi=i;} else if(ph==1){ph++;vc++;tc=str[i];fi=i;} } } f(ta,tb,tc,va,vb,vc); } int main(){ int a,b,c;scanf("%d%d%d",&a,&b,&c); f("a","b","c",a,b,c); /*for(int i=0;i<100;i++){ int a=rand()%10; int b=rand()%10; int c=rand()%10; if(a+b+c==0)continue; printf("%d %d %d: ",a,b,c); f("a","b","c",a,b,c); }*/ }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int a,b,c; multiset<string> se; int main(){ scanf("%d%d%d",&a,&b,&c); for (int i=1;i<=a;++i) se.insert("a"); for (int i=1;i<=b;++i) se.insert("b"); for (int i=1;i<=c;++i) se.insert("c"); while (se.size()>1){ string x=*se.begin(),y=*se.rbegin(); se.erase(se.begin()); se.erase(--se.end()); se.insert(x+y); } puts(se.begin()->c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define MOD 1000000007LL using namespace std; typedef long long ll; typedef pair<int,int> P; int x,y,z; vector<string> ss; int main(void){ scanf("%d%d%d",&x,&y,&z); for(int i=0;i<x;i++){ ss.push_back("a"); } for(int i=0;i<y;i++){ ss.push_back("b"); } for(int i=0;i<z;i++){ ss.push_back("c"); } while(ss.size()>1){ sort(ss.begin(),ss.end()); ss[0]+=ss[ss.size()-1]; ss.pop_back(); } cout << ss[0] << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<iostream> #include<set> using namespace std; multiset<string> s; int main() { int x,y,z; cin>>x>>y>>z; while(x--)s.insert("a"); while(y--)s.insert("b"); while(z--)s.insert("c"); while(s.size()>1) { string x=*s.begin()+*--s.end(); s.erase(s.begin()); s.erase(--s.end()); s.insert(x); } cout<<*s.begin()<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int x, y, z; scanf("%d %d %d", &x, &y, &z); multiset<string> chars; for (int i = 0; i < x; i++) chars.insert("a"); for (int i = 0; i < y; i++) chars.insert("b"); for (int i = 0; i < z; i++) chars.insert("c"); while (chars.size() > 1) { string first = *chars.begin(); chars.erase(chars.begin()); string last = *prev(chars.end()); chars.erase(prev(chars.end())); chars.insert(first + last); } printf("%s\n", chars.begin()->c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstring> #include <cstdio> #include <algorithm> #include <vector> #include <string> #include <iostream> using namespace std; int _w; vector<string> v; int main() { int a, b, c; _w = scanf( "%d%d%d", &a, &b, &c ); for( int i = 0; i < a; ++i ) v.push_back("a"); for( int i = 0; i < b; ++i ) v.push_back("b"); for( int i = 0; i < c; ++i ) v.push_back("c"); while( v.size() > 1 ) { sort(v.begin(), v.end()); string s1 = v.front(), s2 = v.back(); v.pop_back(); reverse(v.begin(), v.end()); v.pop_back(); v.push_back(s1+s2); } cout << v.front() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <vector> #include <set> #include <map> #include <unordered_set> #include <unordered_map> #include <queue> #include <ctime> #include <cassert> #include <complex> #include <string> #include <cstring> using namespace std; #ifdef LOCAL #define eprintf(...) fprintf(stderr, __VA_ARGS__) #else #define eprintf(...) 42 #endif typedef long long ll; typedef pair<int, int> pii; #define mp make_pair string solve(string A, int x, string B, int y, string C, int z) { if (x == 0) return solve(B, y, C, z, "", 0); if (y == 0 && z == 0) { string res = ""; while(x--) res += A; return res; } if (y == 0) return solve(A, x, C, z, "", 0); int sum = y + z; int p = x / sum; int q = x % sum; string As = ""; for (int i = 0; i < p; i++) As += A; string Ab = As + A; if (q == 0) { return solve(As + B, y, As + C, z, "", 0); } p = sum - q; if (z < q) { return solve(Ab + B, q - z, Ab + C, z, As + B, p); } if (z == q) { return solve(Ab + C, q, As + B, p, "", 0); } return solve(Ab + C, q, As + B, y, As + C, z - q); } int main() { // freopen("input.txt", "r", stdin); // freopen("output.txt", "w", stdout); int x, y, z; cin >> x >> y >> z; cout << solve("a", x, "b", y, "c", z) << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> #define gc getchar() #define ll long long #define pb push_back #define mk make_pair #define rint register int using namespace std; inline int read(){char ch=gc;int w=1,s=0;while(!isdigit(ch)){if(ch=='-') w=-1;ch=gc;};while(isdigit(ch)){s=s*10+ch-'0';ch=gc;} return w*s;} multiset<string> q; int main() { int a=read(),b=read(),c=read(); for(rint i=1;i<=a;++i) q.insert("a"); for(rint i=1;i<=b;++i) q.insert("b"); for(rint i=1;i<=c;++i) q.insert("c"); while(q.size()>=2) { string s=(*q.begin())+(*q.rbegin()); q.erase(q.begin()); q.erase(--q.end()); q.insert(s); } cout<<(*q.begin()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; multiset <string> s; int x,y,z; int main(){ cin>>x>>y>>z; while(x--)s.insert("a"); while(y--)s.insert("b"); while(z--)s.insert("c"); while(s.size()>1){ string a=*s.begin(); string b=*s.rbegin(); s.erase(s.lower_bound(a)); s.erase(s.lower_bound(b)); s.insert(a+b); } cout<<*s.begin()<<endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
// #include {{{ #include <iostream> #include <cassert> #include <cstring> #include <cstdlib> #include <cstdio> #include <cctype> #include <cmath> #include <ctime> #include <queue> #include <set> #include <map> #include <stack> #include <string> #include <bitset> #include <vector> #include <complex> #include <algorithm> using namespace std; // }}} // #define {{{ typedef long long ll; typedef double db; typedef pair<int,int> pii; typedef vector<int> vi; #define de(x) cout << #x << "=" << x << endl #define rep(i,a,b) for(int i=a;i<(b);++i) #define per(i,a,b) for(int i=(b)-1;i>=(a);--i) #define all(x) (x).begin(),(x).end() #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define fi first #define se second // }}} int main(){ multiset<string> S; rep(i,0,3){ int x; cin >> x; rep(j,0,x) S.insert(string(1 , i + 'a')); } while(sz(S) > 1){ auto it = S.end(); --it; string a = *S.begin() + *it; S.erase(it); S.erase(S.begin()); S.insert(a); } cout << *S.begin() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <stdio.h> #include <set> #include <string> int main() { std::multiset<std::string> set; for (int i = 0; i < 3; ++ i) { int x; scanf("%d", &x); for (int j = 0; j < x; ++ j) set.emplace(1, 'a' + i); } while (set.size() > 1) { auto it = -- set.end(); std::string s = *set.begin() + *it; set.erase(set.begin()); set.erase(it); set.emplace(s); } printf("%s\n", set.begin()->c_str()); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
//by yjz #include<bits/stdc++.h> using namespace std; #define FF first #define SS second #define PB push_back #define MP make_pair #define bged(v) (v).begin(),(v).end() #define foreach(it,s) for(__typeof((s).begin()) it=(s).begin();it!=(s).end();it++) typedef long long ll; const int Imx=2147483647; const ll Lbig=2e18; const int mod=1e9+7; //My i/o stream struct fastio { char s[100000]; int it,len; fastio(){it=len=0;} inline char get() { if(it<len)return s[it++];it=0; len=fread(s,1,100000,stdin); if(len==0)return EOF;else return s[it++]; } bool notend() { char c=get(); while(c==' '||c=='\n')c=get(); if(it>0)it--; return c!=EOF; } }_buff; #define geti(x) x=getnum() #define getii(x,y) geti(x),geti(y) #define getiii(x,y,z) getii(x,y),geti(z) #define puti(x) putnum(x),putchar(' ') #define putii(x,y) puti(x),puti(y) #define putiii(x,y,z) putii(x,y),puti(z) #define putsi(x) putnum(x),putchar('\n') #define putsii(x,y) puti(x),putsi(y) #define putsiii(x,y,z) putii(x,y),putsi(z) inline ll getnum() { ll r=0;bool ng=0;char c;c=_buff.get(); while(c!='-'&&(c<'0'||c>'9'))c=_buff.get(); if(c=='-')ng=1,c=_buff.get(); while(c>='0'&&c<='9')r=r*10+c-'0',c=_buff.get(); return ng?-r:r; } template<class T> inline void putnum(T x) { if(x<0)putchar('-'),x=-x; register short a[20]={},sz=0; while(x)a[sz++]=x%10,x/=10; if(sz==0)putchar('0'); for(int i=sz-1;i>=0;i--)putchar('0'+a[i]); } inline char getreal(){char c=_buff.get();while(c==' '||c=='\n')c=_buff.get();return c;} string sA="a"; string sB="b"; string sC="c"; int n,A,B,C; string S; string dp[52][52][52]; void upd(string &cur,string s,int tlen) { if(s.size()==tlen&&s+S+S.substr(0,n-s.size())>=S+S)cur=max(cur,s); } bool check() { // cerr<<"check:"<<S<<endl; for(int i=0;i<=A;i++) { for(int j=0;j<=B;j++) { for(int k=0;k<=C;k++) { string &cur=dp[i][j][k]; cur=""; if(i>0)upd(cur,sA+dp[i-1][j][k],i+j+k); if(j>0)upd(cur,sB+dp[i][j-1][k],i+j+k); if(k>0)upd(cur,sC+dp[i][j][k-1],i+j+k); // cerr<<i<<" "<<j<<" "<<k<<":"<<cur<<endl; } } } return dp[A][B][C].size()==n; } int main() { cin>>A>>B>>C; n=A+B+C; S.resize(n); for(int i=0;i<n;i++)S[i]='a'; for(int i=0;i<n;i++) { for(int j=1;j<3;j++) { S[i]='a'+j; if(!check()) { S[i]='a'+j-1; break; } } } cout<<S<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string solve(int a, int b, int c) { bool flag = false; if (a == 0) { flag = true; a = b; b = c; c = 0; } string res = ""; if (a == 0) { res = string(b, 'b'); } else { if (b == 0 && c == 0) { res = string(a, 'a'); } else { vector<string> put(a, "a"); for (int i = 0; i < c; i++) { put[i % a] += 'c'; } int ptr = c % a; for (int i = 0; i < b; i++) { put[ptr] += 'b'; ptr++; if (ptr == a) { ptr = c % a; } } map<string, int> mp; for (auto &s : put) { mp[s]++; } vector< pair<string, int> > v; for (auto &p : mp) { v.push_back(p); } assert(v.size() <= 3); while (v.size() < 3) { v.emplace_back("", 0); } string aux = solve(v[0].second, v[1].second, v[2].second); res = ""; for (int i = 0; i < (int) aux.size(); i++) { res += v[aux[i] - 'a'].first; } } } if (flag) { for (char &c : res) { c++; } } return res; } int main() { int a, b, c; scanf("%d %d %d", &a, &b, &c); cout << solve(a, b, c) << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef signed long long ll; #undef _P #define _P(...) (void)printf(__VA_ARGS__) #define FOR(x,to) for(x=0;x<(to);x++) #define FORR(x,arr) for(auto& x:arr) #define ITR(x,c) for(__typeof(c.begin()) x=c.begin();x!=c.end();x++) #define ALL(a) (a.begin()),(a.end()) #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) //------------------------------------------------------- void solve() { int i,j,k,l,r,x,y; string s; int A,B,C; cin>>A>>B>>C; vector<string> V; while(A--) V.push_back("a"); while(B--) V.push_back("b"); while(C--) V.push_back("c"); while(V.size()>1) { sort(ALL(V)); V[0]+=V.back(); V.pop_back(); } cout<<V[0]<<endl; } int main(int argc,char** argv){ string s;int i; if(argc==1) ios::sync_with_stdio(false), cin.tie(0); FOR(i,argc-1) s+=argv[i+1],s+='\n'; FOR(i,s.size()) ungetc(s[s.size()-1-i],stdin); cout.tie(0); solve(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
// start fold #include<iostream> #include<cstdio> #include<cstdlib> #include<algorithm> #include<vector> #include<cstring> #include<set> #include<map> #include<cmath> #include<queue> #include<bitset> using namespace std; #define ri register int #define il inline #define LL long long #define ull unsigned long long #define pb push_back #define mp make_pair #define pii pair<int,int> #define fi first #define se second #define enter putchar('\n') #define size(x) ((int)x.size()) #define mem0(x) memset(x,0,sizeof(x)) template<class T>il void in(T &x) { x=0; short f=1; char c=getchar(); while(c<'0'||c>'9') { if(c=='-') f=-1; c=getchar(); } while(c>='0'&&c<='9') x=x*10+(c^'0'),c=getchar(); x*=f; } template <typename T,typename ...Args>il void in(T &x, Args &...args) { in(x); in(args...); } template<class T>il void out(T x,const char c='\n') { static short st[30]; short m=0; if(x<0) putchar('-'),x=-x; do st[++m]=x%10,x/=10; while(x); while(m) putchar(st[m--]|'0'); putchar(c); } template <typename T,typename ...Args>il void out(const T &x,const Args &...args) { out(x,' '); out(args...); } template<class T>il void print(T a[],int n) { if(n<=0) return; for(ri i=0; i<n; ++i) out(a[i],' '); enter; } namespace i207M { // end fold multiset<string>s; signed main() { #ifdef M207 freopen("in.in","r",stdin); // freopen("out.out","w",stdout); #endif int a,b,c; in(a,b,c); for(ri i=1; i<=a; ++i) s.insert("a"); for(ri i=1; i<=b; ++i) s.insert("b"); for(ri i=1; i<=c; ++i) s.insert("c"); while(size(s)>1) { string t=*s.begin()+*s.rbegin(); s.erase(s.begin()),s.erase(--s.end()); s.insert(t); } cout<<*s.begin(); return 0; } // start fold } signed main() { i207M::main(); return 0; } // end fold
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define For(i,a,b) for(int i=a,i##E=b;i<=i##E;++i) #define rFor(i,a,b) for(int i=a,i##E=b;i>=i##E;--i) typedef long long LL; using namespace std; template<typename T>inline bool chkmin(T &a,const T &b){return a>b?a=b,1:0;} template<typename T>inline bool chkmax(T &a,const T &b){return a<b?a=b,1:0;} template<typename T>inline void read(T &x) { x=0;int _f(0);char ch=getchar(); while(!isdigit(ch))_f|=(ch=='-'),ch=getchar(); while( isdigit(ch))x=x*10+ch-'0',ch=getchar(); x=_f?-x:x; } inline void file() { #ifdef ztzshiwo freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #endif } int X,Y,Z; multiset<string>S; multiset<string>::iterator it; string x,y; int main() { file(); read(X),read(Y),read(Z); For(i,1,X)S.insert("a"); For(i,1,Y)S.insert("b"); For(i,1,Z)S.insert("c"); while(S.size()>1) { it=S.begin(); x=*it;S.erase(it); it=S.end();--it; y=*it;S.erase(it); S.insert(x+y); } cout<<*S.begin()<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
//minamoto #include<bits/stdc++.h> #define R register #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i) #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v) template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;} template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;} using namespace std; struct node{ string s;int c; inline node(R string ss,R int cc):s(ss),c(cc){} inline bool operator <(const node &b)const{return s<b.s;} };set<node>s; int x,y,z; int main(){ scanf("%d%d%d",&x,&y,&z); if(x)s.insert(node("a",x)); if(y)s.insert(node("b",y)); if(z)s.insert(node("c",z)); while(2333){ if(s.size()==1){ node p=*s.begin(); fp(i,1,p.c)cout<<p.s; puts(""); return 0; } R node p=*s.begin(),q=*--s.end(); s.erase(s.begin()),s.erase(--s.end()); R int k=min(p.c,q.c);s.insert(node(p.s+q.s,k)); if(p.c-k)s.insert(node(p.s,p.c-k)); if(q.c-k)s.insert(node(q.s,q.c-k)); } return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int a, b, c; scanf("%d%d%d", &a, &b, &c); multiset<string> s; while (a --) s.insert("a"); while (b --) s.insert("b"); while (c --) s.insert("c"); while ((int) s.size() > 1) { string t = *s.begin() + *--s.end(); s.erase(s.begin()); s.erase(--s.end()); s.insert(t); } printf("%s\n", s.begin() -> c_str()); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<LL,LL> PII; string solve(vector<string> data, vector<int> cnt) { if(data.size() == 1) { string s; for(int i=0; i<cnt[0]; i++) s += data[0]; return s; } vector<string> base; for(int i=0; i<cnt[0]; i++) { base.push_back(data[0]); } int pos = 0; if(data.size() == 3) { for(int i=0; i<cnt[2]; i++) { base[i%cnt[0]] += data[2]; } pos = cnt[2] % cnt[0]; } for(int i=0; i<cnt[1]; i++) { base[pos + i % (cnt[0] - pos)] += data[1]; } vector<string> nextd; vector<int> nextc; for(int i=base.size()-1; i>=0; i--) { if(nextd.size() == 0) { nextd.push_back(base[i]); nextc.push_back(1); continue; } if(nextd.back() == base[i]) { nextc[nextc.size()-1]++; } else { nextd.push_back(base[i]); nextc.push_back(1); } } return solve(nextd, nextc); } int main() { int a,b,c; cin >> a >> b >> c; vector<string> data; vector<int> val; if(a!=0) { data.push_back("a"); val.push_back(a); } if(b!=0) { data.push_back("b"); val.push_back(b); } if(c!=0) { data.push_back("c"); val.push_back(c); } string ans = solve(data, val); cout << ans << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<set> #include<map> #include<deque> #include<queue> #include<stack> #include<cmath> #include<ctime> #include<bitset> #include<string> #include<vector> #include<cstdio> #include<cstdlib> #include<cstring> #include<climits> #include<complex> #include<iostream> #include<algorithm> #define ll long long using namespace std; int x,y,z; multiset<string>S; multiset<string>::iterator it; int main() { scanf("%d%d%d",&x,&y,&z); for(int i=1;i<=x;i++) S.insert("a"); for(int i=1;i<=y;i++) S.insert("b"); for(int i=1;i<=z;i++) S.insert("c"); while(S.size()>1) { it=S.end(); it--; string ss=(*S.begin())+(*it); S.erase(S.begin()); S.erase(it); S.insert(ss); } cout<<(*S.begin())<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; multiset<string> s; int main(){ //freopen("beargguy.in","r",stdin); //freopen("beargguy.out","w",stdout); int r,b,g; scanf("%d%d%d",&r,&b,&g); for(int i=1;i<=r;i++){ string a="a"; s.insert(a); } for(int i=1;i<=b;i++){ string a="b"; s.insert(a); } for(int i=1;i<=g;i++){ string a="c"; s.insert(a); } string ans; while(!s.empty()){ string fir=*s.begin(); s.erase(s.begin()); if(s.empty()){ ans=fir; break; } string las=*(--s.end()); s.erase(--s.end()); if(s.empty()){ ans=fir+las; break; } s.insert(fir+las); } cout<<ans<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define MAXN 4005 #define eps 1e-10 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } struct node { string s;int num; friend bool operator < (const node &a,const node &b) { return a.s < b.s; } }; set<node> S; int x,y,z; void Solve() { read(x);read(y);read(z); if(x) S.insert((node){"a",x}); if(y) S.insert((node){"b",y}); if(z) S.insert((node){"c",z}); while(1) { if(S.size() == 1) { node p = *S.begin(); for(int i = 1 ; i <= p.num ; ++i) { cout << p.s; } enter; break; } node s0 = *S.begin(),t0 = *(--S.end()); S.erase(S.begin());S.erase(--S.end()); int k = min(s0.num,t0.num); S.insert((node){s0.s + t0.s,k}); if(s0.num > k) S.insert((node){s0.s,s0.num - k}); if(t0.num > k) S.insert((node){t0.s,t0.num - k}); } } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <sstream> #include <cstdio> #include <cstdlib> #include <cmath> #include <ctime> #include <cstring> #include <string> #include <vector> #include <stack> #include <queue> #include <deque> #include <map> #include <set> #include <bitset> #include <numeric> #include <utility> #include <iomanip> #include <algorithm> #include <functional> #include <unordered_map> using namespace std; #define REP(i, s) for (int i = 0; i < s; ++i) #define ALL(v) (v.begin(), v.end()) #define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl #define EACH(i, s) for (__typeof__((s).begin()) i = (s).begin(); i != (s).end(); ++i) template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P) { return s << '<' << P.first << ", " << P.second << '>'; } template<class T> ostream& operator << (ostream &s, vector<T> P) { for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; } template<class T> ostream& operator << (ostream &s, vector<vector<T> > P) { for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; } template<class T> ostream& operator << (ostream &s, set<T> P) { EACH(it, P) { s << "<" << *it << "> "; } return s << endl; } template<class T1, class T2> ostream& operator << (ostream &s, map<T1,T2> P) { EACH(it, P) { s << "<" << it->first << "->" << it->second << "> "; } return s << endl; } string solve(string a, string b, string c, int x, int y, int z) { if (y + z == 0) { string res = ""; for (int i = 0; i < x; ++i) res += a; return res; } if (x == 0) return solve(b, c, "", y, z, 0); int p = x / (y + z); int r = x % (y + z); string A = ""; for (int i = 0; i < p; ++i) A += a; if (z >= r) { string na = A + a + c; string nb = A + b; string nc = A + c; return solve(na, nb, nc, r, y, z - r); } else { string na = A + a + b; string nb = A + a + c; string nc = A + b; return solve(na, nb, nc, r - z, z, y + z - r); } } int main() { int x, y, z; while (cin >> x >> y >> z) { cout << solve("a", "b", "c", x, y, z) << endl; } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
/** * author: tourist * created: 08.10.2017 15:50:42 **/ #include <bits/stdc++.h> using namespace std; string solve(int a, int b, int c) { bool flag = false; if (a == 0) { flag = true; a = b; b = c; c = 0; } string res = ""; if (a == 0) { res = string(b, 'b'); } else { if (b == 0 && c == 0) { res = string(a, 'a'); } else { vector<string> put(a, "a"); for (int i = 0; i < c; i++) { put[i % a] += 'c'; } int ptr = c % a; for (int i = 0; i < b; i++) { put[ptr] += 'b'; ptr++; if (ptr == a) { ptr = c % a; } } map<string, int> mp; for (auto &s : put) { mp[s]++; } vector< pair<string, int> > v; for (auto &p : mp) { v.push_back(p); } assert(v.size() <= 3); while (v.size() < 3) { v.emplace_back("", 0); } string aux = solve(v[0].second, v[1].second, v[2].second); res = ""; for (int i = 0; i < (int) aux.size(); i++) { res += v[aux[i] - 'a'].first; } } } if (flag) { for (char &c : res) { c++; } } return res; } int main() { int a, b, c; scanf("%d %d %d", &a, &b, &c); cout << solve(a, b, c) << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <cstdlib> #include <algorithm> #include <vector> #include <cstring> #include <queue> #include <map> #include <set> #include <string> #include <cmath> using namespace std; typedef long long int ll; typedef pair <int,int> P; string solve(int X,int Y,int Z) { //printf("%d %d %d\n",X,Y,Z); if(Y==0&&Z==0) { string ret=""; for(int i=0;i<X;i++) ret+="A"; return ret; } if(X==0) { string ret=solve(Y,Z,0); for(int i=0;i<ret.size();i++) { if(ret[i]=='A') ret[i]='B'; else ret[i]='C'; } return ret; } else if(Y==0) { string ret=solve(X,Z,0); for(int i=0;i<ret.size();i++) if(ret[i]=='B') ret[i]='C'; return ret; } if(Z==0) { if(X%Y==0) { string ret=""; for(int i=0;i<Y;i++) { for(int j=0;j<X/Y;j++) ret+="A"; ret+="B"; } return ret; } string ret=solve(X%Y,Y-(X%Y),0); string ans=""; for(int i=0;i<ret.size();i++) { if(ret[i]=='A') { for(int j=0;j<=X/Y;j++) ans+="A"; ans+="B"; } else { for(int j=0;j<X/Y;j++) ans+="A"; ans+="B"; } } //printf("%d %d %d : %s\n",X,Y,Z,ans.c_str()); return ans; } int z=X%(Y+Z),k=(X+Y+Z-1)/(Y+Z); if(z==0) z=Y+Z; if(z<=Z) { string ret=solve(z,Y,Z-z); string ans=""; for(int i=0;i<ret.size();i++) { if(ret[i]=='A') { for(int j=0;j<k;j++) ans+="A"; ans+="C"; } else { for(int j=0;j<k-1;j++) ans+="A"; ans+=ret[i]; } } //printf("%d %d %d : %s\n",X,Y,Z,ans.c_str()); return ans; } else { string ret=solve(z-Z,Z,Y-(z-Z)); string ans=""; for(int i=0;i<ret.size();i++) { if(ret[i]=='C') { for(int j=0;j<k-1;j++) ans+="A"; ans+="B"; } else { for(int j=0;j<k;j++) ans+="A"; if(ret[i]=='A') ans+="B"; else ans+="C"; } } return ans; } return ""; } int main() { int X,Y,Z; scanf("%d %d %d",&X,&Y,&Z); string ret=solve(X,Y,Z); for(int i=0;i<ret.size();i++) { if(ret[i]=='A') ret[i]='a'; if(ret[i]=='B') ret[i]='b'; if(ret[i]=='C') ret[i]='c'; } printf("%s\n",ret.c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string ans; int x,y,z; void dfs(int a,int b,int c,string x,string y,string z) { if (a==0) dfs(b,c,0,y,z,""); else if (c==0&&b==0) { for (int i=1;i<=a;i++) ans+=x; } else { string ra=x,rb,rc; for (int i=0;i<c/a;i++) ra+=z; rc=ra+z; int rrc=c%a; a-=(c%a); for (int i=0;i<b/a;i++) ra+=y; rb=ra+y; int rrb=b%a; a-=rrb; dfs(a,rrb,rrc,ra,rb,rc); } } int main() { scanf("%d%d%d",&x,&y,&z); ans.clear(); dfs(x,y,z,"a","b","c"); cout << ans << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<iostream> #include<cstdio> #include<cstring> #include<set> using namespace std; multiset<string> s; int main() { int A,B,C; scanf("%d %d %d",&A,&B,&C); for(int i=1;i<=A;i++) s.insert("a"); for(int i=1;i<=B;i++) s.insert("b"); for(int i=1;i<=C;i++) s.insert("c"); for(int i=1;i<=A+B+C-1;i++) { string s1,s2; s1=*s.begin(); s.erase(s.begin()); s2=*(--s.end()); s.erase(--s.end()); s.insert(s1+s2); } cout<<*s.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; int x, y, z; string doit(int d, int e, int f, string x, string y, string z) { //you have d a's, e b's, and f c's // cout << d << ' ' << e << ' ' << f << endl; if (d == 0) { if (e == 0) { string t; for (int i = 0; i < f; ++i) t += 'c'; return t; } string s[e+5]; for (int i = 0; i < e+5; ++i) s[i] = ""; for (int i = 0; i < e; ++i) s[i] += 'b'; int ct = 0; for (int i = 0; i < f; ++i) { s[ct] += 'c'; ct++; ct %= e; } int c1 = e; for (int i = 1; i < e; ++i) if (s[i] != s[i-1]) c1 = i; string t; t = doit(0, e-c1, c1, "", s[c1], s[0]); string ans = ""; for (int i = 0; i < t.length(); ++i) { if (t[i] == 'b') ans += s[c1]; else ans += s[0]; } return ans; } else { string s[d+5]; for (int i = 0; i < d+5; ++i) s[i] = ""; for (int i = 0; i < d; ++i) s[i] += 'a'; int ct = 0; for (int i = 0; i < f; ++i) { s[ct] += 'c'; ct++; ct %= d; } int ct1 = ct; for (int i = 0; i < e; ++i) { s[ct1] += 'b'; ct1++; if (ct1 >= d) ct1 = ct; } int c1 = d, c2 = d; for (int i = 1; i < d; ++i) { if (s[i] != s[i-1]) { if (c1 == d) c1 = i; else c2 = i; } } string t = doit(d-c2, c2-c1, c1, s[c2], s[c1], s[0]); string ans = ""; for (int i = 0; i < t.length(); ++i) { if (t[i] == 'a') ans += s[c2]; if (t[i] == 'b') ans += s[c1]; if (t[i] == 'c') ans += s[0]; } return ans; } } int main() { cin >> x >> y >> z; cout << doit(x, y, z, "a", "b", "c") << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; multiset<string> s; int a, b, c; int main() { scanf("%d%d%d", &a, &b, &c); for (int i = 0; i < a; i++) { s.insert("a"); } for (int i = 0; i < b; i++) { s.insert("b"); } for (int i = 0; i < c; i++) { s.insert("c"); } while (s.size() > 1) { string t = *s.begin() + *--s.end(); s.erase(s.begin()); s.erase(--s.end()); s.insert(t); } cout << *s.begin() << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstring> #include <cstdio> #include <iostream> #include <set> using namespace std; int main() { int x, y, z; cin >> x >> y >> z; multiset<string> st; for (int i = 1;i <= x; i++) st.insert("a"); for (int i = 1;i <= y; i++) st.insert("b"); for (int i = 1;i <= z; i++) st.insert("c"); while (st.size() != 1) { auto be = st.begin(), ed = st.end(); ed--; st.insert(*be + *ed); st.erase(be), st.erase(ed); } cout << *st.begin() << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int main() { std::multiset <std::string> M; int kase; for (scanf("%d", &kase); kase; --kase) M.insert("a"); for (scanf("%d", &kase); kase; --kase) M.insert("b"); for (scanf("%d", &kase); kase; --kase) M.insert("c"); while (M.size()>1) { std::string s = *M.begin(), t = *M.rbegin(); M.erase(M.lower_bound(s)); M.erase(M.lower_bound(t)); M.insert(s + t); } printf("%s\n", (*M.begin()).c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef pair<int, int> P; #define pb push_back #define rep(i, a, n) for(int i = (a); i < (n); i++) #define dep(i, a, n) for(int i = (a); i >= (n); i--) #define mod 1e9+7 __attribute__((constructor)) void initial() { cin.tie(0); ios::sync_with_stdio(false); } int x, y, z; multiset<string> ms; int main() { cin >> x >> y >> z; rep(i, 0, x) ms.insert("a"); rep(i, 0, y) ms.insert("b"); rep(i, 0, z) ms.insert("c"); while(ms.size() > 1) { auto itr1 = ms.begin(); auto itr2 = ms.end(); itr2--; ms.insert(*itr1 + *itr2); ms.erase(itr1); ms.erase(itr2); } cout << *ms.begin() << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <iostream> #include <string> #include <cmath> #include<algorithm> #include<stack> #include<queue> #include<map> #include<set> #include<iomanip> #define _USE_MATH_DEFINES #include <math.h> #include <functional> #include<complex> #include<cassert> using namespace std; #define rep(i,x) for(ll i=0;i<x;i++) #define repn(i,x) for(ll i=1;i<=x;i++) typedef long long ll; const ll INF = 1e17; const ll MOD = 1000000007; const ll MAX = 4000001; const long double eps = 1E-14; ll max(ll a, ll b) { if (a > b) { return a; } return b; } ll min(ll a, ll b) { if (a > b) { return b; } return a; } ll gcd(ll a, ll b) { if (b == 0) { return a; } if (a < b) { return gcd(b, a); } return gcd(b, a % b); } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } struct edge { ll ind; ll fr; ll to; ll d; }; class mint { long long x; public: mint(long long x = 0) : x((x% MOD + MOD) % MOD) {} mint operator-() const { return mint(-x); } mint& operator+=(const mint& a) { if ((x += a.x) >= MOD) x -= MOD; return *this; } mint& operator-=(const mint& a) { if ((x += MOD - a.x) >= MOD) x -= MOD; return *this; } mint& operator*=(const mint& a) { (x *= a.x) %= MOD; return *this; } mint operator+(const mint& a) const { mint res(*this); return res += a; } mint operator-(const mint& a) const { mint res(*this); return res -= a; } mint operator*(const mint& a) const { mint res(*this); return res *= a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t >> 1); a *= a; if (t & 1) a *= *this; return a; } // for prime MOD mint inv() const { return pow(MOD - 2); } mint& operator/=(const mint& a) { return (*this) *= a.inv(); } mint operator/(const mint& a) const { mint res(*this); return res /= a; } friend ostream& operator<<(ostream& os, const mint& m) { os << m.x; return os; } }; mint pw(mint a, ll b) { if (b == 0) { return 1; } mint ret = pw(a, b >> 1); ret *= ret; if (b & 1) { ret *= a; } return ret; } typedef vector<ll> vll; typedef vector<vector<ll>> vvll; typedef vector<vector<vector<ll>>> vvvll; typedef vector<mint> vmint; typedef vector<vector<mint>> vvmint; typedef vector<vector<vector<mint>>> vvvmint; ///////////////////////////////////// ll X, Y, Z; ll M; bool ch(string s) { //cout << s << endl; ll N = s.size(); vvll lis(N+1); rep(i, N+1) { //cout << i << endl; for (ll j = i; j <= N; j++) { if (s.substr(0, i) > s.substr(j - i, i)) { return false; } if (s.substr(0, i) == s.substr(j - i, i)) { lis[j].push_back(i); //cout << j << " "; } } //cout << endl; } vector<vvvll> dp(M + 1, vvvll(N + 1, vvll(X + 1, vll(Y + 1, 0)))); ll xx = X; ll yy = Y; rep(i, N) { if (s[i] == 'a') { xx--; } if (s[i] == 'b') { yy--; } } if (xx < 0 || yy < 0||xx+yy>M-N) { return false; } dp[N][N][xx][yy] = 1; for (ll i = N; i < M; i++)rep(j, N + 1)rep(x, X + 1)rep(y, Y + 1) { if (dp[i][j][x][y] == 0) { continue; } vll d(3,0); for (ll w : lis[j]) { if (w == N) { continue; } rep(k, 3) { if (s[w] - 'a' > k) { d[k] = -1; } else if (s[w] - 'a' == k) { d[k] = w + 1; } } } if (d[0] != -1 && x > 0)dp[i + 1][d[0]][x - 1][y] = 1; if (d[1] != -1 && y > 0) { dp[i + 1][d[1]][x][y - 1] = 1; } if (d[2] != -1 && i + x + y < M) { dp[i + 1][d[2]][x][y] = 1; } } //rep(i, M + 1)rep(j, N + 1)rep(x, X + 1)rep(y, Y + 1) { // if (dp[i][j][x][y] == 1) { cout << i << j << x << y << endl; } //} rep(j, N + 1) { if (dp[M][j][0][0] == 0) { continue; } bool b = 1; rep(k, j + 1) { string t = s.substr(j - k, k) + s.substr(0, N - k); if (t < s) { b = 0; } } if (b) { return true; } } return false; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cin >> X >> Y >> Z; M = X + Y + Z; string s = ""; rep(i, M) { if (ch(s + 'c')) { s += 'c'; } else if (ch(s + 'b')) { s += 'b'; } else if (ch(s + 'a')) { s += 'a'; } } cout << s << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string solve(int x, int y, int z) { if (y + z == 0) return string(x, 'a'); if (z + x == 0) return string(y, 'b'); if (x + y == 0) return string(z, 'c'); if (x == 0) { string nans = solve(y, z, 0); for (char &c : nans) c += 1; return nans; } if (z == 0) { string nans = solve(x, 0, y); for (char &c : nans) if (c == 'c') c = 'b'; return nans; } if (x >= z) { string nans = solve(x - z, z, y); string ans; for (char c : nans) { if (c == 'a') { ans += 'a'; } else if (c == 'b') { ans += "ac"; } else { ans += 'b'; } } return ans; } else { string nans = solve(x, y, z - x); string ans; for (char c : nans) { if (c == 'a') { ans += "ac"; } else { ans += c; } } return ans; } } int main() { ios_base::sync_with_stdio(false); int x, y, z; cin >> x >> y >> z; cout << solve(x, y, z) << "\n"; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <vector> #include <list> #include <map> #include <set> #include <deque> #include <queue> #include <stack> #include <bitset> #include <algorithm> #include <functional> #include <numeric> #include <utility> #include <sstream> #include <iostream> #include <iomanip> #include <cstdio> #include <cmath> #include <cstdlib> #include <cctype> #include <string> #include <cstring> #include <ctime> using namespace std; #define _int64 long long int main() { int i,j,k,lim,x,y,z,now; string s,ans; vector<string> a[2]; scanf("%d%d%d",&x,&y,&z); a[0].clear(); for (i=0;i<x;i++) { s=""; s.push_back('a'); a[0].push_back(s); } for (i=0;i<y;i++) { s=""; s.push_back('b'); a[0].push_back(s); } for (i=0;i<z;i++) { s=""; s.push_back('c'); a[0].push_back(s); } now=0; while (a[now].size()>1) { sort(a[now].begin(),a[now].end()); s=a[now][0]; //for (i=0;i<a[now].size();i++) // cout<<a[now][i]<<" "; //cout<<endl; for (i=0;i<a[now].size();i++) if (a[now][i]!=s) break; if (i==a[now].size()) break; lim=i; j=a[now].size()-1; a[1-now].clear(); for (i=0;i<=j;i++) { if ((j>=lim)&&(i<lim)) { a[1-now].push_back(a[now][i]+a[now][j]); j--; } else { a[1-now].push_back(a[now][i]); } } now=1-now; } ans=""; for (i=0;i<a[now].size();i++) ans=ans+a[now][i]; printf("%s\n",ans.c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> #define inf 0x7fffffff #define maxn 10005 #define maxm 120005 typedef long long ll; using namespace std; int x, y, z; multiset<string> Q; inline int read(){ int x = 0, f = 1;char ch = getchar(); while(ch > '9' || ch < '0'){if(ch == '-') f = -1;ch = getchar();} while(ch >= '0' && ch <= '9'){x = x * 10 + ch -'0';ch = getchar();} return x * f; } int main(){ int i,j,u,v,f; x = read(), y = read(), z = read(); for(i = 1;i <= x;i++) Q.insert("a"); for(i = 1;i <= y;i++) Q.insert("b"); for(i = 1;i <= z;i++) Q.insert("c"); while(Q.size() > 1){ string a = *Q.begin(), b = *Q.rbegin(); Q.erase(Q.begin()), Q.erase(Q.find(b)); Q.insert(a + b); } cout<<*Q.begin(); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define ms(s, n) memset(s, n, sizeof(s)) #define FOR(i, a, b) for (int i = (a); i < (b); i++) #define FORd(i, a, b) for (int i = (a) - 1; i >= (b); i--) #define FORall(it, a) for (__typeof((a).begin()) it = (a).begin(); it != (a).end(); it++) #define sz(a) int((a).size()) #define present(t, x) (t.find(x) != t.end()) #define all(a) (a).begin(), (a).end() #define uni(a) (a).erase(unique(all(a)), (a).end()) #define pb push_back #define pf push_front #define mp make_pair #define fi first #define se second #define prec(n) fixed<<setprecision(n) #define bit(n, i) (((n) >> (i)) & 1) #define bitcount(n) __builtin_popcountll(n) typedef long long ll; typedef unsigned long long ull; typedef long double ld; typedef pair<int, int> pi; typedef vector<int> vi; typedef vector<pi> vii; const int MOD = (int) 1e9 + 7; const int FFTMOD = 1007681537; const int INF = (int) 1e9; const ll LINF = (ll) 1e18; const ld PI = acos((ld) -1); const ld EPS = 1e-12; inline ll gcd(ll a, ll b) {ll r; while (b) {r = a % b; a = b; b = r;} return a;} inline ll lcm(ll a, ll b) {return a / gcd(a, b) * b;} inline ll fpow(ll n, ll k, int p = MOD) {ll r = 1; for (; k; k >>= 1) {if (k & 1) r = r * n % p; n = n * n % p;} return r;} template<class T> inline int chkmin(T& a, const T& val) {return val < a ? a = val, 1 : 0;} template<class T> inline int chkmax(T& a, const T& val) {return a < val ? a = val, 1 : 0;} inline ll isqrt(ll k) {ll r = sqrt(k) + 1; while (r * r > k) r--; return r;} inline ll icbrt(ll k) {ll r = cbrt(k) + 1; while (r * r * r > k) r--; return r;} inline void addmod(int& a, int val, int p = MOD) {if ((a = (a + val)) >= p) a -= p;} inline void submod(int& a, int val, int p = MOD) {if ((a = (a - val)) < 0) a += p;} inline int mult(int a, int b, int p = MOD) {return (ll) a * b % p;} inline int inv(int a, int p = MOD) {return fpow(a, p - 2, p);} inline int sign(ld x) {return x < -EPS ? -1 : x > +EPS;} inline int sign(ld x, ld y) {return sign(x - y);} #define db(x) cerr << #x << " = " << (x) << " "; #define endln cerr << "\n"; void solve() { multiset<string> st; FOR(i, 0, 3) { int x; cin >> x; while (x--) { string s = ""; s += char('a' + i); st.insert(s); } } while (sz(st) > 1) { string s = *st.begin(); string t = *st.rbegin(); st.erase(st.find(s)); st.erase(st.find(t)); st.insert(s + t); } cout << *st.begin() << "\n"; } int main() { ios_base::sync_with_stdio(0), cin.tie(0); int JUDGE_ONLINE = 1; if (fopen("in.txt", "r")) { JUDGE_ONLINE = 0; assert(freopen("in.txt", "r", stdin)); //assert(freopen("out.txt", "w", stdout)); } solve(); if (!JUDGE_ONLINE) { cout << "\nTime elapsed: " << 1000 * clock() / CLOCKS_PER_SEC << "ms\n"; } return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MX = 1000; char ans[MX][MX]; void solve2(int x, int y, int p) { if (x == 0) { for (int i = 0; i < y; i++) ans[p][i] = 'b'; } else if (y == 0) { for (int i = 0; i < x; i++) ans[p][i] = 'a'; } else if (x >= y) { int g = (x + y - 1) / y; int f = x % y; if (f == 0) f = y; solve2(f, y - f, p + 1); for (int i = 0, j = 0; i < y; i++) { for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a'; if (ans[p + 1][i] == 'a') ans[p][j++] = 'a'; ans[p][j++] = 'b'; } } else { int g = (x + y - 1) / x; int f = y % x; if (f == 0) f = x; solve2(x - f, f, p + 1); for (int i = 0, j = 0; i < x; i++) { ans[p][j++] = 'a'; for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'b'; if (ans[p + 1][i] == 'b') ans[p][j++] = 'b'; } } } void solve(int x, int y, int z, int p = 0) { if (x == 0) { solve2(y, z, p); for (int i = 0; i < y + z; i++) ans[p][i]++; } else if (y == 0) { solve2(x, z, p); for (int i = 0; i < x + z; i++) if (ans[p][i] == 'b') ans[p][i] = 'c'; } else if (z == 0) { solve2(x, y, p); } else if (x >= y + z) { int g = (x + y + z - 1) / (y + z); int f = x % (y + z); if (f == 0) f = y + z; if (z >= f) { solve(f, y, z - f, p + 1); for (int i = 0, j = 0; i < y + z; i++) { for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a'; if (ans[p + 1][i] == 'a') { ans[p][j++] = 'a'; ans[p][j++] = 'c'; } else { ans[p][j++] = ans[p + 1][i]; } } } else { solve(f - z, z, y + z - f, p + 1); for (int i = 0, j = 0; i < y + z; i++) { for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a'; if (ans[p + 1][i] == 'c') { ans[p][j++] = 'b'; } else { ans[p][j++] = 'a'; ans[p][j++] = ans[p + 1][i] + 1; } } } } else { static string S[MX]; for (int i = 0; i < x; i++) S[i] = "a"; for (int i = 0; i < z; i++) S[i % x] += "c"; for (int i = 0; i < y; i++) S[z % x + i % (x - z % x)] += "b"; set<string> strs; for (int i = 0; i < x; i++) strs.insert(S[i]); string SS[3]; int cnt[3] = {0, 0, 0}, iter = 0; for (auto& s : strs) { SS[iter] = s; cnt[iter] = 0; for (int i = 0; i < x; i++) if (S[i] == s) cnt[iter]++; iter++; } solve(cnt[0], cnt[1], cnt[2], p + 1); for (int i = 0, j = 0; i < x; i++) for (char c : SS[ans[p + 1][i] - 'a']) ans[p][j++] = c; } } int main() { int x, y, z; ignore = scanf("%d %d %d", &x, &y, &z); solve(x, y, z); ans[0][x + y + z] = 0; printf("%s\n", ans[0]); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> #define fi first #define se second #define rep(i,n) for(int i = 0; i < (n); ++i) #define rrep(i,n) for(int i = 1; i <= (n); ++i) #define drep(i,n) for(int i = (n)-1; i >= 0; --i) #define srep(i,s,t) for (int i = s; i < t; ++i) #define each(it,c) for(__typeof((c).begin()) it=(c).begin();it!=(c).end();it++) #define rng(a) a.begin(),a.end() #define maxs(x,y) x = max(x,y) #define mins(x,y) x = min(x,y) #define pb push_back #define sz(x) (int)(x).size() #define pcnt __builtin_popcount #define uni(x) x.erase(unique(rng(x)),x.end()) #define snuke srand((unsigned)clock()+(unsigned)time(NULL)); #define df(x) int x = in() #define dame { puts("-1"); return 0;} #define show(x) cout<<#x<<" = "<<x<<endl; #define PQ(T) priority_queue<T,vector<T>,greater<T> > #define bn(x) ((1<<x)-1) #define newline puts("") #define v(T) vector<T> #define vv(T) vector<vector<T>> using namespace std; typedef long long int ll; typedef unsigned uint; typedef unsigned long long ull; typedef pair<int,int> P; typedef vector<int> vi; typedef vector<vi> vvi; typedef vector<ll> vl; typedef vector<P> vp; inline int in() { int x; scanf("%d",&x); return x;} inline void priv(vi a) { rep(i,sz(a)) printf("%d%c",a[i],i==sz(a)-1?'\n':' ');} template<typename T>istream& operator>>(istream&i,vector<T>&v) {rep(j,sz(v))i>>v[j];return i;} template<typename T>string join(const vector<T>&v) {stringstream s;rep(i,sz(v))s<<' '<<v[i];return s.str().substr(1);} template<typename T>ostream& operator<<(ostream&o,const vector<T>&v) {if(sz(v))o<<join(v);return o;} template<typename T1,typename T2>istream& operator>>(istream&i,pair<T1,T2>&v) {return i>>v.fi>>v.se;} template<typename T1,typename T2>ostream& operator<<(ostream&o,const pair<T1,T2>&v) {return o<<v.fi<<","<<v.se;} const int MX = 200005, INF = 1001001001; const ll LINF = 1e18; const double eps = 1e-10; typedef v(string) vs; int main() { multiset<string> s; rep(i,3) { int n; scanf("%d",&n); rep(j,n) s.insert(string(1,'a'+i)); } while (sz(s) > 1) { auto it = s.end(); --it; string x = *(s.begin()) + *it; s.erase(it); s.erase(s.begin()); s.insert(x); } cout<<*(s.begin())<<endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
java
import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.InputMismatchException; import java.util.List; public class Main { static InputStream is; static PrintWriter out; static String INPUT = ""; static void solve() { int x = ni(), y = ni(), z = ni(); List<String> list = new ArrayList<>(); for(int i = 0;i < x;i++)list.add("a"); for(int i = 0;i < y;i++)list.add("b"); for(int i = 0;i < z;i++)list.add("c"); while(list.size() > 1){ int argmin = 0; for(int i = 0;i < list.size();i++){ if(list.get(i).compareTo(list.get(argmin)) < 0){ argmin = i; } } String min = list.remove(argmin); int argmax = 0; for(int i = 0;i < list.size();i++){ if(list.get(i).compareTo(list.get(argmax)) > 0){ argmax = i; } } String max = list.remove(argmax); list.add(min+max); } out.println(list.get(0)); } public static void main(String[] args) throws Exception { long S = System.currentTimeMillis(); is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); solve(); out.flush(); long G = System.currentTimeMillis(); tr(G-S+"ms"); } private static boolean eof() { if(lenbuf == -1)return true; int lptr = ptrbuf; while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false; try { is.mark(1000); while(true){ int b = is.read(); if(b == -1){ is.reset(); return true; }else if(!isSpaceChar(b)){ is.reset(); return false; } } } catch (IOException e) { return true; } } private static byte[] inbuf = new byte[1024]; static int lenbuf = 0, ptrbuf = 0; private static int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } // private static boolean isSpaceChar(int c) { return !(c >= 32 && c <= 126); } private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private static double nd() { return Double.parseDouble(ns()); } private static char nc() { return (char)skip(); } private static String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private static char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private static char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private static int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private static int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private static long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private static void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<bits/stdc++.h> using namespace std; string f(int x, int y, int z, string a, string b, string c) { //cout << x << ' ' << y << ' ' << z << ' ' << a << ' ' << b << ' ' << c << endl; if(y == 0 && z == 0) { string ret; for(int i = 0; i < x; i++) ret += a; return ret; } if(x == 0) return f(y, z, 0, b, c, a); if(y == 0 && z) return f(x, z, y, a, c, b); if(z == 0) { if(x <= y) { string na = a; for(int i = 0; i < y / x; i++) na += b; return f(x, y % x, 0, na, b, c); } else { string na = a, nb = a + b; return f(x - y, y, 0, na, nb, c); } } else if(x <= z) { string na = a + c; return f(x, y, z - x, na, b, c); } else if(x <= y + z) { string nb = a + c; return f(x - z, z, y, a, nb, b); } else { string na = a, nb = a + b, nc = a + c; return f(x - y - z, y, z, na, nb, nc); } } int X, Y, Z; int main() { cin >> X >> Y >> Z; cout << f(X, Y, Z, "a", "b", "c"); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define times(n, i) uptil(0, n, i) #define rtimes(n, i) downto((n) - 1, 0, i) #define upto(f, t, i) for(int i##_to_ = (t), i = (f); i <= i##_to_; i++) #define uptil(f, t, i) for(int i##_to_ = (t), i = (f); i < i##_to_; i++) #define downto(f, t, i) for(int i##_to_ = (t), i = (f); i >= i##_to_; i--) #define downtil(f, t, i) for(int i##_to_ = (t), i = (f); i > i##_to_; i--) typedef long double LD; #define long long long #if defined(EBUG) && !defined(ONLINE_JUDGE) #define debug true #define _GLIBCXX_DEBUG #define _LIBCPP_DEBUG 2 #define _LIBCPP_DEBUG2 2 #define ln << endl #else #define debug false #define ln << '\n' #endif #define tb << '\t' #define sp << ' ' vector<char> pyon(int x, int y, int z) { vector<char> ans; if(!y && !z) { ans = vector<char>(x, 'a'); } else if(!z && !x) { ans = vector<char>(y, 'b'); } else if(!x && !y) { ans = vector<char>(z, 'c'); } else { bool zoi = !x; if(zoi) swap(x, y); ans.reserve(x + y + z); int p = z / x, s = z % x, q = y / (x - s), t = y % (x - s), u = x - s - t; for(char c: pyon(u, t, s)) { ans.push_back(zoi ? 'b' : 'a'); if(c == 'a') { times(p, o) ans.push_back('c'); times(q, o) ans.push_back('b'); } else if(c == 'b') { times(p, o) ans.push_back('c'); times(q+1, o) ans.push_back('b'); } else { times(p+1, o) ans.push_back('c'); } } } if(debug) { cout << x sp << y sp << z tb; for(char c: ans) cout << c; cout ln; } return ans; } signed main() { // long: 64bit if(!debug) { cin.tie(0); ios::sync_with_stdio(0); } int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z); for(char c: pyon(X, Y, Z)) cout << c; cout ln; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include<cstdio> #include<string> int X,Y,Z; char t[510],s[510]; void dfs(int x,int y,int z,int n){ if(!x&&!y&&!z){ t[n]=0; bool fl=1; for(int i=1;i<n&&fl;i++){ int j=0;while(j<n&&t[(i+j)%n]==t[j])j++; if(j<n&&t[(i+j)%n]<t[j])fl=0; } if(fl)for(int i=0;i<=n;i++)s[i]=t[i]; } else{ if(x)t[n]='a',dfs(x-1,y,z,n+1); if(y)t[n]='b',dfs(x,y-1,z,n+1); if(z)t[n]='c',dfs(x,y,z-1,n+1); } } std::string con(int X,int Y,int Z){ std::string S; if(!X){ if(!Y&&!Z)return S; S=con(Y,Z,0); for(int i=0;i<S.length();i++)S[i]++; return S; } if(!Y){ if(!Z){ for(int i=0;i<X;i++)S.push_back('a'); return S; } S=con(X,Z,0); for(int i=0;i<S.length();i++)S[i]=='b'?S[i]='c':1; return S; } if(!Z){ for(int i=1;i<=X;i++){ S.push_back('a'); for(int j=Y*(i-1)/X;j<Y*i/X;j++)S.push_back('b'); } return S; } int t=X-Z%X; std::string T=con(t-Y%t,Y%t,Z%X); for(int i=0;i<T.length();i++){ S.push_back('a'); if(T[i]=='a'){ for(int j=0;j<Z/X;j++)S.push_back('c'); for(int j=0;j<Y/t;j++)S.push_back('b'); } if(T[i]=='b'){ for(int j=0;j<Z/X;j++)S.push_back('c'); for(int j=0;j<Y/t+1;j++)S.push_back('b'); } if(T[i]=='c'){ for(int j=0;j<Z/X+1;j++)S.push_back('c'); } } return S; } int main(){ /* for(X=0;X<=5;X++) for(Y=0;Y<=8;Y++) for(Z=0;Z<=8;Z++){ printf("%d,%d,%d: ",X,Y,Z); dfs(X,Y,Z,0); for(int i=0,p=0;i<X;i++){ int cs=0; for(++p;s[p]&&s[p]!='a';p++)if(s[p]=='c')cs++; printf("%d,",cs); } puts(s); printf("(%d,%d,%d)",X,Y,Z); puts(con(X,Y,Z).c_str()); if(!X){ printf("(%d,%d,%d)",X,Y,Z); for(int i=1;i<=Y;i++){ putchar('b'); for(int j=Z*(i-1)/Y;j<Z*i/Y;j++)putchar('c'); } if(!Y)for(int i=0;i<Z;i++)putchar('c'); puts(""); } }*/ int X,Y,Z;scanf("%d%d%d",&X,&Y,&Z); puts(con(X,Y,Z).c_str()); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef long long ll; string slow(int ca, int cb, int cc) { int n = ca + cb + cc; string s = ""; for (int i = 0; i < ca; i++) s += 'a'; for (int i = 0; i < cb; i++) s += 'b'; for (int i = 0; i < cc; i++) s += 'c'; string ans = s; do { string mn = s; for (int i = 0; i < n; i++) { string t = s; rotate(t.begin(), t.begin() + i, t.end()); mn = min(mn, t); } ans = max(ans, mn); } while (next_permutation(s.begin(), s.end())); return ans; } string lexmin(string s) { string mn = s; for (int i = 0; i < (int)s.length(); i++) { string t = s; rotate(t.begin(), t.begin() + i, t.end()); mn = min(mn, t); } return mn; } string solve(vector<string> v) { sort(v.begin(), v.end()); int n = v.size(); if (v[0] == v[n - 1]) { string s = ""; for (auto t : v) s += t; return lexmin(s); } map<string, int> mp; for (auto s : v) mp[s]++; vector<pair<string, int> > b; for (auto it : mp) { b.push_back(it); } vector<string> nv; vector<string> cur(b[0].second, b[0].first); for (int i = (int)b.size() - 1; i >= 1; i--) { for (int j = 0; j < b[i].second; j++) { cur[j % (int)cur.size()] += b[i].first; } if (b[i].second % cur.size()) { int rem = b[i].second % cur.size(); //while (cur.size() > rem) { for (int l = 0; l < rem; l++) { nv.push_back(*cur.begin()); //cur.pop_back(); cur.erase(cur.begin()); } } } for (auto s : cur) nv.push_back(s); return solve(nv); } string fast(int ca, int cb, int cc) { bool f = 0; if (ca == 0) { f = 1; ca = cb; cb = cc; cc = 0; } if (ca == 0) { return string(cb, 'c'); } int n = ca + cb + cc; vector<string> a(ca, "a"); for (int i = 0; i < cc; i++) { a[i % ca] += "c"; } for (int i = 0; i < cb; i++) { a[(i + cc) % (ca - cc % ca) + cc % ca] += "b"; } sort(a.begin(), a.end()); string ans = solve(a); //do { /*while (1) { string s = ""; random_shuffle(a.begin(), a.end()); for (string ss : a) s += ss; string mn = s; for (int i = 0; i < n; i++) { string t = s; rotate(t.begin(), t.begin() + i, t.end()); mn = min(mn, t); } ans = max(ans, mn); if (clock() / (double)CLOCKS_PER_SEC > 1.9) break; }*/ if (f) { for (char &c : ans) { if (c == 'a') c = 'b'; else c = 'c'; } } return ans; } int main() { #ifdef HOME freopen("in", "r", stdin); #endif /*int n = 10; for (int ca = 0; ca <= n; ca++) { for (int cb = 0; ca + cb <= n; cb++) { //for (int cc = 0; ca + cb + cc <= n; cc++) { int cc = n - ca - cb; string ans1 = fast(ca, cb, cc); string ans2 = slow(ca, cb, cc); //string ans2 = ans1; cout << ca << " " << cb << " " << cc << " " << ans1 << " " << ans2 << endl; if (ans1 != ans2) { cout << "FAIL" << endl; fast(ca, cb, cc); return 0; } } } cout << "OK" << endl;*/ int ca, cb, cc; while (cin >> ca >> cb >> cc) { cout << fast(ca, cb, cc) << endl; } #ifdef HOME cerr << clock() / (double)CLOCKS_PER_SEC << endl; #endif return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
CORRECT
cpp
#include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> typedef long long ll ; #define rep(i, a, b) for (int i = a; i <= b; ++ i) using namespace std ; string trans(string x, string a, string b, string c) { string ret ; rep(i, 0, (int) x.length() - 1) { if (x[i] == 'a') ret += a ; if (x[i] == 'b') ret += b ; if (x[i] == 'c') ret += c ; } return ret ; } void dfs(string a, string b, string c, int x, int y, int z) { if (!y && !z) { rep(i, 1, x) cout << a ; return ; } string s[55] ; rep(i, 1, x) s[i] = 'a' ; for ( ; z; ) { for (int i = x; i; -- i) if (z) { s[i] = s[i] + 'c' ; -- z ; } } int k = x ; rep(i, 1, x - 1) if (s[i].length() != s[i + 1].length()) { k = i ; break ; } for ( ; y; ) { for (int i = k; i; -- i) if (y) { s[i] = s[i] + 'b' ; -- y ; } } int X = 0, Y = 0, Z = 0, d[5] = {0} ; rep(i, 1, x - 1) if (s[i] != s[i + 1]) { d[++ d[0]] = i ; } d[++ d[0]] = x ; if (d[0]) X = d[1] ; if (d[0] > 1) Y = d[2] - d[1] ; if (d[0] > 2) Z = d[3] - d[2] ; dfs(trans(s[d[1]], a, b, c), trans(s[d[2]], a, b, c), trans(s[d[3]], a, b, c), X, Y, Z) ; } int main() { int x, y, z ; string s[55] ; scanf("%d%d%d", &x, &y, &z) ; if (!x && !y) { rep(i, 1, z) printf("%c", 'c') ; } else if (!x) { dfs("b", "c", "a", y, z, x) ; } else { dfs("a", "b", "c", x, y, z) ; } return 0 ; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
def work(a,b,c,A,B,C): if A==0: return work(b,c,'',B,C,0) if B==0: if C==0: return a*A else: return work(a,c,'',A,C,0) if C==0: return work(a+b*(B/A),a+b*(B/A+1),'',A-B%A,B%A,0) cmod = C%A bmod = B%A if cmod+bmod<=A: return work(a+c*(C/A)+b*(B/A),a+c*(C/A)+b*(B/A+1),a+c*(C/A+1)+b*(B/A),A-cmod-bmod,bmod,cmod) else: return work(a+c*(C/A)+b*(B/A+1),a+c*(C/A+1)+b*(B/A),a+c*(C/A+1)+b*(B/A+1),bmod,cmod,bmod+cmod-A) if __name__ == '__main__': s = raw_input() a,b,c = [int(i) for i in s.split()] print(work('a','b','c',a,b,c))
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string f(string s) { string m(s); for (int i = 0; i < (s.length()); i++) { string o; for (int j = 0; j < (s.length()); j++) o += s[(i + j) % s.length()]; m = min(m, o); } return m; } int X, Y, Z; signed main() { ios::sync_with_stdio(false); cin.tie(0); cin >> X >> Y >> Z; string m = ""; for (int a = 0; a <= X; a++) { for (int b = 0; b <= Y; b++) { for (int c = 0; c <= Z; c++) { if (a + b + c == 0) continue; if (X >= a && Y >= b && Z >= c) { } else continue; int x = X, y = Y, z = Z; string pat = ""; for (int _ = 0; _ < (a); _++) pat += 'a'; for (int _ = 0; _ < (c); _++) pat += 'c'; for (int _ = 0; _ < (b); _++) pat += 'b'; string s = ""; int g = 0; while (x >= a && y >= b && z >= c) { x -= a, y -= b, z -= c; s += pat; g++; } if (x >= g || y >= g || z >= g) continue; string tail = ""; for (int _ = 0; _ < (z); _++) tail += 'c'; for (int _ = 0; _ < (y); _++) tail += 'b'; for (int _ = 0; _ < (x); _++) tail += 'a'; if (tail + s < s + tail) continue; s += tail; m = max(m, f(s)); } } } cout << m << "\n"; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<cstdio> int main(){ int x,y,z; scanf("%d%d%d",&x,&y,&z); int b[x]={}; int c[x]={}; if(x!=0){ if(x>y+z){ for(int i=x-1;i>=x-y;i--){ b[i]++; } for(int i=x-y-1;i>=x-y-z;i--){ c[i]++; } }else if(x==y+z){ for(int i=x-1;i>=x-z;i--){ c[i]++; } for(int i=x-z-1;i>=0;i--){ b[i]++; } }else{ if(x<=z){ if(z%x==0){ for(int i=0;i<x;i++){ c[i]+=z/x; } for(int i=0;i<x;i++){ b[i]+=y/x; } for(int i=x-1;i>=x-y%x;i--){ b[i]++; } }else{ for(int i=0;i<x;i++){ c[i]+=z/x; } for(int i=x-1;i>=x-z%x;i--){ c[i]++; } int k=x-z%x; for(int i=0;i<k;i++){ b[i]+=y/k; } for(int i=0;i<y%k;i--){ b[i]++; } } }else{ for(int i=x-1;i>=x-z;i--){ c[i]++; } int k=x-z; for(int i=0;i<k;i++){ b[i]+=x/k; } for(int i=k-1;i>=k-x%k;i--){ b[i]++; } } } for(int i=0;i<x;i++){ printf("a"); for(int j=0;j<c[i];j++){ printf("c"); } for(int j=0;j<b[i];j++){ printf("b"); } } }else if(y!=0){ if(z==0){ for(int i=0;i<y;i++){ printf("b"); } } if(y>z){ for(int i=0;i<z;i++){ printf("c"); for(int j=0;j<y/z;j++){ printf("b"); } if(i<y%z)printf("c"); } }else{ for(int i=0;i<z;i++){ printf("c"); if(i<y)printf("b"); } } }else{ for(int i=0;i<z;i++){ printf("c"); } } printf("\n"); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int X, Y, Z; string dp[51][51][51]; int main() { cin >> X >> Y >> Z; for (int i = 0; i <= X; i++) for (int j = 0; j <= Y; j++) for (int k = 0; k <= Z; k++) { if (i < X) { for (int I = 0; I <= i + j + k; I++) { string now = dp[i][j][k].substr(0, I) + "a" + dp[i][j][k].substr(I); string ret = now; for (int J = 1; J < now.size(); J++) { now = now.substr(1) + now[0]; ret = min(ret, now); } dp[i + 1][j][k] = max(dp[i + 1][j][k], ret); } } if (j < Y) { for (int I = 0; I <= i + j + k; I++) { string now = dp[i][j][k].substr(0, I) + "b" + dp[i][j][k].substr(I); string ret = now; for (int J = 1; J < now.size(); J++) { now = now.substr(1) + now[0]; ret = min(ret, now); } dp[i][j + 1][k] = max(dp[i][j + 1][k], ret); } } if (k < Z) { for (int I = 0; I <= i + j + k; I++) { string now = dp[i][j][k].substr(0, I) + "c" + dp[i][j][k].substr(I); string ret = now; for (int J = 1; J < now.size(); J++) { now = now.substr(1) + now[0]; ret = min(ret, now); } dp[i][j][k + 1] = max(dp[i][j][k + 1], ret); } } } cout << dp[X][Y][Z] << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int read(register int ans = 0, register int sgn = ' ', register int ch = getchar()) { for (; ch < '0' || ch > '9'; sgn = ch, ch = getchar()) ; for (; ch >= '0' && ch <= '9'; (ans *= 10) += ch - '0', ch = getchar()) ; return sgn - '-' ? ans : -ans; } multiset<string> s; int X, Y, Z, flag; string L, T = "\0"; int main() { X = read(), Y = read(), Z = read(); !X ? !Y ? flag = 2, X = Z : (flag = 1, X = Y, Y = Z), Z = 0 : 0; for (register int i = 1; i <= X; s.insert("a"), i++) ; for (register int i = 1; i <= Z; i++) L = (*s.begin()) + "c", s.erase(s.begin()), s.insert(L); for (register int i = 1; i <= Y; i++) L = (*s.begin()) + "b", s.erase(s.begin()), s.insert(L); for (; s.size() >= 2; T = T + *s.begin() + *--s.end(), s.erase(s.begin()), s.erase(--s.end())) ; if (s.size()) T = T + *s.begin(); for (register int i = 0; i < T.length(); T[i] += flag, i++) ; cerr << T << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int X, Y, Z; string f(int x, int y, int z) { if (x == 0 && y == 0 && z == 0) return ""; if (x == 0) { string ret = f(y, z, 0); for (int i = 0; i < ret.size(); i++) ret[i]++; return ret; } string ret; int q = (x + y + z - 1) / (y + z); int r = x % (y + z); if (r == 0) r = y + z; for (int i = 0; i < q; i++) ret.push_back('a'); for (int i = 0; i < z / r; i++) ret.push_back('c'); for (int i = 0; i < y / (r - z % r); i++) ret.push_back('b'); return ret += f(x - q, y - y / (r - z % r), z - z / r); } int main() { cin >> X >> Y >> Z; cout << f(X, Y, Z); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; class Main { public static void main(String args[]) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s = new String(in.readLine()); String[] abc = s.split(","); // 整数の入力 int a = Integer.parseInt(abc[0]); // スペース区切りの整数の入力 int b = Integer.parseInt(abc[1]); // スペース区切りの整数の入力 int c = Integer.parseInt(abc[2]); StringBuilder buff = new StringBuilder(); while(true) { if(a!=0) { buff.append("a"); a--; }else if(c!=0) { buff.append("c"); }else if(b!=0) { buff.append("b"); } else { System.out.println(buff); return; } } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; int x, y, z, tmp; vector<char> V[55]; int main() { scanf("%d%d%d", &x, &y, &z); for (int i = 1; i <= x; i++) { V[i].push_back('a'); } tmp = x; for (int i = z; i >= 1; i--) { V[tmp--].push_back('c'); if (tmp == 0) tmp = x; } tmp = x; for (int i = y; i >= 1; i--) { V[tmp--].push_back('b'); if (tmp == 0) tmp = x; } for (int i = 1; i <= x; i++) { for (int j = 0; j < V[i].size(); j++) { cout << V[i][j]; } } cout << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
def work(a,b,c,A,B,C): if A==0: return work(b,c,'',B,C,0) if B==0: if C==0: return a*A else: return work(a,c,'',A,C,0) if C==0: return work(a+b*(B/A),a+b*(B/A+1),'',A-B%A,B%A,0) cmod = C%A bmod = B%(A-cmod) return work(a+c*(C/A+1),a+c*(C/A)+b*(B/A),a+c*(C/A)+b*(B/A+1),cmod,A-cmod-bmod,bmod) if __name__ == '__main__': s = raw_input() a,b,c = [int(i) for i in s.split()] print(work('a','b','c',a,b,c))
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string slow(int ca, int cb, int cc) { int n = ca + cb + cc; string s = ""; for (int i = 0; i < ca; i++) s += 'a'; for (int i = 0; i < cb; i++) s += 'b'; for (int i = 0; i < cc; i++) s += 'c'; string ans = s; do { string mn = s; for (int i = 0; i < n; i++) { string t = s; rotate(t.begin(), t.begin() + i, t.end()); mn = min(mn, t); } ans = max(ans, mn); } while (next_permutation(s.begin(), s.end())); return ans; } string fast(int ca, int cb, int cc) { bool f = 0; if (ca == 0) { f = 1; ca = cb; cb = cc; cc = 0; } if (ca == 0) { return string(cb, 'a'); } int n = ca + cb + cc; vector<string> a(ca, "a"); for (int i = 0; i < cc; i++) { a[i % ca] += "c"; } for (int i = 0; i < cb; i++) { a[(i + cc) % (ca - cc % ca) + cc % ca] += "b"; } sort(a.begin(), a.end()); string ans = "a"; do { string s = ""; for (string ss : a) s += ss; string mn = s; for (int i = 0; i < n; i++) { string t = s; rotate(t.begin(), t.begin() + i, t.end()); mn = min(mn, t); } ans = max(ans, mn); if (clock() / (double)CLOCKS_PER_SEC > 1.9) break; } while (next_permutation(a.begin(), a.end())); if (f) { for (char &c : ans) { if (c == 'a') c = 'b'; else c = 'c'; } } return ans; } int main() { int ca, cb, cc; while (cin >> ca >> cb >> cc) { cout << fast(ca, cb, cc) << endl; } return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int r, b, g; multiset<string> s; int main() { scanf("%d%d%d", &r, &b, &g); for (int i = 1; i <= r; i++) s.insert("R"); for (int i = 1; i <= b; i++) s.insert("B"); for (int i = 1; i <= g; i++) s.insert("G"); for (int i = 1; i < r + b + g; i++) { string a = *s.begin(), b = *(--s.end()); s.erase(s.lower_bound(a)), s.erase(s.lower_bound(b)); s.insert(a + b); } cout << *s.begin(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; using vi = vector<int>; template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) { os << "sz:" << v.size() << "\n["; for (const auto& p : v) { os << p << ","; } os << "]\n"; return os; } template <typename S, typename T> ostream& operator<<(ostream& os, const pair<S, T>& p) { os << "(" << p.first << "," << p.second << ")"; return os; } constexpr ll MOD = (ll)1e9 + 7LL; template <typename T> constexpr T INF = numeric_limits<T>::max() / 100; void place(const int small, const int large, vector<int>& result) { assert(result.size() == small + large); if (large == 0) { for (int i = 0; i < result.size(); i++) { result[i] = -1; } } else if (large == 1) { for (int i = 0; i < result.size() - 1; i++) { result[i] = -1; } result[result.size() - 1] = 1; } else if (small >= large) { const int ssize = (small + large - 1) / large; const int lsize = ssize - 1; const int snum = small - (lsize * large); const int lnum = large - snum; vector<int> tmp(snum + lnum); place(snum, lnum, tmp); int pos = 0; for (int i = 0; i < tmp.size(); i++) { if (tmp[i] < 0) { for (int i = 0; i < ssize; i++) { result[pos] = -2; pos++; } } else { for (int i = 0; i < lsize; i++) { result[pos] = -1; pos++; } } result[pos] = 1; pos++; } } else { const int ssize = large / small; const int lsize = ssize + 1; const int lnum = large - ssize * small; const int snum = small - lnum; vector<int> tmp(snum + lnum); place(snum, lnum, tmp); int pos = 0; for (int i = 0; i < tmp.size(); i++) { result[pos] = -1; pos++; if (tmp[i] < 0) { for (int i = 0; i < ssize; i++) { result[pos] = 1; pos++; } } else { for (int i = 0; i < lsize; i++) { result[pos] = 2; pos++; } } } } } int main() { cin.tie(0); ios::sync_with_stdio(false); int X, Y, Z; cin >> X >> Y >> Z; string s; s.resize(X + Y + Z, 'd'); if (X > 0) { if (Y + Z > 0) { if (X >= Y + Z) { assert(false); vector<int> tmp(X + Y + Z); place(X, Y + Z, tmp); for (int i = 0; i < X + Y + Z; i++) { if (tmp[i] < 0) { s[i] = 'a'; } vector<int> smalls; vector<int> larges; for (int i = 0; i < tmp.size(); i++) { if (tmp[i] > 0 and tmp[i - 1] == -1) { larges.push_back(i); } else if (tmp[i] > 0 and tmp[i - 1] == -2) { smalls.push_back(i); } } reverse(smalls.begin(), smalls.end()); for (const int li : larges) { if (Y > 0) { s[li] = 'b'; Y--; } else { s[li] = 'c'; Z--; } } for (const int si : smalls) { if (Z > 0) { s[si] = 'c'; Z--; } else { s[si] = 'b'; Y--; } } } cout << s << endl; } else { vector<string> sv(X, "a"); const int slen = Z / X; const int llen = slen + 1; const int snum = llen * X - Z; for (int i = 0; i < snum; i++) { for (int j = 0; j < slen; j++) { sv[i].push_back('c'); } } for (int i = snum; i < X; i++) { for (int j = 0; j < llen; j++) { sv[i].push_back('c'); } } const int sslen = Y / snum; const int lllen = sslen + 1; const int ssnum = lllen * snum - Y; for (int i = 0; i < ssnum; i++) { for (int j = 0; j < sslen; j++) { sv[i].push_back('b'); } } for (int i = ssnum; i < snum; i++) { for (int j = 0; j < lllen; j++) { sv[i].push_back('b'); } } for (int i = 0; i < X; i++) { cout << sv[i]; } cout << endl; } } else { for (int i = 0; i < Y + Z; i++) { cout << 'a'; } cout << endl; return 0; } } else { if (Y > 0) { if (Z > 0) { vector<int> tmp(Y + Z); place(Y, Z, tmp); for (int i = 0; i < Y + Z; i++) { if (tmp[i] < 0) { s[i] = 'b'; } else { s[i] = 'c'; } } cout << s << endl; return 0; } else { for (int i = 0; i < Y; i++) { cout << 'b'; } cout << endl; return 0; } } else { for (int i = 0; i < Z; i++) { cout << 'c'; } cout << endl; return 0; } } return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr long long mod = 1000000007; const long long INF = mod * mod; const long double eps = 1e-12; const long double pi = acos(-1.0); long long mod_pow(long long x, long long n) { long long res = 1; while (n) { if (n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } struct modint { long long n; modint() : n(0) { ; } modint(long long m) : n(m) { if (n >= mod) n %= mod; else if (n < 0) n = (n % mod + mod) % mod; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod) a.n -= mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0) a.n += mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((long long)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, int n) { if (n == 0) return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2) res = res * a; return res; } long long inv(long long a, long long p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } const int max_n = 1 << 20; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b) return 0; return fact[a] * factinv[b] * factinv[a - b]; } void solve() { int c[3]; for (int i = 0; i < 3; i++) cin >> c[i]; assert(c[0] > 0); int num = -1; for (int i = 1; i <= 50; i++) { int x = c[0] / i; if (c[0] % i) x++; if (x <= c[1] + c[2]) { num = i; break; } } vector<string> anss; for (int i = 0; i < c[0] / num; i++) { string s; s.resize(num, 'a'); anss.push_back(s); } if (c[0] % num) { string s; s.resize(c[0] % num, 'a'); s.push_back('b'); c[1]--; anss.push_back(s); } int d = c[0] / num; while (c[2] >= d) { for (int i = 0; i < d; i++) { anss[i].push_back('c'); } c[2] -= d; } int rest = d; for (int i = 0; i < c[2]; i++) { anss[d - 1 - i].push_back('c'); rest--; } while (c[1] >= rest) { for (int i = 0; i < rest; i++) { anss[i].push_back('b'); } c[1] -= rest; } for (int i = 0; i < c[1]; i++) { anss[rest - 1 - i].push_back('b'); } string ans; for (int i = 0; i < anss.size(); i++) ans += anss[i]; cout << ans << "\n"; } signed main() { ios::sync_with_stdio(false); cin.tie(0); solve(); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MX = 1000; char ans[MX][MX]; void solve2(int x, int y, int p) { if (x == 0) { for (int i = 0; i < y; i++) ans[p][i] = 'b'; } else if (y == 0) { for (int i = 0; i < x; i++) ans[p][i] = 'a'; } else if (x >= y) { int g = (x + y - 1) / y; int f = x % y; if (f == 0) f = y; solve2(f, y - f, p + 1); for (int i = 0, j = 0; i < y; i++) { for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a'; if (ans[p + 1][i] == 'a') ans[p][j++] = 'a'; ans[p][j++] = 'b'; } } else { int g = (x + y - 1) / x; int f = y % x; if (f == 0) f = x; solve2(x - f, f, p + 1); for (int i = 0, j = 0; i < x; i++) { ans[p][j++] = 'a'; for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'b'; if (ans[p + 1][i] == 'b') ans[p][j++] = 'b'; } } } void solve(int x, int y, int z, int p = 0) { if (x == 0) { solve2(y, z, p); for (int i = 0; i < y + z; i++) ans[p][i]++; } else if (y == 0) { solve2(x, z, p); for (int i = 0; i < x + z; i++) if (ans[p][i] == 'b') ans[p][i] = 'c'; } else if (z == 0) { solve2(x, y, p); } else if (x >= y + z) { int g = (x + y + z - 1) / (y + z); int f = x % (y + z); if (f == 0) f = y + z; if (z >= f) { solve(f, y, z - f, p + 1); for (int i = 0, j = 0; i < y + z; i++) { for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a'; if (ans[p + 1][i] == 'a') { ans[p][j++] = 'a'; ans[p][j++] = 'c'; } else { ans[p][j++] = ans[p + 1][i]; } } } else { solve(f - z, z, y + z - f, p + 1); for (int i = 0, j = 0; i < y + z; i++) { for (int k = 0; k < g - 1; k++, j++) ans[p][j] = 'a'; if (ans[p + 1][i] == 'c') { ans[p][j++] = 'b'; } else { ans[p][j++] = 'a'; ans[p][j++] = ans[p + 1][i] + 1; } } } } else { static string S[MX]; for (int i = 0; i < x; i++) S[i] = "a"; for (int i = 0; i < z; i++) S[i % x] += "c"; for (int i = 0; i < y; i++) S[x - 1 - i % x] += "b"; set<string> strs; for (int i = 0; i < x; i++) strs.insert(S[i]); string SS[3]; int cnt[3] = {0, 0, 0}, iter = 0; for (auto& s : strs) { SS[iter] = s; cnt[iter] = 0; for (int i = 0; i < x; i++) if (S[i] == s) cnt[iter]++; iter++; } solve(cnt[0], cnt[1], cnt[2], p + 1); for (int i = 0, j = 0; i < y + z; i++) for (char c : SS[ans[p + 1][i] - 'a']) ans[p][j++] = c; } } int main() { int x, y, z; ignore = scanf("%d %d %d", &x, &y, &z); solve(x, y, z); ans[0][x + y + z] = 0; printf("%s\n", ans[0]); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; class Main { public static void main(String args[]) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s = new String(in.readLine()); String[] abc = s.split(",", 0); // 整数の入力 int a = Integer.parseInt(abc[0]); // スペース区切りの整数の入力 int b = Integer.parseInt(abc[1]); // スペース区切りの整数の入力 int c = Integer.parseInt(abc[2]); StringBuilder buff = new StringBuilder(); while(true) { if(a!=0) { buff.append("a"); a--; }else if(c!=0) { buff.append("c"); }else if(b!=0) { buff.append("b"); } else { System.out.println(buff); return; } } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; long long powmod(long long a, long long b) { long long res = 1; a %= mod; assert(b >= 0); for (; b; b >>= 1) { if (b & 1) res = res * a % mod; a = a * a % mod; } return res; } int rem[55][55][55][55], nxt[55][10], fail[55], T; bool val[55][55][55][55]; char s[55]; int x, y, z; bool dfs2(int u, int v, int w, int p) { if (rem[u][v][w][p] == T) return val[u][v][w][p]; rem[u][v][w][p] = T; bool &r = val[u][v][w][p]; r = 0; if (u == 0 && v == 0 && w == 0) return r = 1; if (u > 0 && s[p] <= 'a') r |= dfs2(u - 1, v, w, nxt[p][0]); if (r) return 1; if (v > 0 && s[p] <= 'b') r |= dfs2(u, v - 1, w, nxt[p][1]); if (r) return 1; if (w > 0 && s[p] <= 'c') r |= dfs2(u, v, w - 1, nxt[p][2]); if (r) return 1; return r = 0; } bool checkp(int u, int v, int w, int d) { s[d] = 0; for (int i = 0; i < d; i++) { bool cmp = 0; for (int j = 0; j < d - i; j++) if (s[j] != s[i + j]) { if (s[j] > s[i + j]) cmp = 1; break; } if (cmp) return 0; } if (d == 0) return 1; if (d > 1) nxt[0][s[0] - 'a'] = 1; for (int i = 1; i < d; i++) { if (i == 1) fail[i] = 0; else fail[i] = nxt[fail[i - 1]][s[i] - 'a']; for (int j = 0; j < 3; j++) nxt[i][j] = nxt[fail[i]][j]; if (i + 1 != d) nxt[i][s[i] - 'a'] = i + 1; } fail[d] = nxt[fail[d - 1]][s[d] - 'a']; T++; return dfs2(u, v, w, fail[d]); } bool check(int d) { for (int i = 0; i < d; i++) { bool cmp = 0; for (int j = 0; j < d; j++) if (s[j] != s[(i + j) % d]) { if (s[j] > s[(i + j) % d]) cmp = 1; break; } if (cmp) return 0; } return 1; } void dfs(int u, int v, int w, int d) { if (!checkp(u, v, w, d)) return; if (u == 0 && v == 0 && w == 0) { if (check(d)) { puts(s); exit(0); } } else { if (w > 0) s[d] = 'c', dfs(u, v, w - 1, d + 1); if (v > 0) s[d] = 'b', dfs(u, v - 1, w, d + 1); if (u > 0) s[d] = 'a', dfs(u - 1, v, w, d + 1); } } int main() { scanf("%d%d%d", &x, &y, &z); dfs(x, y, z, 0); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int main() { std::multiM <std::string> M; for (scanf("%d", &i); i; --i) M.insert("a"); for (scanf("%d", &i); i; --i) M.insert("b"); for (scanf("%d", &i); i; --i) M.insert("c"); while (M.size()>1) { std::string s = *M.begin(), t = *M.rbegin(); M.erase(M.lower_bound(s)); M.erase(M.lower_bound(t)); M.insert(s + t); } printf("%s\n", (*M.begin()).c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; char s[205]; int a, b, c; int main() { scanf("%d%d%d", &a, &b, &c); for (int i = 0; i < a; i++) s[i] = 'a'; for (int i = a; i < a + b; i++) s[i] = 'b'; for (int i = a + b; i < a + b + c; i++) s[i] = 'c'; for (int l = 0, r = a + b + c - 1; l <= r; l++, r--) { putchar(s[l]); if (l != r) putchar(s[r]); } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> ostream& operator<<(ostream& os, const vector<T>& vec) { os << "["; for (int i = 0; i < vec.size(); i++) { os << vec[i] << ","; } os << "]"; return os; } template <typename T> T input() { T t; cin >> t; return t; } template <typename T> vector<T> input(const int N) { vector<T> v(N); for (int i = 0; i < static_cast<int>(N); i++) cin >> v[i]; return v; } long long gcd(long long a, long long b) { if (b == 0) { return a; } return gcd(b, a % b); } long long lcm(long long a, long long b) { return (a / gcd(a, b)) * b; } int main() { int X, Y, Z; cin >> X >> Y >> Z; string str; for (int i = 0; i < static_cast<int>(X); i++) { str += 'a'; } for (int i = 0; i < static_cast<int>(Y); i++) { str += 'b'; } for (int i = 0; i < static_cast<int>(Z); i++) { str += 'c'; } string best = str; string temp; string temp_small; do { temp = str; temp_small = str; int size = str.size(); for (int i = 0; i < static_cast<int>(size - 1); i++) { temp = temp.substr(1, temp.size()) + temp[0]; if (temp < temp_small) { temp_small = temp; } } if (best < temp_small) { best = temp_small; } } while (next_permutation(str.begin(), str.end())); cout << best << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.List; public class Main { private static void solve() { int[] a = na(3); List<String> list = new ArrayList<>(); for (int j = 0; j < 3; j ++) { for (int i = 0; i < a[j]; i ++) list.add("" + (char)('a' + j)); } while (list.size() > 1) { int last = list.size() - 1; String s = list.get(0) + list.get(last); list.set(0, s); list.remove(last); } System.out.println(list.get(0)); } public static void main(String[] args) { new Thread(null, new Runnable() { @Override public void run() { long start = System.currentTimeMillis(); String debug = System.getProperty("debug"); if (debug != null) { try { is = java.nio.file.Files.newInputStream(java.nio.file.Paths.get(debug)); } catch (Exception e) { throw new RuntimeException(e); } } reader = new java.io.BufferedReader(new java.io.InputStreamReader(is), 32768); solve(); out.flush(); tr((System.currentTimeMillis() - start) + "ms"); } }, "", 64000000).start(); } private static java.io.InputStream is = System.in; private static java.io.PrintWriter out = new java.io.PrintWriter(System.out); private static java.util.StringTokenizer tokenizer = null; private static java.io.BufferedReader reader; public static String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new java.util.StringTokenizer(reader.readLine()); } catch (Exception e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } private static double nd() { return Double.parseDouble(next()); } private static long nl() { return Long.parseLong(next()); } private static int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private static char[] ns() { return next().toCharArray(); } private static long[] nal(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nl(); return a; } private static int[][] ntable(int n, int m) { int[][] table = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { table[i][j] = ni(); } } return table; } private static int[][] nlist(int n, int m) { int[][] table = new int[m][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { table[j][i] = ni(); } } return table; } private static int ni() { return Integer.parseInt(next()); } private static void tr(Object... o) { if (is != System.in) System.out.println(java.util.Arrays.deepToString(o)); } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; multiset<string> st; int a, b, c; int main() { cin >> a >> b >> c; for (int i = 1; i <= a; i--) { st.insert("a"); } for (int i = 1; i <= b; i--) { st.insert("b"); } for (int i = 1; i <= c; i--) { st.insert("c"); } while ((st.size()) - 1 && st.size()) { string s = *st.begin(), t = *st.rbegin(); st.erase(st.lower_bound(s)); st.erase(st.lower_bound(t)); st.insert(s + t); } printf("%s\n", (*st.begin()).c_str()); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename A, size_t N, typename T> void Fill(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } bool check(string s, int a, int b, int c) { int m = s.size(); int n = a + b + c; string t; bool ng = 0; int len = -1; bool flag[60] = {}; for (int i = 1; i <= m; i++) { bool ok = 1; for (int j = 0; j < (int)(m); ++j) { if (s[j] != s[j % i]) { ok = 0; } } if (ok) { len = i; break; } } if (len != m) { string q; for (int i = 0; i < (int)(len); ++i) { q.push_back(s[i]); } for (int i = 0; i < (int)(7); ++i) { if (q.size() >= a + b + c) break; q += q; } s = q; } m = s.size(); for (int i = 0; i < (int)(n); ++i) { if (s[i % m] == 'a') { if (a != 0) { t.push_back('a'); a--; } else { if (b != 0) { t.push_back('b'); b--; } else { t.push_back('c'); c--; } } } else if (s[i % m] == 'b') { if (b == 0) { if (c == 0) { t.push_back('a'); } else { t.push_back('c'); c--; } } else { t.push_back('b'); b--; } } else { if (c == 0) { if (b == 0) { t.push_back('a'); } else { t.push_back('b'); b--; } } else { t.push_back('c'); c--; } } } for (int i = 0; i < (int)(n); ++i) { string p; for (int j = 0; j < (int)(m); ++j) { p.push_back(t[(i + j) % n]); } if (s > p) return false; } return true; } int main() { int a, b, c; cin >> a >> b >> c; int n = a + b + c; string s; while (s.size() != n) { string t = s; t.push_back('c'); if (check(t, a, b, c)) { s = t; } else { t[t.size() - 1] = 'b'; if (check(t, a, b, c)) { s = t; } else { t[t.size() - 1] = 'a'; s = t; } } } cout << s << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int read(register int ans = 0, register int sgn = ' ', register int ch = getchar()) { for (; ch < '0' || ch > '9'; sgn = ch, ch = getchar()) ; for (; ch >= '0' && ch <= '9'; (ans *= 10) += ch - '0', ch = getchar()) ; return sgn - '-' ? ans : -ans; } multiset<string> s; int X, Y, Z; string L, T = "\0"; int main() { X = read(), Y = read(), Z = read(); for (register int i = 1; i <= X; s.insert("a"), i++) ; for (register int i = 1; i <= Y; s.insert("b"), i++) ; for (register int i = 1; i <= Z; s.insert("c"), i++) ; for (; s.size() >= 2; L = *s.begin() + *--s.end(), s.erase(s.begin()), s.erase(--s.end()), s.insert(L)) ; if (s.size()) T = *s.begin(); cerr << T << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string f(int x, int y, int z, string a, string b, string c) { if (y == 0 && z == 0) { string ret; for (int i = 0; i < x; i++) ret += a; return ret; } if (x == 0) return f(y, z, 0, b, c, a); if (y == 0 && z) return f(x, z, y, a, c, b); if (z == 0) { if (x <= y) { string na = a; for (int i = 0; i < y / x; i++) na += b; return f(x, y % x, 0, na, b, c); } else { string na = a, nb = a + b; return f(x - y, y, 0, na, nb, c); } } else if (x <= y + z) { string na = a, nb = a; for (int i = 0; i < z / x; i++) { na += c; nb += c; } for (int i = 0; i < z % x; i++) nb += c; return f(x - z % x, z % x, y, na, nb, b); } else { string na = a, nb = a + b, nc = a + c; return f(x - y - z, y, z, na, nb, nc); } } int X, Y, Z; int main() { cin >> X >> Y >> Z; cout << f(X, Y, Z, "a", "b", "c"); }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using std::abs; using std::array; using std::cerr; using std::cin; using std::cout; using std::generate; using std::make_pair; using std::map; using std::max; using std::max_element; using std::min; using std::min_element; using std::pair; using std::reverse; using std::set; using std::sort; using std::string; using std::unique; using std::vector; template <typename T> T input() { T res; cin >> res; {}; return res; } template <typename IT> void input_seq(IT b, IT e) { std::generate(b, e, input<typename std::remove_reference<decltype(*b)>::type>); } string solve(int a, int b, int c) { string base = "a"; while (c >= a) base += 'c', c -= a; while (b >= a) base += 'b', b -= a; if (b == 0 and c == 0) { string res = ""; for (int t = 0; t != a; ++t) res += base; return res; } int num = (a + (b + c - 1)) / (b + c); int free = num * (b + c) - a; string tmp = ""; for (int i = 0; i != num - 1; ++i) tmp += base; vector<string> parts; for (int i = 0; i != (b + c - free); ++i) parts.push_back(tmp + base); for (int i = 0; i != free; ++i) parts.push_back(tmp); for (int i = 0; i != c; ++i) parts[i] += 'c'; for (int i = 0; i != b; ++i) parts[c + i] += 'b'; std::sort(parts.begin(), parts.end()); vector<string> cparts = parts; cparts.resize(std::unique(parts.begin(), parts.end()) - parts.begin()); while (cparts.size() < 3) cparts.push_back(""); assert(int((cparts).size()) == 3); string zzans = solve(std::count(parts.begin(), parts.end(), cparts[0]), std::count(parts.begin(), parts.end(), cparts[1]), std::count(parts.begin(), parts.end(), cparts[2])); string ans = ""; for (char ch : zzans) ans += cparts[ch - 'a']; return ans; } int main() { std::iostream::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int a = input<int>(); int b = input<int>(); int c = input<int>(); std::map<char, char> back; if (a == 0 and b == 0) { back['a'] = 'c'; a = c; b = 0; c = 0; } else if (a == 0) { back['a'] = 'b'; back['b'] = 'c'; a = b; b = c; c = 0; } else { back['a'] = 'a'; back['b'] = 'b'; back['c'] = 'c'; } string ans = solve(a, b, c); for (int i = 0; i != int((ans).size()); ++i) cout << back[ans[i]]; cout << "\n"; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int read(register int ans = 0, register int sgn = ' ', register int ch = getchar()) { for (; ch < '0' || ch > '9'; sgn = ch, ch = getchar()) ; for (; ch >= '0' && ch <= '9'; (ans *= 10) += ch - '0', ch = getchar()) ; return sgn - '-' ? ans : -ans; } multiset<string> s; int X, Y, Z, flag; string L, T = "\0"; int main() { X = read(), Y = read(), Z = read(); !X ? !Y ? flag = 2, X = Z : (flag = 1, X = Y, Y = Z), Z = 0 : 0; for (register int i = 1; i <= X; s.insert("a"), i++) ; for (register int i = 1; i <= Z; i++) L = (*s.begin()) + "c", s.erase(s.begin()), s.insert(L); for (register int i = 1; i <= Y; i++) L = (*s.begin()) + "b", s.erase(s.begin()), s.insert(L); for (; s.size() >= 2; L = *s.begin() + *--s.end(), s.erase(s.begin()), s.erase(--s.end()), s.insert(L)) ; if (s.size()) T = *s.begin(); for (register int i = 0; i < T.length(); T[i] += flag, i++) ; cerr << T << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; string dp[51][51][51]; void sol(int x, int y, int z) { if (dp[x][y][z] != "") return; if (x == 0 && y == 0) { dp[x][y][z] = string(z, 'c'); return; } if (y == 0 && z == 0) { dp[x][y][z] = string(x, 'a'); return; } if (z == 0 && x == 0) { dp[x][y][z] = string(y, 'b'); return; } string res; using P = pair<string, int>; vector<P> xs{ {"a", x}, {"b", y}, {"c", z}, }; do { if (xs[0].second == 0 || xs[1].second == 0) continue; if (xs[0].first > xs[1].first) continue; vector<P> v{ {xs[0].second > xs[1].second ? xs[0].first : xs[1].first, abs(xs[0].second - xs[0].second)}, {xs[0].first + xs[1].first, min(xs[0].second, xs[1].second)}, xs[2], }; sort((v).begin(), (v).end()); sol(v[0].second, v[1].second, v[2].second); string &str = dp[v[0].second][v[1].second][v[2].second]; string it; for (auto &el : str) it += v[el - 'a'].first; res = max(res, it); } while (next_permutation((xs).begin(), (xs).end())); dp[x][y][z] = res; } int main() { std::ios::sync_with_stdio(false), std::cin.tie(0); int x, y, z; cin >> x >> y >> z; sol(x, y, z); cout << dp[x][y][z] << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MX = 300500; int main(int argc, char** argv) { ios_base::sync_with_stdio(false); cin.tie(0); int x, y, z; cin >> x >> y >> z; vector<int> a_pos; int pos = 0; int n = x + y + z; string s; for (int i = 0; i < n; i++) { s += "b"; } while (x--) { a_pos.push_back(pos); s[pos] = 'a'; int space_left = n - 1 - pos; space_left -= x; space_left /= x + 1; pos += space_left + 1; } for (int j = 0; j < 100; j++) { for (int i = 0; i < a_pos.size(); i++) { if (z == 0) break; s[a_pos[i] + j + 1] = 'c'; z--; } } cout << s << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename T> inline bool chkmin(T &a, const T &b) { return a > b ? a = b, 1 : 0; } template <typename T> inline bool chkmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; } template <typename T> inline bool smin(T &a, const T &b) { return a > b ? a = b : a; } template <typename T> inline bool smax(T &a, const T &b) { return a < b ? a = b : a; } const int N = (int)0, mod = (int)0; int na, nb, nc, n, t[3]; int a[N]; bool check(string p) { t[0] = na; t[1] = nb; t[2] = nc; int m = (int)p.size(); for (int j = 0; j < m; ++j) { a[j] = p[j]; for (int ti = 0; ti < 3; ++ti) if (a[j] == (ti + 'a')) --t[ti]; } for (int ti = 0; ti < 3; ++ti) if (t[ti] < 0) return 0; for (int ch = m; ch < n; ++ch) { int val = 0; for (int j = ch - 1; j >= ch - m + 1; --j) { int flag = 1; for (int i = j; i < ch; ++i) { if (p[i - j] < a[i]) { flag = 0; break; } } if (flag) val = max(val, p[ch - j] - 'a'); } int flag = 1; for (int k = val; k < 3; ++k) { if (t[k]) { flag = 0; --t[k]; a[ch] = k + 'a'; break; } } if (flag) return 0; } for (int st = 0; st < n; ++st) { for (int j = 0; j < m; ++j) { int pos = (st + j) % n; if (a[pos] > p[j]) break; if (a[pos] < p[j]) { return 0; } } } return 1; } int main() { cin >> na >> nb >> nc; n = na + nb + nc; string res = ""; if (na) { res = "a"; } else if (nb) { res = "b"; } else { res = "c"; } for (int len = 2; len <= n; ++len) { for (int c = 2; c >= 0; --c) { string nxt = res; nxt += char('a' + c); if (check(nxt)) { res = nxt; break; } } } cout << res << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f2f1f0f; const long long LINF = 1ll * INF * INF; const int MAX_N = 1e2; int N, Ns[3], Now[MAX_N], Ans[MAX_N], AnsN[3]; int main() { cin >> Ns[0] >> Ns[1] >> Ns[2]; for (int k = 0; k < 3; k++) N += Ns[k]; for (int k = 0; k < 3; k++) AnsN[k] = Ns[k]; for (int s = 0; s < N; s++) { bool isFinish = false; for (int o = 2; o >= 0; o--) if (isFinish == false && AnsN[o] > 0) { bool isCan = true; Ans[s] = o; int cnt[3]; for (int k = 0; k < 3; k++) cnt[k] = Ns[k]; int en = N / (s + 1) * (s + 1); for (int p = 0; p < N;) { bool mustUp = true; int np = p + (s + 1); for (int is = 0; is < (s + 1) && p + is < N; is++) { bool findWell = false; int start = Ans[is]; if (mustUp == false) start = 0; for (int k = start; k < 3; k++) { if (cnt[k] > 0) { cnt[k]--, Now[p + is] = k; if (k != Ans[is]) mustUp = false; findWell = true; break; } } if (mustUp == false) { np = p + is + 1; break; } if (findWell == false) isCan = false; } if (isCan == false) break; p = np; } if (isCan) { for (int i = en; i < N; i++) { for (int j = 0; j < s + 1; j++) { if (Now[j] < Now[(i + j) % N]) { break; } else if (Now[j] > Now[(i + j) % N]) { isCan = false; break; } else continue; } } } if (isCan) isFinish = true, AnsN[o]--; } } for (int i = 0; i < N; i++) printf("%c", Ans[i] + 'a'); puts(""); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const long long inf = mod * mod; const long long d2 = 500000004; const double EPS = 1e-6; const double PI = acos(-1.0); int ABS(int a) { return max(a, -a); } long long ABS(long long a) { return max(a, -a); } int C[1100]; int B[1100]; int ad = 0; vector<string> str; void f(int a, int b, int c) { ad = 0; for (int i = 0; i < 1100; i++) B[i] = C[i] = 0; while (a == 0) { a = b; b = c; c = 0; ad++; } for (int i = 0; i < c; i++) { C[i % a]++; } if (C[0] != C[a - 1]) { int f = 0; for (int i = 0; i < a; i++) if (C[a - 1] == C[i]) f++; for (int i = 0; i < b; i++) { B[a - f + i % f]++; } } else { for (int i = 0; i < b; i++) { B[i % a]++; } } str.clear(); for (int i = a - 1; i >= 0; i--) { string tmp = ""; tmp += 'a' + ad; for (int j = 0; j < C[i]; j++) tmp += 'c' + ad; for (int j = 0; j < B[i]; j++) tmp += 'b' + ad; str.push_back(tmp); } for (int i = 0; i < a; i++) for (int j = 0; j < a - 1; j++) { if (str[j] + str[j + 1] < str[j + 1] + str[j]) swap(str[j + 1], str[j]); } for (int i = 0; i < a; i++) printf("%s", str[i].c_str()); printf("\n"); } int main() { for (int i = 0; i < 100; i++) { int a = rand() % 10; int b = rand() % 10; int c = rand() % 10; if (a + b + c == 0) continue; printf("%d %d %d: ", a, b, c); f(a, b, c); } }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); int a, b, c; cin >> a >> b >> c; int maxa = max(a, max(b, c)); for (int i = 0; i < maxa; i++) { if (a > 0) { cout << 'a'; a--; } if (c > 0) { cout << 'c'; c--; } if (b > 0) { cout << 'b'; b--; } } return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int X, Y, Z; string ans; int main() { cin >> X >> Y >> Z; ans = ""; for (int i = 0; i < X; i++) ans += 'a'; for (int i = 0; i < Y; i++) { string nxt = " "; for (int j = 0; j <= ans.size(); j++) { string now = ans.substr(0, j) + "b" + ans.substr(j); string ret = now; for (int k = 1; k < now.size(); k++) { now = now.substr(1) + now[0]; ret = min(ret, now); } if (nxt < ret) nxt = ret; } ans = nxt; } for (int i = 0; i < Z; i++) { string nxt = " "; for (int j = 0; j <= ans.size(); j++) { string now = ans.substr(0, j) + "c" + ans.substr(j); string ret = now; for (int k = 1; k < now.size(); k++) { now = now.substr(1) + now[0]; ret = min(ret, now); } if (nxt < ret) nxt = ret; } ans = nxt; } cout << ans << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string F(int X, string A) { string S = ""; while (X--) S += A; return S; } string F(int X, string A, int Y, string B) { if (!X) return F(Y, B); if (!Y) return F(X, A); if (X > Y) { int x = X / Y; string a = F(x, A) + B, b = F(x + 1, A) + B; int y = X - x * Y; x = Y - y; return F(y, b, x, a); } else { int x = Y / X; string a = A + F(x, B), b = A + F(x + 1, B); int y = Y - x * X; x = X - y; return F(x, a, y, b); } } string F(int X, string A, int Y, string B, int Z, string C) { if (!X) return F(Y, B, Z, C); if (!Y) return F(X, A, Z, C); if (!Z) return F(X, A, Y, B); if (X > Y + Z) { int x = X / (Y + Z), y = X - x * (Y + Z); if (y >= Z) { string a = F(x, A) + B, b = F(x + 1, A) + B, c = F(x + 1, A) + C; int z = Z; x = Y + Z - y; y -= z; return F(y, b, z, c, x, a); } else { string a = F(x, A) + B, b = F(x, A) + C, c = F(x + 1, A) + C; int z = y; y = Z - z; x = Y; return F(z, c, x, a, y, b); } } if (Z > Y) { int x = Z / Y; string a = A + F(x, C) + B, b = A + F(x + 1, C) + B; int y = Z - x * Y; x = Y - y; return F(y, b, x, a); } else { int x = Y / Z; string a = A + C + F(x, B), b = A + C + F(x + 1, B); int y = Y - x * Z; x = Z - y; return F(x, a, y, b); } } int main() { int X, Y, Z; cin >> X >> Y >> Z; cout << F(X, "a", Y, "b", Z, "c") << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f2f1f0f; const long long LINF = 1ll * INF * INF; const int MAX_N = 1e2; int N, Ns[3], Now[MAX_N], Ans[MAX_N], AnsN[3]; int main() { cin >> Ns[0] >> Ns[1] >> Ns[2]; for (int k = 0; k < 3; k++) N += Ns[k]; for (int k = 0; k < 3; k++) AnsN[k] = Ns[k]; for (int s = 0; s < N; s++) { bool isFinish = false; for (int o = 2; o >= 0; o--) if (isFinish == false && AnsN[o] > 0) { bool isCan = true; Ans[s] = o; int cnt[3]; for (int k = 0; k < 3; k++) cnt[k] = Ns[k]; int en = N / (s + 1) * (s + 1); for (int p = 0; p < N; p += (s + 1)) { bool mustUp = true; for (int is = 0; is < (s + 1) && p + is < N; is++) { bool findWell = false; int start = Ans[is]; if (mustUp == false) start = 0; for (int k = start; k < 3; k++) { if (cnt[k] > 0) { cnt[k]--, Now[p + is] = k; if (k != Ans[is]) mustUp = false; findWell = true; break; } } if (findWell == false) isCan = false; } if (isCan == false) break; } if (isCan) { for (int i = en; i < N; i++) { for (int j = 0; j < s + 1; j++) { if (Now[j] < Now[(i + j) % N]) { break; } else if (Now[j] > Now[(i + j) % N]) { isCan = false; break; } else continue; } } } if (isCan) isFinish = true, AnsN[o]--; } } for (int i = 0; i < N; i++) printf("%c", Ans[i] + 'a'); puts(""); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
ary = gets.chomp.split(" ").map(&:to_i) a = ary[0] b = ary[1] c = ary[2] if a > 0 list = [] bb = b/a ba = b%a cc = c/a ca = c%a a.times do |i| list.push("c"*cc+"b"*bb) end ba.times do |i| list[i] = list[i]+"b" end if ca > 0 [ca,a-ba].min.times do |i| list[ba+i] = "c"+list[ba+i] end if ca > (a-ba) (ca -(a-ba)).times do |i| list[i] = "c"+list[i] end end end str = "a"+list.join("a") elsif b>0 cc = c/b cb = c%b list = [] b.times do |i| list.push("c"*cc) end cb.times do |i| list[i] = list[i]+"c" end str = "b"+list.join("b") else str = "c"*c end puts str
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string eval(string s) { int n = s.size(); s += s; string ans = "~"; for (int i = 0; i < n; ++i) { ans = min(ans, s.substr(i, n)); } return ans; } int main() { int X, Y, Z; cin >> X >> Y >> Z; int N = X + Y + Z; string ans = string(X, 'a') + string(Y, 'b') + string(Z, 'c'); string cur_ev = eval(ans); while (true) { bool found = false; for (int i = 0; i < N; ++i) { string nxt = ans; swap(nxt[i], nxt[(i + 1) % N]); string ev = eval(nxt); if (ev > cur_ev) { cur_ev = ev; ans = nxt; found = true; break; } } if (!found) break; } cout << cur_ev << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int A, B, C; vector<string> vec; string maxn = ""; void dfs(vector<string> V, string S) { if (V.size() == 0) { string G = S; for (int i = 0; i < S.size(); i++) { string I = ""; for (int j = 0; j < S.size(); j++) I += S[(i + j) % S.size()]; G = min(G, I); } maxn = max(maxn, G); return; } for (int i = 0; i < V.size(); i++) { if (i >= 1 && V[i] == V[i - 1]) continue; vector<string> Z; for (int j = 0; j < V.size(); j++) { if (i != j) Z.push_back(V[j]); } string ZZ = S + V[i]; dfs(Z, ZZ); } } int main() { cin >> A >> B >> C; int P = 0; while (A == 0) { A = B; B = C; C = 0; P++; } for (int i = 0; i < A; i++) vec.push_back("a"); for (int i = 0; i < C; i++) vec[i % A] += "c"; sort(vec.begin(), vec.end()); int Z = 1; for (int i = 0; i < (int)vec.size() - 1; i++) { if (vec[i] == vec[i + 1]) Z = i + 2; else break; } for (int i = 0; i < B; i++) vec[i % Z] += "b"; sort(vec.begin(), vec.end()); dfs(vec, ""); for (int i = 0; i < maxn.size(); i++) maxn[i] += P; cout << maxn << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a, b, c; string min(string a, string b) { if ((int)a.size() < (int)b.size()) return a; if ((int)a.size() > (int)b.size()) return b; if (a == b) return a; if (a < b) return a; else return b; } string F(string &s) { string tmp = ""; string ss = ""; string ret = ""; for (int i = 0; i < 50; i++) { ret += "Z"; } for (int i = 0; i < (int)s.size(); i++) { ss += s[i]; tmp = s.substr(i + 1, (int)s.size() - i - 1); tmp += ss; ret = min(ret, tmp); } return ret; } vector<string> V; struct node { int A, B, C; string S; node() {} node(int _A, int _B, int _C, string _tmp) { A = _A; B = _B; C = _C; S = _tmp; } bool operator<(const node &a) const { if (A == a.A) { if (B == a.B) { if (C == a.C) { return S < a.S; } return C < a.C; } return B < a.B; } return A < a.A; } }; map<node, bool> dp; void rek(int A, int B, int C, string tmp) { if (dp.find(node(A, B, C, tmp)) != dp.end()) return; if (A == 0 and B == 0 and C == 0) { V.push_back(F(tmp)); return; } if (A - 1 >= 0) { rek(A - 1, B, C, tmp + "a"); } if (B - 1 >= 0) { rek(A, B - 1, C, tmp + "b"); } if (C - 1 >= 0) { rek(A, B, C - 1, tmp + "c"); } dp[node(A, B, C, tmp)] = true; return; } int main() { ios_base::sync_with_stdio(false); cin >> a >> b >> c; V.clear(); rek(a, b, c, ""); sort(V.begin(), V.end()); cout << V[(int)V.size() - 1] << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, char *argv[]) { int cnt[3]; int sm = 0; int st = -1; for (int i = 0; i < 3; i++) { cin >> cnt[i]; if (cnt[i] && st == -1) st = cnt[i]; sm += cnt[i]; } string seg[55]; string ans; for (int segn = st; segn <= st; segn++) { deque<char> deq; for (int i = 0; i < 3; i++) { for (int j = 0; j < cnt[i]; j++) { deq.push_back('a' + i); } } for (int i = 1; i <= segn; i++) { seg[i].clear(); } for (int i = 1; i <= segn; i++) { seg[i] += deq.front(); deq.pop_front(); } int cur = segn; int dir = -1; while (deq.size()) { seg[cur] += deq.back(); deq.pop_back(); if (dir == 1) { if (++cur == segn + 1) { dir = -1; cur -= 2; } } else { if (--cur == 0) { dir = 1; cur += 2; } } } string cand; for (int i = 1; i <= segn; i++) { cand += seg[i]; } if (cand > ans) ans = cand; } cout << ans << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; string dp[51][51][51]; void sol(int x, int y, int z) { if (dp[x][y][z] != "") return; if (x == 0 && y == 0) { dp[x][y][z] = string(z, 'c'); return; } if (y == 0 && z == 0) { dp[x][y][z] = string(x, 'a'); return; } if (z == 0 && x == 0) { dp[x][y][z] = string(y, 'b'); return; } string res; using P = pair<string, int>; vector<P> xs{ {"a", x}, {"b", y}, {"c", z}, }; do { if (xs[0].second == 0 || xs[1].second == 0) continue; if (xs[0].first > xs[1].first) continue; vector<P> v{ {xs[0].second > xs[1].second ? xs[0].first : xs[1].first, abs(xs[0].second - xs[1].second)}, {xs[0].first + xs[1].first, min(xs[0].second, xs[1].second)}, xs[2], }; sort((v).begin(), (v).end()); sol(v[0].second, v[1].second, v[2].second); string &str = dp[v[0].second][v[1].second][v[2].second]; string it; for (auto &el : str) it += v[el - 'a'].first; res = max(res, it); } while (next_permutation((xs).begin(), (xs).end())); dp[x][y][z] = res; } int main() { std::ios::sync_with_stdio(false), std::cin.tie(0); int x, y, z; cin >> x >> y >> z; sol(x, y, z); cout << dp[x][y][z] << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <typename... As> struct tpl : public std::tuple<As...> { using std::tuple<As...>::tuple; tpl() {} tpl(std::tuple<As...> const& b) { std::tuple<As...>::operator=(b); } template <typename T = tuple<As...>> typename tuple_element<0, T>::type const& x() const { return get<0>(*this); } template <typename T = tuple<As...>> typename tuple_element<0, T>::type& x() { return get<0>(*this); } template <typename T = tuple<As...>> typename tuple_element<1, T>::type const& y() const { return get<1>(*this); } template <typename T = tuple<As...>> typename tuple_element<1, T>::type& y() { return get<1>(*this); } template <typename T = tuple<As...>> typename tuple_element<2, T>::type const& z() const { return get<2>(*this); } template <typename T = tuple<As...>> typename tuple_element<2, T>::type& z() { return get<2>(*this); } template <typename T = tuple<As...>> typename tuple_element<3, T>::type const& w() const { return get<3>(*this); } template <typename T = tuple<As...>> typename tuple_element<3, T>::type& w() { return get<3>(*this); } }; using lli = long long int; using llu = long long unsigned; using pii = tpl<lli, lli>; using piii = tpl<lli, lli, lli>; using piiii = tpl<lli, lli, lli, lli>; using vi = vector<lli>; using vii = vector<pii>; using viii = vector<piii>; using vvi = vector<vi>; using vvii = vector<vii>; using vviii = vector<viii>; template <class T> using min_queue = priority_queue<T, vector<T>, greater<T>>; template <class T> using max_queue = priority_queue<T>; template <size_t... I> struct my_index_sequence { using type = my_index_sequence; static constexpr array<size_t, sizeof...(I)> value = {{I...}}; }; namespace my_index_sequence_detail { template <typename I, typename J> struct concat; template <size_t... I, size_t... J> struct concat<my_index_sequence<I...>, my_index_sequence<J...>> : my_index_sequence<I..., (sizeof...(I) + J)...> {}; template <size_t N> struct make_index_sequence : concat<typename make_index_sequence<N / 2>::type, typename make_index_sequence<N - N / 2>::type>::type {}; template <> struct make_index_sequence<0> : my_index_sequence<> {}; template <> struct make_index_sequence<1> : my_index_sequence<0> {}; } // namespace my_index_sequence_detail template <class... A> using my_index_sequence_for = typename my_index_sequence_detail::make_index_sequence<sizeof...(A)>::type; template <class T, size_t... I> void print_tuple(ostream& s, T const& a, my_index_sequence<I...>) { using swallow = int[]; (void)swallow{0, (void(s << (I == 0 ? "" : ", ") << get<I>(a)), 0)...}; } template <class T> ostream& print_collection(ostream& s, T const& a); template <class... A> ostream& operator<<(ostream& s, tpl<A...> const& a); template <class... A> ostream& operator<<(ostream& s, tuple<A...> const& a); template <class A, class B> ostream& operator<<(ostream& s, pair<A, B> const& a); template <class T, size_t I> ostream& operator<<(ostream& s, array<T, I> const& a) { return print_collection(s, a); } template <class T> ostream& operator<<(ostream& s, vector<T> const& a) { return print_collection(s, a); } template <class T, class U> ostream& operator<<(ostream& s, multimap<T, U> const& a) { return print_collection(s, a); } template <class T> ostream& operator<<(ostream& s, multiset<T> const& a) { return print_collection(s, a); } template <class T, class U> ostream& operator<<(ostream& s, map<T, U> const& a) { return print_collection(s, a); } template <class T> ostream& operator<<(ostream& s, set<T> const& a) { return print_collection(s, a); } template <class T> ostream& print_collection(ostream& s, T const& a) { s << '['; for (auto it = begin(a); it != end(a); ++it) { s << *it; if (it != prev(end(a))) s << " "; } return s << ']'; } template <class... A> ostream& operator<<(ostream& s, tpl<A...> const& a) { s << '('; print_tuple(s, a, my_index_sequence_for<A...>{}); return s << ')'; } template <class... A> ostream& operator<<(ostream& s, tuple<A...> const& a) { s << '('; print_tuple(s, a, my_index_sequence_for<A...>{}); return s << ')'; } template <class A, class B> ostream& operator<<(ostream& s, pair<A, B> const& a) { return s << "(" << get<0>(a) << ", " << get<1>(a) << ")"; } vi redcnt(vi cnt) { vi cnt2; for (int i : cnt) if (i) cnt2.push_back(i); return cnt2; } vi solve_(vi); vi solve(vi cnt) { map<int, int> trans; vi cnt2; for (lli i = 0; i < (lli)(cnt.size()); ++i) { if (cnt[i]) { trans[cnt2.size()] = i; cnt2.push_back(cnt[i]); } } vi r = solve_(cnt2); vi r2; for (int i : r) r2.push_back(trans[i]); return r2; } vi solve_(vi cnt) { if (cnt.size() == 1) { vi r; for (lli i = 0; i < (lli)(cnt[0]); ++i) r.push_back(0); return r; } int k = 1; while (1) { int nx = (cnt[0] + k - 1) / k; int x1 = cnt[0] % nx; if (x1 == 0) x1 = nx; int x2 = nx - x1; map<vi, lli> make_pair; for (lli j = (cnt.size() - 1); j >= (lli)(1); --j) { vi base1; for (lli k_ = 0; k_ < (lli)(k); ++k_) base1.push_back(0); base1.push_back(j); vi base2; for (lli k_ = 0; k_ < (lli)(k - 1); ++k_) base2.push_back(0); base2.push_back(j); lli cc = cnt[j]; while (cc && x1) { cc--; x1--; make_pair[base1]++; } while (cc && x2) { cc--; x2--; make_pair[base2]++; } while (cc) { cc--; make_pair[{j}]++; } } if (x1 == 0 && x2 == 0) { vector<tpl<vi, lli>> mp_; for (auto p : make_pair) mp_.push_back(make_tuple(p.first, p.second)); vi cnt2; for (auto p : mp_) cnt2.push_back(p.y()); vi r = solve(cnt2); vi ans; for (int i : r) ans.insert(end(ans), begin(mp_[i].x()), end(mp_[i].x())); return ans; } k += 1; } }; int main() { ios::sync_with_stdio(0); cin.tie(0); lli x, y, z; cin >> x >> y >> z; vi r = solve({x, y, z}); string s; for (int i : r) s += 'a' + i; cout << s << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int A, B, C; vector<string> vec; string maxn = ""; void dfs(vector<string> V, string S) { if (V.size() == 0) { string G = S; for (int i = 0; i < S.size(); i++) { string I = ""; for (int j = 0; j < S.size(); j++) I += S[(i + j) % S.size()]; G = min(G, I); } maxn = max(maxn, G); return; } for (int i = 0; i < V.size(); i++) { if (i >= 1 && V[i] == V[i - 1]) continue; vector<string> Z; for (int j = 0; j < V.size(); j++) { if (i != j) Z.push_back(V[j]); } string ZZ = S + V[i]; dfs(Z, ZZ); } } int main() { cin >> A >> B >> C; while (A == 0) { A = B; B = C; C = 0; } for (int i = 0; i < A; i++) vec.push_back("a"); for (int i = 0; i < C; i++) vec[i % A] += "c"; sort(vec.begin(), vec.end()); int Z = 0; for (int i = 0; i < vec.size() - 1; i++) { if (vec[i] == vec[i + 1]) Z = i + 2; } for (int i = 0; i < B; i++) vec[i % B] += "b"; sort(vec.begin(), vec.end()); dfs(vec, ""); cout << maxn << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from itertools import permutations,count,chain from collections import deque def helper(s): for i in range(len(s)): yield s[i:]+s[:i] def naive(a,b,c): return max(min(helper(s)) for s in permutations('a'*a+'b'*b+'c'*c)) def solve(a,b,c): def helper(a,b,c): cnt = (a,b,c).count(0) if cnt == 3: return [] elif cnt == 2: n,i = max((x,i) for i,x in enumerate((a,b,c))) return [i]*n elif cnt == 1: (l,nl),(u,nu) = ((i,x) for i,x in enumerate((a,b,c)) if x != 0) n = nl//nu return tuple(reversed(([u]+[l]*n)*nu + [l]*(nl-n*nu))) n0 = c%a n1 = a - n0 m0 = b%n1 m1 = n1-m0 R = helper(m1,m0,n0) nc = c//a nb = b//n1 s = ([0] + [2]*nc + [1]*nb, [0] + [2]*nc + [1]*(nb+1), [0] + [2]*(nc+1)) return tuple(chain.from_iterable(s[r] for r in R)) s = ('a','b','c') return ''.join(s[i] for i in helper(a,b,c)) print(solve(*map(int,input().split())))
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; struct dice { mt19937 mt; dice() { random_device rd; mt = mt19937(rd()); } int operator()(int x) { return this->operator()(0, x - 1); } int operator()(int x, int y) { uniform_int_distribution<int> dist(x, y); return dist(mt); } } dc; string f(string s) { int N = s.length(); string mi = "z"; for (int t = 0; t < N; t++) { mi = min(mi, s); rotate(s.begin(), s.begin() + 1, s.end()); } return mi; } int main() { int A, B, C; cin >> A >> B >> C; string s; for (int t = 0; t < A; t++) s.push_back('a'); for (int t = 0; t < B; t++) s.push_back('b'); for (int t = 0; t < C; t++) s.push_back('c'); shuffle(s.begin(), s.end(), dc.mt); int N = s.length(); string ma = f(s); for (int t = 0; t < 500000; t++) { int i = dc(N), j = dc(N); swap(s[i], s[j]); string mi = f(s); if (mi < ma) swap(s[i], s[j]); else ma = mi; } cout << ma << endl; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
($X,$Y,$Z)=glob<>; $s='a'x$X.'B'x$Y.'C'x$Z; while($p=$s,$s=~s/^(a*)a?\K(\1.*)([BC])/\l$3$2/){ $t=$s; for(1..length$s){ $t=~s/(.)(.*)/$2$1/; if(lc$t lt lc$s){ $s=$t } } if(lc$p gt lc$s){ $s=$p; last } } print lc$s
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int x, y, z; vector<char> at[100]; int l = 0; scanf("%d %d %d", &x, &y, &z); if (x > y + z && y + z > 0) { for (int i = (long long int)0; i < y + z; i++) { at[i % (y + z)].push_back('a'); } for (int i = (long long int)0; i < z; i++) { at[i].push_back('c'); } for (int i = (long long int)0; i < y; i++) { at[i + z].push_back('b'); } l = y + z; } else if (x > 0) { for (int i = (long long int)0; i < x; i++) { at[i].push_back('a'); } for (int i = (long long int)0; i < z; i++) { at[i % x].push_back('c'); } for (int i = (long long int)0; i < y; i++) { at[(i + z) % x].push_back('b'); } l = x; } else if (y > 0) { for (int i = (long long int)0; i < y; i++) { at[i].push_back('b'); } for (int i = (long long int)0; i < z; i++) { at[i % y].push_back('c'); } l = y; } else { for (int i = (long long int)0; i < z; i++) { at[i].push_back('c'); } l = z; } for (int i = (long long int)0; i < l; i++) { if (i % 2 == 0) { for (int j = (long long int)0; j < at[l - 1 - i / 2].size(); j++) { printf("%c", at[l - 1 - i / 2][j]); } } else { for (int j = (long long int)0; j < at[i / 2].size(); j++) { printf("%c", at[i / 2][j]); } } } printf("\n"); return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int x, y, z; string ans; bool check(string s) { int rem[3] = {x, y, z}; int p = 0; for (int i = 0; i < n; i++) { int c = s[p] - 'a', f = -1; for (int j = c; j < 3; j++) { if (rem[j]) { rem[j]--; f = j; break; } } if (f == -1) return false; if (f > c) { s[p] = (char)('a' + f); s.erase(s.begin() + p + 1, s.end()); } p++; if (p >= s.size()) p = 0; } return p == 0; } int main(void) { cin >> x >> y >> z; n = x + y + z; for (int i = 0; i < n; i++) { for (int j = 2; j >= 0; j--) { string s = ans + ((char)('a' + j)); if (check(s)) { ans = s; break; } } } cout << ans << endl; return 0; }
p03582 CODE FESTIVAL 2017 qual B - Largest Smallest Cyclic Shift
For a string S, let f(S) be the lexicographically smallest cyclic shift of S. For example, if S = `babca`, f(S) = `ababc` because this is the smallest among all cyclic shifts (`babca`, `abcab`, `bcaba`, `cabab`, `ababc`). You are given three integers X, Y, and Z. You want to construct a string T that consists of exactly X `a`s, exactly Y `b`s, and exactly Z `c`s. If there are multiple such strings, you want to choose one that maximizes f(T) lexicographically. Compute the lexicographically largest possible value of f(T). Constraints * 1 \leq X + Y + Z \leq 50 * X, Y, Z are non-negative integers. Input Input is given from Standard Input in the following format: X Y Z Output Print the answer. Examples Input 2 2 0 Output abab Input 1 1 1 Output acb
{ "input": [ "2 2 0", "1 1 1" ], "output": [ "abab", "acb" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using std::abs; using std::array; using std::cerr; using std::cin; using std::cout; using std::generate; using std::make_pair; using std::map; using std::max; using std::max_element; using std::min; using std::min_element; using std::pair; using std::reverse; using std::set; using std::sort; using std::string; using std::unique; using std::vector; template <typename T> T input() { T res; cin >> res; {}; return res; } template <typename IT> void input_seq(IT b, IT e) { std::generate(b, e, input<typename std::remove_reference<decltype(*b)>::type>); } bool dfs(const vector<vector<int>>& graph, vector<char>& type, int v) { for (int u : graph[v]) if (type[u] == 0) { type[u] = 3 - type[v]; if (not dfs(graph, type, u)) return false; } else if (type[u] == type[v]) { return false; } return true; } int main() { std::iostream::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int n = input<int>(); int m = input<int>(); vector<vector<int>> graph(n); for (int i = 0; i != m; ++i) { int v = input<int>() - 1; int u = input<int>() - 1; graph[v].push_back(u); graph[u].push_back(v); } vector<char> type(n, 0); type[0] = 1; bool bip = dfs(graph, type, 0); if (bip) { int num[2] = {0, 0}; for (int i = 0; i != n; ++i) num[type[i] - 1] += 1; cout << num[0] * int64_t(num[1]) - m << "\n"; } else { cout << n * int64_t(n - 1) / 2 - m << "\n"; } return 0; }