Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int count(int sign0, vector<int> a, int n) { int count = 0; int total = 0; for (int i = 0; i < n; i++) { total += a.at(i); if (i % 2 == 1) { while (total * sign0 >= 0) { total -= sign0; count++; } } else { while (total * sign0 <= 0) { total += sign0; count++; } } } return count; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a.at(i); int plus = count(1, a, n); int minus = count(-1, a, n); cout << min(plus, minus) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { double num[10 * 10 * 10 * 10 * 10]; int i, n, ssign; double sum = 0; double count = 0; double fsum, fnum; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%lf", &num[i]); } if (num[0] == 0) { num[0]++; count++; } for (i = 1; i < n; i++) { sum += num[i - 1]; fsum = fabs(sum); fnum = fabs(num[i]); while (1) { if (fsum > fnum) { if (sum < 0) { num[i]++; count++; } else if (sum > 0) { num[i]--; count++; } } else if (fsum == fnum) { if (sum < 0) { num[i]++; count++; } else { num[i]--; count++; } } else if (fsum < fnum && sum > 0 && num[i] > 0) { num[i]--; count++; } else if (fsum < fnum && sum < 0 && num[i] < 0) { num[i]++; count++; } else break; } } printf("%.0f\n", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ABC59C { class Program { static void Main(string[] args) { int n = int.Parse(Console.ReadLine()); string[] str = Console.ReadLine().Split(' '); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = int.Parse(str[i]); } int x = 0; int f = 0; int sum = 0; if (a[0] < 0) f = 1; if (a[0] == 0) { a[0]++; x++; } for(int i = 0; i < n; i++) { sum += a[i]; if (f == 1 && sum >= 0) { x += (sum + 1); f = 0; sum = -1; }else if (f == 0 && sum <= 0) { x += (1 - sum); f = 1; sum = 1; }else { f = 1 - f; } } Console.WriteLine(x); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) a_1 = a ans = 0 ans_2 = 0 o = 0 for i in range(n): if i == 0: if a[i] == 0: f = "+" a[i] = 1 elif a[0] > 0: f = "+" elif a[0] < 0: f = "-" else: o += a[i-1] if f == "+": if a[i] + o > 0: c = -1 - o ans += abs(c - a[i]) a[i] = c f = "-" else: if a[i] + o == 0: a[i] -= 1 ans += 1 f = "-" elif f == "-": if a[i] + o < 0: c = 1 - o ans += abs(c - a[i]) a[i] = c f = "+" else: if a[i] + o == 0: a[i] += 1 ans += 1 f = "+" a = a_1 for i in range(n): if i == 0: if a[i] == 0: f = "+" a[i] = 1 elif a[0] > 0: f = "-" elif a[0] < 0: f = "+" else: o += a[i-1] if f == "+": if a[i] + o > 0: c = -1 - o ans_2 += abs(c - a[i]) a[i] = c f = "-" else: if a[i] + o == 0: a[i] -= 1 ans += 1 f = "-" elif f == "-": if a[i] + o < 0: c = 1 - o ans_2 += abs(c - a[i]) a[i] = c f = "+" else: if a[i] + o == 0: a[i] += 1 ans += 1 f = "+" print(a) print(min(ans,ans_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int d[n]; for (int i = 0; i < n; i++) { cin >> d[i]; } int count = 0; int sum = d[0]; int f = 0; if (d[0] > 0) { f = -1; } if (d[0] < 0) { f = 1; } for (int i = 1; i < n; i++) { sum += d[i]; if (sum == 0) { if (f == 1) { count++; f = -1; sum = 1; continue; } if (f == -1) { count++; f = 1; sum = -1; continue; } } if (sum > 0) { if (f == 1) { f = -1; continue; } if (f == -1) { count += sum + 1; sum = -1; f = 1; continue; } } if (sum < 0) { if (f == -1) { f = 1; continue; } if (f == 1) { count += 1 - sum; sum = 1; f = -1; continue; } } } int ccount = 0; int ssum; int ff = 0; if (d[0] > 0) { ff = 1; ccount = 1 + d[0]; ssum = -1; } if (d[0] < 0) { ff = -1; ccount = 1 - d[0]; ssum = 1; } for (int i = 1; i < n; i++) { ssum += d[i]; if (ssum == 0) { if (ff == 1) { ccount++; ff = -1; ssum = 1; continue; } if (ff == -1) { ccount++; ff = 1; ssum = -1; continue; } } if (ssum > 0) { if (ff == 1) { ff = -1; continue; } if (ff == -1) { ccount += ssum + 1; ssum = -1; ff = 1; continue; } } if (ssum < 0) { if (ff == -1) { ff = 1; continue; } if (ff == 1) { ccount += 1 - ssum; ssum = 1; ff = -1; continue; } } } int s = min(count, ccount); cout << s << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 1e9; const long long int linf = 1LL << 50; int main(int argc, char const* argv[]) { int n; cin >> n; vector<long long int> a; for (int i = 0; i < n; i++) { long long int x; cin >> x; a.push_back(x); } long long int res = 0; long long int sum = a[0]; for (int i = 1; i < n; i++) { long long int tmp = sum + a[i]; if ((sum > 0 && tmp < 0) || (sum < 0 && tmp > 0)) { sum = tmp; } else { long long int target; if (sum > 0) target = -1; else target = 1; res += abs(target - tmp); sum = target; } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int a[n], sum = 0, cnt = 0; for (int i = 0; i < n; i++) cin >> a[i]; sum = a[0]; if (a[0] == 0) { cnt++; if (a[1] > 0) sum++; else sum--; } for (int i = 1; i < n; i++) { if ((sum >= 0 && sum + a[i] >= 0) || (sum <= 0 && sum + a[i] <= 0)) { if (sum < 0) { long long int k = sum + a[i]; cnt += abs(k - 1); sum = 1; } else { long long int k = sum + a[i]; cnt += abs(k + 1); sum = -1; } } else sum += a[i]; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<signed long long> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } signed long long ans = 0; if (a[0] == 0) { signed long long tmp = 0; for (int i = 0; i < n; ++i) { if (a[i] != 0) { if ((a[i] > 0 && i % 2 == 0) || (a[i] < 0 && i % 2 == 1)) { ++ans; a[0] = 1; break; } else { ++ans; a[0] = -1; break; } break; } } } if (a[0] > 0) { signed long long sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } } } else { signed long long sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long sum = a.at(0); long long op_1 = 0; bool flag = sum > 0 ? 1 : 0; for (int j = 1; j < n; j++) { if (flag) { sum += a.at(j); if (sum >= 0) { op_1 += (sum + 1); sum = -1; } flag = 0; } else { sum += a.at(j); if (sum <= 0) { op_1 += (-1 * sum + 1); sum = 1; } flag = 1; } } sum = a.at(0); long long op_2 = 0; if (sum > 0) { sum = -1; op_2 += (sum + 1); flag = 0; } else { sum = 1; op_2 += (sum * -1 + 1); flag = 1; } for (int j = 1; j < n; j++) { if (flag) { sum += a.at(j); if (sum >= 0) { op_2 += sum + 1; sum = -1; } flag = 0; } else { sum += a.at(j); if (sum <= 0) { op_2 += -1 * sum + 1; sum = 1; } flag = 1; } } cout << (op_1 > op_2 ? op_2 : op_1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 10; long long a[MAXN]; int main(void) { int n; long long ans = 0, sum = 0; bool flag = true; scanf("%d", &n); scanf("%lld", &ans); if (ans < 0) flag = false; else if (ans == 0) { sum += 1; ans = 1; } for (int i = 1; i < n; i++) { long long x; scanf("%lld", &x); a[i] = x; ans += x; if (flag) { if (ans >= 0) { sum += ans + 1; ans = -1; } flag = false; } else { if (ans <= 0) { sum += abs(ans) + 1; ans = 1; } flag = true; } } long long num = 0; if (ans < 0) { ans = 1; num += abs(num) + 1; flag = true; } else { ans = -1; num += num + 1; flag = false; } for (int i = 1; i < n; i++) { long long x = a[i]; ans += x; if (flag) { if (ans >= 0) { num += ans + 1; ans = -1; } flag = false; } else { if (ans <= 0) { num += abs(ans) + 1; ans = 1; } flag = true; } } sum = min(sum, num); printf("%lld\n", sum); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; namespace AtCoder { class Program { static int n; static void Main(string[] args) { //[summary]C - Sequence n = int.Parse(Console.ReadLine()); var a = ReadLine(); long count = 0; if (a[0] == 0) { var a1 = new List<long>(a); a1[0] = 1; long count1 = CountOperations(a, a1); var a2 = new List<long>(a); a2[0] = -1; long count2 = CountOperations(a, a2); if (count1 < count2) { count = count1; } else { count = count2; } } else { var a3 = new List<long>(a); count = CountOperations(a, a3); } Console.WriteLine(count); } static long CountOperations(List<long> a, List<long> newA) { newA = GetNewNumbers(newA); long count = 0; for(int i = 0; i < n; i++) { count += Math.Abs(a[i] - newA[i]); } return count; } static List<long> GetNewNumbers(List<long> a) { long sum = a[0]; long next = 0; for (int i = 1; i < n; i++) { next = sum + a[i]; if ((sum > 0 && next < 0) | (sum < 0 && next > 0)) { //何もしない } else if (sum > 0) { a[i] = -1 - sum; next = -1; } else { a[i] = 1 - sum; next = 1; } sum = next; } return a; } static List<long> ReadLine() { var line = Console.ReadLine(); var array = line.Split(' '); return array.Select(x => long.Parse(x)).ToList(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- n = int(input()) an = list(map(int, input().split())) sum = an[0] ans = 0 for i in range(1,n): if sum * (sum + an[i]) < 0 or (i==1 and sum>0): sum += an[i] else: if sum > 0: ans += abs(sum + an[i] + 1) sum = -1 else: ans += abs(sum + an[i] - 1) sum = 1 ans1 = ans ans = 0 for i in range(1, n): if sum * (sum + an[i]) < 0 or (i == 1 and sum < 0): sum += an[i] else: if sum > 0: ans += abs(sum + an[i] + 1) sum = -1 else: ans += abs(sum + an[i] - 1) sum = 1 print(min([ans1,ans]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np from copy import deepcopy n = int(input()) a = list(map(int, input().split())) c = [0] * n for i in range(n): c[i] = c[i - 1] + a[i] c = np.array(c) ans1, ans2 = 0, 0 tmp = deepcopy(c) for i in range(n): t = tmp[i] if i % 2 == 0 and tmp[i] >= 0: tmp -= t + 1 ans1 += t + 1 elif i % 2 == 1 and tmp[i] <= 0: tmp += -t + 1 ans1 += -t + 1 tmp = deepcopy(c) for i in range(n): t = c[i] if i % 2 == 1 and tmp[i] >= 0: tmp -= t + 1 ans2 += t + 1 elif i % 2 == 0 and tmp[i] <= 0: tmp += -t + 1 ans2 += -t + 1 print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>; using vb = vector<bool>; using vvb = vector<vb>; using mii = map<int, int>; using pqls = priority_queue<long long>; using pqlg = priority_queue<long long, vector<long long>, greater<long long>>; using mll = map<long long, long long>; using pll = pair<long long, long long>; using sll = set<long long>; long long divup(long long a, long long b); long long kaijou(long long i); long long P(long long n, long long k); long long C(long long n, long long k); long long GCD(long long a, long long b); long long LCM(long long a, long long b); bool prime(long long N); double distance(vector<long long> p, vector<long long> q, long long n); void press(vector<long long> &v); void ranking(vector<long long> &v); void erase(vector<long long> &v, long long i); void unique(vector<long long> &v); void printv(vector<long long> v); vector<ll> keta(ll x); long long modpow(long long a, long long n, long long mod); long long modinv(long long a, long long mod); vector<long long> inputv(long long n); vector<long long> yakusuu(int n); map<long long, long long> soinsuu(long long n); vector<vector<long long>> maze(long long i, long long j, vector<string> &s); vector<long long> eratos(long long n); set<long long> eraset(long long n); long long divup(long long a, long long b) { long long x = abs(a); long long y = abs(b); long long z = (x + y - 1) / y; if ((a < 0 && b > 0) || (a > 0 && b < 0)) return -z; else if (a == 0) return 0; else return z; } long long kaijou(long long i) { if (i == 0) return 1; long long j = 1; for (long long k = 1; k <= i; k++) { j *= k; } return j; } long long P(long long n, long long k) { if (n < k) return 0; long long y = 1; for (long long i = 0; i < k; i++) { y *= (n - i); } return y; } long long C(long long n, long long k) { if (n < k) return 0; return P(n, k) / kaijou(k); } long long GCD(long long a, long long b) { if (a < b) swap(a, b); long long d = a % b; if (d == 0) { return b; } return GCD(b, d); } long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; } bool prime(long long N) { if (N == 1) { return false; } if (N < 0) return false; long long p = sqrt(N); for (long long i = 2; i <= p; i++) { if (N % i == 0) { return false; } } return true; } double distance(vector<long long> p, vector<long long> q, long long n) { double x = 0; for (long long i = 0; i < n; i++) { x += pow((p.at(i) - q.at(i)), 2); } return sqrt(x); } void press(vector<long long> &v) { long long n = v.size(); vector<long long> w(n); map<long long, long long> m; for (auto &p : v) { m[p] = 0; } long long i = 0; for (auto &p : m) { p.second = i; i++; } for (long long i = 0; i < n; i++) { w.at(i) = m[v.at(i)]; } v = w; return; } void ranking(vector<long long> &v) { long long n = v.size(); map<long long, long long> m; long long i; for (i = 0; i < n; i++) { m[v.at(i)] = i; } vector<long long> w(n); i = 0; for (auto &p : m) { v.at(i) = p.second; i++; } return; } void erase(vector<long long> &v, long long i) { long long n = v.size(); if (i > n - 1) return; for (long long j = i; j < n - 1; j++) { v.at(j) = v.at(j + 1); } v.pop_back(); return; } void unique(vector<long long> &v) { long long n = v.size(); set<long long> s; long long i = 0; while (i < n) { if (s.count(v.at(i))) { erase(v, i); n--; } else { s.insert(v.at(i)); i++; } } return; } void printv(vector<long long> v) { cout << "{ "; for (auto &p : v) { cout << p << ","; } cout << "}" << endl; } vector<ll> keta(ll x) { if (x == 0) return {0}; ll n = log10(x) + 1; vll w(n, 0); for (ll i = 0; i < n; i++) { ll p; p = x % 10; x = x / 10; w[n - 1 - i] = p; } return w; } long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); } vector<long long> inputv(long long n) { vector<long long> v(n); for (long long i = 0; i < n; i++) { cin >> v[i]; } return v; } vector<long long> yakusuu(long long n) { vector<long long> ret; for (long long i = 1; i <= sqrt(n); ++i) { if (n % i == 0) { ret.push_back(i); if (i * i != n) { ret.push_back(n / i); } } } sort(ret.begin(), ret.end()); return ret; } map<long long, long long> soinsuu(long long n) { map<long long, long long> m; long long p = sqrt(n); while (n % 2 == 0) { n /= 2; if (m.count(2)) { m[2]++; } else { m[2] = 1; } } for (long long i = 3; i * i <= n; i += 2) { while (n % i == 0) { n /= i; if (m.count(i)) { m[i]++; } else { m[i] = 1; } } } if (n != 1) m[n] = 1; return m; } vector<vector<long long>> maze(ll i, ll j, vector<string> &s) { ll h = s.size(); ll w = s[0].size(); queue<vector<long long>> q; vector<vector<long long>> dis(h, vll(w, -1)); q.push({i, j}); dis[i][j] = 0; while (!q.empty()) { auto v = q.front(); q.pop(); if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) { dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] - 1, v[1]}); } if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) { dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] - 1}); } if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) { dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] + 1, v[1]}); } if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) { dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] + 1}); } } return dis; } long long modC(long long n, long long k, long long mod) { if (n < k) return 0; long long p = 1, q = 1; for (long long i = 0; i < k; i++) { p = p * (n - i) % mod; q = q * (i + 1) % mod; } return p * modinv(q, mod) % mod; } long long POW(long long a, long long n) { long long res = 1; while (n > 0) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } vector<long long> eratos(long long n) { if (n < 2) return {}; vll v(n - 1); for (long long i = 0; i < n - 1; i++) { v[i] = i + 2; } ll i = 0; while (i < n - 1) { ll p = v[i]; for (ll j = i + 1; j < n - 1; j++) { if (v[j] % p == 0) { v.erase(v.begin() + j); n--; } } i++; } v.resize(n - 1); return v; } set<long long> eraset(long long n) { set<long long> s; vll v = eratos(n); for (auto &t : v) { s.insert(t); } return s; } vll line(ll x1, ll y1, ll x2, ll y2) { vector<ll> v(3); v[0] = y1 - y2; v[1] = x2 - x1; v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2); return v; } double dis(vll v, ll x, ll y) { double s = sqrt(v[0] * v[0] + v[1] * v[1]); return (double)abs(v[0] * x + v[1] * y + v[2]) / s; } ll const mod = 1e9 + 7; int main() { ll n; cin >> n; auto a = inputv(n); auto b = a; ll l = 0; ll res = 0; for (long long i = 0; i < n; i++) { if (l == 0) { if (a[0] == 0) { for (long long j = 0; j < n; j++) { if (a[j] != 0) { a[0] = a[j] / abs(a[j]); if (j % 1) a[0] *= (-1); res++; break; } } } if (!a[0]) { a[0] = 1; res++; } l += a[0]; } else if (l < 0) { if (a[i] < -l + 1) { res += -l + 1 - a[i]; a[i] = -l + 1; l = 1; } else { l += a[i]; } } else if (l > 0) { if (a[i] > -l - 1) { res += abs(a[i] - (-l - 1)); a[i] = -l - 1; l = -1; } else { l += a[i]; } } } a = b; ll L = 0; ll res2 = 0; for (long long i = 0; i < n; i++) { if (L == 0) { if (a[0] == 0) { for (long long j = 0; j < n; j++) { if (a[j] != 0) { a[0] = a[j] / abs(a[j]); if (!j % 1) a[0] *= (-1); break; } } } if (!a[0]) { a[0] = 1; } L += a[0]; L *= (-1); L = L / abs(L); res2 += (b[0] - L); } else if (L < 0) { if (a[i] < -L + 1) { res2 += -L + 1 - a[i]; a[i] = -L + 1; L = 1; } else { L += a[i]; } } else if (L > 0) { if (a[i] > -L - 1) { res2 += abs(a[i] - (-L - 1)); a[i] = -L - 1; L = -1; } else { L += a[i]; } } } cout << min(res, res2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n], s[n]; for (int i = 0; i < n; i++) { cin >> a[i]; if (i == 0) { s[0] = a[0]; } else { s[i] = s[i - 1] + a[i]; } } long long cng = 0; long long ans1 = 0, ans2 = 0; if (a[0] == 0) { if (0 < a[1]) { cng--; } else { cng++; } ans++; } for (int i = 1; i < n; i++) { if (((s[i] + cng < 0) && (0 < s[i - 1] + cng)) || ((s[i] + cng > 0) && (0 > s[i - 1] + cng))) { //ok continue; } assert(s[i - 1] + cng != 0); if (s[i] + cng >= 0) //減らさないといけない { ans += s[i] + cng + 1; cng -= s[i] + cng + 1; } else //増やさないといけない { ans += -(s[i] + cng) + 1; cng += -(s[i] + cng) + 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int odd = 0, even = 0, sum, sign; sum = 0; sign = 1; for (int i = 0; i < n; i++) { sum += a[i]; if (sum == 0 || (sum < 0 && sign == 1) || (sum > 0 && sign == -1)) { odd += abs(sum) + 1; sum = sign; } sign *= -1; } sum = 0; sign = -1; for (int i = 0; i < n; i++) { sum += a[i]; if (sum == 0 || (sum < 0 && sign == 1) || (sum > 0 && sign == -1)) { even += abs(sum) + 1; sum = sign; } sign *= -1; } cout << min(odd, even) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; int odd_count = 0, odd_sum_count; for (int i = 0; i < (int)(n); i++) { odd_sum_count += a[i]; if (i % 2 == 0) { while (odd_sum_count >= 0) { odd_sum_count--; odd_count++; } } else { while (odd_sum_count <= 0) { odd_sum_count++; odd_count++; } } } int even_count = 0, even_sum_count; for (int i = 0; i < (int)(n); i++) { even_sum_count += a[i]; if (i % 2 == 0) { while (even_sum_count <= 0) { even_sum_count++; even_count++; } } else { while (even_sum_count >= 0) { even_sum_count--; even_count++; } } } cout << min(even_count, odd_count) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); int count = 0; if (a.at(0) == 0) { a.at(0) = 1; count++; } int sum = a.at(0); for (int i = 1; i < N; i++) { if (sum > 0 && sum + a.at(i) >= 0) { count += abs(-1 - sum - a.at(i)); a.at(i) = -1 - sum; } else if (sum < 0 && sum + a.at(i) <= 0) { count += abs(1 - sum - a.at(i)); a.at(i) = 1 - sum; } sum += a.at(i); } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i arr = gets.chomp.split(" ").map(&:to_i) $count = 0 def check(i,arr) if i > arr.size - 1 arr[1] += 1 $count += 1 return end if arr[i] > 0 arr[1] -= 1 elsif arr[i] < 0 arr[1] += 1 else check(i+1,arr) end end num = arr[0] + arr[1] if num == 0 check(2,arr) end num = arr[0] + arr[1] (2...arr.size).each do |i| diff = num + arr[i] # puts %(num : #{num}) # puts %(diff : #{diff}) if num > 0 if diff > 0 arr[i] -= diff.abs+1 $count += diff.abs+1 end else if diff < 0 arr[i] += diff.abs+1 $count += diff.abs+1 end end if diff == 0 if num > 0 arr[i] -= 1 else arr[i] += 1 end $count += 1 end num += arr[i] end #p arr puts $count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a(long long int z) { if (z > 0) return 1; else if (z < 0) return -1; else return 0; } int main() { long long int n, sum = 0, in, ans = 0; cin >> n >> sum; for (int i = 1; i < n; i++) { cin >> in; if (a(sum) * a(in) < 0 && abs(sum) < abs(in)) { sum += in; continue; } else if (a(sum) * a(in) < 0) { ans += abs(sum) - abs(in) + 1; if (sum > 0) sum = -1; else sum = 1; continue; } ans += abs(sum) + abs(in) + 1; if (a(sum) < 0) { sum = 1; } else { sum = -1; } } if (sum == 0) ans++; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n=int(input()) a=list(map(int,input().split())) r=[0] for i in range(n): r.append(r[i]+a[i]) r.pop(0) q=[r[i] for i in range(n)] pm=[1-2*(i%2) for i in range(n)] mp=[1-2*((i+1)%2) for i in range(n)] sum1,sum2=0,0 sousa1,sousa2=0,0 for i in range(n): if np.sign(r[i]+sousa1) != pm[i]: sum1+=abs(pm[i]-r[i]-sousa1) sousa1=pm[i]-r[i] for i in range(n): if np.sign(q[i]+sousa1) != mp[i]: sum2+=abs(mp[i]-q[i]-sousa2) sousa2=mp[i]-q[i] print(min(sum1,sum2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
N = gets.to_i a = gets.split.map(&:to_i) first = a.shift count = 0 if first < 0 first = first * (-1) a.map! do |i| i * (-1) end end if first == 0 first = 1 count += 1 end b = [] a.each do |ai| b << ai if b.size.odd? if first + b.inject(:+) > -1 difference = first + b.inject(:+) - (-1) count += difference.abs b[-1] -= difference end else if first + b.inject(:+) < 1 difference = first + b.inject(:+) - (+1) count += difference.abs b[-1] -= difference end end #p "diff = #{difference}" #p "b = #{b}" end p count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); bool fla = false; for (int i = 0; i < N; i++) { if (a.at(i) != 0) { if ((a.at(i) > 0) && (i % 2 == 0)) fla = true; else if (i % 2 == 1) fla = true; break; } } int t = 0, res = 0; for (int i = 0; i < N; i++) { int b = a.at(i); if (fla) { if (t + b <= 0) { while (t + b <= 0) { b++; res++; } } } else { if (t + b >= 0) { while ((t + b >= 0)) { b--; res++; } } } t += b; fla = !fla; } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def main(): n = int(input()) A = [int(a) for a in input().split()] min_count = float('inf') if A[0] != 0: tot = A[0] count = 0 for a in A[1:]: if tot > 0 and tot + a >= 0: count += tot+a+1 tot = -1 elif tot < 0 and tot + a <= 0: count += -(tot+a)+1 tot = 1 else: tot += a min_count = min(min_count, count) else: for i in [1, -1]: count = 1 tot = i for a in A[1:]: if tot > 0 and tot + a >= 0: count += tot+a+1 tot = -1 elif tot < 0 and tot + a <= 0: count += -(tot+a)+1 tot = 1 else: tot += a min_count = min(min_count, count) return min_count if __name__ == '__main__': print(main())
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(ai) for ai in input().split()] count = 0 a_sum = a[0] for ai in a[1:]: tmp_sum = a_sum + ai if tmp_sum < 0 and a_sum < 0: c = +1 - tmp_sum a_sum = 1 elif tmp_sum > 0 and a_sum > 0: c = -1 - tmp_sum a_sum = -1 elif tmp_sum == 0 and a_sum < 0: c = 1 a_sum = 1 elif tmp_sum == 0 and a_sum > 0: c = 1 a_sum = -1 else: c = 0 count += abs(c) a_sum = tmp_sum + c print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { ll acc, ans; ll N; vector<ll> A; cin >> N; for (ll i = 0; i < N; i++) { ll tmp; cin >> tmp; A.push_back(tmp); } acc = A[0]; ans = 0; for (ll i = 1; i < N; i++) { ll next = acc + A[i]; if (acc * next >= 0) { ans += abs(next) + 1; next = -1 * (acc / abs(acc)); } acc = next; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 7; const int mod = 1e9 + 7; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long s_i = a[0]; long long s_i_1; int d = 0; int c = 0; for (int i = 1; i < n; i++) { if (s_i == 0) { s_i += 1; c++; } s_i_1 = s_i + a[i]; if ((s_i_1 > 0 && s_i > 0) || (s_i < 0 && s_i_1 < 0)) { d = abs(s_i_1 - s_i); if (s_i > 0) { if (s_i_1 != 0) { s_i_1 -= d + 1; c += d + 1; } else { s_i_1 -= 1; d += 1; } } else { if (s_i_1 != 0) { s_i_1 += d + 1; c += d + 1; } else { s_i_1 += 1; c += 1; } } } s_i = s_i_1; } if (s_i == 0) { c += 1; } cout << c << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!usr/bin/env python3 from collections import defaultdict from collections import deque from heapq import heappush, heappop import sys import math import bisect import random import itertools sys.setrecursionlimit(10**5) stdin = sys.stdin bisect_left = bisect.bisect_left bisect_right = bisect.bisect_right def LI(): return list(map(int, stdin.readline().split())) def LF(): return list(map(float, stdin.readline().split())) def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split())) def II(): return int(stdin.readline()) def IF(): return float(stdin.readline()) def LS(): return list(map(list, stdin.readline().split())) def S(): return list(stdin.readline().rstrip()) def IR(n): return [II() for _ in range(n)] def LIR(n): return [LI() for _ in range(n)] def FR(n): return [IF() for _ in range(n)] def LFR(n): return [LI() for _ in range(n)] def LIR_(n): return [LI_() for _ in range(n)] def SR(n): return [S() for _ in range(n)] def LSR(n): return [LS() for _ in range(n)] mod = 1000000007 inf = float('INF') #A def A(): a = input().split() a = list(map(lambda x: x.capitalize(), a)) a,b,c = a print(a[0]+b[0]+c[0]) return #B def B(): a = II() b = II() if a > b: print("GREATER") if a < b: print("LESS") if a == b: print("EQUAL") return #C def C(): n = II() a = LI() if a[-1] == 0: suma = 1 else: suma = a[0] b = 0 for i in a[1:]: if (suma + i) * suma < 0: suma += i continue b += abs(suma + i) + 1 suma = -1 * (suma > 0) or 1 ans = b if a[-1] == 0: suma = -1 else: suma = -a[0] b = 0 for i in a[1:]: if (suma + i) * suma < 0: suma += i continue suma = -1 * (suma > 0) or 1 b += abs(suma + i) + 1 print(min(ans,b)) return #D def D(): s = S() for i in range(len(s) - 1): if s[i] == s[i+1]: print(i + 1, i + 2) return for i in range(len(s) - 2): if s[i] == s[i + 2]: print(i + 1, i + 3) return print(-1, -1) return #Solve if __name__ == '__main__': C()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) if a[0] > 0: f = 1 else: f = -1 m = a[0] cnt = 0 for i in range(1, n): f *= -1 m += a[i] if f == 1: if m > 0: continue else: cnt += f-m m += f-m else: if m < 0: continue else: cnt += m-f m += f-m print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) al = list(map(int, input().split())) ans1 = al[0] curr_sum = 0 next_sign = 1 for a in al[1:]: next_sum = curr_sum + a if next_sum >= 0 and next_sign == -1: ans1 += next_sum+1 next_sum = -1 elif next_sum <= 0 and next_sign == 1: ans1 += (1-next_sum) next_sum = 1 curr_sum = next_sum next_sign *= -1 ans2 = al[0] curr_sum = 0 next_sign = -1 for a in al[1:]: next_sum = curr_sum + a if next_sum >= 0 and next_sign == -1: ans2 += next_sum+1 next_sum = -1 elif next_sum <= 0 and next_sign == 1: ans2 += (1-next_sum) next_sum = 1 curr_sum = next_sum next_sign *= -1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n; cin >> n; vector<int> a(n); for (int i = (int)(0); i < (int)(n); i++) cin >> a[i]; int ans = 0; int sum = a[0]; for (int i = (int)(0); i < (int)(n - 1); i++) { if (sum < 0) { if (a[i + 1] < abs(sum)) { ans += abs(sum) - a[i + 1] + 1; a[i + 1] += abs(sum) - a[i + 1] + 1; } sum += a[i + 1]; } else if (sum > 0) { if (a[i + 1] > -sum) { ans += a[i + 1] + sum + 1; a[i + 1] -= a[i + 1] + sum - 1; } sum += a[i + 1]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long solve(vector<long long>& pref, long long x) { vector<long long> mod(n + 1); mod[1] += x; long long res = 0; for (int i = 2; i <= n; i++) { mod[i] += mod[i - 1]; long long now = pref[i] + mod[i]; long long prev = pref[i - 1] + mod[i - 1]; if (now == 0) { if (prev > 0) { res += 1; mod[i] -= 1; } else { res += 1; mod[i] += 1; } } else { if (prev > 0 && now > 0) { res += now + 1; mod[i] -= now + 1; } if (prev < 0 && now < 0) { res += 1 - now; mod[i] += 1 - now; } } } return res + x; } int main() { cin >> n; vector<long long> a(n), pref(n + 1); for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = 0; i < n; i++) { pref[i + 1] = pref[i] + a[i]; } long long ans = 1e18; if (a[0] == 0) { ans = min(ans, solve(pref, 1)); ans = min(ans, solve(pref, -1)); } else { ans = min(ans, solve(pref, 0)); if (a[0] > 0) ans = min(ans, solve(pref, -1 - a[0])); else ans = min(ans, solve(pref, 1 - a[0])); } cout << ans << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long sum1, sum2, ans1, ans2, x; int n; int main() { sum1 = sum2 = ans1 = ans2; scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%lld", &x); sum1 += x; sum2 += x; if (i & 1) { if (sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } if (sum2 <= 0) { ans2 += 1 - sum2; sum2 = 1; } } else { if (sum1 <= 0) { ans1 += 1 - sum1; sum1 = 1; } if (sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } } } printf("%d\n", min(ans1, ans2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INTMAX = 2147483647; const int64_t LLMAX = 9223372036854775807; const int MOD = 1000000007; template <class T> inline bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } inline void swap(int64_t& a, int64_t& b) { a ^= b; b ^= a; a ^= b; } inline void swap(int& a, int& b) { a ^= b; b ^= a; a ^= b; } int main() { int n; int64_t ans = 0, tmp, s; vector<int64_t> a; cin >> n; a.resize(n); for (int i{0}; i < (int)(n); i++) cin >> a[i]; s = a[0]; tmp = 0; if (s < 0) { tmp += (1 - s); s = 1; } for (int i{1}; i < (int)(n); i++) { if (!(s + a[i]) || (s ^ (s + a[i])) >= 0) { if (s > 0) { tmp += 1LL + s + a[i]; s = -1; } else { tmp += 1LL - (s + a[i]); s = 1; } } else s += a[i]; } ans = tmp; s = a[0]; tmp = 0; if (s > 0) { tmp += 1LL + s; s = -1; } for (int i{1}; i < (int)(n); i++) { if (!(s + a[i]) || (s ^ (s + a[i])) >= 0) { if (s > 0) { tmp += 1LL + s + a[i]; s = -1; } else { tmp += 1LL - (s + a[i]); s = 1; } } else s += a[i]; } chmin(ans, tmp); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<ll> v(n, 0ll); for (int i = (int)(0); i < (int)(n); i++) cin >> v[i]; vector<ll> memo(n + 1, 0ll); memo[1] = v[0]; ll cnt = 0; for (int i = 2; i <= n; i++) { memo[i] = memo[i - 1] + v[i - 1]; if (not(memo[i - 1] * memo[i] < 0)) { if (memo[i] < 0) { int plus = memo[i] * (-1) + 1; memo[i] += plus; cnt += plus; } else if (memo[i] > 0) { int plus = memo[i] * -1 - 1; memo[i] += plus; cnt -= plus; } else { if (memo[i - 1] < 0) { memo[i]++; cnt++; } else { memo[i]--; cnt++; } } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) { cin >> a[i]; } int ans = 0; while (ans < N && a[ans] == 0) ans++; int sum; if (ans == 0) sum = a[0]; else if (ans < N && a[ans + 1] > 0) sum = -1; else sum = 1; for (int i = ans + 1; i < N; i++) { if (sum * (sum + a[i]) >= 0) { if (sum + a[i] >= 0) { ans += abs(sum + a[i] + 1); a[i] = -sum - 1; } else { ans += abs(sum + a[i] - 1); a[i] = -sum + 1; } } sum += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sign(long long n) { return ((n > 0) - (n < 0)); } int main() { int n; scanf("%d", &n); long long sum = 0; long long ans = 0; for (int i = 0; i < n; i++) { int ra; scanf("%d", &ra); long long a = ra; if (sum == 0) { if (a == 0) { a++; ans++; } } else if (sum + a == 0) { a - sign(sum); ans++; } else if (sign(sum + a) + sign(sum) != 0) { long long tmp = a; if (sum + a > 0) { a = a - (sum + a) - 1; } else if (sum + a < 0) { a = a - (sum + a) + 1; } else { a -= sign(sum); } ans += abs(tmp - a); } sum += a; } printf("%llu\n", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; long long sum1 = 0, sum2 = 0; long long ans1 = 0, ans2 = 0; for (int i = 0; i < N; ++i) { long long t; cin >> t; if (i == 0) { if (t == 0) { sum1 = 1; ans1 = 1; sum2 = -1; ans2 = -1; } else { sum1 = t; sum2 = t > 0 ? -1 : 1; ans2 += t + 1; } } else { if (sum1 < 0 && sum1 + t <= 0) { ans1 += 1 - sum1 - t; sum1 = 1; } else if (sum1 > 0 && sum1 + t >= 0) { ans1 += abs(-1 - sum1 - t); sum1 = -1; } else { sum1 += t; } if (sum2 < 0 && sum2 + t <= 0) { ans2 += 1 - sum2 - t; sum2 = 1; } else if (sum2 > 0 && sum2 + t >= 0) { ans2 += abs(-1 - sum2 - t); sum2 = -1; } else { sum2 += t; } } } cout << min(ans1, ans2) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
# n + 1 長の array を返す def cumulative_sum(array) tmp = [0] previous = 0 array.each { |num| tmp << previous += num } tmp end n = gets.to_i nums = gets.split.map(&:to_i) cumulative_sums = cumulative_sum(nums) cumulative_sums.delete_at(0) previous_plus = cumulative_sums.delete_at(0) > 0 ? true : false ans = 0 added = 0 cumulative_sums.each_with_index do |sum, i| if previous_plus && sum + added >= 0 ans += (sum + added).abs + 1 added -= (sum + added).abs + 1 elsif !previous_plus && sum + added <= 0 ans += (sum + added).abs + 1 added += (sum + added).abs + 1 end previous_plus = !previous_plus end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { private static final int mod =(int)1e9+7; public static void main(String[] args) throws Exception { Scanner sc=new Scanner(System.in); PrintWriter out=new PrintWriter(System.out); int n=sc.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++) { a[i]=sc.nextInt(); } long sum=a[0]; long operations=0; if(sum==0) { sum++; operations++; } for(int i=1;i<n;i++) { if(sum>0) { if(sum+a[i]<0) { sum+=a[i]; }else { if(sum+a[i]==0) { sum+=a[i]-1; operations++; }else { long req=-1-1*sum; sum=-1; operations+=(-1*req+a[i]); } } }else { if(sum+a[i]>0) { sum+=a[i]; }else { if(sum+a[i]==0) { sum+=a[i]+1; operations++; }else { long req=1+-1*sum; sum=1; operations+=(req-a[i]); } } } } System.out.println(operations); } static boolean vis[]=new boolean[10001]; static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } // Function to find gcd of array of // numbers static int f(int arr[], int n) { int result = n; int max=-1; int ans=0; for (int element: arr){ if(vis[element]==false) result = gcd(n, element); if(result>max) { max=result; ans=element; } } return ans; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import Control.Applicative import Data.List main = do _ <- getLine as <- (map read) . words <$> getLine print $ sum $ zipWith (\a b -> abs (a-b)) as (f 0 as) where f _ [] = [] f sum (x:xs) | sum < 0 = if sum + x > 0 then x : f (sum+x) xs else (1-sum) : f 1 xs | sum > 0 = if sum + x < 0 then x : f (sum+x) xs else (-1-sum) : f (-1) xs | sum == 0 = x : f x xs
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int j = 0; j < N; j++) { cin >> a[j]; } int c1 = 0, c2 = 0; int sum = 0; for (int i = 0; i < N; i++) { sum += a[i]; if (i % 2 == 1 && sum >= 0) { c1 += sum + 1; sum = -1; } if (i % 2 == 0 && sum <= 0) { c1 += -sum + 1; sum = 1; } } sum = 0; for (int i = 0; i < N; i++) { sum += a[i]; if (i % 2 == 1 && sum <= 0) { c2 += -sum + 1; sum = 1; } if (i % 2 == 0 && sum >= 0) { c2 += sum + 1; sum = -1; } } cout << min(c1, c2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <boost/multiprecision/cpp_int.hpp> using namespace std; //#define int long long using bll = boost::multiprecision::cpp_int; using ll = long long; //constexpr int INF = 1e9;//INT_MAX=(1<<31)-1=2147483647 constexpr ll INF = (ll)1e18;//(1LL<<63)-1=9223372036854775807 constexpr ll MOD = (ll)1e9 + 7; constexpr double EPS = 1e-9; constexpr int dx[4]={1,0,-1,0}; constexpr int dy[4]={0,1,0,-1}; #define p(var) std::cout<<var<<std::endl #define PI (acos(-1)) #define rep(i, n) for(ll i=0, i##_length=(n); i< i##_length; ++i) #define repeq(i, n) for(ll i=1, i##_length=(n); i<=i##_length; ++i) #define all(v) (v).begin(), (v).end() #define uniq(v) (v).erase(unique((v).begin(), (v).end()), (v).end()); template<typename T> inline void pv(vector<T> v) { for(ll i=0, N=v.size(); i<N; i++) cout<< v[i] << (i==N-1 ? '\n' : ' '); } template<typename T> inline T gcd(T a, T b) { return b ? gcd(b,a%b) : a; } template<typename T> inline T lcm(T a, T b) { return a / gcd(a, b) * b; } template<typename T1, typename T2> inline T1 power(T1 x, T2 n){ return n ? power(x*x%MOD,n/2)*(n%2?x:1)%MOD : 1; } template<typename T1, typename T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template<typename T1, typename T2> inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template<typename T> class dvector : public std::vector<T> { public: dvector() : std::vector<T>() {} explicit dvector(size_t n, const T& value = T()) : std::vector<T>(n,value) {} dvector(const std::vector<T>& v) : std::vector<T>(v) {} T& operator[](size_t n){ return this->at(n); } }; template<typename T1, typename T2> ostream& operator<<(ostream& s, pair<T1, T2>& p) {return s << "(" << p.first << ", " << p.second << ")";} template<typename T> ostream& operator<<(ostream& s, dvector<T>& v) { for (int i = 0, len = v.size(); i < len; ++i){ s << v[i]; if (i < len - 1) s << "\t"; } return s; } template<typename T> ostream& operator<<(ostream& s, dvector< dvector<T> >& vv) { for (int i = 0, len = vv.size(); i < len; ++i){ s << vv[i] << endl; } return s; } template<typename T1, typename T2> ostream& operator<<(ostream& s, map<T1, T2>& m) { s << "{" << endl; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << endl; } s << "}" << endl; return s; } template<typename T> ostream& operator<<(ostream& s, set<T>& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}" << endl; return s; } template<typename T> ostream& operator<<(ostream& s, multiset<T>& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}" << endl; return s; } #ifdef LOCAL_DEV #define debug(var) std::cout<<#var" = "<<var<<std::endl #else #define debug(var) #endif #ifdef LOCAL_TEST #define vector dvector #endif /*-----8<-----8<-----*/ signed main() { ll N; cin>>N; vector<ll> a(N,0); rep(i,N)cin>>a[i]; vector<ll> rui(N+1,0); rep(i,N)rui[i+1]=rui[i]+a[i]; ll c,t=a[0]>0 ? 1 : -1; if([&]{ rep(i,N-1){ if(t==1){ if(rui[i+2]>0)return false; }else{ if(rui[i+2]<0)return false; } t*=-1; } return true; }()){ p(0);return 0; } //+ t=0; ll ansb=0; if(rui[1]>0){ }else{ t+=-rui[1]+1; ansb+=abs(-rui[1]+1); } c=-1; for(ll i=1;i<N;i++){ ll tt=rui[i+1]+t; if(c==1){ if(tt>0){ }else{ t+=-tt+1; ansb+=abs(-tt+1); } }else{ if(tt>0){ t+=-tt-1; ansb+=abs(-tt-1); }else{ } } c*=-1; } //- t=0; ll ansc=0; if(rui[1]>0){ t+=-rui[1]-1; ansc+=abs(-rui[1]-1); }else{ } c=1; for(ll i=1;i<N;i++){ ll tt=rui[i+1]+t; if(c==1){ if(tt>0){ }else{ t+=-tt+1; ansc+=abs(-tt+1); } }else{ if(tt>0){ t+=-tt-1; ansc+=abs(-tt-1); }else{ } } c*=-1; } p(min(ansb,ansc)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <cmath> using namespace std; int sign(int a){ if (a > 0) return 1; else if (a < 0) return -1; else return 0; } int main(void){ int n; cin >> n; int sum = 0, s = 1; int a; int num = 0; for (int i = 0; i < n; i++){ cin >> a; sum += a; if (i != 0 && (sign(s) == sign(sum) || sum = 0)){ num += abs(sum) + 1; sum = sign(s) * -1; s *= -1; } else { s = sign(sum); } } cout << num << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np import copy N=int(input()) l=list(map(int, input().split())) #リスト入力 cp = copy.copy(l) #even_c=0 #odd_c=0 c=0 if l[0]!=0: #l[0]=-1 #even_c=even_c+1 for k in range(1,N): #print(sum(l[:k]),sum(l[:k+1])) s=sum(l[:k]) if s*sum(l[:k+1])>0: #print(k) c=c+abs(-np.sign(s)-s-l[k]) l[k]=-np.sign(s)-s #print(l) if sum(l)==0: print(c+1) #print(1+sum([abs(l[n]-cp[n]) for n in range(N)])) else: print(c) #print(sum([abs(l[n]-cp[n]) for n in range(N)])) else: #1 sei_l=copy.copy(l) sei_l[0]=1 for k in range(1,N): #print(sum(l[:k]),sum(l[:k+1])) if sum(sei_l[:k])*sum(sei_l[:k+1])>0: #print(k) sei_l[k]=-np.sign(sum(sei_l[:k]))-sum(sei_l[:k]) #print(l) if sum(sei_l)==0: c1=1+sum([abs(sei_l[n]-cp[n]) for n in range(N)]) else: c1=sum([abs(sei_l[n]-cp[n]) for n in range(N)]) #-1 fu_l=copy.copy(l) sei_l[0]=-1 for k in range(1,N): #print(sum(l[:k]),sum(l[:k+1])) if sum(fu_l[:k])*sum(fu_l[:k+1])>0: #print(k) fu_l[k]=-np.sign(sum(fu_l[:k]))-sum(fu_l[:k]) #print(l) if sum(fu_l)==0: c2=1+sum([abs(fu_l[n]-cp[n]) for n in range(N)]) else: c2=sum([abs(fu_l[n]-cp[n]) for n in range(N)]) print(max(c1,c2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using P = pair<long long, long long>; using Graph = vector<vector<long long>>; using ll = long long; ll gcd(ll A, ll B) { if (B == 0) return A; return gcd(B, A % B); } ll lcm(ll A, ll B) { return A * B / gcd(A, B); } bool root(string s) { long long n = s.length(); if (n == 2) { if (s[0] == s[1]) { return true; } else return false; } if (n == 3) { if (s[0] == s[2]) { return true; } else return false; } return false; } bool IsPrime(long long num) { if (num < 2) return false; else if (num == 2) return true; else if (num % 2 == 0) return false; double sqrtNum = sqrt(num); for (long long i = 3; i <= sqrtNum; i += 2) { if (num % i == 0) { return false; } } return true; } vector<long long> seen; vector<ll> h; void dfs(const Graph &G, long long v) { seen[v] = 0; P good = make_pair(v, h[v]); for (auto next_v : G[v]) { if (seen[next_v] != -1) continue; if (h[next_v] > good.second) { good = make_pair(next_v, h[next_v]); } dfs(G, next_v); } if (!(h[v] == good.second && v == good.first)) { seen[good.first] = 1; } } long long n; void dfs(string s, char mx) { if (s.length() == n) { cout << s << endl; } else { for (char c = 'a'; c <= mx; c++) { dfs(s + c, ((c == mx) ? (char)(mx + 1) : mx)); } } } signed main() { long long n; cin >> n; long long a[n]; for (long long i = 0; i < n; i++) cin >> a[i]; long long ans = 0; long long sum[n]; if (a[0] == 0) { ans++; if (a[1] > 0) { sum[0] = -1; } else { sum[0] = 1; } } sum[0] = a[0]; bool pred = sum[0] > 0; { for (long long i = 1; i < n; i++) { if (sum[i - 1] + a[i] == 0) { ans++; if (pred) { sum[i] = -1; pred = false; } else { sum[i] = 1; pred = true; } } else { if (pred != (sum[i - 1] + a[i] > 0)) { sum[i] = sum[i - 1] + a[i]; pred = !pred; } else { if (sum[i - 1] + a[i] > 0) { sum[i] = -1; } else sum[i] = 1; ans += abs(sum[i - 1] + a[i]) + 1; pred = !pred; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { int n; std::cin >> n; std::vector<long long int> a(n); for (int i = 0; i < n; i++) { std::cin >> a[i]; } long long int count = 0; if (a[0] == 0) { count++; a[0] += 1; } long long int sum = a[0]; for (int i = 1; i < n; i++) { if (sum > 0) { sum += a[i]; if (sum >= 0) { count += sum + 1; sum = -1; } } else { sum += a[i]; if (sum <= 0) { count += -sum + 1; sum = 1; } } } std::cout << count << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a, cnt = 0, sum; cin >> n >> sum; for (int i = 1; i < n; ++i) { cin >> a; if (sum > 0) { sum += a; if (sum >= 0) { cnt += sum + 1; sum = -1; } } else { sum += a; if (sum <= 0) { cnt += 1 - sum; sum = 1; } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct speedup { speedup() { cin.tie(); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } speedup; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)n; i++) cin >> a[i]; vector<long long> wa(n); long long ans = 0; for (int i = 0; i < (int)n; i++) { if (i == 0) { if (a[i] == 0) { if (a[i] > 0) { ans++; wa[i] = -1; } else { ans++; wa[i] = 1; } } else { wa[i] = a[i]; } } else { wa[i] = wa[i - 1] + a[i]; if (wa[i - 1] > 0 && wa[i] > 0) { ans += wa[i] + 1; wa[i] = -1; } else if (wa[i - 1] < 0 && wa[i] < 0) { ans += abs(wa[i]) + 1; wa[i] = 1; } else if (wa[i] == 0) { if (wa[i - 1] < 0) { ans++; wa[i] = 1; } else { ans++; wa[i] = -1; } } } } cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 999999999; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int sum1 = 0; int count1 = 0; int sum2 = 0; int count2 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0) { if (sum1 <= 0) { count1 += abs(sum1) + 1; sum1 = 1; } } else { if (sum1 >= 0) { count1 += abs(sum1) + 1; sum1 = -1; } } } for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0) { if (sum2 >= 0) { count2 += abs(sum2) + 1; sum2 = -1; } } else { if (sum2 <= 0) { count2 += abs(sum2) + 1; sum2 = 1; } } } cout << min(count1, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- n = input() a = [int(x) for x in input().split()] ans = 1e16 for s in (1, -1): res, cumsum = 0, 0 for j in range(n): cumsum += a[j] if cumsum * s <= 0: res += abs(cumsum-s) cumsum = s s *= -1 ans = min(ans, res) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, a[100000]; cin >> N; for (int i = 0; i < N; ++i) cin >> a[i]; int counter = 0; long long b[100000]; if (a[0] == 0) { ++a[0]; ++counter; b[0] = a[0]; for (int i = 1; i < N; ++i) { b[i] = b[i - 1] + a[i]; if (i % 2 == 0) { while (b[i - 1] * b[i] >= 0) { ++b[i]; ++counter; } } else { while (b[i - 1] * b[i] >= 0) { --b[i]; ++counter; } } } } else if (a[0] > 0) { b[0] = a[0]; for (int i = 1; i < N; ++i) { b[i] = b[i - 1] + a[i]; if (i % 2 == 0) { while (b[i - 1] * b[i] >= 0) { ++b[i]; ++counter; } } else { while (b[i - 1] * b[i] >= 0) { --b[i]; ++counter; } } } } else { b[0] = a[0]; for (int i = 1; i < N; ++i) { b[i] = b[i - 1] + a[i]; if (i % 2 == 0) { while (b[i - 1] * b[i] >= 0) { --b[i]; ++counter; } } else { while (b[i - 1] * b[i] >= 0) { ++b[i]; ++counter; } } } } cout << counter << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys def input(): return sys.stdin.readline().strip() sys.setrecursionlimit(20000000) def main(): N = int(input()) A = list(map(int, input().split())) S = A[0] cnt = 0 if A[0] == 0: for a in (1, -1): cnt = 1 S = a for i in range(1, N): s = S + A[i] if A[i] == 0: if S > 0: cnt += S + 1 S = -1 else: cnt += abs(S) + 1 S = 1 else: if s == 0: if S < 0: cnt += 1 S = 1 else: cnt += 1 S = -1 else: if S * s > 0: if S < 0: cnt += abs(s) + 1 S = 1 else: cnt += s + 1 S = -1 else: S = s else: for i in range(1, N): s = S + A[i] if A[i] == 0: if S > 0: cnt += S + 1 S = -1 else: cnt += abs(S) + 1 S = 1 else: if s == 0: if S < 0: cnt += 1 S = 1 else: cnt += 1 S = -1 else: if S * s > 0: if S < 0: cnt += abs(s) + 1 S = 1 else: cnt += s + 1 S = -1 else: S = s print(cnt) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; long long int a[n]; for (int i = 0; i < (n); i++) { cin >> a[i]; } long long int count = 0; long long int sum = 0; bool p = false; bool plus = true; for (int i = 0; i < (n); i++) { sum += a[i]; if (!p && a[i] == 0) { count++; } else if (!p && a[i] > 0) { plus = true; p = true; if (count > 0) sum = a[i] - 1; } else if (!p && a[i] < 0) { plus = false; p = true; if (count > 0) sum = a[i] + 1; } else if (!plus && sum >= 0) { count += sum + 1; sum = -1; } else if (plus && sum <= 0) { count += 1 - sum; sum = 1; } plus = !plus; } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int MaxN = 1e5; using namespace std; int a[MaxN + 5], sum; int pos = 0, n; long long ans = 0; bool ok = 0; void Init() { pos = 0; ok = 0; sum = ans = 0; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); if (a[i] != 0 && !pos) pos = i; } if (a[1] == 0) { if (a[pos] < 0) { if (pos & 1) a[1] = -1, ans++; else a[1] = 1, ans++; } else if (a[pos] > 0) { if (pos & 1) a[1] = 1, ans++; else a[1] = -1, ans++; } } if (a[1] > 0) ok = 1; sum = a[1]; } void Solve() { for (int i = 2; i <= n; i++) { if (ok) { sum += a[i]; if (sum >= 0) ans += sum + 1, sum = -1; ok = 0; } else if (ok == 0) { sum += a[i]; if (sum <= 0) ans += abs(sum) + 1, sum = 1; ok = 1; } } printf("%lld\n", ans); } int main() { while (~scanf("%d", &n)) { Init(); Solve(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <vector> #include <iostream> #include <algorithm> #include <string> #include <set> #include <vector> #include <queue> using namespace std; int main(){ int n; cin >> n; int64_t sum = 0; vector<int64_t> arr; for (int i = 0; i < n; ++i) { int64_t ai; cin >> ai; sum += ai; arr.push_back(sum); } int64_t b1 = 0; int64_t s1 = 0; int64_t b2 = 0; int64_t s2 = 0; for (int i = 0; i < n; ++i) { if (i % 2 == 0) { b1 += max(0LL, 1 - arr[i]-s1); s1 += max(0LL, 1 - arr[i]-s1); b2 += max(0LL, arr[i] +s2+ 1); s2 -= max(0LL, arr[i] +s2+ 1); } else { b1 += max(0LL, arr[i] + s1 + 1); s1 -= max(0LL, arr[i] + s1 + 1); b2 += max(0LL, 1 - arr[i] - s2); s2 += max(0LL, 1 - arr[i] - s2); } } cout << min(b1, b2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import sequtils, strutils, algorithm, math, future, sets, tables, hashes, intsets let read = iterator : string {.closure.} = (while true : (for s in stdin.readLine.split : yield s)) var n = read().parseint a = newseqwith(n, read().parseint) pre: int ans1 = 0 ans2 = 0 var sum = a[0] if sum == 0: sum = 1 ans1 = 1 for i in 1 ..< n: if sum * (sum + a[i]) >= 0: if sum < 0: ans1 += abs(1 - a[i] - sum) sum = 1 else: ans1 += abs(-1 - a[i] - sum) sum = -1 else: sum += a[i] if a[0] >= 0: sum = -1 ans2 += abs(-1 - a[0]) else: sum = 1 ans2 += abs(1 - a[0]) for i in 1 ..< n: if sum * a[i] >= 0: if sum < 0: ans2 += abs(1 - a[i] - sum) sum = 1 else: ans2 += abs(-1 - a[i] - sum) sum = -1 else: sum += a[i] echo min(ans1, ans2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } int signs[2] = {-1, 1}, cnt[2] = {0, 0}; for (int i = 0; i < 2; i++) { long long sum = 0; int sign = signs[i]; for (int j = 0; j < n; j++) { sum += a[j]; if (sum == 0) { sum += sign; cnt[i]++; } else if (sum * sign < 0) { sum = sum + sum * (-1) + sign; cnt[i] = cnt[i] + abs(sum) + 1; } sign *= -1; } } cout << (cnt[0] < cnt[1] ? cnt[0] : cnt[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; int main() { int N; cin >> N; long long ans1 = 0, ans2 = 0; long long sum1[N], sum2[N]; for (int i = 0; i < N; i++) { long long t; cin >> t; if (i == 0) { if (t > 0) { sum1[i] = t; sum2[i] = -1; ans2 += t + 1; } else if (t < 0) { sum1[i] = t; sum2[i] = 1; ans2 += -t + 1; } else { sum1[i] = 1; sum2[i] = -1; } continue; } sum1[i] = sum1[i - 1] + t; if (sum1[i - 1] > 0) { if (sum1[i] >= 0) { ans1 += sum1[i] + 1; sum1[i] = -1; } } else if (sum1[i - 1] < 0) { if (sum1[i] <= 0) { ans1 += -sum1[i] + 1; sum1[i] = 1; } } sum2[i] = sum2[i - 1] + t; if (sum2[i - 1] > 0) { if (sum2[i] >= 0) { ans2 += sum2[i] + 1; sum2[i] = -1; } } else if (sum2[i - 1] < 0) { if (sum2[i] <= 0) { ans2 += -sum2[i] + 1; sum2[i] = 1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(_) for _ in input().split()] sum_i = a[0] cnt = 0 for i in range(1, n): if sum_i > 0: if sum_i + a[i] < 0: sum_i += a[i] else: cnt += abs(a[i]+sum_i+1) sum_i = -1 elif sum_i < 0: if sum_i + a[i] > 0: sum_i += a[i] else: cnt += abs(a[i]+sum_i-1) sum_i = 1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int count(int sign0, vector<int> a, int n) { int count = 0; int total = 0; for (int i = 0; i < n; i++) { if (i % 2 == 1) { if ((total + a.at(i)) * sign0 < 0) total += a.at(i); else { count += abs(total + a.at(i)) + 1; total = -1 * sign0; } } if (i % 2 == 0) { if ((total + a.at(i)) * sign0 > 0) total += a.at(i); else { count += abs(total + a.at(i)) + 1; total = sign0; } } } return count; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a.at(i); int plus = count(1, a, n); int minus = count(-1, a, n); cout << min(plus, minus) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.Vector.Unboxed as VU import qualified Data.ByteString.Char8 as B import Data.Char solve :: VU.Vector Int -> Int -> Int solve vec n = otherwise = minimum $ map fst [f, g] where t = VU.take 2 vec d = VU.drop 2 vec f = VU.foldl' step (fst $ init t) d g = VU.foldl' step (snd $ init t) d init :: VU.Vector Int -> ((Int, Int), (Int, Int)) init vec | a + b == 0 = ((1, 1), (1, negate 1)) | a + b > 0 = ((0, a + b), (1 + a + b, negate 1)) | otherwise = ((0, a + b), (abs (1 - (a + b)), 1)) where a = VU.head vec b = VU.last vec step :: (Int, Int) -> Int -> (Int, Int) step (res, acc) x | acc + x == 0 = (res + 1, negate (signum acc)) | (signum acc) /= signum (acc + x) = (res, acc + x) | otherwise = let aim = negate $ signum acc y = aim - (acc + x) in (res + abs y, aim) main = do n <- readLn :: IO Int as <- VU.unfoldrN n (B.readInt . B.dropWhile isSpace) <$> B.getLine print $ solve as n
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e9 + 7; long long n, g, ans, t; int main() { cin >> n; cin >> t; if (t == 0) { int a[100001]; g = 1; ans += 1; for (int i = 2; i <= n; i++) { cin >> a[i]; if (g > 0) { g += a[i]; if (g > -1) { ans += g + 1; g = -1; } } else { g += t; if (g < 1) { ans += 1 - g; g = 1; } } } long long ans2 = 1; g = -1; for (int i = 2; i <= n; i++) { if (g > 0) { g += a[i]; if (g > -1) { ans2 += g + 1; g = -1; } } else { g += t; if (g < 1) { ans2 += 1 - g; g = 1; } } } cout << min(ans, ans2); return 0; } g = t; while (--n) { cin >> t; if (g > 0) { g += t; if (g > -1) { ans += g + 1; g = -1; } } else { g += t; if (g < 1) { ans += 1 - g; g = 1; } } } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool isPositive(int i) { return i >= 0; } bool isNegative(int i) { return i < 0; } int operation(vector<int> a) { int opeCount = 0; int preSum = 0; int sum = 0; int i = 0; while (i < a.size()) { if (i == 0) { if (a[i] == 0) { if (isPositive(a[i + 1])) { a[i] = a[i] - 1; opeCount++; } else { a[i] = a[i] + 1; opeCount++; } } preSum = a[i]; i++; } else { sum = preSum + a[i]; if (sum == 0) { if (isPositive(preSum)) { a[i] = a[i] - 1; opeCount++; } else { a[i] = a[i] + 1; opeCount++; } } else { if (isPositive(sum) && isPositive(preSum)) { a[i] = a[i] - 1; opeCount++; } else if (isNegative(sum) && isNegative(preSum)) { a[i] = a[i] + 1; opeCount++; } else { preSum = sum; i++; } } } } return opeCount; } int main() { int n, ai; cin >> n; vector<int> a; for (int i = 0; i < n; ++i) { cin >> ai; a.push_back(ai); } int result = operation(a); cout << result << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long ans = 0, c, n, count = 0, b = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> c; if (i == 0) { count = c; if (c < 0) b = 1; } else { count += c; if (b == 0) { if (count >= 0) { ans += count + 1; count = -1; } b = 1; } else { while (count <= 0) { ans += -1 * count + 1; count = 1; } b = 0; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long> A(N); long long count = 0; cin >> A[0]; for (int i = 1; i < N; ++i) { cin >> A[i]; A[i] += A[i - 1]; if (A[i - 1] < 0) { if (A[i] < 0) { count += abs(A[i]) + 1; A[i] = 1; } else if (A[i] == 0) { ++A[i]; ++count; } } else if (0 < A[i - 1]) { if (0 < A[i]) { count += abs(A[i]) + 1; A[i] = -1; } else if (A[i] == 0) { --A[i]; ++count; } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) b=[] for i in range(n): b.append(a[i]) ct1=0 if a[0]<=0: a[0]=1 ct1+=1-a[0] for i in range(1,n): if i%2==1: if sum(a[0:i+1])>=0: ct1+=sum(a[0:i+1])+1 a[i]=-sum(a[0:i])-1 else: if sum(a[0:i+1])<=0: ct1+=1-sum(a[0:i+1]) a[i]=-sum(a[0:i])+1 ct2=0 if b[0]>=0: b[0]=-1 ct2+=b[0]-1 for i in range(1,n): if i%2==0: if sum(b[0:i+1])>=0: ct2+=sum(b[0:i+1])+1 b[i]=-sum(b[0:i])-1 else: if sum(b[0:i+1])<=0: ct2+=1-sum(b[0:i+1]) b[i]=-sum(b[0:i])+1 print(min(ct1,ct2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def solve(digits) if digits[0].zero? digits1 = digits.dup digits1[0] = 1 digits2 = digits.dup digits2[0] = -1 return [digits1, digits2].map{|dgt| solve(dgt)}.min + 1 end sum = digits[0] cnt = 0 (1...digits.size).each do |i| sum1 = sum sum2 = sum1 + digits[i] if sum1 * sum2 >= 0 target = sum1 > 0 ? -1 : 1 diff = target - sum2 cnt += diff.abs sum += diff end sum += digits[i] end cnt end n = gets.to_i digits = gets.split.map(&:to_i) puts solve(digits)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.io.InputStream; import java.util.*; import java.util.function.IntFunction; import java.util.function.Supplier; import java.util.stream.IntStream; import java.util.stream.Stream; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(); int n=scanner.nextInt(); int[] a=new int[n+1]; for(int i=1;i<=n;i++){ a[i]=scanner.nextInt(); } Arrays.parallelPrefix(a,(c,b)->c+b); //put(Arrays.toString(a)); long ans=0; long ruiseki=0; for(int i=1;i<=n;i++){ //put(format("i=%d",i)); //put(format("ruiseki=%d",ruiseki)); long val=a[i]+ruiseki; long val_=a[i-1]+ruiseki; //put(format("val=%d",val)); //put(format("val_=%d",val_)); if(val==0){ int bit=a[i-1]/Math.abs(a[i-1]); ruiseki+=bit*1; ans+=Math.abs(bit); }else if(val>0&&val_>0){ ruiseki-=(val+1); ans+=Math.abs(val+1); }else if(val<0&&val_<0){ ruiseki+=Math.abs(val)+1; ans+=Math.abs(val)+1; } //put(ans); //put(); } put(ans); } public static void print(Object object){ System.out.print(object); } public static void put(Object object) { System.out.println(object); } public static void put(){ System.out.println(); } public static String format(String string, Object... args) { return String.format(string, args); } } final class Scanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next()); } } final class Pair { final public int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int hashCode() { return x+y; } @Override public boolean equals(Object obj) { boolean result=super.equals(obj); if(obj.getClass()!=this.getClass()){ return false; } Pair pair=(Pair)obj; if(this.x==pair.x&&this.y==pair.y) return true; return false; } @Override public String toString() { return String.format("(%d,%d)", x, y); } } final class Tuple<T,V>{ //immutabl1でないことに注意(T,Vがmutableの場合変更可能) final public T t; final public V v; Tuple(T t,V v){ this.t=t; this.v=v; } @Override public int hashCode() { return (t.hashCode()+v.hashCode()); } @Override public boolean equals(Object obj) { if(obj.getClass()!=this.getClass()){ return false; } Tuple<T,V> tuple=(Tuple)obj; return tuple.t.equals(this.t)&&tuple.v.equals(this.v); } @Override public String toString() { return String.format("<Tuple>=<%s,%s>",t,v); } } final class LowerBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) >= 0) ? 1 : -1; } } final class UpperBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) > 0) ? 1 : -1; } } final class Util { static long gcd(long a,long b){ if(a%b==0)return b; return gcd(b,a%b); } static long lcm(long a,long b){ long gcd=gcd(a,b); long result=b/gcd; return a*result; } static int kaijoMod(int n,int mod){ if(n<1) return -1; long result=1; for(int i=n;i>1;i--){ result*=i; result%=mod; } return (int)result; } static <T extends Comparable> Map<T,Integer> count(List<T> list){ //副作用 Collections.sort(list); Map<T,Integer> result=new HashMap<>(); int l=0,r=0; while(l<list.size()){ while(r<list.size()-1&&list.get(r).equals(r+1)){ r++; } result.put(list.get(r),r-l+1); r++; l=r; } return result; } static Map<Integer,Integer> count(int[] array){ //副作用 Arrays.sort(array); Map<Integer,Integer> result=new HashMap<>(); int l=0,r=0; while(l<array.length){ while(r<array.length-1&&array[r]==array[r+1]){ r++; } result.put(array[l],r-l+1); r++; l=r; } return result; } static String toStringBWS(Iterable iterable){ Iterator ite=iterable.iterator(); return toStringBWS(ite); } static String toStringBWS(Iterator ite){ StringBuilder sb=new StringBuilder(); sb.append(ite.next()); while(ite.hasNext()){ sb.append(" "); sb.append(ite.next()); } return sb.toString(); } static String toStringBWS(int[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } static String toStringBWS(long[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int solve(vector<int> A) { int res = 0; int sum = A[0]; for (int i = 1; i < A.size(); i++) { if (sum > 0) { sum += A[i]; while (sum >= 0) { res++; sum--; } } else if (sum < 0) { sum += A[i]; while (sum <= 0) { res++; sum++; } } } return res; } int main() { int N; cin >> N; vector<int> A(N); for (int i = 0; i < N; i++) { cin >> A[i]; } int res; if (A[0] != 0) { res = solve(A); cout << res << endl; } else { int res_first_plus = 1, res_first_minus = 1; A[0] = 1; res_first_plus += solve(A); A[0] = -1; res_first_minus += solve(A); res = min(res_first_plus, res_first_minus); cout << res << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n], b[n]; for (int i = 0; i < n; i++) { cin >> a[i]; b[i] = a[i]; } long long sum = a[0]; if (sum == 0) { sum = 1; } long long cnt1 = 0; for (int i = 1; i < n; i++) { long long sumNext = sum + a[i]; if (sumNext * sum >= 0) { if (sumNext <= 0) { cnt1 += 1 - sumNext; sumNext = 1; } else { cnt1 += 1 + sumNext; sumNext = -1; } } sum = sumNext; } sum = a[0]; if (sum == 0) { sum = -1; } long long cnt2 = 0; for (int i = 1; i < n; i++) { long long sumNext = sum + b[i]; if (sumNext * sum >= 0) { if (sumNext <= 0) { cnt2 += 1 - sumNext; sumNext = 1; } else { cnt2 += 1 + sumNext; sumNext = -1; } } sum = sumNext; } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = list(map(int,input().split())) cnt=0 sum_a=0 if a[0]==0: cnt+=1 a[0]=1 for i in range(n-1): sum_a += a[i] if abs(sum_a) >= abs(a[i+1]) or sum_a*a[i+1]>=0: cnt += abs(-sum_a-np.sign(sum_a) -a[i+1]) a[i+1]=-sum_a-np.sign(sum_a) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from functools import lru_cache n = int(input()) s = list(map(int, input().split())) @lru_cache(maxsize=None) def cost_e(): res = 0 sum = 0 for j, y in enumerate(s, 1): tmp = sum + y if j & 1 and tmp >= 0: sum = -1 res += abs(tmp) + 1 elif not j & 1 and tmp <= 0: sum = 1 res += abs(tmp) + 1 else: sum = tmp return res @lru_cache(maxsize=None) def cost_o(): res = 0 sum = 0 for j, y in enumerate(s, 1): tmp = sum + y if j & 1 and tmp <= 0: sum = 1 res += abs(tmp) + 1 elif not j & 1 and tmp >= 0: sum = -1 res += abs(tmp) + 1 else: sum = tmp return res print(cost_e(), cost_o())
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; int s = a[0]; long long ans = 0; if (s == 0) ans++; for (int i = (1); i < (int)(n); i++) { if (s > 0 && s + a[i] >= 0) { ans += s + a[i] + 1; s = -1; } else if (s < 0 && s + a[i] <= 0) { ans += -(s + a[i]) + 1; s = 1; } else s += a[i]; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<iostream> #include<algorithm> #include<stack> #include<queue> #include<vector> #include<set> #include<map> #include<string> using namespace std; typedef long long ll; typedef unsigned long long ull; const ll INFF=0x3f3f3f3f3f3f3f3f; int a[100010]; int n; ll solve() { ll ans=0; ll t=a[0]; for(int i=1;i<n;i++) { if(t<0) { t+=a[i]; if(t<=0) { ans+=1-t; t=1; } continue; } t+=a[i]; if(t>=0) { ans+=t+1; t=-1; } } return ans; } int main() { scanf("%d",&n); ll sum=0; for(int i=0;i<n;i++) { scanf("%d",&a[i]); } ll sum=0,t=a[0]; if(t==0) { a[0]=1; ll sum1=solve(); a[0]=-1; ll sum2=solve(); sum=min(sum1,sum2)+1; } else { ll sum0=solve(); a[0]=1; ll sum1=solve()+abs(1-t); a[0]=-1; ll sum2=solve()+abs(-1-t); sum=min(sum0,min(sum1,sum2)); } printf("%lld\n",sum); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) As = list(map(int,input().split())) sum = 0 count = 0 for i in range(0,n - 1): sum += As[i] if sum > 0: if sum + As[i + 1] > 0: count += max(sum + As[i + 1] + 1,0) As[i + 1] -= sum + As[i + 1] + 1 elif sum == 0: count += 1 if As[i + 1] >=0: sum -= 1 else: sum += 1 else: if sum + As[i + 1] < 0: count += max(abs(sum + As[i + 1] - 1),0) As[i + 1] += abs(sum + As[i + 1] - 1) sum += As[-1] if sum == 0: count += 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 100010; int n; long long a[MAXN]; long long countNum(long long initialMove) { long long cnt = abs(initialMove); long long cur = a[0] + initialMove; for (int i = 0; i < n; i++) { long long next = cur + a[i + 1]; if (cur > 0 && next >= 0) { cnt += next + 1; next = -1; } if (cur < 0 && next <= 0) { cnt += -next + 1; next = 1; } cur = next; } return cnt; } void solve() { long long minCnt = min(countNum(0), min(countNum(-a[0] + 1), countNum(-a[0] - 1))); cout << minCnt << endl; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } solve(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; int d[n]; for(int i=0;i<n;i++) cin >> d[i]; int count=0; int sum=d[0]; int f =0; if(d[0]>0){ f=-1; } if(d[0]<0){ f=1; } for(int i=1;i<n;i++){ sum+=d[i]; if(sum>0){ if(f==1){ f=-1; continue; } if(f==-1){ count+=sum+1; sum=-1; f=1; continue; } } if(sum<0){ if(f==-1){ f=1; continue; } if(f==1){ count+=1-sum; sum=1; f=-1; continue; } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long total = a[0]; long long total2 = a[0]; long long ans = 0; for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans += total + 1; total = -1; } else { ans += -total + 1; total = 1; } } total2 = total; } total = a[0]; total2 = a[0]; long long ans2 = 0; if (total2 > 0) { ans2 += total2 + 1; total2 = -1; } else { ans2 += -total2 + 1; total2 = 1; } for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans2 += total + 1; total = -1; } else { ans2 += -total + 1; total = 1; } } total2 = total; } cout << min(ans, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int sum = a.at(0), ans = 0; if (sum == 0) { int nonzero = -1, sign = 0; for (int i = 1; i < n; i++) { if (a.at(i) != 0) { nonzero = i; sign = (a.at(i) > 0) - (a.at(i) < 0); break; } } if (nonzero == -1) { sum++; } else if (nonzero % 2 == 0) { if (sign == 1) { sum--; } else { sum++; } } else { if (sign == 1) { sum++; } else { sum--; } } } for (int i = 1; i < n; i++) { if (sum > 0) { while (a.at(i) + sum >= 0) { a.at(i)--; ans++; } } else if (sum < 0) { while (a.at(i) + sum <= 0) { a.at(i)++; ans++; } } sum += a.at(i); } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def 解(): iN = int(input()) aA = [int(_) for _ in input().split()] iL = len(aA) iStart = 0 if sum(aA[0::2]) < sum(aA[1::2]): iStart = 1 iC = 0 aD = [0]*iL if 0 % 2 == iStart : if aA[0] <= 0: iC += -1 * aA[0] + 1 aA[0] = 1 else: if 0 <= aA[0] : iC += aA[0] + 1 aA[0] = -1 aD[0] = aA[0] for i in range(1,iL): aD[i] = aD[i-1]+aA[i] if i % 2 == iStart : if aD[i] <= 0 : iC += -1*aD[i] +1 aD[i] = 1 else: if 0 <= aD[i] : iC += aD[i] +1 aD[i] = -1 print(iC) 解()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import functools n = int(input()) a = list(map(int, input().split())) @functools.lru_cache() def memo(n): r = a[0] cnt = 0 for i in range(1,n): if r>0: if r+a[i]<0: r+=a[i] else: cnt += a[i] +r +1 r = -1 elif r<0: if r+a[i]>0: r+=a[i] else: cnt += -a[i] - r+1 r = 1 return cnt print(memo(n))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = (1e+9) + 7; const long long INF = 2e+9 + 10; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int res = 0; if (a[0] == 0) { a[0]++; res++; } int sum = a[0]; bool sign = sum > 0; for (int i = 1; i < n; i++) { sum += a[i]; if (sign && sum >= 0) { while (sum >= 0) { sum--; res++; } } else if (!sign && sum <= 0) { while (sum <= 0) { sum++; res++; } } sign = sum > 0; } cout << res << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; long long wa[n]; for (int i = 0; i < n; i++) { cin >> a[i]; wa[i] = 0; } long long ans = 0; wa[0] = a[0]; if (wa[0] < 0) { for (int i = 1; i < n; i++) { if (i % 2 == 1) { if (wa[i - 1] + a[i] > 0) { wa[i] = wa[i - 1] + a[i]; continue; } else if (wa[i - 1] + a[i] == 0) { wa[i] = 1; ans++; } else { ans += 1 - (wa[i - 1] + a[i]); wa[i] = 1; } } else { if (wa[i - 1] + a[i] < 0) { wa[i] = wa[i - 1] + a[i]; continue; } else if (wa[i - 1] + a[i] == 0) { wa[i] = -1; ans++; } else { ans += 1 + (wa[i - 1] + a[i]); wa[i] = -1; } } } } else { if (wa[0] == 0) { ans++; wa[0]++; } for (int i = 1; i < n; i++) { if (i % 2 == 0) { if (wa[i - 1] + a[i] > 0) { wa[i] = wa[i - 1] + a[i]; continue; } else if (wa[i - 1] + a[i] == 0) { wa[i] = 1; ans++; } else { ans += 1 - (wa[i - 1] + a[i]); wa[i] = 1; } } else { if (wa[i - 1] + a[i] < 0) { wa[i] = wa[i - 1] + a[i]; continue; } else if (wa[i - 1] + a[i] == 0) { wa[i] = -1; ans++; } else { ans += 1 + (wa[i - 1] + a[i]); wa[i] = -1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
after [] n = 1 after as n | head as == 0 = after (tail as) (n + 1) | head as < 0 = if odd n then 1 else (-1) | head as > 0 = if odd n then (-1) else 1 solve [] v acc = acc solve as v acc | v == 0 = if after as 0 < 0 then solve as 1 (1 + acc) else solve as (-1) (1 + acc) | v < 0 = let w = v + (head as) in if w <= 0 then solve (tail as) 1 (1 - w + acc) else solve (tail as) w acc | v > 0 = let w = v + (head as) in if w >= 0 then solve (tail as) (-1) (1 + w + acc) else solve (tail as) w acc main = do n <- read <$> getLine :: IO Int l <- getLine let as = fmap read (words l) :: [Int] in putStrLn (show (solve (tail as) (head as) 0))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int,input().split())) totals = [0] * N totals[0] = A[0] con = 0 if totals[0] == 0: for i in range(1,N): if A[i] != 0: f = A[i] if f > 0: totals[0] = -1 else: totals[0] = 1 break else: totals[0] = 1 con += 1 for i in range(1,N): totals[i] = totals[i - 1] + A[i] if totals[i - 1] * totals[i] >= 0: if totals[i - 1] < 0: con += abs(1 - totals[i]) totals[i] += abs(1 - totals[i]) elif totals[i - 1] > 0: con += abs(-1 - totals[i]) totals[i] -= abs(-1 - totals[i]) print(totals[:i + 1]) print(con)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int sum1 = 0, cost1 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0 && sum1 < 0) sum1 += abs(sum1) + 1, cost1 += abs(sum1) + 1; if (i % 2 == 1 && sum1 > 0) sum1 -= abs(sum1) - 1, cost1 += abs(sum1) + 1; } int sum2 = 0, cost2 = 0; for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0 && sum1 > 0) sum2 -= abs(sum2) - 1, cost2 += abs(sum2) + 1; if (i % 2 == 1 && sum1 < 0) sum2 += abs(sum2) + 1, cost1 += abs(sum2) + 1; } cout << min(cost1, cost2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] ans = 0 if sum > 0: flg = 1 else: flg = -1 for i in range(1, n): sum += a[i] if flg == 1: if sum < 0: pass flg = -1 else: ans += sum + 1 sum = -1 flg = -1 else: if sum > 0: pass flg = 1 else: ans += (sum) * (-1) + 1 sum = 1 flg = 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e+9 + 7; long long n, m, l; string s, t; long long d[100000], dp[100][100]; int main() { cin >> n; for (long long i = (0); i < (n); i++) cin >> d[i]; int sum1 = 0, sum2 = 0; int ans1 = 0, ans2 = 0; for (long long i = (0); i < (n); i++) { sum1 += d[i]; if (i % 2 == 0) { if (sum1 <= 0) { ans1 += -sum1 + 1; sum1 = 1; } } else { if (sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } } } for (long long i = (0); i < (n); i++) { sum2 += d[i]; if (i % 2 == 0) { if (sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } } else { if (sum2 <= 0) { ans2 += -sum2 + 1; sum2 = 1; } } } cout << (min(ans1, ans2)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {-1, 0, 1, 0}; int dy[] = {0, -1, 0, 1}; int inf = 1e9 + 1000; long long infi = 1e18 + 100; long long n; long long a[100005]; int main() { cin >> n; for (int i = 0; i <= (int)(n - 1); i++) cin >> a[i]; a[n] = 0; long long sum; long long ans = 0; for (int i = 0; i <= (int)(n - 1); i++) { long long p = sum; sum += a[i]; if (p < 0 && sum <= 0) { ans += (1 - sum); sum = 1; } else if (p > 0 && sum >= 0) { ans += (sum + 1); sum = -1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100050]; int main() { int n; scanf("%d", &n); int cnt1 = 0, cnt2 = 0; for (int i = 0; i < n; i++) scanf("%d", &a[i]); int lazy1 = 0, lazy2 = 0; for (int i = 0; i < n; i++) { int sum = 0; for (int j = 0; j <= i; j++) { sum += a[j]; } sum += lazy1; if (i % 2 == 0 && sum <= 0) { lazy1 += 1 - sum; cnt1 += 1 - sum; } if (i % 2 == 1 && sum > 0) { lazy1 -= 1 + sum; cnt1 += sum + 1; } } for (int i = 0; i < n; i++) { int sum = 0; for (int j = 0; j <= i; j++) { sum += a[j]; } sum += lazy2; if (i % 2 == 1 && sum <= 0) { lazy2 += 1 - sum; cnt2 += 1 - sum; } if (i % 2 == 0 && sum > 0) { lazy2 -= 1 + sum; cnt2 += sum + 1; } } printf("%d\n", min(cnt1, cnt2)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] count = 0 for i in range(1, n) : temp = sum sum += a[i] if temp > 0 and sum > 0 : while sum >= 0 : count += 1 sum -= 1 elif temp < 0 and sum < 0 : while sum <= 0 : count += 1 sum += 1 if sum == 0 : count += 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
require 'prime' include Math def max(a,b); a > b ? a : b end def min(a,b); a < b ? a : b end def swap(a,b); a, b = b, a end def gif; gets.to_i end def gff; gets.to_f end def gsf; gets.chomp end def gi; gets.split.map(&:to_i) end def gf; gets.split.map(&:to_f) end def gs; gets.chomp.split.map(&:to_s) end def gc; gets.chomp.split('') end def pr(num); num.prime_division end def digit(num); num.to_s.length end def array(s,ini=nil); Array.new(s){ini} end def darray(s1,s2,ini=nil); Array.new(s1){Array.new(s2){ini}} end def rep(num); num.times{|i|yield(i)} end def repl(st,en,n=1); st.step(en,n){|i|yield(i)} end def f(sum,a,count) repl 1,a.size-1 do |i| sum << a[i]+sum[i-1] if sum[i-1] > 0 if sum[i] >= 0 count += sum[i]+1 sum[i] = -1 end elsif sum[i-1] < 0 if sum[i] <= 0 count += 1-sum[i] sum[i] = 1 end end end return count end n = gif a = gi sum1 = [] sum2 = [] sum3 = [] ans1 = nil ans2 = nil ans3 = nil if a[0] != 0 sum1 << a[0] ans1 = f sum1,a,0 else sum2 << 1 ans2 = f sum2,a,1 sum3 << -1 ans3 = f sum3,a,1 end if ans1 puts ans1 else puts min ans2,ans3 end
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<long long int> a(n); for (int i = 0; i < (n); i++) { cin >> a[i]; } long long int oddcount = 0, evencount = 0; long long int oddsum = 0, evensum = 0; bool odd = true, even = false; for (int i = 0; i < (n); i++) { oddsum += a[i]; evensum += a[i]; if (odd && oddsum <= 0) { oddcount += 1 - oddsum; oddsum = 1; } if (even && oddsum >= 0) { oddcount += 1 + oddsum; oddsum = -1; } if (even && evensum <= 0) { evencount += 1 - evensum; evensum = 1; } if (odd && evensum >= 0) { evencount += 1 + evensum; evensum = -1; } odd = !odd; even = !even; } cout << fmin(oddcount, evencount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long cnt = 0; long long tot = a.at(0); long long k = 1; if (a.at(0) == 0) { k = -1; for (long long i = 1; i < n; i++) { if (a.at(i) != 0) { k = i; break; } } if (k == -1) { cout << (long long)(1 + 2 * (n - 1)) << endl; return 0; } if (a.at(k) > 0) { tot = -1; cnt = 1 + 2 * (k - 1); } else { tot = 1; cnt = 1 + 2 * (k - 1); } } for (long long i = k; i < n; i++) { long long after; if (tot < 0) { after = max(1 - tot, a.at(i)); cnt += abs(after - a.at(i)); } if (tot > 0) { after = min(-1 - tot, a.at(i)); cnt += abs(after - a.at(i)); } if (tot == 0) int a = 1 / 0; tot += after; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a = 0, b = 0, ansa = 0, ansb = 0; cin >> n; for (int i = 0; i < n; ++i) { int k = 0; cin >> k; a += k; b += k; if (i % 2 == 0) { if (a >= 0) { ansa += abs(a) + 1; a = -1; } if (b <= 0) { ansb += abs(b) + 1; b = 1; } } else { if (a <= 0) { ansa += abs(a) + 1; a = 1; } if (b >= 0) { ansb += abs(b) + 1; b = -1; } } } cout << min(ansa, ansb) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = int64_t; int dx[] = {1, 0, -1, 0}; int dy[] = {0, 1, 0, -1}; int DX[] = {1, 1, 0, -1, -1, -1, 0, 1}; int DY[] = {0, -1, -1, -1, 0, 1, 1, 1}; int n; ll hoge(ll a[]) { ll ans = 0; int temp = 0; for (int(i) = 0; (i) < (n); (i)++) { if (temp > 0 && temp + a[i] > 0) { ans += abs(-1 - temp - a[i]); temp = -1; } else if (temp < 0 && temp + a[i] < 0) { ans += abs(1 - temp - a[i]); temp = 1; } else if (temp + a[i] == 0) { if (temp > 0) { temp = -1; } else { temp = 1; } ans += 1; } else { temp += a[i]; } } return ans; } void solve() { cin >> n; ll a[n]; for (int(i) = 0; (i) < (n); (i)++) cin >> a[i]; ll ans1 = hoge(a); int temp = 0; if (a[0] > 0) { temp += (a[0] * (-1) - 1); a[0] = -1; } else if (a[0] < 0) { temp = (a[0] * (-1) + 1); a[0] = 1; } else { temp = 1; a[0] = -1; } ll ans2 = hoge(a) + temp; cout << min(ans1, ans2) << endl; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int, input().split())) sum_now=a[0] sum_before=-a[0] count_1=0 count_2=0 for i in range(n): while sum_now*sum_before>=0: if sum_before==0: sum_now=-a[1]/abs(a[1]) count_1+=1 else: count_1+=abs(int(sum_now))+1 sum_now=-sum_before/abs(sum_before) if i!=n-1: sum_before=sum_now sum_now=sum_now+a[i+1] sum_now=a[0] sum_before=-a[0] if sum_before==0: sum_now=a[1]/abs(a[1]) sum_before=-sum_now count_2+=1 else: count_2+=abs(int(sum_now))+1 sum_now=-sum_now/abs(sum_now) sum_before=-sum_now for i in range(n): while sum_now*sum_before>=0: if sum_before==0: sum_now=a[1]/abs(a[1]) count_2+=1 else: count_2+=abs(int(sum_now))+1 sum_now=-sum_before/abs(sum_before) if i!=n-1: sum_before=sum_now sum_now=sum_now+a[i+1] print(min(count_1, count_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <stdint.h> #include <stdlib.h> #include <algorithm> #include <iostream> #include <numeric> #include <vector> using namespace std; using default_counter_t = int64_t; // macro #define let auto const& #define overload4(a, b, c, d, name, ...) name #define rep1(n) \ for (default_counter_t i = 0, end_i = default_counter_t(n); i < end_i; ++i) #define rep2(i, n) \ for (default_counter_t i = 0, end_##i = default_counter_t(n); i < end_##i; \ ++i) #define rep3(i, a, b) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; ++i) #define rep4(i, a, b, c) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; i += default_counter_t(c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep2(i, n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep3(i, a, b) \ for (default_counter_t i = default_counter_t(b) - 1, \ begin_##i = default_counter_t(a); \ i >= begin_##i; --i) #define rrep4(i, a, b, c) \ for (default_counter_t \ i = (default_counter_t(b) - default_counter_t(a) - 1) / \ default_counter_t(c) * default_counter_t(c) + \ default_counter_t(a), \ begin_##i = default_counter_t(a); \ i >= begin_##i; i -= default_counter_t(c)) #define rrep(...) \ overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define ALL(f, c, ...) \ (([&](decltype((c)) cccc) { \ return (f)(std::begin(cccc), std::end(cccc), ##__VA_ARGS__); \ })(c)) // function template <class C> constexpr C& Sort(C& a) { std::sort(std::begin(a), std::end(a)); return a; } template <class C> constexpr auto& Min(C const& a) { return *std::min_element(std::begin(a), std::end(a)); } template <class C> constexpr auto& Max(C const& a) { return *std::max_element(std::begin(a), std::end(a)); } template <class C> constexpr auto Total(C const& c) { return std::accumulate(std::begin(c), std::end(c), C(0)); } template <typename T> auto CumSum(std::vector<T> const& v) { std::vector<T> a(v.size() + 1, T(0)); for (std::size_t i = 0; i < a.size() - size_t(1); ++i) a[i + 1] = a[i] + v[i]; return a; } template <typename T> constexpr bool ChMax(T& a, T const& b) { if (a < b) { a = b; return true; } return false; } template <typename T> constexpr bool ChMin(T& a, T const& b) { if (b < a) { a = b; return true; } return false; } void In(void) { return; } template <typename First, typename... Rest> void In(First& first, Rest&... rest) { cin >> first; In(rest...); return; } template <class T, typename I> void VectorIn(vector<T>& v, const I n) { v.resize(size_t(n)); rep(i, v.size()) cin >> v[i]; } void Out(void) { cout << "\n"; return; } template <typename First, typename... Rest> void Out(First first, Rest... rest) { cout << first << " "; Out(rest...); return; } constexpr auto yes(const bool c) { return c ? "yes" : "no"; } constexpr auto Yes(const bool c) { return c ? "Yes" : "No"; } constexpr auto YES(const bool c) { return c ? "YES" : "NO"; } #ifdef USE_STACK_TRACE_LOGGER #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Weverything" #include <glog/logging.h> #pragma clang diagnostic pop #endif //__clang__ #endif // USE_STACK_TRACE_LOGGER signed main(int argc, char* argv[]) { (void)argc; #ifdef USE_STACK_TRACE_LOGGER google::InitGoogleLogging(argv[0]); google::InstallFailureSignalHandler(); #else (void)argv; #endif // USE_STACK_TRACE_LOGGER int64_t n; In(n); vector<int64_t> a(n); rep(i, n) In(a[i]); bool sn = true; int64_t sum = 0; int64_t cost1 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost1 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost1 += k; sum += a[i] - k; } sn = (!sn); } sn = false; sum = 0; int64_t cost2 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost2 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost2 += k; sum += a[i] - #include <stdint.h> #include <stdlib.h> #include <algorithm> #include <iostream> #include <numeric> #include <vector> using namespace std; using default_counter_t = int64_t; // macro #define let auto const& #define overload4(a, b, c, d, name, ...) name #define rep1(n) \ for (default_counter_t i = 0, end_i = default_counter_t(n); i < end_i; ++i) #define rep2(i, n) \ for (default_counter_t i = 0, end_##i = default_counter_t(n); i < end_##i; \ ++i) #define rep3(i, a, b) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; ++i) #define rep4(i, a, b, c) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; i += default_counter_t(c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep2(i, n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep3(i, a, b) \ for (default_counter_t i = default_counter_t(b) - 1, \ begin_##i = default_counter_t(a); \ i >= begin_##i; --i) #define rrep4(i, a, b, c) \ for (default_counter_t \ i = (default_counter_t(b) - default_counter_t(a) - 1) / \ default_counter_t(c) * default_counter_t(c) + \ default_counter_t(a), \ begin_##i = default_counter_t(a); \ i >= begin_##i; i -= default_counter_t(c)) #define rrep(...) \ overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define ALL(f, c, ...) \ (([&](decltype((c)) cccc) { \ return (f)(std::begin(cccc), std::end(cccc), ##__VA_ARGS__); \ })(c)) // function template <class C> constexpr C& Sort(C& a) { std::sort(std::begin(a), std::end(a)); return a; } template <class C> constexpr auto& Min(C const& a) { return *std::min_element(std::begin(a), std::end(a)); } template <class C> constexpr auto& Max(C const& a) { return *std::max_element(std::begin(a), std::end(a)); } template <class C> constexpr auto Total(C const& c) { return std::accumulate(std::begin(c), std::end(c), C(0)); } template <typename T> auto CumSum(std::vector<T> const& v) { std::vector<T> a(v.size() + 1, T(0)); for (std::size_t i = 0; i < a.size() - size_t(1); ++i) a[i + 1] = a[i] + v[i]; return a; } template <typename T> constexpr bool ChMax(T& a, T const& b) { if (a < b) { a = b; return true; } return false; } template <typename T> constexpr bool ChMin(T& a, T const& b) { if (b < a) { a = b; return true; } return false; } void In(void) { return; } template <typename First, typename... Rest> void In(First& first, Rest&... rest) { cin >> first; In(rest...); return; } template <class T, typename I> void VectorIn(vector<T>& v, const I n) { v.resize(size_t(n)); rep(i, v.size()) cin >> v[i]; } void Out(void) { cout << "\n"; return; } template <typename First, typename... Rest> void Out(First first, Rest... rest) { cout << first << " "; Out(rest...); return; } constexpr auto yes(const bool c) { return c ? "yes" : "no"; } constexpr auto Yes(const bool c) { return c ? "Yes" : "No"; } constexpr auto YES(const bool c) { return c ? "YES" : "NO"; } #ifdef USE_STACK_TRACE_LOGGER #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Weverything" #include <glog/logging.h> #pragma clang diagnostic pop #endif //__clang__ #endif // USE_STACK_TRACE_LOGGER signed main(int argc, char* argv[]) { (void)argc; #ifdef USE_STACK_TRACE_LOGGER google::InitGoogleLogging(argv[0]); google::InstallFailureSignalHandler(); #else (void)argv; #endif // USE_STACK_TRACE_LOGGER int64_t n; In(n); vector<int64_t> a(n); rep(i, n) In(a[i]); bool sn = true; int64_t sum = 0; int64_t cost1 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost1 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost1 += k; sum += a[i] - k; } sn = (!sn); } sn = false; sum = 0; int64_t cost2 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost2 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost2 += k; sum += a[i] - k; #include <stdint.h> #include <stdlib.h> #include <algorithm> #include <iostream> #include <numeric> #include <vector> using namespace std; using default_counter_t = int64_t; // macro #define let auto const& #define overload4(a, b, c, d, name, ...) name #define rep1(n) \ for (default_counter_t i = 0, end_i = default_counter_t(n); i < end_i; ++i) #define rep2(i, n) \ for (default_counter_t i = 0, end_##i = default_counter_t(n); i < end_##i; \ ++i) #define rep3(i, a, b) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; ++i) #define rep4(i, a, b, c) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; i += default_counter_t(c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep2(i, n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep3(i, a, b) \ for (default_counter_t i = default_counter_t(b) - 1, \ begin_##i = default_counter_t(a); \ i >= begin_##i; --i) #define rrep4(i, a, b, c) \ for (default_counter_t \ i = (default_counter_t(b) - default_counter_t(a) - 1) / \ default_counter_t(c) * default_counter_t(c) + \ default_counter_t(a), \ begin_##i = default_counter_t(a); \ i >= begin_##i; i -= default_counter_t(c)) #define rrep(...) \ overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define ALL(f, c, ...) \ (([&](decltype((c)) cccc) { \ return (f)(std::begin(cccc), std::end(cccc), ##__VA_ARGS__); \ })(c)) // function template <class C> constexpr C& Sort(C& a) { std::sort(std::begin(a), std::end(a)); return a; } template <class C> constexpr auto& Min(C const& a) { return *std::min_element(std::begin(a), std::end(a)); } template <class C> constexpr auto& Max(C const& a) { return *std::max_element(std::begin(a), std::end(a)); } template <class C> constexpr auto Total(C const& c) { return std::accumulate(std::begin(c), std::end(c), C(0)); } template <typename T> auto CumSum(std::vector<T> const& v) { std::vector<T> a(v.size() + 1, T(0)); for (std::size_t i = 0; i < a.size() - size_t(1); ++i) a[i + 1] = a[i] + v[i]; return a; } template <typename T> constexpr bool ChMax(T& a, T const& b) { if (a < b) { a = b; return true; } return false; } template <typename T> constexpr bool ChMin(T& a, T const& b) { if (b < a) { a = b; return true; } return false; } void In(void) { return; } template <typename First, typename... Rest> void In(First& first, Rest&... rest) { cin >> first; In(rest...); return; } template <class T, typename I> void VectorIn(vector<T>& v, const I n) { v.resize(size_t(n)); rep(i, v.size()) cin >> v[i]; } void Out(void) { cout << "\n"; return; } template <typename First, typename... Rest> void Out(First first, Rest... rest) { cout << first << " "; Out(rest...); return; } constexpr auto yes(const bool c) { return c ? "yes" : "no"; } constexpr auto Yes(const bool c) { return c ? "Yes" : "No"; } constexpr auto YES(const bool c) { return c ? "YES" : "NO"; } #ifdef USE_STACK_TRACE_LOGGER #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Weverything" #include <glog/logging.h> #pragma clang diagnostic pop #endif //__clang__ #endif // USE_STACK_TRACE_LOGGER signed main(int argc, char* argv[]) { (void)argc; #ifdef USE_STACK_TRACE_LOGGER google::InitGoogleLogging(argv[0]); google::InstallFailureSignalHandler(); #else (void)argv; #endif // USE_STACK_TRACE_LOGGER int64_t n; In(n); vector<int64_t> a(n); rep(i, n) In(a[i]); bool sn = true; int64_t sum = 0; int64_t cost1 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost1 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost1 += k; sum += a[i] - k; } sn = (!sn); } sn = false; sum = 0; int64_t cost2 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost2 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost2 += k; sum += a[i] - k; } sn = (!sn); } cout << min(cost1, cost2) << endl; return EXIT_SUCCESS; }#include <stdint.h> #include <stdlib.h> #include <algorithm> #include <iostream> #include <numeric> #include <vector> using namespace std; using default_counter_t = int64_t; // macro #define let auto const& #define overload4(a, b, c, d, name, ...) name #define rep1(n) \ for (default_counter_t i = 0, end_i = default_counter_t(n); i < end_i; ++i) #define rep2(i, n) \ for (default_counter_t i = 0, end_##i = default_counter_t(n); i < end_##i; \ ++i) #define rep3(i, a, b) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; ++i) #define rep4(i, a, b, c) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; i += default_counter_t(c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep2(i, n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep3(i, a, b) \ for (default_counter_t i = default_counter_t(b) - 1, \ begin_##i = default_counter_t(a); \ i >= begin_##i; --i) #define rrep4(i, a, b, c) \ for (default_counter_t \ i = (default_counter_t(b) - default_counter_t(a) - 1) / \ default_counter_t(c) * default_counter_t(c) + \ default_counter_t(a), \ begin_##i = default_counter_t(a); \ i >= begin_##i; i -= default_counter_t(c)) #define rrep(...) \ overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define ALL(f, c, ...) \ (([&](decltype((c)) cccc) { \ return (f)(std::begin(cccc), std::end(cccc), ##__VA_ARGS__); \ })(c)) // function template <class C> constexpr C& Sort(C& a) { std::sort(std::begin(a), std::end(a)); return a; } template <class C> constexpr auto& Min(C const& a) { return *std::min_element(std::begin(a), std::end(a)); } template <class C> constexpr auto& Max(C const& a) { return *std::max_element(std::begin(a), std::end(a)); } template <class C> constexpr auto Total(C const& c) { return std::accumulate(std::begin(c), std::end(c), C(0)); } template <typename T> auto CumSum(std::vector<T> const& v) { std::vector<T> a(v.size() + 1, T(0)); for (std::size_t i = 0; i < a.size() - size_t(1); ++i) a[i + 1] = a[i] + v[i]; return a; } template <typename T> constexpr bool ChMax(T& a, T const& b) { if (a < b) { a = b; return true; } return false; } template <typename T> constexpr bool ChMin(T& a, T const& b) { if (b < a) { a = b; return true; } return false; } void In(void) { return; } template <typename First, typename... Rest> void In(First& first, Rest&... rest) { cin >> first; In(rest...); return; } template <class T, typename I> void VectorIn(vector<T>& v, const I n) { v.resize(size_t(n)); rep(i, v.size()) cin >> v[i]; } void Out(void) { cout << "\n"; return; } template <typename First, typename... Rest> void Out(First first, Rest... rest) { cout << first << " "; Out(rest...); return; } constexpr auto yes(const bool c) { return c ? "yes" : "no"; } constexpr auto Yes(const bool c) { return c ? "Yes" : "No"; } constexpr auto YES(const bool c) { return c ? "YES" : "NO"; } #ifdef USE_STACK_TRACE_LOGGER #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Weverything" #include <glog/logging.h> #pragma clang diagnostic pop #endif //__clang__ #endif // USE_STACK_TRACE_LOGGER signed main(int argc, char* argv[]) { (void)argc; #ifdef USE_STACK_TRACE_LOGGER google::InitGoogleLogging(argv[0]); google::InstallFailureSignalHandler(); #else (void)argv; #endif // USE_STACK_TRACE_LOGGER int64_t n; In(n); vector<int64_t> a(n); rep(i, n) In(a[i]); bool sn = true; int64_t sum = 0; int64_t cost1 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost1 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost1 += k; sum += a[i] - k; } sn = (!sn); } sn = false; sum = 0; int64_t cost2 = 0; rep(i, n) { if (sn) { int64_t k = max#include <stdint.h> #include <stdlib.h> #include <algorithm> #include <iostream> #include <numeric> #include <vector> using namespace std; using default_counter_t = int64_t; // macro #define let auto const& #define overload4(a, b, c, d, name, ...) name #define rep1(n) \ for (default_counter_t i = 0, end_i = default_counter_t(n); i < end_i; ++i) #define rep2(i, n) \ for (default_counter_t i = 0, end_##i = default_counter_t(n); i < end_##i; \ ++i) #define rep3(i, a, b) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; ++i) #define rep4(i, a, b, c) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; i += default_counter_t(c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep2(i, n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep3(i, a, b) \ for (default_counter_t i = default_counter_t(b) - 1, \ begin_##i = default_counter_t(a); \ i >= begin_##i; --i) #define rrep4(i, a, b, c) \ for (default_counter_t \ i = (default_counter_t(b) - default_counter_t(a) - 1) / \ default_counter_t(c) * default_counter_t(c) + \ default_counter_t(a), \ begin_##i = default_counter_t(a); \ i >= begin_##i; i -= default_counter_t(c)) #define rrep(...) \ overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define ALL(f, c, ...) \ (([&](decltype((c)) cccc) { \ return (f)(std::begin(cccc), std::end(cccc), ##__VA_ARGS__); \ })(c)) // function template <class C> constexpr C& Sort(C& a) { std::sort(std::begin(a), std::end(a)); return a; } template <class C> constexpr auto& Min(C const& a) { return *std::min_element(std::begin(a), std::end(a)); } template <class C> constexpr auto& Max(C const& a) { return *std::max_element(std::begin(a), std::end(a)); } template <class C> constexpr auto Total(C const& c) { return std::accumulate(std::begin(c), std::end(c), C(0)); } template <typename T> auto CumSum(std::vector<T> const& v) { std::vector<T> a(v.size() + 1, T(0)); for (std::size_t i = 0; i < a.size() - size_t(1); ++i) a[i + 1] = a[i] + v[i]; return a; } template <typename T> constexpr bool ChMax(T& a, T const& b) { if (a < b) { a = b; return true; } return false; } template <typename T> constexpr bool ChMin(T& a, T const& b) { if (b < a) { a = b; return true; } return false; } void In(void) { return; } template <typename First, typename... Rest> void In(First& first, Rest&... rest) { cin >> first; In(rest...); return; } template <class T, typename I> void VectorIn(vector<T>& v, const I n) { v.resize(size_t(n)); rep(i, v.size()) cin >> v[i]; } void Out(void) { cout << "\n"; return; } template <typename First, typename... Rest> void Out(First first, Rest... rest) { cout << first << " "; Out(rest...); return; } constexpr auto yes(const bool c) { return c ? "yes" : "no"; } constexpr auto Yes(const bool c) { return c ? "Yes" : "No"; } constexpr auto YES(const bool c) { return c ? "YES" : "NO"; } #ifdef USE_STACK_TRACE_LOGGER #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Weverything" #include <glog/logging.h> #pragma clang diagnostic pop #endif //__clang__ #endif // USE_STACK_TRACE_LOGGER signed main(int argc, char* argv[]) { (void)argc; #ifdef USE_STACK_TRACE_LOGGER google::InitGoogleLogging(argv[0]); google::InstallFailureSignalHandler(); #else (void)argv; #endif // USE_STACK_TRACE_LOGGER int64_t n; In(n); vector<int64_t> a(n); rep(i, n) In(a[i]); bool sn = true; int64_t sum = 0; int64_t cost1 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost1 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost1 += k; sum += a[i] - k; } sn = (!sn); } sn = false; sum = 0; int64_t cost2 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost2 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost2 += k; sum += a[i] - k; } sn = (!sn); } cout << min(cost1, cost2) << endl; return EXIT_SUCCESS; }#include <stdint.h> #include <stdlib.h> #include <algorithm> #include <iostream> #include <numeric> #include <vector> using namespace std; using default_counter_t = int64_t; // macro #define let auto const& #define overload4(a, b, c, d, name, ...) name #define rep1(n) \ for (default_counter_t i = 0, end_i = default_counter_t(n); i < end_i; ++i) #define rep2(i, n) \ for (default_counter_t i = 0, end_##i = default_counter_t(n); i < end_##i; \ ++i) #define rep3(i, a, b) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; ++i) #define rep4(i, a, b, c) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; i += default_counter_t(c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep2(i, n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep3(i, a, b) \ for (default_counter_t i = default_counter_t(b) - 1, \ begin_##i = default_counter_t(a); \ i >= begin_##i; --i) #define rrep4(i, a, b, c) \ for (default_counter_t \ i = (default_counter_t(b) - default_counter_t(a) - 1) / \ default_counter_t(c) * default_counter_t(c) + \ default_counter_t(a), \ begin_##i = default_counter_t(a); \ i >= begin_##i; i -= default_counter_t(c)) #define rrep(...) \ overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define ALL(f, c, ...) \ (([&](decltype((c)) cccc) { \ return (f)(std::begin(cccc), std::end(cccc), ##__VA_ARGS__); \ })(c)) // function template <class C> constexpr C& Sort(C& a) { std::sort(std::begin(a), std::end(a)); return a; } template <class C> constexpr auto& Min(C const& a) { return *std::min_element(std::begin(a), std::end(a)); } template <class C> constexpr auto& Max(C const& a) { return *std::max_element(std::begin(a), std::end(a)); } template <class C> constexpr auto Total(C const& c) { return std::accumulate(std::begin(c), std::end(c), C(0)); } template <typename T> auto CumSum(std::vector<T> const& v) { std::vector<T> a(v.size() + 1, T(0)); for (std::size_t i = 0; i < a.size() - size_t(1); ++i) a[i + 1] = a[i] + v[i]; return a; } template <typename T> constexpr bool ChMax(T& a, T const& b) { if (a < b) { a = b; return true; } return false; } template <typename T> constexpr bool ChMin(T& a, T const& b) { if (b < a) { a = b; return true; } return false; } void In(void) { return; } template <typename First, typename... Rest> void In(First& first, Rest&... rest) { cin >> first; In(rest...); return; } template <class T, typename I> void VectorIn(vector<T>& v, const I n) { v.resize(size_t(n)); rep(i, v.size()) cin >> v[i]; } void Out(void) { cout << "\n"; return; } template <typename First, typename... Rest> void Out(First first, Rest... rest) { cout << first << " "; Out(rest...); return; } constexpr auto yes(const bool c) { return c ? "yes" : "no"; } constexpr auto Yes(const bool c) { return c ? "Yes" : "No"; } constexpr auto YES(const bool c) { return c ? "YES" : "NO"; } #ifdef USE_STACK_TRACE_LOGGER #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Weverything" #include <glog/logging.h> #pragma clang diagnostic pop #endif //__clang__ #endif // USE_STACK_TRACE_LOGGER signed main(int argc, char* argv[]) { (void)argc; #ifdef USE_STACK_TRACE_LOGGER google::InitGoogleLogging(argv[0]); google::InstallFailureSignalHandler(); #else (void)argv; #endif // USE_STACK_TRACE_LOGGER int64_t n; In(n); vector<int64_t> a(n); rep(i, n) In(a[i]); bool sn = true; int64_t sum = 0; int64_t cost1 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost1 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost1 += k; sum += a[i] - k; } sn = (!sn); } sn = false; sum = 0; int64_t cost2 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost2 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost2 += k; sum += a[i] - k; } sn = (!sn); } cout << min(cost1, cost2) << endl; return EXIT_SUCCESS; }#include <stdint.h> #include <stdlib.h> #include <algorithm> #include <iostream> #include <numeric> #include <vector> using namespace std; using default_counter_t = int64_t; // macro #define let auto const& #define overload4(a, b, c, d, name, ...) name #define rep1(n) \ for (default_counter_t i = 0, end_i = default_counter_t(n); i < end_i; ++i) #define rep2(i, n) \ for (default_counter_t i = 0, end_##i = default_counter_t(n); i < end_##i; \ ++i) #define rep3(i, a, b) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; ++i) #define rep4(i, a, b, c) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; i += default_counter_t(c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep2(i, n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep3(i, a, b) \ for (default_counter_t i = default_counter_t(b) - 1, \ begin_##i = default_counter_t(a); \ i >= begin_##i; --i) #define rrep4(i, a, b, c) \ for (default_counter_t \ i = (default_counter_t(b) - default_counter_t(a) - 1) / \ default_counter_t(c) * default_counter_t(c) + \ default_counter_t(a), \ begin_##i = default_counter_t(a); \ i >= begin_##i; i -= default_counter_t(c)) #define rrep(...) \ overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define ALL(f, c, ...) \ (([&](decltype((c)) cccc) { \ return (f)(std::begin(cccc), std::end(cccc), ##__VA_ARGS__); \ })(c)) // function template <class C> constexpr C& Sort(C& a) { std::sort(std::begin(a), std::end(a)); return a; } template <class C> constexpr auto& Min(C const& a) { return *std::min_element(std::begin(a), std::end(a)); } template <class C> constexpr auto& Max(C const& a) { return *std::max_element(std::begin(a), std::end(a)); } template <class C> constexpr auto Total(C const& c) { return std::accumulate(std::begin(c), std::end(c), C(0)); } template <typename T> auto CumSum(std::vector<T> const& v) { std::vector<T> a(v.size() + 1, T(0)); for (std::size_t i = 0; i < a.size() - size_t(1); ++i) a[i + 1] = a[i] + v[i]; return a; } template <typename T> constexpr bool ChMax(T& a, T const& b) { if (a < b) { a = b; return true; } return false; } template <typename T> constexpr bool ChMin(T& a, T const& b) { if (b < a) { a = b; return true; } return false; } void In(void) { return; } template <typename First, typename... Rest> void In(First& first, Rest&... rest) { cin >> first; In(rest...); return; } template <class T, typename I> void VectorIn(vector<T>& v, const I n) { v.resize(size_t(n)); rep(i, v.size()) cin >> v[i]; } void Out(void) { cout << "\n"; return; } template <typename First, typename... Rest> void Out(First first, Rest... rest) { cout << first << " "; Out(rest...); return; } constexpr auto yes(const bool c) { return c ? "yes" : "no"; } constexpr auto Yes(const bool c) { return c ? "Yes" : "No"; } constexpr auto YES(const bool c) { return c ? "YES" : "NO"; } #ifdef USE_STACK_TRACE_LOGGER #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Weverything" #include <glog/logging.h> #pragma clang diagnostic pop #endif //__clang__ #endif // USE_STACK_TRACE_LOGGER signed main(int argc, char* argv[]) { (void)argc; #ifdef USE_STACK_TRACE_LOGGER google::InitGoogleLogging(argv[0]); google::InstallFailureSignalHandler(); #else (void)argv; #endif // USE_STACK_TRACE_LOGGER int64_t n; In(n); vector<int64_t> a(n); rep(i, n) In(a[i]); bool sn = true; int64_t sum = 0; int64_t cost1 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost1 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost1 += k; sum += a[i] - k; } sn = (!sn); } sn = false; sum = 0; int64_t cost2 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost2 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost2 += k; sum#include <stdint.h> #include <stdlib.h> #include <algorithm> #include <iostream> #include <numeric> #include <vector> using namespace std; using default_counter_t = int64_t; // macro #define let auto const& #define overload4(a, b, c, d, name, ...) name #define rep1(n) \ for (default_counter_t i = 0, end_i = default_counter_t(n); i < end_i; ++i) #define rep2(i, n) \ for (default_counter_t i = 0, end_##i = default_counter_t(n); i < end_##i; \ ++i) #define rep3(i, a, b) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; ++i) #define rep4(i, a, b, c) \ for (default_counter_t i = default_counter_t(a), \ end_##i = default_counter_t(b); \ i < end_##i; i += default_counter_t(c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep2(i, n) \ for (default_counter_t i = default_counter_t(n) - 1; i >= 0; --i) #define rrep3(i, a, b) \ for (default_counter_t i = default_counter_t(b) - 1, \ begin_##i = default_counter_t(a); \ i >= begin_##i; --i) #define rrep4(i, a, b, c) \ for (default_counter_t \ i = (default_counter_t(b) - default_counter_t(a) - 1) / \ default_counter_t(c) * default_counter_t(c) + \ default_counter_t(a), \ begin_##i = default_counter_t(a); \ i >= begin_##i; i -= default_counter_t(c)) #define rrep(...) \ overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define ALL(f, c, ...) \ (([&](decltype((c)) cccc) { \ return (f)(std::begin(cccc), std::end(cccc), ##__VA_ARGS__); \ })(c)) // function template <class C> constexpr C& Sort(C& a) { std::sort(std::begin(a), std::end(a)); return a; } template <class C> constexpr auto& Min(C const& a) { return *std::min_element(std::begin(a), std::end(a)); } template <class C> constexpr auto& Max(C const& a) { return *std::max_element(std::begin(a), std::end(a)); } template <class C> constexpr auto Total(C const& c) { return std::accumulate(std::begin(c), std::end(c), C(0)); } template <typename T> auto CumSum(std::vector<T> const& v) { std::vector<T> a(v.size() + 1, T(0)); for (std::size_t i = 0; i < a.size() - size_t(1); ++i) a[i + 1] = a[i] + v[i]; return a; } template <typename T> constexpr bool ChMax(T& a, T const& b) { if (a < b) { a = b; return true; } return false; } template <typename T> constexpr bool ChMin(T& a, T const& b) { if (b < a) { a = b; return true; } return false; } void In(void) { return; } template <typename First, typename... Rest> void In(First& first, Rest&... rest) { cin >> first; In(rest...); return; } template <class T, typename I> void VectorIn(vector<T>& v, const I n) { v.resize(size_t(n)); rep(i, v.size()) cin >> v[i]; } void Out(void) { cout << "\n"; return; } template <typename First, typename... Rest> void Out(First first, Rest... rest) { cout << first << " "; Out(rest...); return; } constexpr auto yes(const bool c) { return c ? "yes" : "no"; } constexpr auto Yes(const bool c) { return c ? "Yes" : "No"; } constexpr auto YES(const bool c) { return c ? "YES" : "NO"; } #ifdef USE_STACK_TRACE_LOGGER #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Weverything" #include <glog/logging.h> #pragma clang diagnostic pop #endif //__clang__ #endif // USE_STACK_TRACE_LOGGER signed main(int argc, char* argv[]) { (void)argc; #ifdef USE_STACK_TRACE_LOGGER google::InitGoogleLogging(argv[0]); google::InstallFailureSignalHandler(); #else (void)argv; #endif // USE_STACK_TRACE_LOGGER int64_t n; In(n); vector<int64_t> a(n); rep(i, n) In(a[i]); bool sn = true; int64_t sum = 0; int64_t cost1 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost1 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost1 += k; sum += a[i] - k; } sn = (!sn); } sn = false; sum = 0; int64_t cost2 = 0; rep(i, n) { if (sn) { int64_t k = max(int64_t(0), 1 - sum - a[i]); cost2 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost2 += k; sum += a[i] - k; } sn = (!sn); } cout << min(cost1, cost2) << endl; return EXIT_SUCCESS; } += a[i] - k; } sn = (!sn); } cout << min(cost1, cost2) << endl; return EXIT_SUCCESS; }(int64_t(0), 1 - sum - a[i]); cost2 += k; sum += a[i] + k; } else { int64_t k = max(int64_t(0), sum + a[i] + 1); cost2 += k; sum += a[i] - k; } sn = (!sn); } cout << min(cost1, cost2) << endl; return EXIT_SUCCESS; } sn = (!sn); } cout << min(cost1, cost2) << endl; return EXIT_SUCCESS; }k; } sn = (!sn); } cout << min(cost1, cost2) << endl; return EXIT_SUCCESS; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=[int(i) for i in input().split()] if a[0]>=0: f=1 else: f=-1 s=0 ans=0 for i in range(n): s+=a[i] if s*f<0: ans+=abs(s)+1 s=f elif s==0: ans+=1 s=f f*=-1 print(ans)