Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
int cnt = 0;
int tot = a.at(0);
int k = 1;
if (a.at(0) == 0) {
k = -1;
for (int i = 1; i < n; i++) {
if (a.at(i) != 0) {
k = i;
break;
}
}
if (k == -1) {
cout << 1 + 2 * (n - 1) << endl;
return 0;
}
if (a.at(k) > 0) {
tot = -1;
cnt = 1 + 2 * (k - 1);
} else {
tot = 1;
cnt = 1 + 2 * (k - 1);
}
}
for (int i = k; i < n; i++) {
int after;
if (tot < 0) {
after = max(1 - tot, a.at(i));
cnt += abs(after - a.at(i));
}
if (tot > 0) {
after = min(-1 - tot, a.at(i));
cnt += abs(after - a.at(i));
}
tot += after;
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> A(N);
for (int i = 0; i < (N); i++) cin >> A[i];
int ans1 = 0, ans2 = 0, sum = 0;
for (int i = 0; i < (N); i++) {
sum += A[i];
if (i % 2 == 0 && sum <= 0) {
ans1 += 1 - sum;
sum = 1;
} else if (i % 2 != 0 && sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
}
sum = 0;
for (int i = 0; i < (N); i++) {
sum += A[i];
if (i % 2 == 0 && sum >= 0) {
ans2 += sum + 1;
sum = -1;
} else if (i % 2 != 0 && sum <= 0) {
ans2 += 1 - sum;
sum = 1;
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
counter = 0 ####操作回数
A.reverse()
S = 0
a = A.pop()
if a==0:
counter += 1
while A:
b = A.pop()
if b == 0:
counter += 2
elif b>0:
A.append(b)
S = -1
break
elif b<0:
A.append(b)
S = 1
break
else:
S += a
while A:
c = A.pop()
if c>=0 and S>0:
counter += abs(c+S)+1
S = -1
elif c<=0 and S<0:
counter += abs(c+S)+1
S = 1
elif (c>0 and S<0) and S+c<=0:
counter += abs(S+c)+1
S = 1
elif (c<0 and S>0) and S+c>=0:
counter += abs(S+c)+1
S = -1
else:
S += c
print(counter)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int sum1 = 0, sum2 = 0;
int ans1 = 0, ans2 = 0;
int first;
cin >> first;
if (first > 0) {
sum1 = first;
sum2 = -1;
ans2 += first + 1;
} else if (first < 0) {
sum1 = -first;
sum2 = first;
ans1 += -first * 2;
} else {
sum1 = 1;
sum2 = -1;
ans1++, ans2++;
}
for (int i = 0; i < n - 1; i++) {
int a;
cin >> a;
if (sum1 > 0) {
if (sum1 + a >= 0) {
ans1 += abs(-sum1 - 1 - a);
sum1 = -1;
} else {
sum1 += a;
}
} else if (sum1 < 0) {
if (sum1 + a <= 0) {
ans1 += -sum1 + 1 - a;
sum1 = 1;
} else {
sum1 += a;
}
}
if (sum2 > 0) {
if (sum2 + a >= 0) {
ans2 += abs(-sum2 - 1 - a);
sum2 = -1;
} else {
sum2 += a;
}
} else if (sum2 < 0) {
if (sum2 + a <= 0) {
ans2 += -sum2 + 1 - a;
sum2 = 1;
} else {
sum2 += a;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using static System.Console;
using static System.Convert;
using static System.Math;
class Program
{
static void Main(string[] args)
{
var num = ToInt32(ReadLine());
var ar = Array.ConvertAll(ReadLine().Split(' '), int.Parse);
var res = int.MaxValue;
for (var j = 0; j < 2; j++)
{
var isP = j == 0;
var sum = 0;
var r = 0;
for (var i = 0; i < num; i++)
{
sum += ar[i];
if (isP&&sum<=0)
{
r += 1 - sum;
sum = 1;
}
else if (!isP && sum >= 0)
{
r += 1 + sum;
sum = -1;
}
isP = !isP;
}
res = Min(res, r);
}
WriteLine(res);
}
private const string ALFA = "abcdefghijklmnopqrstuvwxyz";
private const int MOD = 1000000007;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long ans=0;
long ans2=0;
int[] f = new int[n];
for(int i=0;i<n;i++) f[i] = sc.nextInt();
int sum1 = f[0];
int sum2 = f[0];
for(int i=0;i<n-1;i++) {
sum2 += f[i+1];
if(sum1*sum2 > 0) {
ans += Math.abs(sum2)+1;
if(sum1 >0) sum2 = -1;
else sum2 = 1;
}else if(sum2 == 0) {
ans += 1;
if(sum1 > 0) sum2 = -1;
else sum2 = 1;
}
sum1 = sum2;
}
sum1 = f[0];
sum2 = f[0];
for(int i=0;i<n-1;i++) {
sum2 += f[i+1];
if(sum1*sum2 > 0) {
ans2 += Math.abs(sum2)+1;
if(sum1 >0) sum2 = -1;
else sum2 = 1;
}else if(sum2 == 0) {
ans2 += 1;
if(sum1 < 0) sum2 = 1;
else sum2 = -1;
}
sum1 = sum2;
}
System.out.println(Math.min(ans,ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN |
solver::[Int]->Int
solver xs = if head xs == 0 then min (check_tot 1 1 (tail xs)) (check_tot 1 (-1) (tail xs)) else check_tot 0 (head xs) (tail xs)
main::IO()
main=do
_<-getLine
datc<-getLine
print (solver (map read (words datc)))
--おそい。Step_sumを作る事無く、シーケンシャルにいく
--今のカウント手数、ここまでの修正されたトータル(これはゼロでない事が保証される)、食べるリスト。
check_tot::Int -> Int -> [Int] -> Int
check_tot st _ [] = st
check_tot st tot xs
| (tot > 0)&&((tot+(head xs))>=0) = let dec = (tot+(head xs))+1 in check_tot (dec+st) (-1) (tail xs)
| (tot > 0)&&((tot+(head xs)) <0) = check_tot st (tot+(head xs)) (tail xs)
| (tot < 0)&&((tot+(head xs)) >0) = check_tot st (tot+(head xs)) (tail xs)
| (tot < 0)&&((tot+(head xs))<=0) = let inc = 1-(tot+(head xs)) in check_tot (inc+st) 1 (tail xs) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long> a(n);
for (int i = 0; i < n; ++i) cin >> a[i];
vector<bool> sign = {true, false};
vector<int> cnt = {0, 0};
long total;
for (int k = 0; k < 2; ++k) {
vector<long> a_tmp = a;
for (int i = 0; i < n; ++i) {
total = accumulate(a_tmp.begin(), a_tmp.begin() + i, 0) + a_tmp[i];
if (sign[k] && total >= 0) {
a_tmp[i] -= (total + 1);
cnt[k] += (total + 1);
sign[k] = false;
} else if (!sign[k] && total <= 0) {
a_tmp[i] += (abs(total) + 1);
cnt[k] += (abs(total) + 1);
sign[k] = true;
} else
sign[k] = !sign[k];
}
}
cout << min(cnt[0], cnt[1]) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int count = 0;
vector<int> a(100000);
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] == 0) {
if (a[1] > 0) {
a[0]--;
count++;
} else {
a[0]++;
count++;
}
}
vector<long long int> sum(100000);
sum[0] = a[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (sum[i] * sum[i - 1] >= 0) {
if (sum[i - 1] < 0) {
count += 1 - sum[i - 1];
sum[i] = 1;
} else {
count += sum[i - 1] + 1;
sum[i] = -1;
}
}
}
cout << count;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args)throws Exception {
Scanner stdIn=new Scanner(System.in);
int N=stdIn.nextInt();
int a[]=new int[N];
int pla=0,key=0,cun=0;
int z=0;
while(z<N) {
a[z]=stdIn.nextInt();
key+=a[z];
if(a[0]<0)
pla=1;
if(pla==0) {
if(z%2==0) {
if(key<0) {
cun+=0-key+1;
key+=0-key+1;
}
if(key==0) {
cun+=1;
key+=1;
}
}
else {
if(key>0) {
cun+=key+1;
key-=key+1;
}
if(key==0) {
cun+=1;
key-=1;
}
}
}
else {
if(z%2==1) {
if(key<0) {
cun+=0-key+1;
key+=0-key+1;
}
if(key==0) {
cun+=1;
key+=1;
}
}
else {
if(key>0) {
cun+=key+1;
key-=key+1;
}
if(key==0) {
cun+=1;
key-=1;
}
}
}
z++;
}
System.out.println(cun);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
lstA = list(map(int, input().split()))
cntCase1, cntCase2 = 0, 0
# 偶数番目を正、奇数番目を負とする場合
accum = 0
for i in range(n):
ai = lstA[i]
tmpSum = accum
tmpSum += ai
if i % 2 == 0:
if tmpSum < 0:
cntCase1 += abs(tmpSum) + 1
accum = 1
else:
accum = tmpSum
else:
if tmpSum > 0:
cntCase1 += abs(tmpSum) + 1
accum = -1
else:
accum = tmpSum
# 偶数番目を負、奇数番目を正とする場合
accum = 0
for i in range(n):
ai = lstA[i]
tmpSum = accum
tmpSum += ai
if i % 2 == 0:
if tmpSum > 0:
cntCase2 += abs(tmpSum) + 1
accum = -1
else:
accum = tmpSum
else:
if tmpSum < 0:
cntCase2 += abs(tmpSum) + 1
accum = 1
else:
accum = tmpSum
ans = min(cntCase1, cntCase2)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
rui = [0] * n
cnt = 0
if a[0] > a[1]:
rui[0] = a[0]
else:
if a[0] >= 0:
rui[0] = -1
cnt += a[0] + 1
else:
rui[0] = 1
cnt += abs(a[0]) + 1
for i in range(1, n):
tmp = rui[i - 1] + a[i]
if tmp == 0:
if rui[i - 1] > 0:
rui[i] = tmp - 1
cnt += 1
else:
rui[i] = tmp + 1
cnt += 1
else:
if rui[i - 1] > 0 and tmp > 0:
rui[i] = -1
cnt += abs(tmp) + 1
elif rui[i - 1] < 0 and tmp < 0:
rui[i] = 1
cnt += abs(tmp) + 1
else:
rui[i] = tmp
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"os"
"strconv"
)
var sc = bufio.NewScanner(os.Stdin)
func Scanner() string {
sc.Scan()
return sc.Text()
}
func main() {
buf := make([]byte, 0)
sc.Buffer(buf, 1000000009)
sc.Split(bufio.ScanWords)
n, _ := strconv.Atoi(Scanner())
a := make([]int, n)
for i := 0; i < n; i++ {
a[i], _ = strconv.Atoi(Scanner())
}
s := a[0]
ans := 0
if s == 0 && a[1] > 0 {
s = -1
ans += 1
} else if s == 0 && a[1] < 0 {
s = 1
ans += 1
}
for i := 1; i < n; i++ {
t := s + a[i]
if s < 0 && t < 0 {
ans += 1 - t
s = 1
} else if s > 0 && t > 0 {
ans += t + 1
s = -1
} else if s < 0 && t == 0 {
ans += 1
s = 1
} else if s > 0 && t == 0 {
ans += 1
s = -1
} else {
s = t
}
}
fmt.Println(ans)
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
int sum = a.at(0);
int count_eve = 0;
int count_odd = 0;
if (sum <= 0) {
count_eve += -sum + 1;
sum = 1;
}
for (int i = 0; i < n - 1; i++) {
if (i % 2 == 0) {
if (sum + a.at(i + 1) < 0) {
sum += a.at(i + 1);
} else {
count_eve += sum + a.at(i + 1) + 1;
sum = -1;
}
} else if (i % 2 == 1) {
if (sum + a.at(i + 1) > 0) {
sum += a.at(i + 1);
} else {
count_eve += -sum - a.at(i + 1) + 1;
sum = 1;
}
}
}
sum = a.at(0);
if (sum >= 0) {
count_odd += sum + 1;
sum = -1;
}
for (int i = 0; i < n - 1; i++) {
if (i % 2 == 0) {
if (sum + a.at(i + 1) > 0) {
sum += a.at(i + 1);
} else {
count_odd += -sum - a.at(i + 1) + 1;
sum = 1;
}
} else if (i % 2 == 1) {
if (sum + a.at(i + 1) < 0) {
sum += a.at(i + 1);
} else {
count_odd += sum + a.at(i + 1) + 1;
sum = -1;
}
}
}
cout << min(count_eve, count_odd);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
num = a[0]
ans = 0
if a[0]>0:
for i in range(1,n):
num += a[i]
if i%2==1:
if num>=0:
ans += num+1
num = -1
else:
if num<=0:
ans += 1-num
num = 1
elif a[0]<0:
for i in range(1,n):
num += a[i]
if i%2==1:
if num <= 0:
ans += 1-num
num = 1
else:
if num >= 0:
ans += num+1
num = -1
else:
num = 0
ansp = 1
ansm = 1
for i in range(1,n):
num += a[i]
if i%2==1:
if num>=0:
ansp += num+1
num = -1
else:
if num<=0:
ansp += 1-num
num = 1
for i in range(1,n):
num += a[i]
if i%2==1:
if num <= 0:
ansm += 1-num
num = 1
else:
if num >= 0:
ansm += num+1
num = -1
ans = min(ansp,ansm)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
al = list(map(int, input().split()))
m = n//2
mm = n % 2
temp = al[0]
res = 0
def ddd(temp,al,m,mm,res):
if temp > 0 and mm ==1:
for i in range(1,m+1):
temp +=al[i*2-1]
if temp <0:
pass
else:
res += temp+1
temp = -1
temp +=al[i*2]
if temp >0:
pass
else:
res +=1-temp
temp = 1
print(res)
exit()
if temp > 0 and mm ==0:
for i in range(1,m):
temp +=al[i*2-1]
if temp <0:
pass
else:
res += temp+1
temp = -1
temp +=al[i*2]
if temp >0:
pass
else:
res +=1-temp
temp = 1
temp += al[n-1]
if temp <0:
pass
else:
res += temp+1
temp = -1
print(res)
exit()
if temp < 0 and mm ==1:
for i in range(1,m+1):
temp +=al[i*2-1]
if temp >0:
pass
else:
res += 1-temp
temp = 1
temp +=al[i*2]
if temp <0:
pass
else:
res +=temp+1
temp = -1
print(res)
exit()
if temp < 0 and mm ==0:
for i in range(1,m):
temp +=al[i*2-1]
if temp >0:
pass
else:
res += 1-temp
temp = 1
temp +=al[i*2]
if temp <0:
pass
else:
res +=temp+1
temp = -1
temp += al[n-1]
if temp >0:
pass
else:
res += 1-temp
temp = 1
print(res)
exit()
ddd(temp,al,m,mm,res) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import qualified Data.Vector.Unboxed as VU
import qualified Data.ByteString.Char8 as B
import Data.Char
solve :: VU.Vector Int -> Int -> Int
solve vec n
| VU.length vec == 2 && VU.sum vec == 0 = 1
| VU.length vec == 2 && VU.sum vec /= 0 = 0
| otherwise = fst $ minimum $ [f, g]
where
t = VU.take 2 vec
d = VU.drop 2 vec
f = VU.foldl' step (init t (negate 1)) d
g = VU.foldl' step (init t 1) d
init :: VU.Vector Int -> Int -> (Int, Int)
init vec i
| a + b == 0 = (1, a + b + i)
| otherwise = (0, a + b)
where
a = VU.head vec
b = VU.last vec
step :: (Int, Int) -> Int -> (Int, Int)
step (res, acc) x
| acc + x == 0 = (res + 1, negate (signum acc))
| (signum acc) /= signum (acc + x) = (res, acc + x)
| otherwise =
let
aim = negate $ signum acc
y = aim - (acc + x)
in
(res + abs y, aim)
main = do
n <- readLn :: IO Int
as <- VU.unfoldrN n (B.readInt . B.dropWhile isSpace) <$> B.getLine
print $ solve as n |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.*;
public class Main {
static InputStream is;
static PrintWriter out;
static String INPUT = "";
static void solve() {
int n = ni();
int[] a = na(n);
long[] sum = new long[n];
sum[0] = a[0];
long total = 0;
for (int i = 1; i < n; i++) {
int cur = a[i];
if (sum[i - 1] < 0) {
if (cur + sum[i - 1] > 0) {
sum[i] = cur + sum[i - 1];
} else {
total += 1 - (cur + sum[i - 1]);
sum[i] = 1;
}
} else {
if (cur + sum[i - 1] >= 0) {
total += (cur + sum[i - 1]) + 1;
sum[i] = -1;
} else {
sum[i] = cur + sum[i - 1];
}
}
}
System.out.println(total);
}
public static void main(String[] args) throws Exception {
long S = System.currentTimeMillis();
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
solve();
out.flush();
long G = System.currentTimeMillis();
tr(G-S+"ms");
}
private static boolean eof() {
if(lenbuf == -1)return true;
int lptr = ptrbuf;
while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false;
try {
is.mark(1000);
while(true){
int b = is.read();
if(b == -1){
is.reset();
return true;
}else if(!isSpaceChar(b)){
is.reset();
return false;
}
}
} catch (IOException e) {
return true;
}
}
private static byte[] inbuf = new byte[1024];
static int lenbuf = 0, ptrbuf = 0;
private static int readByte() {
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private static double nd() { return Double.parseDouble(ns()); }
private static char nc() { return (char)skip(); }
private static String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private static char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private static char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private static int[] na(int n) {
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private static int ni() {
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static long nl() {
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); }
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
as = gets.chomp.split.map(&:to_i)
ans_o = ans_e = 0
sum = as[0]
1.upto(n-1) do |i|
sum += as[i]
if i.even?
until sum > 0
ans_e += 1
sum += 1
end
else
until sum < 0
ans_e += 1
sum -= 1
end
end
end
1.upto(n-1) do |i|
sum += as[i]
if i.odd?
until sum > 0
ans_o += 1
sum += 1
end
else
until sum < 0
ans_o += 1
sum -= 1
end
end
end
puts [ans_e,ans_o].min
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
# Here your code
N = int(input())
a = [int(i) for i in input().split()]
result_1 = 0
before_sum =a[0]
after_sum =a[0]
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_1 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_1 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_1 += 1
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
before_sum =-a[0]
after_sum =-a[0]
result_2 = 1 + abs(before_sum)
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_2 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_2 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_2 += 1
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
print(min(result_1,result_2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using vvvll = vector<vvll>;
using vb = vector<bool>;
using vvb = vector<vb>;
using mii = map<int, int>;
using pqls = priority_queue<long long>;
using pqlg = priority_queue<long long, vector<long long>, greater<long long>>;
using mll = map<long long, long long>;
using pll = pair<long long, long long>;
using sll = set<long long>;
long long divup(long long a, long long b);
long long kaijou(long long i);
long long P(long long n, long long k);
long long C(long long n, long long k);
long long GCD(long long a, long long b);
long long LCM(long long a, long long b);
bool prime(long long N);
double distance(vector<long long> p, vector<long long> q, long long n);
void press(vector<long long> &v);
void ranking(vector<long long> &v);
void erase(vector<long long> &v, long long i);
void unique(vector<long long> &v);
void printv(vector<long long> v);
vector<ll> keta(ll x);
long long modpow(long long a, long long n, long long mod);
long long modinv(long long a, long long mod);
vector<long long> inputv(long long n);
vector<long long> yakusuu(int n);
map<long long, long long> soinsuu(long long n);
vector<vector<long long>> maze(long long i, long long j, vector<string> &s);
vector<long long> eratos(long long n);
set<long long> eraset(long long n);
long long divup(long long a, long long b) {
long long x = abs(a);
long long y = abs(b);
long long z = (x + y - 1) / y;
if ((a < 0 && b > 0) || (a > 0 && b < 0))
return -z;
else if (a == 0)
return 0;
else
return z;
}
long long kaijou(long long i) {
if (i == 0) return 1;
long long j = 1;
for (long long k = 1; k <= i; k++) {
j *= k;
}
return j;
}
long long P(long long n, long long k) {
if (n < k) return 0;
long long y = 1;
for (long long i = 0; i < k; i++) {
y *= (n - i);
}
return y;
}
long long C(long long n, long long k) {
if (n < k) return 0;
return P(n, k) / kaijou(k);
}
long long GCD(long long a, long long b) {
if (a < b) swap(a, b);
long long d = a % b;
if (d == 0) {
return b;
}
return GCD(b, d);
}
long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; }
bool prime(long long N) {
if (N == 1) {
return false;
}
if (N < 0) return false;
long long p = sqrt(N);
for (long long i = 2; i <= p; i++) {
if (N % i == 0) {
return false;
}
}
return true;
}
double distance(vector<long long> p, vector<long long> q, long long n) {
double x = 0;
for (long long i = 0; i < n; i++) {
x += pow((p.at(i) - q.at(i)), 2);
}
return sqrt(x);
}
void press(vector<long long> &v) {
long long n = v.size();
vector<long long> w(n);
map<long long, long long> m;
for (auto &p : v) {
m[p] = 0;
}
long long i = 0;
for (auto &p : m) {
p.second = i;
i++;
}
for (long long i = 0; i < n; i++) {
w.at(i) = m[v.at(i)];
}
v = w;
return;
}
void ranking(vector<long long> &v) {
long long n = v.size();
map<long long, long long> m;
long long i;
for (i = 0; i < n; i++) {
m[v.at(i)] = i;
}
vector<long long> w(n);
i = 0;
for (auto &p : m) {
v.at(i) = p.second;
i++;
}
return;
}
void erase(vector<long long> &v, long long i) {
long long n = v.size();
if (i > n - 1) return;
for (long long j = i; j < n - 1; j++) {
v.at(j) = v.at(j + 1);
}
v.pop_back();
return;
}
void unique(vector<long long> &v) {
long long n = v.size();
set<long long> s;
long long i = 0;
while (i < n) {
if (s.count(v.at(i))) {
erase(v, i);
n--;
} else {
s.insert(v.at(i));
i++;
}
}
return;
}
void printv(vector<long long> v) {
cout << "{ ";
for (auto &p : v) {
cout << p << ",";
}
cout << "}" << endl;
}
vector<ll> keta(ll x) {
if (x == 0) return {0};
ll n = log10(x) + 1;
vll w(n, 0);
for (ll i = 0; i < n; i++) {
ll p;
p = x % 10;
x = x / 10;
w[n - 1 - i] = p;
}
return w;
}
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); }
vector<long long> inputv(long long n) {
vector<long long> v(n);
for (long long i = 0; i < n; i++) {
cin >> v[i];
}
return v;
}
vector<long long> yakusuu(long long n) {
vector<long long> ret;
for (long long i = 1; i <= sqrt(n); ++i) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) {
ret.push_back(n / i);
}
}
}
sort(ret.begin(), ret.end());
return ret;
}
map<long long, long long> soinsuu(long long n) {
map<long long, long long> m;
long long p = sqrt(n);
while (n % 2 == 0) {
n /= 2;
if (m.count(2)) {
m[2]++;
} else {
m[2] = 1;
}
}
for (long long i = 3; i * i <= n; i += 2) {
while (n % i == 0) {
n /= i;
if (m.count(i)) {
m[i]++;
} else {
m[i] = 1;
}
}
}
if (n != 1) m[n] = 1;
return m;
}
vector<vector<long long>> maze(ll i, ll j, vector<string> &s) {
ll h = s.size();
ll w = s[0].size();
queue<vector<long long>> q;
vector<vector<long long>> dis(h, vll(w, -1));
q.push({i, j});
dis[i][j] = 0;
while (!q.empty()) {
auto v = q.front();
q.pop();
if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) {
dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1;
q.push({v[0] - 1, v[1]});
}
if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) {
dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1;
q.push({v[0], v[1] - 1});
}
if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) {
dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1;
q.push({v[0] + 1, v[1]});
}
if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) {
dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1;
q.push({v[0], v[1] + 1});
}
}
return dis;
}
long long modC(long long n, long long k, long long mod) {
if (n < k) return 0;
long long p = 1, q = 1;
for (long long i = 0; i < k; i++) {
p = p * (n - i) % mod;
q = q * (i + 1) % mod;
}
return p * modinv(q, mod) % mod;
}
long long POW(long long a, long long n) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a;
a = a * a;
n >>= 1;
}
return res;
}
vector<long long> eratos(long long n) {
if (n < 2) return {};
vll v(n - 1);
for (long long i = 0; i < n - 1; i++) {
v[i] = i + 2;
}
ll i = 0;
while (i < n - 1) {
ll p = v[i];
for (ll j = i + 1; j < n - 1; j++) {
if (v[j] % p == 0) {
v.erase(v.begin() + j);
n--;
}
}
i++;
}
v.resize(n - 1);
return v;
}
set<long long> eraset(long long n) {
set<long long> s;
vll v = eratos(n);
for (auto &t : v) {
s.insert(t);
}
return s;
}
vll line(ll x1, ll y1, ll x2, ll y2) {
vector<ll> v(3);
v[0] = y1 - y2;
v[1] = x2 - x1;
v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2);
return v;
}
double dis(vll v, ll x, ll y) {
double s = sqrt(v[0] * v[0] + v[1] * v[1]);
return (double)abs(v[0] * x + v[1] * y + v[2]) / s;
}
ll const mod = 1e9 + 7;
int main() {
ll n;
cin >> n;
auto a = inputv(n);
ll l = 0;
ll res = 0;
for (long long i = 0; i < n; i++) {
if (l == 0) {
if (a[0] == 0) {
for (long long j = 0; j < n; j++) {
if (a[j] != 0) {
a[0] = a[j] / abs(a[j]);
if (j % 1) a[0] *= (-1);
res++;
break;
}
}
}
if (!a[0]) {
a[0] = 1;
res++;
}
l += a[0];
} else if (l < 0) {
if (a[i] < -l + 1) {
res += -l + 1 - a[i];
a[i] = -l + 1;
l = 1;
} else {
l += a[i];
}
} else if (l > 0) {
if (a[i] > -l - 1) {
res += abs(a[i] - (-l - 1));
a[i] = -l - 1;
l = -1;
} else {
l += a[i];
}
}
}
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = (0); i < (n); i++) cin >> a[i];
int ans = 0;
int sum_prev = a[0];
if (sum_prev == 0) {
if (a[1] >= 0)
sum_prev = -1;
else
sum_prev = 1;
ans = 1;
}
for (int i = (1); i < (n); i++) {
int sum_now = sum_prev + a[i];
if (sum_prev * sum_now >= 0) {
ans += abs(sum_now) + 1;
if (sum_prev > 0)
sum_now = -1;
else
sum_now = 1;
}
sum_prev = sum_now;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool isplus(long long a) { return (a > 0) ? true : false; }
int main() {
int n;
cin >> n;
long long a[n];
long long sum = 0;
long long ans = 0;
long long finalans = 0;
bool is_plus = true;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
sum = a[0];
is_plus = isplus(sum);
for (int i = 1; i < n; i++) {
sum += a[i];
if (sum == 0) {
if (is_plus) {
sum--;
ans++;
} else {
sum++;
ans++;
}
}
if (is_plus) {
if (isplus(sum)) {
ans += sum + 1;
sum -= sum + 1;
}
} else {
if (!isplus(sum)) {
ans += -sum + 1;
sum += -sum + 1;
}
}
is_plus = !is_plus;
}
finalans = ans;
ans = 0;
sum = 0;
is_plus = isplus(sum);
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum == 0) {
if (is_plus) {
sum--;
ans++;
} else {
sum++;
ans++;
}
}
if (is_plus) {
if (isplus(sum)) {
ans += sum + 1;
sum -= sum + 1;
}
} else {
if (!isplus(sum)) {
ans += -sum + 1;
sum += -sum + 1;
}
}
is_plus = !is_plus;
}
finalans = min(ans, finalans);
cout << finalans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[100000];
int n;
void solve() {
long long sum0 = a[0];
long long sum1;
long long ans1 = 0;
long long ans2 = 0;
if (a[0] == 0) {
ans1++;
sum0 = 1;
}
for (int i = 1; i < n; i++) {
sum1 = sum0 + a[i];
if (sum1 * sum0 < 0) {
} else if (sum1 * sum0 > 0) {
ans1 += abs(sum1) + 1;
sum1 = -1 * sum0 / abs(sum0);
} else {
ans1++;
sum1 = -1 * sum0 / abs(sum0);
}
sum0 = sum1;
}
if (a[0] == 0) {
ans2++;
sum0 = -1;
}
for (int i = 1; i < n; i++) {
sum1 = sum0 + a[i];
if (sum1 * sum0 < 0) {
} else if (sum1 * sum0 > 0) {
ans2 += abs(sum1) + 1;
sum1 = -1 * sum0 / abs(sum0);
} else {
ans2++;
sum1 = -1 * sum0 / abs(sum0);
}
sum0 = sum1;
}
cout << min(ans1, ans2) << endl;
return;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
@SuppressWarnings("resource")
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
int count = 0,sabun = 0;
int[] imos = new int[a.length];
Arrays.fill(imos, 0);
for (int i = 0; i < a.length; i++) {
imos[i] = a[i];
}
for (int i = 0; i < a.length-1; i++) {
imos[i+1] += imos[i];
}
// System.out.println("init");
// for (int i = 0; i < imos.length; i++) {
// System.out.println(imos[i]);
// }
if (imos[0] == 0) {
for (int i = 0; i < imos.length; i++) {
imos[i] += 1;
}
}
// System.out.println("init:finish");
//
for (int i = 1; i < a.length; i++) {
if (imos[i-1]*imos[i] > 0) {
if (imos[i-1] < 0) {
sabun = -imos[i-1]-1;
} else {
sabun = -imos[i-1]-1;
}
count += Math.abs(sabun);
for (int j = i; j < imos.length; j++) {
imos[j] += sabun;
}
} if (imos[i-1]*imos[i] == 0) {
count += 1;
if (imos[i-1] < 0) {
sabun = 1;
} else {
sabun = -1;
}
for (int j = i; j < imos.length; j++) {
imos[j] += sabun ;
}
}
}
for (int i = 0; i < a.length; i++) {
// System.out.println(imos[i]);
}
System.out.println(count);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import itertools
def sign(num):
if num < 0:
return -1
elif num > 0:
return 1
else:
return 0
N = input()
a_i = list(map(int, input().split()))
# a_sum = [a_i[0]]
# for i, a in enumerate(a_i[1:]):
# i += 1
# a_sum.append(a_sum[-1]+a)
#
# signs = [1, -1]
# changes = 0
#
# for i, sum_i in enumerate(a_sum):
# if sum_i != 0:
# signs[i%2] = sign(sum_i)
# signs[i%2+1] = -sign(sum_i)
# break
signs = [sign(a_i[0]), -sign(a_i[0])]
a_sum = 0
changes = 0
for i, a in enumerate(a_i):
a_sum += a
if sign(a_sum) != signs[i%2]:
changes += abs(a_sum) + 1
a_sum = signs[i%2]
print(changes)
#
# for i, sum_i in enumerate(a_sum):
# if i == 0:
# signs = [sign(sum_i), -sign(sum_i)]
# elif sign(sum_i) != signs[i%2]:
# a_sum[i:] = [num + (abs(sum_i) + 1) * signs[i%2] for num in a_sum[i:]]
# changes += abs(sum_i) + 1
# # print(a_sum)
# print(changes)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
long long N,sum,ans,ans2;
cin>>N;
sum=0;
vector<long long>x(N);
for(int i=0;i<N;i++){
cin>>x[i];
}
for(int i=0;i<N;i++){
sum+=x[i];
if(i%2==0&&sum<=0){
ans+=1-sum;
sum=1;
}
if(i%2==1&&sum>=0){
ans+=1+sum;
sum=-1;
}
}
ans2=ans;
ans=0;
sum=0;
for(int i=0;i<N;i++){
sum+=x[i];
if(i%2==1&&sum<=0){
ans+=1-sum;
sum=1;
}
if(i%2==0&&sum>=0){
ans+=1+sum;
sum=-1;
}
}
cout<<min(sum,sum2)<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import std.stdio, std.algorithm, std.conv, std.array, std.string;
long check(long op, long sum, long[] as)
{
foreach (a; as) {
if (sum < 0) {
if ((sum + a) <= 0) {
op += (1 - (sum + a));
sum = 1;
} else {
sum += a;
}
} else {
if ((sum + a) >= 0) {
op += sum + a + 1;
sum = -1;
} else {
sum += a;
}
}
}
return op;
}
void main()
{
readln;
auto as = readln.chomp.split(" ").map!(to!long).array;
auto op1 = check(0, as[0], as[1..$]);
auto op2 = check(as[0] < 0 ? 1 - as[0] : as[0] + 1, as[0] < 0 ? 1 : -1, as[1..$]);
writeln(op1 < op2 ? op1 : op2);
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void sum(int* N, int* S, int n);
void add(int* S, int n, int del, int k);
int main() {
int *N, *S;
int count_eve = 0, count_odd = 0, n;
int j = 0, k = 0;
cin >> n;
N = new int[n];
S = new int[n];
for (int i = 0; i < n; i++) {
cin >> N[i];
}
sum(N, S, n);
int delta1 = 0, delta2 = 0;
while (j != n) {
if (j % 2 == 0 && S[j] <= 0) {
count_eve += abs(S[j]) + 1;
add(S, n, abs(S[j]) + 1, j);
} else if (j % 2 == 1 && S[j] >= 0) {
count_eve += abs(S[j]) + 1;
add(S, n, -abs(S[j]) - 1, j);
}
j++;
}
sum(N, S, n);
while (k != n) {
if (k % 2 == 0 && S[k] >= 0) {
count_odd += abs(S[k]) + 1;
add(S, n, -abs(S[k]) - 1, k + 1);
} else if (k % 2 == 1 && S[k] <= 0) {
count_odd += abs(S[k]) + 1;
add(S, n, abs(S[k]) + 1, k);
}
k++;
}
cout << min(count_eve, count_odd) << endl;
delete[] N;
delete[] S;
return 0;
}
void sum(int* N, int* S, int n) {
S[0] = N[0];
for (int i = 1; i < n; i++) S[i] = S[i - 1] + N[i];
}
void add(int* S, int n, int del, int k) {
for (int i = k; i < n + 1; i++) S[i] += del;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (auto&& x : a) cin >> x;
long long ans = 1e10, sum = 0, cnt = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
} else {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
}
}
ans = min(ans, cnt), cnt = 0, sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
}
}
ans = min(ans, cnt);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int, input().split()))
sa = np.zeros(2)
count = np.zeros(2)
for i in range(n):
sa += a[i]
if sa[0] <= 0 and i%2 == 0:
count[0] += 1 - sa[0]
sa[0] = 1
elif sa[0] >= 0 and i%2 == 1:
count[0] += 1 + sa[0]
sa[0] = -1
if sa[1] <= 0 and i%2 == 1:
count[1] += 1 - sa[1]
sa[1] = 1
elif sa[1] >= 0 and i%2 == 0:
count[1] += 1 + sa[1]
sa[1] = -1
print(min(count)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = [int(a) for a in input().split()]
ans = 0
s = A[0]
if s == 0:
for i in range(1, n):
if A[i] > 0:
s = -1
ans += 1
break
elif A[i] < 0:
s = 1
ans += 1
break
if s == 0:
ans = n
else:
for i in range(1, n):
if s > 0:
s += A[i]
if s >= 0:
ans += s+1
s = -1
elif s < 0:
s += A[i]
if s <= 0:
ans -= s-1
s = 1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from itertools import accumulate
import copy
N = int(input())
a = list(map(int,input().split()))
a = list(accumulate(a))
ans1 = 0
ans2 = 0
b = copy.copy(a)
for i in range(N):
if i % 2 == 0:
if a[i] > 0:
pass
else:
ans1 += abs(a[i]) + 1
a[i+1:] = list(map(lambda n:n+abs(a[i])+1, a[i+1:]))
else:
if a[i] < 0:
pass
else:
ans1 += abs(a[i]) + 1
a[i+1:] = list(map(lambda n:n-(abs(a[i])+1), a[i+1:]))
for i in range(N):
if i % 2 == 1:
if b[i] > 0:
pass
else:
ans2 += abs(b[i]) + 1
b[i+1:] = list(map(lambda n:n+abs(b[i])+1, b[i+1:]))
else:
if b[i] < 0:
pass
else:
ans2 += abs(b[i]) + 1
b[i+1:] = list(map(lambda n:n-(abs(b[i])+1), b[i+1:]))
print(min(ans1,ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int b = 0, c = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i & 1) {
if (sum >= 0) {
b += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
b += -sum + 1;
sum = 1;
}
}
}
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i & 1) {
if (sum <= 0) {
c += -sum + 1;
sum = 1;
}
} else {
if (sum >= 0) {
c += sum + 1;
sum = -1;
}
}
}
cout << min(b, c) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
a = gets.split.map(&:to_i)
s = 0
c = 0
a.each do |i|
sign = s > 0
s += i
if s == 0
c += 1
s = sign ? -1 : 1
next
end
if sign
if s > 0
c += s + 1
s = -1
end
else
if s < 0
c += -s + 1
s = 1
end
end
end
p c
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using LL = long long;
using G = vector<vector<int>>;
int di[] = {0, -1, 0, 1};
int dj[] = {1, 0, -1, 0};
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<int> A(n);
for (int i = (0); i < (n); i++) cin >> A[i];
LL ans = 0;
if (A[0] == 0) {
int ans1 = 0;
int b = -1;
for (int i = (1); i < (n); i++) {
int a = A[i];
if (b * (b + a) >= 0) {
if (b + a < 0) {
ans1 += 1 - (b + a);
a = 1 - b;
} else {
ans1 += (b + a) + 1;
a = -b - 1;
}
}
b = b + a;
}
int ans2 = 0;
b = 1;
for (int i = (1); i < (n); i++) {
int a = A[i];
if (b * (b + a) >= 0) {
if (b + a < 0) {
ans2 += 1 - (b + a);
a = 1 - b;
} else {
ans2 += (b + a) + 1;
a = -b - 1;
}
}
b = b + a;
}
ans = min(ans1, ans2);
} else {
int b = A[0];
for (int i = (1); i < (n); i++) {
int a = A[i];
if (b * (b + a) >= 0) {
if (b + a < 0) {
ans += 1 - (b + a);
a = 1 - b;
} else {
ans += (b + a) + 1;
a = -b - 1;
}
}
b = b + a;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ans = 0
cnt = [a[0]]
for i in range(1,n):
cnt.append(cnt[-1]+a[i])
cnt_o = cnt[::2]
cnt_e = cnt[1::2]
o = sum(cnt_o)
e = sum(cnt_e)
ans = 0
c = 0
if o >= e:
for i in range(n):
cnt[i] += c
if (i+1) % 2 != 0:
if cnt[i] > 0:
pass
else:
ans += abs(cnt[i])+1
c += abs(cnt[i])+1
else:
if cnt[i] < 0:
pass
else:
ans += cnt[i]+1
c -= a[i]+1
else:
for i in range(n):
cnt[i] += c
if (i+1) % 2 != 0:
if cnt[i] < 0:
pass
else:
ans += cnt[i]+1
c -= cnt[i]+1
else:
if cnt[i] > 0:
pass
else:
ans += abs(cnt[i])+1
c += abs(a[i])+1
if sum(cnt) == 0:
print(ans+1)
else:
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
_arr = list(map(int, input().split()))
ans = []
for first in (_arr[0], -1 * _arr[1] + 1, -1 * _arr[1] - 1):
arr = _arr[:]
c = 0
prev = 0
for i in range(n):
t = prev + arr[i]
if i == 0:
c += abs(arr[i] - first)
arr[i] = first
elif prev > 0 and t >= 0:
diff = t + 1
c += diff
arr[i] -= diff
elif prev < 0 and t <= 0:
diff = -1 * t + 1
c += diff
arr[i] += diff
prev += arr[i]
ans.append(c)
print(min(ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1LL << 60;
int main() {
int n, cnt1 = 0, cnt2 = 0;
long long a, b, sum1 = 0, sum2 = 0;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a;
b = a;
if (i % 2 == 0) {
if (sum1 + a <= 0) {
cnt1 += 1 - sum1 - a;
sum1 = 1;
} else {
sum1 += a;
}
}
if (i % 2 == 1) {
if (sum1 + a >= 0) {
cnt1 += sum1 + a + 1;
sum1 = -1;
} else {
sum1 += a;
}
}
if (i % 2 == 1) {
if (sum2 + b <= 0) {
cnt2 += 1 - sum2 - b;
sum2 = 1;
} else {
sum2 += b;
}
}
if (i % 2 == 0) {
if (sum2 + b >= 0) {
cnt2 += sum2 + b + 1;
sum2 = -1;
} else {
sum2 += b;
}
}
}
cout << min(cnt1, cnt2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | local n = io.read("*n")
local a = {}
for i = 1, n do a[i] = io.read("*n") end
local ret = 1000000007
for flag = 1, 2 do
flag = flag * 2 - 3
local cur = 0
local cnt = 0
for i = 1, n do
cur = cur + a[i]
if flag < 0 then
if 0 <= cur then
cnt = cnt + cur + 1
cur = -1
end
else
if cur <= 0 then
cnt = cnt - cur + 1
cur = 1
end
end
flag = flag * -1
end
ret = math.min(ret, cnt)
end
print(ret)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline T bigmod(T p, T e, T M) {
long long ret = 1;
for (; e > 0; e >>= 1) {
if (e & 1) ret = (ret * p) % M;
p = (p * p) % M;
}
return (T)ret;
}
template <class T>
inline T gcd(T a, T b) {
if (b == 0) return a;
return gcd(b, a % b);
}
template <class T>
inline T lcm(T a, T b) {
return (a / gcd(a, b)) * b;
}
template <class T>
inline T modinverse(T a, T M) {
return bigmod(a, M - 2, M);
}
template <class T>
inline T bpow(T p, T e) {
long long ret = 1;
for (; e > 0; e >>= 1) {
if (e & 1) ret = (ret * p);
p = (p * p);
}
return (T)ret;
}
struct data {
int ele1, ele2, ele3;
data() {}
data(int a, int b, int c) { ele1 = a, ele2 = b, ele3 = c; }
bool friend operator<(data a, data b) { return a.ele1 > b.ele1; }
};
int n, m, k;
long long N, M, K;
long long a[100005];
int main() {
int t, tc = 1;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
}
long long sum = 0;
int pre = 0;
if (a[1] < 0) pre = 1;
for (int i = 2; i <= n; i++) {
a[i] = a[i] + a[i - 1];
if (a[i] < 0) {
if (pre == 1) {
sum += (1 - a[i]);
a[i] = -1;
pre = 0;
}
} else {
if (pre == 0) {
sum += (a[i] - 1);
a[i] = 1;
pre = 1;
}
}
pre = 1 - pre;
}
printf("%lld", sum);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int zerocount(vector<int>& a, int i, int n) {
if (a.at(i) != 0) {
return 0;
}
if (i == n - 1) {
a.at(i) = 1;
return 1;
}
int count = 0;
count += zerocount(a, i + 1, n);
if (a.at(i + 1) > 0) {
a.at(i) = -1;
} else {
a.at(i) = 1;
}
count++;
return count;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (auto& x : a) {
cin >> x;
}
bool hugou;
int sum = 0;
int count = 0;
if (a.at(0) < 0) {
hugou = false;
sum += a.at(0);
}
if (a.at(0) > 0) {
hugou = true;
sum += a.at(0);
}
if (a.at(0) == 0) {
count += zerocount(a, 0, n);
}
for (int i = 0; i < n - 1; i++) {
int i_sum;
i_sum = sum + a.at(i + 1);
if (i_sum >= 0) {
if (hugou) {
sum = -1;
count += (i_sum + 1);
hugou = false;
} else {
hugou = true;
sum = i_sum;
}
}
if (i_sum <= 0) {
if (!hugou) {
sum = 1;
count += (-1) * (i_sum - 1);
hugou = true;
} else {
hugou = false;
sum = i_sum;
}
}
}
if (sum == 0) count++;
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[100010];
int ans = 0;
int cnt = 0;
int flag = 1;
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] > 0)
flag = 1;
else if (a[0] < 0)
flag = -1;
cnt = a[0];
for (int i = 1; i < n; i++) {
cnt += a[i];
if (cnt * flag >= 0) {
ans += abs(cnt) + 1;
if (flag == -1) {
cnt = 1;
} else {
cnt = -1;
}
}
if (flag == -1) {
flag = 1;
} else {
flag = -1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> v(n);
for (__typeof(n) i = (0) - ((0) > (n)); i != (n) - ((0) > (n));
i += 1 - 2 * ((0) > (n)))
cin >> v[i];
long long res1 = 0, res2 = 0, res3, res4;
long long som = v[0];
if (v[0] > 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = v[0] + 1;
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
} else if (v[0] < 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = 1 - v[0];
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
} else {
res1 = 1;
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
res2 = 1;
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
cout << min(res1, res2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sign(int a) {
if (a > 0)
return 1;
else if (a < 0)
return -1;
else
return 0;
}
int main(void) {
int n;
cin >> n;
int sum = 0, s = 1;
int num = 0;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n; i++) {
sum += a[i];
if (i != 0 && (sign(s) == sign(sum) || sum == 0)) {
num += abs(sum) + 1;
sum = sign(s) * -1;
s *= -1;
} else if (i == 0 && a[i] == 0) {
num++;
sum++;
s = 1;
} else {
s = sign(sum);
}
}
int m = num;
sum = 0;
num = 0;
num += abs(a[0]) + 1;
if (a[0] >= 0)
sum = -1;
else
sum = 1;
s = sum;
for (int i = 1; i < n; i++) {
sum += a[i];
if (i != 0 && (sign(s) == sign(sum) || sum == 0)) {
num += abs(sum) + 1;
sum = sign(s) * -1;
s *= -1;
} else {
s = sign(sum);
}
}
m = min(num, m);
cout << m << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int func(int N, int *a) {
int ocost = 0;
int ecost = 0;
int temp = 0;
for (int i = 0; i < N; i++) {
temp += a[i];
if (i % 2 == 0) {
if (temp <= 0) {
ocost += 1 - temp;
temp = 1;
}
} else {
if (temp >= 0) {
ocost += 1 + temp;
temp = -1;
}
}
}
temp = 0;
for (int i = 0; i < N; i++) {
temp += a[i];
if (i % 2 == 0) {
if (temp >= 0) {
ecost += 1 + temp;
temp = -1;
}
} else {
if (temp <= 0) {
ecost += 1 - temp;
temp = 1;
}
}
}
return min(ocost, ecost);
}
int main() {
int N;
cin >> N;
int a[N];
for (int i = 0; i < N; i++) {
cin >> a[i];
}
int ans = func(N, a);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
short n;
scanf("%sd", &n);
short a[n];
for (int i = 0; i < n; i++) scanf(" %sd", &a[i]);
int S = a[0];
int j = 0;
for (int i = 1; i < n; i++) {
if (S * (S + a[i]) < 0) {
S += a[i];
} else {
if (S < 0) {
j += 1 - S - a[i];
S = 1;
} else {
j += S + a[i] + 1;
S = -1;
}
}
}
printf("%d\n", j);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from copy import copy
n = int(input())
a = [int(x) for x in input().split()]
ans1=[(-1)**i for i in range(n)]
b=copy(a)
res_b=0
c=copy(a)
res_c=0
for i in range(n):
if ans1[i]*sum(b[:i+1])>0:
c[i]=-1*ans1[i]-sum(c[:i])
res_c+=abs(c[i]-a[i])
else:
b[i]=ans1[i]-sum(b[:i])
res_b+=abs(b[i]-a[i])
print(min(res_b,res_c)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
import sys
sum=0
cnt=0
# 奇数+
for i in range(n):
z+=a[i]
if i%2==0:
if z<0:
sum=z
else:
cnt+=(z+1)
sum=-1
else:
if sum<=0:
cnt+=(1-sum)
sum=1
cnt_sbst=cnt
# 奇数-
for i in range(n):
z+=a[i]
if i%2==1:
if sum>=0:
cnt+=(z+1)
sum=-1
else:
if sum<=0:
cnt+=(1-z)
sum=1
cnt_plus=cnt
ans=min(cnt_plus,cnt_sbst)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n, buf, max, ans;
int flg, flg1;
ans = 0;
max = 0;
buf = 0;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n; i++) {
if (i == 0 && a[i] == 0) {
if (a[1] < 0) {
a[i] = 1;
ans = 1;
} else if (a[1] > 0) {
a[i] = -1;
ans = 1;
}
}
buf += a[i];
if (i == 0) {
if (a[i] < 0) flg = -1;
if (a[i] > 0) flg = 1;
} else {
if (buf < 0) flg = -1;
if (buf > 0) flg = 1;
}
if (i != 0) {
if (flg == flg1) {
if (buf > 0) {
ans += ((buf) > 0 ? (buf) : (buf * -1)) + 1;
buf = -1;
flg = -1;
} else if (buf < 0) {
ans += ((buf) > 0 ? (buf) : (buf * -1)) + 1;
buf = 1;
flg = 1;
} else if (buf == 0) {
ans += 1;
if (flg1 == 1) flg = -1;
if (flg1 == -1) flg = 1;
}
}
}
flg1 = flg;
}
max = ans;
ans = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
if (a[0] > 0) {
ans = ((buf) > 0 ? (buf) : (buf * -1)) + 1;
buf = -1;
flg = -1;
} else if (a[0] < 0) {
ans = ((buf) > 0 ? (buf) : (buf * -1)) + 1;
buf = 1;
flg = 1;
}
} else {
buf += a[i];
if (i == 0) {
if (a[i] < 0) flg = -1;
if (a[i] > 0) flg = 1;
} else {
if (buf < 0) flg = -1;
if (buf > 0) flg = 1;
}
}
if (i != 0) {
if (flg == flg1) {
if (buf > 0) {
ans += ((buf) > 0 ? (buf) : (buf * -1)) + 1;
buf = -1;
flg = -1;
} else if (buf < 0) {
ans += ((buf) > 0 ? (buf) : (buf * -1)) + 1;
buf = 1;
flg = 1;
} else if (buf == 0) {
ans += 1;
if (flg1 == 1) flg = -1;
if (flg1 == -1) flg = 1;
}
}
}
flg1 = flg;
}
if (ans < max) max = ans;
cout << max << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
unsigned long op = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] == 0) {
for (int i = 1; i < n; i++) {
if (a[i] == 0) {
continue;
} else if (a[i] > 0) {
if (i % 2 == 0) {
a[0] = 1;
} else {
a[0] = -1;
}
op = 1;
break;
} else {
if (i % 2 == 0) {
a[0] = -1;
} else {
a[0] = 1;
}
op = 1;
break;
}
}
if (op == 0) {
a[0] = 1;
op = 1;
}
}
long sum = a[0];
for (int i = 1; i < n; i++) {
if (sum > 0) {
if (sum + a[i] >= 0) {
op += sum + a[i] + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if (sum + a[i] <= 0) {
op += 1 - sum - a[i];
sum = 1;
} else {
sum += a[i];
}
}
}
cout << op << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def first_positive(n,a):
count = 0
sum = a[0]
#正ならTrue
flag = True
if a[0] < 0:
sum = 1
count += abs(1 - a[0])
for i in range(1,n):
if sum + a[i] < 0 and flag == True:
sum += a[i]
flag = False
continue
elif sum + a[i] < 0 and flag == False:
flag = True
count += abs(1 - sum - a[i])
sum = 1
elif sum + a[i] >= 0 and flag == True:
flag = False
count += abs(-1 - sum - a[i])
sum = -1
elif sum + a[i] >= 0 and flag == False:
sum += a[i]
flag = True
continue
return count
def first_negative(n,a):
count = 0
sum = a[0]
#正ならTrue
flag = True
if a[0] > 0:
sum = -1
count += abs(-1 - a[0])
for i in range(1,n):
if sum + a[i] < 0 and flag == True:
sum += a[i]
flag = False
continue
elif sum + a[i] < 0 and flag == False:
flag = True
count += abs(1 - sum - a[i])
sum = 1
elif sum + a[i] >= 0 and flag == True:
flag = False
count += abs(-1 - sum - a[i])
sum = -1
elif sum + a[i] >= 0 and flag == False:
sum += a[i]
flag = True
continue
return count
if __name__ == '__main__':
n = int(input())
a = [int(i) for i in input().split()]
p = first_positive(n,a)
n = first_negative(n,a)
if p < n:
print(p)
else:
print(n)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
int count = 0;
cin >> N;
int a[N];
for (int i = 0; i < N; i++) {
cin >> a[i];
}
while (true) {
int num = 0;
int sum = 0;
for (int i = 0; i < N; i++) {
num += a[i];
}
for (int i = 0; i < N - 1; i++) {
sum += a[i];
}
if (num <= 0) {
a[0] += 1;
count++;
}
if ((sum >= 0) && (num >= 0)) {
a[N] -= 1;
count++;
} else if ((sum <= 0) && (num <= 0)) {
a[N] += 1;
count++;
}
if (((sum > 0) && (num < 0)) || ((sum < 0) && (num > 0))) break;
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<cassert>
using namespace std;
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
typedef long double ld;
const ll mod = 1000000007;
const ll INF = mod * mod;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
typedef complex<ld> Point;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<int, int> P;
typedef pair<ld, ld> LDP;
typedef pair<ll, ll> LP;
typedef vector<int> vec;
typedef vector<string> svec;
#define fr first
#define sc second
#define all(c) c.begin(),c.end()
#define pb push_back
//#define int long long
int n; ll a[100100];
ll hoge(ll x) {
ll sum = x;
ll res = 0;
rep(i, n - 1) {
ll y = a[i + 1];
if(sum > 0) {
if(sum + y < 0) sum += y;
else {
res += sum + y - (-1);
sum = -1LL;
}
} else {
if(sum + a > 0) sum += y;
else {
res += 1LL - (sum + y);
sum = 1LL;
}
}
}
return res;
}
void solve() {
cin >> n;
rep(i, n) {
cin >> a[i];
}
ll c = max(a[0], 1LL), d = min(a[0], -1LL);
ll ans = min(hoge(c) + (c == 1LL ? abs(a[0] - 1) : 0), hoge(d) + (d == -1LL ? abs(a[0] + 1) : 0));
cout << ans << endl;
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
//cout << fixed << setprecision(10);
//init();
solve();
//cout << "finish" << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static string InputPattern = "InputX";
static List<string> GetInputList()
{
var WillReturn = new List<string>();
if (InputPattern == "Input1") {
WillReturn.Add("4");
WillReturn.Add("1 -3 1 0");
//4
}
else if (InputPattern == "Input2") {
WillReturn.Add("5");
WillReturn.Add("3 -6 4 -5 7");
//0
}
else if (InputPattern == "Input3") {
WillReturn.Add("6");
WillReturn.Add("-1 4 3 2 -5 4");
//8
}
else {
string wkStr;
while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
}
return WillReturn;
}
static void Main()
{
List<string> InputList = GetInputList();
int[] AArr = InputList[1].Split(' ').Select(X => int.Parse(X)).ToArray();
if (AArr[0] == 0) {
AArr[0] = 1;
long Cost1 = Solve(AArr);
AArr[0] = -1;
long Cost2 = Solve(AArr);
Console.WriteLine(Math.Min(Cost1, Cost2));
}
else {
Console.WriteLine(Solve(AArr));
}
}
static long Solve(int[] pArr)
{
long Cost = 0;
int RunSum = pArr[0];
for (int I = 1; I <= pArr.GetUpperBound(0); I++) {
if (RunSum < 0) {
RunSum += pArr[I];
if (RunSum > 0) continue;
Cost += Math.Abs(RunSum) + 1;
RunSum = 1;
}
else if (RunSum > 0) {
RunSum += pArr[I];
if (RunSum < 0) continue;
Cost += Math.Abs(RunSum) + 1;
RunSum = -1;
}
}
return Cost;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const int INF = INT_MAX;
static const int MIN = INT_MIN;
static const long long L_INF = LLONG_MAX;
static const int MOD = 1000000000 + 7;
static const int SIZE = 100005;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; ++i) cin >> a[i];
long long even_sum = 0, odd_sum = 0;
for (int i = 0; i < n; ++i) {
if (i % 2)
odd_sum += a[i];
else
even_sum += a[i];
}
int plus = 0;
if (even_sum < odd_sum) plus = 1;
long long sum = 0;
long long res = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (i % 2 == plus) {
if (sum <= 0) {
res += -sum + 1;
sum = 1;
}
} else {
if (sum >= 0) {
res += sum + 1;
sum = -1;
}
}
}
cout << res << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cnt=0
for i in range(1,n):
# 条件満たすまでループ
for _ in range(3):
print(a)
now_tmp = sum(a[:i])
next_tmp = sum(a[:i+1])
print(i, now_tmp, next_tmp)
# 符号が逆転していればOK かつ 現在までの総和が0でない
# 異なる符号を掛けるとマイナスになる
if now_tmp * next_tmp <0 and now_tmp !=0:
break
else:
# 現在の合計がマイナスの場合
if now_tmp < 0:
a[i] += next_tmp+1
cnt +=abs(next_tmp+1)
# 現在の合計がプラスの場合
elif now_tmp > 0 :
a[i] += -next_tmp-1
cnt +=abs(next_tmp+1)
# 現在の合計が0の場合
elif now_tmp == 0 :
# 1個前がプラスの場合、
if sum(a[:i-1]) > 0:
a[i] += -next_tmp+1
cnt +=abs(next_tmp+1)
# 1個前がマイナスの場合
else:
a[i] += next_tmp+1
cnt +=abs(next_tmp+1)
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
ans1 = 0
s = A[0]
for i in range(1, N):
s += A[i]
if i % 2 != 0:
if s <= 0:
ans1 += 1-s
s = 1
else:
if s >= 0:
ans1 -= -1-s
s = -1
ans2 = 0
s = A[0]
for i in range(1, N):
s += A[i]
if i % 2 == 0:
if s <= 0:
ans2 += 1-s
s = 1
else:
if s >= 0:
ans2 -= -1-s
s = -1
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const long long LINF = 1e18;
const long long MOD = 1e9 + 7;
double EPS = 1e-8;
const double PI = acos(-1);
int dx[] = {-1, 1, 0, 0};
int dy[] = {0, 0, -1, 1};
int main() {
int n;
cin >> n;
long long a[int(1e5) + 5];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long cnt = 0;
long long sum = 0;
sum += a[0];
for (int j = 1; j < n; j++) {
if (sum > 0 && sum + a[j] < 0) {
sum += a[j];
continue;
}
if (sum < 0 && sum + a[j] > 0) {
sum += a[j];
continue;
}
if (sum < 0 && sum + a[j] <= 0) {
long long dt = 1 - (sum + a[j]);
cnt += dt;
a[j] += dt;
sum += a[j];
continue;
}
if (sum > 0 && sum + a[j] >= 0) {
long long dt = (sum + a[j]) - (-1);
cnt += dt;
a[j] -= dt;
sum += a[j];
continue;
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long mod = 1000000007;
long long a[10010];
int main() {
int N;
cin >> N;
for (int i = 0; i < N; i++) {
cin >> a[i];
}
long long sum = 0, an = 0;
sum = a[0];
for (int i = 1; i < N; i++) {
if (sum > 0) {
if (sum + a[i] >= 0) {
an += abs(a[i] - (-1 - sum));
sum = -1;
} else {
sum += a[i];
}
} else {
if (sum + a[i] <= 0) {
an += abs(a[i] - (1 - sum));
sum = 1;
} else {
sum += a[i];
}
}
}
sum = -a[0];
long long an2 = abs(2 * a[0]);
for (int i = 1; i < N; i++) {
if (sum > 0) {
if (sum + a[i] >= 0) {
an2 += abs(a[i] - (-1 - sum));
sum = -1;
} else {
sum += a[i];
}
} else {
if (sum + a[i] <= 0) {
an2 += abs(a[i] - (1 - sum));
sum = 1;
} else {
sum += a[i];
}
}
}
cout << min(an, an2);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long ans = 0;
if (sum == 0) {
if (sum + a[1] < 0)
sum = 1;
else
sum = -1;
ans++;
}
for (int i = 1; i < n; i++) {
long long tmp = sum + a[i];
if (sum > 0 && tmp > 0) {
ans += tmp + 1;
sum = -1;
} else if (sum < 0 && tmp < 0) {
ans += -tmp + 1;
sum = 1;
} else if (tmp == 0) {
ans++;
if (sum < 0)
sum = 1;
else
sum = -1;
} else
sum = tmp;
}
long long sum2;
if (a[0] >= 0)
sum2 = -1;
else
sum2 = 1;
long long ans2 = a[0] + 1;
for (int i = 1; i < n; i++) {
long long tmp = sum2 + a[i];
if (sum2 > 0 && tmp > 0) {
ans2 += tmp + 1;
sum2 = -1;
} else if (sum2 < 0 && tmp < 0) {
ans2 += -tmp + 1;
sum2 = 1;
} else if (tmp == 0) {
ans2++;
if (sum2 < 0)
sum2 = 1;
else
sum2 = -1;
} else
sum2 = tmp;
}
cout << min(ans2, ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mod = 1000000007;
const int INF = 1001001001;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (long long(i) = 0; (i) < (n); (i)++) cin >> a[i];
long long s = a[0];
long long ans = 0;
for (int i = 1; i < n; ++i) {
long long cur = s + a[i];
if (s > 0) {
if (cur >= 0) {
ans += abs(cur) + 1;
s = -1;
} else {
s += a[i];
}
} else {
if (cur <= 0) {
ans += abs(cur) + 1;
s = 1;
} else {
s += a[i];
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, a[100010];
int calc(int s) {
int sum = 0, res = 0;
for (int i = 0; i < n; ++i, s *= -1) {
sum += a[i];
if (sum * s > 0) continue;
res += abs(sum - s);
sum += s * abs(sum - s);
}
return res;
}
int main() {
cin >> n;
for (int i = 0; i < (n); ++i) cin >> a[i];
cout << min(calc(1), calc(-1)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def ii():return int(input())
def iim():return map(int,input().split())
def iil():return list(map(int,input().split()))
def ism():return map(str,input().split())
def isl():return list(map(str,input().split()))
import numpy
n = ii()
A = iil()
cum = numpy.cumsum(A)
#print(cum)
#print(type(cum))
now = -1*cum[0]
ans = 0
ope = 0
for i,item in enumerate(cum):
num = item+ope
if num == 0:
ans += 1
ope += 1 if now < 0 else -1
num += 1 if now < 0 else -1
elif num*now > 0:
ans += abs(num)+1
ope -= (abs(num)+1)*num//abs(num)
num -= (abs(num)+1)*num//abs(num)
# print(ans,ope,num)
now = num
now = -1*cum[0]
ans2 = 0
ope = 0
for i,item in enumerate(cum):
num = item+ope
if num == 0:
ans2 += 1
ope += 1 if now < 0 else -1
num += 1 if now < 0 else -1
elif num*now > 0:
ans2 += abs(num)+1
ope -= (abs(num)+1)*num//abs(num)
num -= (abs(num)+1)*num//abs(num)
# print(ans,ope,num)
now = num
print(min(ans,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long ans = 0;
int sum = a[0];
if (sum == 0) {
for (int i = 1; i < n; i++) {
if (a[i] > 0)
sum = i % 2 ? -1 : 1;
else if (a[i] < 0)
sum = i % 2 ? 1 : -1;
}
if (sum == 0) sum = 1;
ans++;
}
for (int i = 1; i < n; i++) {
int sign = sum < 0 ? 1 : -1;
sum += a[i];
if (sign * sum <= 0) {
ans += -1 * sign * sum + 1;
sum = sign;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#define MOD 1000000007
# define INF (1 < <29)
#define MODSET(d) if ((d) >= MOD) d %= MOD;
#define MODNEGSET(d) if ((d) < 0) d = ((d % MOD) + MOD) % MOD;
#define MODADDSET(d) if ((d) >= MOD) d -= MOD;
#define MODADDWHILESET(d) while ((d) >= MOD) d -= MOD;
//defines
#define FILE_IO freopen("in.txt","r",stdin); freopen("out.txt","w",stdout);
#define sc1(a,type) type a; cin>>a;
#define sc2(a,b,type) type a,b; cin>>a>>b;
#define sc3(a, b, c,type) type a,b,c; cin>>a>>b>>c;
#define sc4(a, b, c, d,type) type a ,b,c,d; cin>>a>>b>>c>>d;
#define nl cout<<"\n";
#define foreach(v, c) for(__typeof( (c).begin()) v = (c).begin(); v != (c).end(); ++v)
#define revforeach(v, c) for(__typeof( (c).rbegin()) v = (c).rbegin(); v != (c).rend(); ++v)
#define fastio ios_base::sync_with_stdio(0);cin.tie(0);
#define re(i,b) for(int i=0;i<int(b);i++)
#define re1(i,b) for(int i=1;i<=int(b);i++)
#define all(c) c.begin(), c.end()
#define rall(c) c.rbegin(),c.rend()
#define mpresent(container, element) (container.find(element) != container.end()) //for map,set..etc (returns true/false value)
#define vpresent(container, element) (find(all(container),element) != container.end()) //for vectors,strings,list,deque (returns true/false value)
#define eb emplace_back
#define mp make_pair
#define fi first
#define se second
#define pb push_back
#define pf push_front
#define ins insert
#define F first
#define S second
#define clr clear()
#define sz(x) ((int)x.size())
#define dt distance
#define test(t) int t; cin>>t; while(t--)
#define csb(i) __builtin_popcount(i)
#define csbll(i) __builtin_popcountll(i)
#define clz(x) __builtin_clz(x)
#define clzl(x) __builtin_clzl(x)
#define cp(x) __builtin_parity(x)
#define adv(v,num) advance(v,num)//used for lists and other structures that use iterators,when you can't access elements randomly ( iterator moves num positions)
#define mod 1000000007
#define MAX_ARR 1000000
#define v2d(rowsize,colsize,type,name) vector<vector<type>> name(rowsize,vector<type>(colsize));
#define digits_in(i) (ll)log10(i)+1 // gives no of digits in a number
#define sqr(x) (x)*(x)
//does not apply for i==0 , add an excetion contition for n==0 ( cust return count 1 for that inseted of using this function)
//typedef
typedef string str;
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<str> vs;
typedef vector<char> vc;
typedef pair<int,int> pii;
typedef pair<str,int> psi;
typedef pair<int,str> pis;
typedef vector<pii> vii;
typedef map<int,int> mii;
typedef map<ll,ll> mll;
typedef map<str,int> msi;
typedef map<char,int> mci;
typedef map<int,str> mis;
typedef unordered_map<int,int> umii;
typedef unordered_map<str,int> umsi;
typedef unordered_map<int,str> umis;
typedef unordered_map<str,str> umss;
typedef unordered_map<char,int> umci;
typedef set<str> ss;
typedef set<int> si;
typedef unordered_set<str> uss;
typedef unordered_set<int> usi;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> pbds;
// #ifndef ONLINE_JUDGE
// #include "debug.h"
// #else
// #define debug(args...)
// #endif
int main(){fastio
// #ifndef ONLINE_JUDGE
// FILE_IO
// #endif
vll v;
test(t){
int temp;cin>>temp;
v.pb(temp);
}
ll ct=0;
vll v1(all(v));
re(i,sz(v)-1){
// debug(v[i] ,v[i]+v[i+1]);
if( (v[i]<0 && v[i]+v[i+1]<0) || (v[i]>0 && v[i]+v[i+1]>0 )|| v[i]+v[i+1]==0 ){
if(v[i]+v[i+1]==0) ct+=1;
else ct+=llabs(v[i]+v[i+1])+1;
v[i+1]= v[i]>0?-1:1;
}
else{
v[i+1]+=v[i];
}
// debug(ct);
}
re(i,sz(v))v1[i]*=-1;
ll ct1=0;
re(i,sz(v)-1){
// debug(v1[i] ,v1[i]+v1[i+1]);
if( (v1[i]<0 && v1[i]+v1[i+1]<0) || (v1[i]>0 && v1[i]+v1[i+1]>0 )|| v1[i]+v1[i+1]==0 ){
if(v1[i]+v1[i+1]==0) ct1+=1;
else ct1+=llabs(v1[i]+v1[i+1])+1;
v1[i+1]= v1[i]>0?-1:1;
}
else{
v1[i+1]+=v1[i];
}
// debug(ct1);
}
cout<<min(ct,ct1);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#define INF (1<<31) - 1 //INT_MAX/2
#define MOD 1000000007
#define PI acos(-1)
using ll = long long;
using ull = unsigned long long;
int main(int argc, char *argv[])
{
int n;
std::cin >> n;
std::vector<int> a(n);
for (int i = 0; i < n; i++) {
std::cin >> a[i];
}
ll sum1 = 0;
ll ans1 = 0;
for (int i = 0; i < N; i++) {
sum1 += a[i];
if (i%2 == 0) {
if (sum <= 0) {
ans1 += -sum1 + 1;
sum1 = 1;
}
} else {
if (sum1 >= 0) {
ans1 += sum1 + 1;
sum1 = -1;
}
}
}
ll sum2 = 0;
ll ans2 = 0;
for (int i = 0; i < N; i++) {
sum2 += a[i];
if (i%2 == 0) {
if (sum >= 0) {
ans2 += sum2 + 1;
sum2 = -1;
}
} else {
if (sum2 <= 0) {
ans2 += -sum2 + 1;
sum2 = 1;
}
}
}
std::cout << std::min(ans1, ans2) << std::endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, a[100000], sum[2][100000], c[2];
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] == 0) {
sum[0][0] = 1;
sum[1][0] = -1;
c[0] = c[1] = 1;
} else {
sum[0][0] = sum[1][0] = a[0];
}
for (int i = 1; i < n; i++) {
for (int j = 0; j < 2; j++) {
if (sum[j][i - 1] > 0) {
if (sum[j][i - 1] + a[i] >= 0) {
c[j] += abs(sum[j][i - 1] + a[i]) + 1;
sum[j][i] = -1;
} else
sum[j][i] = sum[j][i - 1] + a[i];
} else {
if (sum[j][i - 1] + a[i] > 0)
sum[j][i] = sum[j][i - 1] + a[i];
else {
c[j] += abs(sum[j][i - 1] + a[i]) + 1;
sum[j][i] = 1;
}
}
}
}
cout << min(c[0], c[1]) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
import sys
write = sys.stdout.write
n = int(input())
A = list(map(int,input().split())) # +, -, +, ...
B = copy.deepcopy(A) #-, +, -, ...
sumA = []
sumB = []
cntA = 0
cntB = 0
if A[0] == 0:
A[0] += 1
B[0] -= 1
elif A[0] > 0:
cntB += (B[0]+1)
B[0] = -1
else:
cntA += abs(A[0])+1
A[0] = 1
sumA.append(A[0])
sumB.append(B[0])
#write("cntA : " + str(cntA) + " cntB : " + str(cntB) + "\n")
for i in range(1, n):
tempA = sumA[i-1] + A[i]
tempB = sumB[i-1] + B[i]
if i%2 == 1: #Aは-, Bは+
if tempA == 0:
#A[i] -= 1
cntA += 1
sumA.append(-1)
elif tempA > 0:
#A[i] -= abs(tempA) + 1
cntA += (abs(tempA) + 1)
sumA.append(-1)
else:
sumA.append(tempA)
if tempB == 0:
#B[i] += 1
cntB += 1
sumB.append(1)
elif tempB < 0:
#B[i] += abs(tempB) + 1
cntB += (abs(tempB) + 1)
sumB.append(1)
else:
sumB.append(tempB)
else: #Aは+, Bは-
if tempA == 0:
cntA += 1
sumA.append(1)
elif tempA < 0:
cntA += (abs(tempA) + 1)
sumA.append(1)
else:
sumA.append(tempA)
if tempB == 0:
#B[i] -= 1
cntB += 1
sumB.append(-1)
elif tempB > 0:
#B[i] -= abs(tempB) + 1
cntB += (abs(tempB) + 1)
sumB.append(-1)
else:
sumB.append(tempB)
#write("cntA : " + str(cntA) + " cntB : " + str(cntB) + "\n")
print(str(min(cntA, cntB))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int,input().split()))
sum_A = 0
ans = 0
current_zero = 0 #先頭からの0の連続数
if(n == 1):
if(A[0] != 0): ans = 0
else: ans += 1
else:
for i in range(n):
if(i == 0):
if(A[i] != 0): sum_A += A[i]
else:
if(A[i+1]>0): sum_A,ans = -1,1 #A[0]->-1
elif(A[i+1]<0): sum_A,ans = 1,1 #A[0]->1
else: current_zero += 1
elif(sum_A == 0):
current_zero += 1
if(i == n-1):
ans += 2*(current_zero-1)+1
else:
if(A[i+1]>0): sum_A,ans = -1,2*(current_zero-1)+1 #A[i]->-1
elif(A[i+1]<0): sum_A,ans = 1,2*(current_zero-1)+1 #A[i]->1
else:
if(sum_A > 0): judge = -1 #次の和は 負
else: judge = 1 #次の和は 正
sum_A += A[i]
if(judge == 1):
if(sum_A > 0): continue
else:
ans += abs(1-sum_A)
sum_A = 1
else: #judge == -1
if(sum_A < 0): continue
else:
ans += abs(sum_A-(-1))
sum_A = -1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, a, sum, ans = 0;
int main() {
cin >> n;
cin >> a;
sum = a;
for (int i = 1; i < n; i++) {
cin >> a;
if (sum > 0) {
sum += a;
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
} else if (sum < 0) {
sum += a;
if (sum <= 0) {
ans += -sum + 1;
sum = 1;
}
}
}
cout << ans << endl;
return (0);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main()
{
int n,ans;
cin>>n;
vector<int>a(n);
for(int i=0;i<n;i++){
cin>>a.at(i);
}
for(int i=0;i<n-1;i++){
while(a.at(i)*a.at(i+1)>=0){
if(a.at(i)>0){
a.at(i+1)--;
ans++;
if(p==0)p++;
}
if(a.at(i)<0){
a.at(i+1)++;
ans++;
if(p==0)p++;
}
}
int p=0;
for(int j=i+1;j>=0;j--)p+=a.at(j);//sum
if(p==0){
if(a.at(i)>0)a.at(i+1)++;
else a.at(i+1)--;
ans++;
}
cout<<ans<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.util.NoSuchElementException;
import java.io.InputStream;
import java.io.PrintWriter;
@SuppressWarnings("unchecked")
public class Main {
static int n;
static int[] a;
static int f(int x) {
int ope = 0;
int cur = 0;
for (int i = 0; i < n; i++) {
// 同符号
int aim = a[i];
// 異符号
if (x * a[i] < 0)
aim = x * (Math.abs(cur) + 1);
// 同符号
else if (Math.abs(a[i]) <= Math.abs(cur) + 1)
aim = x * (Math.abs(cur) + 1);
ope += Math.max(a[i], aim) - Math.min(a[i], aim);
cur += aim;
// 符号反転
x *= -1;
}
return ope;
}
public static void main(String[] args) throws IOException {
PrintWriter out = new PrintWriter(System.out);
n = nextInt();
a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
int plus = f(1);
int minus = f(-1);
out.println(Math.min(plus, minus));
out.flush();
}
// FastScanner start
static final InputStream in = System.in;
static final byte[] buffer = new byte[1024];
static int ptr = 0;
static int buflen = 0;
static boolean hasNextByte() {
if (ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
static int readByte() {
if (hasNextByte()) return buffer[ptr++];
else return -1;
}
static boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
static boolean hasNext() {
while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;
return hasNextByte();
}
static String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
static long nextLong() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
} else if(b == -1 || !isPrintableChar(b)) {
return minus ? -n : n;
} else {
throw new NumberFormatException();
}
b = readByte();
}
}
static int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE)
throw new NumberFormatException();
return (int) nl;
}
static double nextDouble() {
return Double.parseDouble(next());
}
// FastScanner end
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N=int(input())
A=list(map(int,input().split()))
now=A[0]
ans=0
for i in range(1,N):
if now<0 and now+A[i]<=0:
ans+=abs(now)-A[i]+1
now=1
elif now>0 and now+A[i]>=0:
ans+=now+A[i]+1
now=-1
else:
now+=A[i]
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
temp=a[0]
for i in range(n - 1):
if temp > 0:
temp+=a[i+1]
if temp < 0:
pass
else:
while temp >= 0:
temp -= 1
ans += 1
else:
temp+=a[i+1]
if temp > 0:
pass
else:
while temp <= 0:
temp += 1
ans += 1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def count_loop(n, old_state, a_list, flag):
count = 0
for i in range(1, int(n)):
num_state = old_state + int(a_list[i])
if flag == 1:
if num_state == 0:
count += 1
old_state = -1
flag = -1
elif num_state > 0:
count += num_state + 1
old_state = -1
flag = -1
else:
old_state = num_state
flag = -1
elif flag == -1:
if num_state == 0:
count += 1
old_state = 1
flag = 1
elif num_state < 0:
count += abs(num_state) + 1
old_state = 1
flag = 1
else:
old_state = num_state
flag = 1
else:
if num_state == 0:
count += 1
flag = 0
elif num_state > 0:
old_state = num_state
flag = 1
else:
old_state = num_state
flag = -1
return count
if __name__ == "__main__":
n = input()
a = input()
a_list = a.split(" ")
old_state = int(a_list[0])
count = 0
if old_state == 0:
count += 1
c1 = count_loop(n,1,a_list,0)
c2 = count_loop(n,-1,a_list,0)
else:
c1 = count_loop(n,old_state,a_list,1)
c2 = count_loop(n,old_state,a_list,-1)
if c1 <= c2:
print(c1)
else:
print(c2)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | input()
iter_ = iter(map(int, input().rstrip("\n").split()))
sum_ = next(iter_)
ans = 0
for num in iter_:
if sum_ == 0:
sum_ += 1
ans += 1
presum = sum_
sum_ += num
while presum * sum_ >= 0:
sum_ += -1 if presum > 0 else 1
ans += 1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1e+9 + 7;
long long n, m, l;
string s, t;
long long d[100000], dp[100][100];
int main() {
cin >> n;
for (long long i = (0); i < (n); i++) cin >> d[i];
int sum1 = 0, sum2 = 0;
int ans1 = 0, ans2 = 0;
for (long long i = (0); i < (n); i++) {
sum1 += d[i];
if (i % 2 == 0) {
if (sum1 <= 0) {
ans1 += -sum1 + 1;
sum1 = 1;
}
} else {
if (sum1 >= 0) {
ans1 += sum1 + 1;
sum1 = -1;
}
}
}
for (long long i = (0); i < (n); i++) {
sum2 += d[i];
if (i % 2 == 0) {
if (sum2 >= 0) {
ans2 += sum2 + 1;
sum2 = -1;
}
} else {
if (sum2 <= 0) {
ans2 += sum2 + 1;
sum2 = 1;
}
}
}
cout << (min(ans1, ans2)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<ll, ll>;
const int INF = 1001001001;
const int MOD = 1000000007;
template <typename T>
void print(const T &v);
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int bf_e = 0;
int cnt_e = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (bf_e + a[i] <= 0) {
int num;
num = 1 - bf_e - a[i];
cnt_e += num;
bf_e = 1;
} else {
bf_e = bf_e + a[i];
}
} else {
if (bf_e + a[i] >= 0) {
int num;
num = bf_e + a[i] + 1;
cnt_e += num;
bf_e = -1;
} else {
bf_e = bf_e + a[i];
}
}
}
int bf_o = 0;
int cnt_o = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
if (bf_o + a[i] <= 0) {
int num;
num = 1 - bf_o - a[i];
cnt_o += num;
bf_o = 1;
} else {
bf_o = bf_o + a[i];
}
} else {
if (bf_o + a[i] >= 0) {
int num;
num = bf_o + a[i] + 1;
cnt_o += num;
bf_o = -1;
} else {
bf_o = bf_o + a[i];
}
}
}
cout << min(cnt_o, cnt_e) << endl;
}
template <typename T>
void print(T const &v) {
for (int i = 0; i < v.size(); i++) {
if (i) cout << " ";
cout << v[i];
}
cout << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
const double pi = acos(-1.0);
const ll MOD = 1e9 + 7;
const ll INF = 1LL << 60;
void print(vector<ll> vec) {
for (int i = 0; i < ((ll)(vec).size()); i++) {
if (i) cout << " ";
cout << vec[i];
}
cout << "\n";
}
ll dp[100005];
int main() {
ll n;
cin >> n;
vector<ll> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
dp[0] = a[0];
ll ans = 0;
for (int i = 1; i < n; i++) {
if (dp[i - 1] < 0) {
if (dp[i - 1] + a[i] > 0) {
dp[i] = dp[i - 1] + a[i];
} else {
ll ai = 1 - dp[i - 1];
ans += abs(ai - a[i]);
dp[i] = 1;
}
}
if (dp[i - 1] > 0) {
if (dp[i - 1] + a[i] < 0) {
dp[i] = dp[i - 1] + a[i];
} else {
ll ai = -1 - dp[i - 1];
ans += abs(ai - a[i]);
dp[i] = -1;
}
}
}
for (int i = 0; i < n; i++) dp[i] = 0;
ll cnt = 0;
if (a[0] > 0) {
dp[0] = -1;
cnt += abs(a[0] + 1);
} else {
dp[0] = 1;
cnt += abs(a[0] - 1);
}
for (int i = 1; i < n; i++) {
if (dp[i - 1] < 0) {
if (dp[i - 1] + a[i] > 0) {
dp[i] = dp[i - 1] + a[i];
} else {
ll ai = 1 - dp[i - 1];
cnt += abs(ai - a[i]);
dp[i] = 1;
}
}
if (dp[i - 1] > 0) {
if (dp[i - 1] + a[i] < 0) {
dp[i] = dp[i - 1] + a[i];
} else {
ll ai = -1 - dp[i - 1];
cnt += abs(ai - a[i]);
dp[i] = -1;
}
}
}
ans = min(ans, cnt);
cout << ans << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
sum = a[0]
plus = None
if a[0] > 0:
plus = True
else:
plus = False
ans1 = 0
for i in range(1, n):
plus = not(plus)
sum += a[i]
if plus:
if sum <= 0:
ans1 += abs(sum) + 1
sum = 1
else:
if sum >= 0:
ans1 += abs(sum) + 1
sum = -1
sum = 0
a[0] = a[0] // abs(a[0]) * -1
if a[0] > 0:
plus = True
else:
plus = False
ans2 = abs(a[0]) + 1
for i in range(1, n):
plus = not(plus)
sum += a[i]
if plus:
if sum <= 0:
ans2 += abs(sum) + 1
sum = 1
else:
if sum >= 0:
ans2 += abs(sum) + 1
sum = -1
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
int res = 0;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] arr = new int[n];
int sumeven = 0;
int sumodd = 0;
int counteven = 0;
int countodd = 0;
for (int i = 0; i < arr.length; i++) {
arr[i] = in.nextInt();
sumeven+=arr[i];
sumodd+=arr[i];
if (i%2==0) {
if(sumeven>=0){
counteven+=(1+sumeven);
sumeven = -1;
}
if (sumodd<=0) {
countodd+=(1-sumodd);
sumodd = 1;
}
}else{
if (sumeven<=0) {
counteven+=(1-sumeven);
sumeven = 1;
}
if (sumodd>=0) {
countodd+=(1+sumodd);
sumodd = -1;
}
}
}
System.out.println(counteven < countodd ? counteven : countodd);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
# -*- coding: utf-8 -*-
N = int(input())
a = [int(n) for n in input().split()]
count_a = 0
count_b = 0
nowsum = a[0]
if nowsum != 0:
for n in range(1, N):
if nowsum * (nowsum + a[n]) >= 0:
count_a += abs(nowsum + a[n]) + 1
if nowsum < 0:
nowsum = 1
else:
nowsum = -1
else:
nowsum += a[n]
print(count_a)
else:
a[0] = 1
count_a += 1
nowsum = 1
for n in range(1, N):
if nowsum * (nowsum + a[n]) >= 0:
count_a += abs(nowsum + a[n]) + 1
if nowsum < 0:
nowsum = 1
else:
nowsum = -1
else:
nowsum += a[n]
a[0] = -1
count_b += 1
nowsum = -1
for n in range(1, N):
if nowsum * (nowsum + a[n]) >= 0:
count_b += abs(nowsum + a[n]) + 1
if nowsum < 0:
nowsum = 1
else:
nowsum = -1
else:
nowsum += a[n]
print(min(count_a, count_b)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100004];
long long solve() {
long long ans = 0;
for (int i = (2); i <= (int)(n); ++i) {
if (a[i - 1] > 0) {
if (a[i] + a[i - 1] < 0) {
a[i] += a[i - 1];
continue;
}
ans += abs(a[i] + 1 + a[i - 1]);
a[i] = -1;
} else {
if (a[i] + a[i - 1] > 0) {
a[i] += a[i - 1];
continue;
}
ans += abs(a[i] - 1 + a[i - 1]);
a[i] = 1;
}
}
return ans;
}
int main() {
scanf("%d", &n);
for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]);
long long ans = 0;
if (!a[1]) {
a[1] = 1;
ans = solve() + 1;
a[1] = -1;
ans = min(ans, solve() + 1);
} else
ans = solve();
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long cnt = 0;
if (sum == 0) {
sum = (a[1] > 0 ? 1 : -1);
cnt++;
}
for (int i = 1; i < n; i++) {
long long nsum = sum + a[i];
if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) {
sum = nsum;
continue;
}
sum = (sum > 0 ? -1 : 1);
cnt += (nsum == 0 ? 1 : abs(nsum) + 1);
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MAXN = 100 * 1000 + 10;
int main() {
int n, f = 0, z = 0, s = 0, sum = 0;
cin >> n;
int b[n];
for (int i = 0; i < n; i++) {
cin >> b[i];
if (i % 2 == 0) {
f += b[i];
} else {
z += b[i];
}
}
if (f > z) {
if (b[0] <= 0) {
s += 1 - b[0];
b[0] = 1;
}
if (b[1] >= 0) {
s += b[1] + 1;
b[1] = -1;
}
} else {
if (b[0] >= 0) {
s += b[0] + 1;
b[0] = -1;
}
if (b[1] < 0) {
s += -1 * b[1];
b[1] = 0;
}
}
for (int i = 0; i < n - 1; i++) {
sum += b[i];
if (sum < 0 && sum + b[i + 1] < 0) {
s += -1 * (sum + b[i + 1]) + 1;
b[i + 1] += -1 * (sum + b[i + 1]) + 1;
} else if (sum > 0 && sum + b[i + 1] >= 0) {
s += sum + b[i + 1] + 1;
b[i + 1] -= sum + b[i + 1] + 1;
} else if (sum + b[i + 1] == 0) {
if (sum < 0) {
b[i + 1] += 1;
} else {
b[i + 1] -= 1;
}
s++;
}
}
cout << s;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 7;
const int mod = 1e9 + 7;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int n;
cin >> n;
int64_t a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int64_t s_i = a[0];
int64_t s_i_1;
int64_t d = 0;
int64_t c = 0;
for (int i = 1; i < n; i++) {
if (s_i == 0) {
s_i += 1;
c++;
}
s_i_1 = s_i + a[i];
if ((s_i_1 > 0 && s_i > 0) || (s_i < 0 && s_i_1 < 0)) {
d = abs(s_i_1 - s_i);
if (s_i > 0) {
if (s_i_1 != 0) {
s_i_1 -= d + 1;
c += d + 1;
} else {
s_i_1 -= 1;
d += 1;
}
} else {
if (s_i_1 != 0) {
s_i_1 += d + 1;
c += d + 1;
} else {
s_i_1 += 1;
c += 1;
}
}
}
s_i = s_i_1;
}
if (s_i == 0) {
c += 1;
}
cout << c << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ansa = 0, ansb = 0, suma = 0, sumb = 0;
cin >> n;
for (int i = 0; i < (n); i++) {
int a, b;
cin >> b;
a = b;
if (i % 2 == 0) {
while (suma + a <= 0) {
a++;
ansa++;
}
while (sumb + b >= 0) {
b--;
ansb++;
}
} else {
while (suma + a >= 0) {
a--;
ansa++;
}
while (sumb + b <= 0) {
b++;
ansb++;
}
}
suma += a;
sumb += b;
}
cout << min(ansa, ansb) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
int s1, a1 = 0, s2, a2 = 0;
if (a[0] > 0) {
s1 = a[0];
s2 = -1;
a2 = a[0] + 1;
} else if (a[0] < 0) {
s1 = 1;
s2 = a[0];
a1 = 1 - a[0];
} else {
s1 = 1;
s2 = -1;
a1 = 1;
a2 = 1;
}
for (int i = 1; i < n; ++i) {
if (s1 > 0) {
if (s1 + a[i] >= 0) {
a1 += s1 + a[i] + 1;
s1 = -1;
} else
s1 += a[i];
} else {
if (s1 + a[i] <= 0) {
a1 = 1 - a1 - a[i];
s1 = 1;
} else
s1 += a[i];
}
}
for (int i = 1; i < n; ++i) {
if (s2 > 0) {
if (s2 + a[i] >= 0) {
a2 += s2 + a[i] + 1;
s2 = -1;
} else
s2 += a[i];
} else {
if (s2 + a[i] <= 0) {
a2 = 1 - a2 - a[i];
s2 = 1;
} else
s2 += a[i];
}
}
return min(a1, a2);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a;
cin >> a;
long long sum = a;
long long cnt = 0;
for (int i = 1; i < n; ++i) {
cout << "sum: " << sum << ", cnt: " << cnt << endl;
cin >> a;
int next = sum + a;
int c, diff;
c = diff = 0;
if (sum > 0) {
if (next >= 0) {
diff = (-1 - sum);
a = diff - a;
c = diff;
}
} else {
if (next <= 0) {
diff = (1 - sum) - a;
a += diff;
c = diff;
}
}
sum += a;
cnt += abs(c);
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
int n;
std::cin >> n;
std::vector<long long> a(n);
for (int i = 0; i < n; ++i) std::cin >> a[i];
int cost_all = 0;
std::vector<long long> s(n, 0);
for (int k = 0; k < 2; ++k) {
int cost = 0;
if (k == 0) {
s[0] = (a[0] > 0 ? a[0] : 1);
cost += std::abs(a[0] - s[0]);
} else {
s[0] = (a[0] < 0 ? a[0] : -1);
cost += std::abs(a[0] - s[0]);
}
for (int i = 1; i < n; ++i) {
s[i] = s[i - 1] + a[i];
if (s[i] * s[i - 1] < 0)
continue;
else {
if (s[i - 1] < 0) {
cost += std::abs(1 - s[i - 1] - a[i]);
a[i] = 1 - s[i - 1];
} else {
cost += std::abs(-1 - s[i - 1] - a[i]);
a[i] = -1 - s[i - 1];
}
}
s[i] = s[i - 1] + a[i];
}
cost_all = (cost < cost_all ? cost : cost_all);
}
std::cout << cost_all << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 999999999;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum1 = 0;
int count1 = 0;
int sum2 = 0;
int count2 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
if (i % 2 == 0) {
if (sum1 < ~0) {
count1 += abs(sum1) + 1;
sum1 = 1;
}
} else {
if (sum1 >= 0) {
count1 += abs(sum1) + 1;
sum1 = -1;
}
}
}
for (int i = 0; i < n; i++) {
sum2 += a[i];
if (i % 2 == 0) {
if (sum2 >= 0) {
count2 += abs(sum2) + 1;
sum2 = -1;
}
} else {
if (sum2 <= 0) {
count2 += abs(sum2) + 1;
sum2 = 1;
}
}
}
cout << min(count1, count2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool dif(long long int a, long long int b) {
if (a < 0 && b > 0) return true;
if (a > 0 && b < 0) return true;
return false;
}
int odd(vector<int> v, vector<int> &w) {
long long int ans = 0;
if (v[0] <= 0)
while (++v[0] != 1)
;
long long int sum = v[0];
ans = abs(v[0] - w[0]);
for (int i = 1; i < v.size(); i++) {
if (dif(sum, sum + v[i])) {
sum += v[i];
} else {
if (sum > 0) {
v[i] = -1 - sum;
} else if (sum < 0) {
v[i] = 1 - sum;
}
sum += v[i];
}
ans += abs(v[i] - w[i]);
}
return ans;
}
int even(vector<int> v, vector<int> &w) {
long long int ans = 0;
if (v[0] >= 0)
while (--v[0] != -1)
;
long long int sum = v[0];
ans = abs(v[0] - w[0]);
for (int i = 1; i < v.size(); i++) {
if (dif(sum, sum + v[i])) {
sum += v[i];
} else {
if (sum > 0) {
v[i] = -1 - sum;
} else if (sum < 0) {
v[i] = 1 - sum;
}
sum += v[i];
}
ans += abs(v[i] - w[i]);
}
return ans;
}
int main() {
int n;
cin >> n;
vector<int> v(n), cpy;
for (int &i : v) cin >> i;
cpy = v;
long long int ans = min(odd(v, cpy), even(v, cpy));
cout << ans;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll mod = 1e9 + 7;
int n;
vector<ll> a;
ll cost(bool sign) {
ll cst = 0, rs = 0;
for (int i = 0; i < n; i++) {
rs += a[i];
if (rs == 0) {
cst += sign ? 1 : -1;
} else {
if ((rs > 0) == true && !sign) {
cst += rs + 1;
rs = -1;
} else if ((rs > 0) == false && sign) {
cst += abs(rs) + 1;
rs = 1;
}
}
sign = !sign;
}
return cst;
}
int main() {
cin >> n;
a.resize(n);
for (ll &i : a) cin >> i;
ll ans = cost(true);
ans = min(ans, cost(false));
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int64_t> a(n + 10, 0);
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
int pn = 0;
int mn = 0;
const int64_t first = a[1];
{
int num = 0;
int64_t total = 0;
if (first <= 0) {
num = 1 - first;
total = 1;
} else {
total = first;
}
for (int i = 2; i <= n; ++i) {
int64_t ai = a[i];
if (i % 2 == 0) {
if (ai >= 0) {
num += -(-1 - ai);
ai = -1;
}
while (total + ai >= 0) {
--ai;
++num;
}
total += ai;
} else {
if (ai <= 0) {
num += 1 - ai;
ai = 1;
}
while (total + ai <= 0) {
++ai;
++num;
}
total += ai;
}
}
pn = num;
}
{
int num = 0;
int64_t total = 0;
if (first >= 0) {
num = -(-1 - first);
total = -1;
} else {
total = first;
}
for (int i = 2; i <= n; ++i) {
int64_t ai = a[i];
if (i % 2 == 0) {
if (ai <= 0) {
num += 1 - ai;
ai = 1;
}
while (total + ai <= 0) {
++ai;
++num;
}
total += ai;
} else {
if (ai >= 0) {
num += -(-1 - ai);
ai = -1;
}
while (total + ai >= 0) {
--ai;
++num;
}
total += ai;
}
}
mn = num;
}
cout << min(pn, mn) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
acc = [0] * n
acc[0] = A[0]
for i in range(1, n):
acc[i] = acc[i - 1] + A[i]
ans = 0
cur = acc[0]
x = 0
for i in range(1, n):
acc[i] += x
if cur > 0:
if acc[i] >= 0:
ans += acc[i] + 1
x -= acc[i] + 1
acc[i] = -1
else:
if acc[i] <= 0:
ans += abs(acc[i]) + 1
x += abs(acc[i]) + 1
acc[i] = 1
cur = acc[i]
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long MOD = 1e9 + 7;
const long LINF = 1e13;
const long LLINF = 1e18;
template <class T>
void Swap(T& r, T& l) {
T tmp = r;
r = l;
l = tmp;
}
int main() {
long n;
cin >> n;
vector<long> a(n);
vector<long> accum(n, 0);
for (int i = 0; i < n; ++i) {
cin >> a[i];
accum[i] = a[i];
if (i > 0) accum[i] += accum[i - 1];
}
vector<long> accumtmp(n, 0);
copy(accum.begin(), accum.end(), accumtmp.begin());
long ans = 0;
long count = 0;
long tmpcount = 0;
for (int i = 1; i < n; ++i) {
long accump = accumtmp[i] + tmpcount;
if (i % 2 == 1) {
if (accump >= 0) {
long tmpc = -(-1 - accump);
count += tmpc;
accumtmp[i] = -1;
tmpcount -= tmpc;
}
} else {
if (accump <= 0) {
long tmpc = 1 - accump;
count += tmpc;
tmpcount += tmpc;
}
}
}
ans = count;
ans = min(ans, count);
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long int ans = 1LL << 60, sum = a[0];
long long int tmp = 0;
for (int i = 1; i < n; ++i) {
sum += a[i];
if (sum == 0) {
tmp++;
if (sum - a[i] > 0)
sum--;
else
sum++;
}
if (sum - a[i] >= 0 && sum >= 0) {
tmp += sum + 1;
sum = -1;
} else if (sum - a[i] <= 0 && sum <= 0) {
tmp += abs(sum) + 1;
sum = 1;
}
}
(ans = min(ans, tmp));
tmp = 2 * abs(a[0]);
sum = -a[0];
for (int i = 1; i < n; ++i) {
sum += a[i];
if (sum == 0) {
tmp++;
if (sum - a[i] > 0)
sum--;
else
sum++;
}
if (sum - a[i] >= 0 && sum >= 0) {
tmp += sum + 1;
sum = -1;
} else if (sum - a[i] <= 0 && sum <= 0) {
tmp += abs(sum) + 1;
sum = 1;
}
}
(ans = min(ans, tmp));
cout << ans << endl;
;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
vector<int> rev_a = a;
int result = 0;
bool isPlus = a[0] > 0 ? true : false;
int sum = a[0];
for (int i = 1; i < n; i++) {
int temp_sum = sum + a[i];
if (isPlus) {
if (temp_sum >= 0) {
result += temp_sum + 1;
a[i] -= temp_sum + 1;
}
} else {
if (temp_sum <= 0) {
result += -temp_sum + 1;
a[i] += -temp_sum + 1;
}
}
isPlus = !isPlus;
sum += a[i];
}
sum = 0;
int rev_result = 0;
isPlus = rev_a[0] > 0 ? true : false;
if (isPlus) {
rev_result += rev_a[0] + 1;
rev_a[0] -= rev_a[0] + 1;
isPlus = !isPlus;
} else {
rev_result -= rev_a[0] + 1;
rev_a[0] += rev_a[0] + 1;
isPlus = !isPlus;
}
for (int i = 1; i < n; i++) {
int temp_sum = sum + rev_a[i];
if (isPlus) {
if (temp_sum >= 0) {
rev_result += temp_sum + 1;
rev_a[i] -= temp_sum + 1;
}
} else {
if (temp_sum <= 0) {
rev_result += -temp_sum + 1;
rev_a[i] += -temp_sum + 1;
}
}
isPlus = !isPlus;
sum += rev_a[i];
}
if (rev_result < result)
cout << rev_result << endl;
else
cout << result << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = int64_t;
int dx[] = {1, 0, -1, 0};
int dy[] = {0, 1, 0, -1};
int DX[] = {1, 1, 0, -1, -1, -1, 0, 1};
int DY[] = {0, -1, -1, -1, 0, 1, 1, 1};
void solve() {
int n;
cin >> n;
ll a[n], ans1 = 0, ans2 = 0;
for (int(i) = 0; (i) < (n); (i)++) cin >> a[i];
int temp = 0;
for (int(i) = 0; (i) < (n); (i)++) {
if (temp > 0 && temp + a[i] > 0) {
ans1 += abs(-1 - temp - a[i]);
temp = -1;
} else if (temp < 0 && temp + a[i] < 0) {
ans1 += abs(1 - temp - a[i]);
temp = 1;
} else if (temp + a[i] == 0) {
if (temp > 0) {
temp = -1;
} else {
temp = 1;
}
ans1 += 1;
} else {
temp += a[i];
}
}
temp = 0;
if (a[0] > 0) {
ans2 += (a[0] * (-1) - 1);
a[0] = a[0] * (-1) - 1;
} else {
ans2 = (a[0] * (-1) + 1);
a[0] = a[0] * (-1) + 1;
}
for (int(i) = 0; (i) < (n); (i)++) {
if (temp > 0 && temp + a[i] > 0) {
ans2 += abs(-1 - temp - a[i]);
temp = -1;
} else if (temp < 0 && temp + a[i] < 0) {
ans2 += abs(1 - temp - a[i]);
temp = 1;
} else if (temp + a[i] == 0) {
if (temp > 0) {
temp = -1;
} else {
temp = 1;
}
ans2 += 1;
} else {
temp += a[i];
}
}
cout << min(ans1, ans2) << endl;
}
int main() {
solve();
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.